
Anna Borowska
Elżbieta Rzeszutko

THE CRYPTANALYSIS
OF THE ENIGMA CIPHER.
THE PLUGBOARD
AND THE CRYPTOLOGIC BOMB

Abstract We study the problem of decoding secret messages encrypted by the German
Army with the M3 Enigma machine after September 15, 1938. We focused our
attention on the algorithmization and programming of this problem. A comple-
tion and optimization of Zygalski’s sheets method were presented previously.
We describe below the missing algorithm solving the problem of the plugboard
settings with an algebraic justification. This method is the original idea of the
authors, and we can use it for cryptanalysis together with both Zygalski’s she-
ets method and Rejewski’s bomb method. Next, we present a reconstruction
of the cryptologic bomb. We enclose an implementation of both algorithms in
Cpp language.

Keywords cryptologic bomb, M3 Enigma machine, plugboard

28 listopada 2014 str. 1/24

Computer Science • 15 (4) 2014 http://dx.doi.org/10.7494/csci.2014.15.4.365

365

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and...

https://core.ac.uk/display/229288716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://journals.agh.edu.pl/csci/

1. Introduction

The military Enigma machine was a portable electro-mechanical rotor encrypting
machine used during the Second World War, mainly by the German military and
government services. Beginning in 1932, Polish cryptologists (M. Rejewski, J. Różyc-
ki, and H. Zygalski) systematically worked on decoding ciphers, constantly modified
manners of generating secret messages, and modernized the construction of Enigma
machines.

The algorithms presented below can be used to decode messages transmitted after
September 15, 1938. That day, the German service withdrew initial drum settings from
tables of daily key settings and changed the manner of announcing message settings.

The proposed plugboard algorithm is the authors’ idea. The cryptologists co-
uld not guess the connections of the plugboard with this method within 20 minutes
with the use of the technology of that time. They used various tricks that relied on
knowledge of the German language. The presented algorithm does not depend on any
language.

The second algorithm is a reconstruction of Rejewski’s bomb. This algorithm was
assembled on the basis of information which had been found in the literature (mainly
historical sources). Historians often make factual mistakes; therefore, ambiguously-
described facts were completed with the authors’ observations. To get the total algo-
rithm, we tested different possibilities and chose the ones which provided the proper
result.

The German service used different kinds of Enigma machines (also commercial),
modified their construction, and changed the manner of generating secret messages.
However, we are only interested in the M3 Enigma machine. For the reader’s conve-
nience, we described the construction, the parameters of this machine, and the manner
of generating messages transmitted after September 15, 1938 in Appendix A. In Ap-
pendix B, we described the work of Polish cryptologists. These sections make up a brief
survey of well-known information taken from publications [8, 23, 9, 7, 10, 2, 5, 16].
We suggest reading Appendix A in the beginning to better understand the terms
and facts that we use. These terms are denoted in this paper by *. In sections 3 and
5, we provide some mathematical facts concerning permutations and, in particular,
1-cycles (which are essential to understand the presented methods). In section 4, the
reader can find a mathematical analysis of the M3 Enigma machine. Section 6 con-
tains a description and justification of the plugboard algorithm (the authors’ idea).
In section 7, we provide a reconstruction of the bomb method. By means of these
two algorithms, we can generate a complete daily key settings∗; i.e., the ring settings,
the choice of drums, the order of drums, and the plugboard settings on the basis of
a given set of messages intercepted after September 15, 1938. This allows us to read
the encrypted messages. We enclose an implementation of both of these algorithms
in Cpp language.

28 listopada 2014 str. 2/24

366 Anna Borowska, Elżbieta Rzeszutko

2. Ciphers

We can find the first ciphers in antiquity. Then, among other things, steganography
was used. That is, secret information was concealed by means of different techniques;
for example, secret text was hidden in an unimportant text. In Egypt and China, in-
visible ink was used. We also know the Caesar cipher and scytale method. Later, the
following groups of classical ciphers were used: transposition ciphers, substitution ci-
phers (monoalphabetic (e.g., the affine cipher), homophonic and polyalphabetic (e.g.,
the Hill cipher, the Vigenere cipher)).

In the early 19th century, electro-mechanic devices were designed for encrypting
messages, and cryptologists made use of the telegraph and radio. The World Wars
brought about an abundance of ciphering machines, the most noted being: Enigma
(German rotor machine), Purple (Japanese machine), the German Lorenz machine,
American SIGABA, and British Typex. These machines were designed to protect
military and diplomatic information, but similar devices were used in commerce.

The development of digital computers provided cipher designers with great com-
putational power. The effect of this transition into the digital domain was the rise of
binary ciphering algorithms. On the other hand, common access to cheap electronic
devices forced cipher designers to create safer products. Ciphers used in contemporary
cryptographic systems should remain secure even if the adversary possesses full know-
ledge of the ciphering algorithm. That is, security of the key used should be sufficient
to maintain confidentiality of communication when under attack (Kerckhoffs’s princi-
ple). A cryptologic algorithm becomes threatened when an exhaustive attack on a key
becomes possible as a result of progress in computing technology. Conditionally-secure
ciphers are not very sensitive to the increment of computing power of the attacker.
To prevent an effective attack, designers add larger security parameters.

Regarding the type of key, we distinguish two classes of ciphering algorithms:
symmetric-key algorithms and public-key (asymmetric-key) algorithms. In symmetric-
key algorithms, both the sender and receiver share the same key (sometimes their
keys are different but related in an easily-computable way). Asymmetric-key algori-
thms use a pair of different keys: a public one is used to encrypt and a private one
to decrypt. The two keys are mathematically related in such a way that there is no
effective method of finding the private key on the basis of the public one. Recently,
the following symmetric-key algorithms played a major role: DES (Data Encryption
Standard), 3DES, CDMF (Commercial Data Masking Facility), IDEA (Internatio-
nal Data Encryption Algorithm), the Rijndael algorithm, Standard AES (Advanced
Encryption Standard), RC2, RC4, RC5, RC6, and Blowfish. Some of the important
asymmetric-key algorithms include: RSA (Rivest, Shamir, Adelman) and the ElGamal
algorithm.

In order to protect a cryptosystem from an exhaustive attack (by means of cur-
rent computing power), cipher designers combine different methods and technolo-
gies. They apply substitution boxes (S-boxes), permutation boxes (P-boxes), and
substitution-permutation networks, which carry out encryption in multiple rounds

28 listopada 2014 str. 3/24

The cryptanalysis of the Enigma Cipher. (. . .) 367

(DES, 3DES, and FEAL). Other means involve a Feistel network, different functions
(e.g., one-way functions), bit operations, dividing data into blocks, and combining
them with pseudorandom character streams. Other important factors include key-
strength analysis, or the use of intractable mathematical problems: the integer fac-
torization problem (RSA), the discrete logarithm problem (ElGamal, RSA), and the
knapsack problem (Merkle-Hellman cryptosystem). Cryptologists also make use of
cyclic groups and elliptic curves which are currently widely studied (RSA, ElGamal).
(cf. [21, 25, 13, 4, 15, 28])

3. Elements of permutation theory

For the reader’s convenience, we provide some definitions and facts from permutation
theory (cf. [18, 20, 24]). A permutation of an n-element set X = {1, 2, . . . , n} is a map
σ : X 7→ X of X into itself such that if i, j ∈ X and i 6= j then σ(i) 6= σ(j). The set
of permutations of X we denote by Sn. We shall represent any permutation σ ∈ Sn
by 2× n matrix σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
.

The inverse of a permutation σ (denoted by σ−1) is defined as the map σ−1 :
X 7→ X such that σ−1(k) = unique integer j such that σ(j) = k. We shall form
a product (a composition) of two permutations f, g ∈ Sn in the same way as M.
Rejewski in [23] i.e.,

f ◦ g =
(

1 2 . . . n

f(1) f(2) . . . f(n)

)
◦
(

1 2 . . . n

g(1) g(2) . . . g(n)

)
=

=
(

1 2 . . . n

g(f(1)) g(f(2)) . . . g(f(n))

)
; e.g.,

f ◦ g =
(

1 2 3 4
3 1 2 4

)
◦
(

1 2 3 4
4 3 1 2

)
=
(

1 2 3 4
1 4 3 2

)
.

This notation is different from standard notation, but it is used by authors in-
terested in the Enigma machine. We usually omit the circle ◦, and write fg for the
composite map. The composition of permutations is associative.

For any permutation σ, we have σ−1σ = idX and σσ−1 = idX , where idX
is the identity permutation, that is, the permutation such that idX(i) = i for all
i = 1, 2, . . . , n. A permutation σ ∈ Sn is called a cycle of length k or k-cycle if there
are k elements a1, a2, . . . , ak of the domain X = {1, 2, . . . , n} such that σ(a1) = a2,
σ(a2) = a3, . . . , σ(ak−1) = ak, σ(ak) = a1 and for the remaining elements of X we
have σ(ai) = ai. A more compact way of writing a k-cycle is σ = (a1, a2, . . . , ak).
It is understood that σ maps each ai, i = 1, 2, . . . , k − 1 into the element listed on
its immediate right, ak into a1, and each unlisted integer of X into itself. A cycle of
length two is called a transposition.

28 listopada 2014 str. 4/24

368 Anna Borowska, Elżbieta Rzeszutko

4. Mathematical analysis

Let P = {A, B, . . . , Z} be a set of possible plaintexts, and let C = P be a set of possi-
ble ciphertexts. The M3 Enigma machine ciphers text T by using a poly-alphabetic
substitution cipher. Each letter a ∈ P of the message is transformed according to the
following permutation (cf. [23])

Λ = SH(QzRQ−zQyMQ−yQxLQ−x)B(QxL−1Q−xQyM−1Q−yQzR−1Q−z)H−1S−1

(1)
S – is a permutation describing the plugboard∗ transformation (S consists of trans-
positions and 1-cycles only),
B – is a permutation describing the reflector∗ transformation (B consists of 13 trans-
positions),
L, M , R – are permutations describing transformations of the three cipher drums∗,
H – is a transformation of the entry wheel∗ (H is the identity permutation),
Q = (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z) – a cycle of length 26,
n(α) – the number of a letter α (value from set IP = {0, 1, . . . , 25}),
x, y, z – are the positions of rotors∗ before pressing any key (values from set IP),
x = (26 + n(α)− n(δ))%26 for the left rotor,
y = (26 + n(β)− n(ε))%26 for the middle rotor,
z = (26 + n(γ)− n(ζ))%26 for the right rotor (cf. [8]),
α, β, γ – positions of drums∗ (left, middle and right) before pressing any key,
δ, ε, ζ – positions of rings∗ (left, middle and right) (α, β, γ, δ, ε, ζ ∈ P)

5. 1-cycles

Let us assume that we eavesdropped four messages on the same day with the following
headlines∗. This means that these messages were generated for the same daily key
settings∗.

(1) XFI ADR AXF (2) TWP HNP LNR (3) ADM DOD YKD (4) ZHO IEF YEM

The first 3 letters of each message make up the initial drum settings∗. The Enigma
codes the next 6 letters of a message (meant as double coded message settings∗) using
the following permutations (cf. [23]).

A = SHQz+1RQ−(z+1)QyMQ−yQxLQ−xBQxL−1Q−xQyM−1Q−yQz+1R−1Q−(z+1)H−1S−1

B = SHQz+2RQ−(z+2)QyMQ−yQxLQ−xBQxL−1Q−xQyM−1Q−yQz+2R−1Q−(z+2)H−1S−1

C = SHQz+3RQ−(z+3)QyMQ−yQxLQ−xBQxL−1Q−xQyM−1Q−yQz+3R−1Q−(z+3)H−1S−1

D = SHQz+4RQ−(z+4)QyMQ−yQxLQ−xBQxL−1Q−xQyM−1Q−yQz+4R−1Q−(z+4)H−1S−1

E = SHQz+5RQ−(z+5)QyMQ−yQxLQ−xBQxL−1Q−xQyM−1Q−yQz+5R−1Q−(z+5)H−1S−1

F = SHQz+6RQ−(z+6)QyMQ−yQxLQ−xBQxL−1Q−xQyM−1Q−yQz+6R−1Q−(z+6)H−1S−1

We can obtain permutations A, B,. . . , F in the following way. We set up our Enigma
machine in the same way as the coder had set his machine up during ciphering.

28 listopada 2014 str. 5/24

The cryptanalysis of the Enigma Cipher. (. . .) 369

Next, we type all of the letters of the alphabet in order without using the turning
mechanism∗ (cf. [10]). In the case of the message (1), we receive

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A : Q X K M U Y I J G H C T D S V R A P N L E O Z B F W
D : Q H N T O G F B X Y M R K C E V A L W D Z P S I J U

AD : A I M K Z J X Y F B N D T W P L Q V C R O E U H G S

Permutations A, D consist of 13 transpositions. On the basis of double-ciphered
message settings ADR AXF, we can notice that A as well as D permutations conta-
in a transposition (x, A), where x is a ciphered letter (different from A). In the case of
the message (1), that is the transposition (A, Q). Therefore, the product AD assigns
the letter A to the letter A and the letter Q to the letter Q. Thus, there are 1-cycles
in the permutation AD. Below, we write down the permutation AD as a product of
disjoint cycles

AD : (A) (BIFJ) (CMTRVEZS) (DKNWUOPL) (GXHYG) (Q)

We can see that the first letter of the message settings was the letter Q. We proceed
in the same way when identical letters are located in positions two and five (or three
and six) in double-ciphered message settings, because it means that a permutation
BE (or CF) contains 1-cycles (cf. [8]).

6. Plugboard algorithm (the authors’ idea)

The Zygalski’s sheets method and the cryptologic bomb were used to generate the
daily key settings after September 15, 1938. Neither of these methods give plugboard
settings. It is a well-known fact that the plugboard connections do not have any
influence on the work of both of these methods. This means that, with these methods,
we can obtain the first 3 elements of the daily key settings regardless of how the coder
set his plugboard up during ciphering.

The presented plugboard algorithm can be used for cryptanalysis together with
both Zygalski’s method and the bomb method. We used the fact that identical letters
in positions one and four (or two and five or three and six) in double-ciphered message
settings mean that a permutation AD (or BE or CF) contains 1-cycles.

We received the following results for real connections of both drums and plugbo-
ard that were used by Wehrmacht. We assume (according to the knowledge of that
time) that we know connections of all kinds of drums. Given examples were executed
for drums: L = I, M = II, R = III, for the reflector B = UKW B and for the plugboard
connections S = (ET)(IX)(MQ)(NV)(PU)(YZ). Let us fix, that we shall treat the letters
A, B,. . . , Z of the Latin alphabet as the numbers from the set IP = {0, 1, . . . , 25}.

The output contacts of cipher drums I, II, and III (cf. [8]):

I : E K M F L G D Q V Z N T O W Y H X U S P A I B R C J
II : A J D K S I R U X B L H W T M C Q G Z N P Y F V O E

III : B D F H J L C P R T X V Z N Y E I W G A K M U S Q O

28 listopada 2014 str. 6/24

370 Anna Borowska, Elżbieta Rzeszutko

The turnover positions for selected drums: I – Q, II – E, III – V (cf. [8]).
The reflector connections (cf. [8]):

UKW B : (AY) (BR) (CU) (DH) (EQ) (FS) (GL) (IP) (JX) (KN) (MO) (TZ) (VW)

Below, we present two protocols of a cryptologist’s work. (A) when the algorithm
returns all daily key settings (with connections of plugboard), and (B) when the
algorithm gives daily key settings without plug connections (the cryptologist rece-
ives a permutation S, which represents a plugboard in another way and he sets up
a plugboard himself). For greater clarity, we shall notice that S = S−1 (S consists
of transpositions and 1-cycles only) and write the permutation Λ (cf. (1), §4) in ano-
ther way.

Λ = SΛHS
−1, where

ΛH = H(QzRQ−zQyMQ−yQxLQ−x)B(QxL−1Q−xQyM−1Q−yQzR−1Q−z)H−1

(2)

Example 6.1 Two protocols of a cryptologist’s work
Text T: PLUGBOARD ALGORITHM
The daily key settings: drums: I, II, III, the ring settings: Rs = EHM, plug connections
S = (ET) (IX) (MQ) (NV) (PU) (YZ)
EFE – initial positions of drums
IOP – message settings
HDB RYU – double-ciphered message settings
DCVEOYBEPVSHFLXGZJ – a ciphered text
EFE HDB RYU DCVEOYBEPVSHFLXGZJ – a message
A protocol (A) – the algorithm returns all daily key settings
• Cryptologist sets up his machine (all parameters without message settings).
• He sets the drums to EFE.
• He types the text HDBRYU and the program returns message settings IOP(IOP).
• He sets the drums to IOP.
• He types the text DCVEOYBEPVSHFLXGZJ and the program returns a result
PLUGBOARDALGORITHM.

A protocol (B) – the algorithm gives daily key settings without plug connections
(cryptologist receives plug connections S = (ET) (IX) (MQ) (NV) (PU) (YZ) in another
way).
• Cryptologist sets up his machine (all parameters without message settings and

plugboard settings).
• He reconstructs message settings.
◦ He sets the drums to EFE.
◦ He changes manually the text HDBRYU to HDBRZP (according to a permutation S).
◦ He types the text HDBRZP and the program returns message settings XOU(XOU).

28 listopada 2014 str. 7/24

The cryptanalysis of the Enigma Cipher. (. . .) 371

◦ He changes manually the text XOUXOU to IOPIOP (according to S). IOP makes up
message settings.
• He decodes the ciphered text.
◦ He sets the drums to IOP.
◦ He changes manually the text DCVEOYBEPVSHFLXGZJ to DCNTOZBTUNSHFLIGYJ.
◦ He types DCNTOZBTUNSHFLIGYJ and the program returns ULPGBOARDALGORXEHQ.
◦ He changes manually the text ULPGBOARDALGORXEHQ to PLUGBOARDALGORITHM.

6.1. Schema of the plugboard algorithm

We denote by (X14) any established message of the form αβγ kx2x3 kx5x6, where
α, β, γ, x2, x3, x5, x6, k belong to the set {A, B, . . . , Z}. Similarly, by (X25), (X36)
we denote messages with identical letters in positions two and five (or three and six)
in double-ciphered message settings. In order to guess the plug connections, we shall
use messages of these forms. For these messages, we shall calculate permutations ΛH

(where Λ = SΛHS
−1) instead of permutations Λ. We obtain a permutation ΛH by

substituting the identity permutation H for a permutation S.
Messages of the form (X14) (or (X25) or (X36)) that are received for the same

daily key settings only make up an input to the plugboard algorithm.

Example 6.2 We shall use the set of messages from the table 1 to determine plug-
board settings.

Schema of the plugboard algorithm
1. Set up your machine according to the daily key settings without plugboard con-

nections (i.e., plug connections are represented by the identity permutation H)
2. Add messages to the vector M (compare the example 6.2).
3. Split messages into two vectors V1 and V2.

• Add to the vector V2 couples of messages of the form (X14) with the same
recurrent letter k; e.g., messages (6) XFP EAZ EEQ and (7) DMA EFP EMR.
Each two messages are represented in V2 by means of one object of the
1cycle class which contains three fields (c – a recurrent letter, s1 – a string

with 1-cycles of a permutation A1HD1H for the first message and s2 – 1-
cycles of a permutation A2HD2H for the second message). We draw the
reader’s attention to the fact that a permutation can contain several 1-cycles.
For messages (6) and (7), the program creates the object [c=E, s1=GT,
s2=DEFMNSTY].
• Add to the vector V1 the remaining messages; i.e., these messages for which

we cannot find another message with the same letter in positions one and
four in double-ciphered message settings (e.g., the message (1) ICE AJA
ADV). Each message in V1 is represented by one object of the 1cycle class
which contains two fields (c – a recurrent letter and s1 – a string with
1-cycles of a permutation A1HD1H for the analyzed message). For message
(1), the program generates the object [c=A, s1=AY].

28 listopada 2014 str. 8/24

372 Anna Borowska, Elżbieta Rzeszutko

Table 1
The set of messages which were used in experiments.

messages 1-cycles of AHDH

(1) ICE AJA ADV NEHUMKYXSJUPKGNS AY
(2) BID BOZ BFG NVCKOXAHZRUOBAKG BC
(3) CFP CUR CNU ZMCMCWSKNKQLCYQK AC
(4) APQ CEK CTR DDLCKIEGBXUAGNCE CH
(5) HGN DQG DVV LHKSWWVOBZOUFBWH DT
(6) XFP EAZ EEQ ZOXFCZMUFBQMPMGS GT
(7) DMA EFP EMR JTLWAFNHKGWCZMMM DEFMNSTY
(8) CBN FHM FAZ OWDJMRCPBYTPUGCH EFLN
(9) YIN FHO FKQ OFEQHJNVQUWLJDFS FW

(10) DHS GPA GVF WCLLXWYYMWULIOLW GN
(11) XFC HLE HTW CHDGUHRJUOQJXQJV GH
(12) EIB IWQ IZA XPKRJWAMXKJOGFOK DIMX
(13) ABR IEP IHD PQFRHEYNQABMKIDY AUXY
(14) ABE JSZ JXQ AYOINRILBOPPYUAR FJ
(15) ZCB KEB KYT RKPJGDEKWBYFGVSP KOQU
(16) PRS LRL LIX ZKWSPKQJIOEFMAEB BLVZ
(17) BCD MFA MFL OKMXDPKPNYKEAHCE QU
(18) QDM MFQ MUS UREPNBWUDNOCPTBR QY
(19) WHE NAH NXU HLZXEJILZHAOSTPT CV
(20) DIT OTL OFQ AVRWNAIGEGWJWUEK MO
(21) QIV RAM RRQ BBLQYVRUMOOCCPQE RW
(22) AAR SLP SBA MRRXMOJOGUAFHPMQ OSUZ
(23) CGC UYP UDL WMGCSRAGFTIRYYWR NP
(24) LDL WQI WMA LEHNNHXVWFBVPYWI NW
(25) XFF YDK YPX XHPJKTVPHXWINRLO FZ

4. An analysis of the vector V2

• The program analyzes objects of the vector V2 and reconstructs a permu-
tation S. The permutation S transforms a recurrent letter c into a letter of
the alphabet which occurs in both strings s1 and s2. For messages (6) and
(7) S(E) = T and S(T) = E. Each object of V2 gives one or two positions of
the permutation S.

5. An analysis of the vector V1

• The program analyzes objects of the vector V1 and reconstructs the permu-
tation S. The permutation S certainly transforms a recurrent letter c into
one of the letters of a string s1. An analyzed object allows us to reconstruct
the permutation S only if positions of this permutation were reconstructed in
advance for all the letters of a string s1 except for one letter (e.g., S(V) = Z,
S(X) = −, S(Y) = −, S(Z) = Y and s1 = VXZ). Then S(c) = the only

28 listopada 2014 str. 9/24

The cryptanalysis of the Enigma Cipher. (. . .) 373

letter of s1 for which S is not defined. By ”–” we denote no reconstructed
positions of a permutation.
• The vector V1 is analyzed repeatedly. We end the analysis of V1 when the

previous iteration did not give any new position of the permutation S.

Example 6.2 Continuation. Executing the plugboard algorithm.
1. We set up the Enigma in the following way: drums I, II, III, ring settings Rs =

EHM, plug connections – according to the identity permutation.
2. We shall analyze the given messages.
3. Vectors V2 and V1

c C E F I M

s1 AC GT EFLN DIMX QU
s2 CH DEFMNSTY FW AUXY QY

c A B D G H J K L N O R S U W Y

s1 AY BC DT GN GH FJ KOQU BLVZ CV MO RW OSUZ NP NW FZ

4. Below we present the permutation S after analyzing the vector V2.
ABCDEFGHIJKLMNOPQRSTUVWXYZ

S --C-TF--X---Q---M--E---I--

5. The analysis of objects of the vector V1. The first iteration.
Object [A, AY]: Either S(A) = A or S(A) = Y. We cannot reconstruct any position
of S.
Object [B, BC]: Either S(B) = B or S(B) = C. Since S(C) = C, therefore S(B) = B.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
S -BC-TF--X---Q---M--E---I--

Object [D, DT]: Either S(D) = D or S(D) = T. Since S(E) = T, therefore S(D) = D.
ABCDEFGHIJKLMNOPQRSTUVWXYZ

S -BCDTF--X---Q---M--E---I--

Objects [G, GN] and [H, GH] do not give any new position of S.
Object [J, FJ]: Either S(J) = F or S(J) = J. Since S(F) = F, therefore S(J) = J.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
S -BCDTF--XJ--Q---M--E---I--

Objects [K, KOQU] and [L, BLVZ] do not give any new positions of S.
Object [N, CV]: Either S(N) = C or S(N) = V. S(C) = C, thus S(N) = V and
S(V) = N.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
S -BCDTF--XJ--QV--M--E-N-I--

After the first iteration we get the following permutation S.
ABCDEFGHIJKLMNOPQRSTUVWXYZ

S -BCDTF--XJ--QVOUM--EPN-IZY

28 listopada 2014 str. 10/24

374 Anna Borowska, Elżbieta Rzeszutko

After the second iteration we get the complete permutation S.
ABCDEFGHIJKLMNOPQRSTUVWXYZ

S ABCDTFGHXJKLQVOUMRSEPNWIZY

6.2. Correctness of the plugboard algorithm

We are interested in any established messages of the form (X14) that were generated
for the same daily key settings (the choice and order of drums, ring settings, plug
connections). For example

(6) XFP EAZ EEQ ZOXFCZMUFBQMPMGS

// 1-cycles of AD : (E)(G), 1-cycles of AHDH : (G)(T)

In section 5, we established that permutations A, D of each message of this form
contain the same transposition (k, x), where a letter k occurs in positions one and
four in double ciphered message settings and x is the first sign of message settings
(x is different from k). That is, permutations A, D transform k into x and x into k,
where x = A(k) = D(k). Hence, the permutation AD contains at least two 1-cycles.

A : (AP) (BJ) (CL) (DO) (EG) (FY) (HV) (IZ) (KM) (NT) (QS) (RW) (UX)
D : (AX) (BU) (CO) (DZ) (EG) (FH) (IM) (JL) (KV) (NW) (PY) (QT) (RS)

AD : (AYHKIDCJU) (BLOZMVFPX) (E) (G) (NQR) (STW)

Let us assume that we broke all elements of the daily key settings except the
plugboard settings that are represented by a permutation S. In order to guess the
plug connections, we shall replace the permutation S with the identity permutation
H. Then, during ciphering, permutations AH , DH will be generated instead of per-
mutations A and D (cf. (2), §6).

AH : (AU) (BJ) (CL) (DO) (EV) (FZ) (GT) (HN) (IP) (KQ) (MS) (RW) (XY)
DH : (AI) (BP) (CO) (DY) (EM) (FH) (GT) (JL) (KN) (QX) (RS) (UZ) (VW)

AHDH : (AZHKXDCJP) (BLOYQNFUI) (EWS) (G) (MRV) (T)

Let us consider any established message X1 of the form (X14).
Lemma 6.1 Let us assume that permutations A, D (generated for this message)
contain the same transposition (k, x). Then, corresponding to them, permutations
AH , DH also contain the identical transposition (kH , xH), where kH = S(k), xH =
AH(kH) = DH(kH) = SAH(k) = SDH(k).1

It follows from the fact that the identity permutation H meets the assumptions
of the permutation S (S consists of transpositions and 1-cycles only).

Let us consider two established messages X1 and X2 of the form (X14) with the
same letter k. Let permutations A1H , D1H for message X1 contain the identical trans-
position (k1H , x1H) and permutations A2H , D2H for message X2 contain transposition
(k2H , x2H). We know that k1H = k2H = S(k) (cf. lemma 6.1).

1We remind the reader that we use another notation for a product of permutations.

28 listopada 2014 str. 11/24

The cryptanalysis of the Enigma Cipher. (. . .) 375

Hence, in order to reconstruct the permutation S, we need several couples of mes-
sages of the form (X14) with a different letter k for each couple. Then, we determine
permutations A1H , D1H and A2H , D2H and transpositions (k1H , x1H), (k2H , x2H) for
each couple of messages. Since k1H = k2H = S(k), we obtain S(k) = k1H = k2H and
S(k1H) = S(k2H) = k.

Example 6.3 Let us consider the two following messages
(6) XFP EAZ EEQ //1-cycles of AD: (E)(G), 1-cycles of AHDH : (G)(T)
(7) DMA EFP EMR //1-cycles of AD: (D)(E)(F)(Q)(S)(T)(V)(Z),

//1-cycles of AHDH : (D)(E)(F)(M)(N)(S)(T)(Y)

Permutations A1H , D1H for message (6) contain the same transposition (G, T) and
permutations A2H , D2H for message (7) contain the same transposition (N, T). Since
the letter T occurs in both transpositions, we guess that k1H = k2H = T = S(k) =
S(E). Therefore, S(E) = T and S(T) = E.

6.3. Implementation

The PlugBoard() method of the Enigma class generates a permutation S which
represents plug connections according to the schema given in section 6.1. This method
adds messages to the vector M, splits them into two vectors V1 and V2, and then
reconstructs positions of the permutation S (by means of two methods GenerateS2()
and GenerateS1()). The GenerateS2() method analyzes each element (an object of
the 1cycle class) of V2 in order to reconstruct the permutation S. First, it checks
whether S(c) is known or not. If S(c) = −, the method looks for a common letter in
strings s1 and s2. The common letter is element kH , so S(c) = kH and S(kH) = c.
The GenerateS1() method checks whether a position S(c) is defined or not. If S(c) =
−, the method checks if in a string s1 exists exactly one letter (e.g., A), for which S(A)
is not defined. If such a letter exists, the permutation S is reconstructed as follows
S(c) = A and S(A) = c. Otherwise, S is not reconstructed. The createAorD() method
generates a permutation Λ (cf. the formula (1), §4) for the ring settings rs and for
the drum settings dr. HE is an object of the Enigma class. The codeLetter() method
ciphers a letter described by the first parameter for the rotor settings determined by
the next three parameters. The moveD() method shifts drum settings dr for k presses
of keys. By tpR we denote the turnover position for the right drum. The ITC() method
changes a number from the set IP = {0, 1, . . . , 25} into a suitable letter. The CTI()
method does the opposite operation. The Fem() method returns a string with 1-cycles
of the permutation for which it was called.

(1) void Plugs::PlugBoard(){
(2) Perm *A1, *D1, *AD, *S; 1cycle * 1c;
(3) String c="", s1="", s2="", s=""; unsigned int i=0;
(4) HE->readEnigma();
//add messages to the vector M
(5) while(i<M.size()){
(6) A1 = createAorD(HE->Rs,HE->moveD(M[i]->s1,1));
(7) D1 = createAorD(HE->Rs,HE->moveD(M[i]->s1,4));
(8) AD = A1->Prod(D1);
(9) c=M[i]->s2[1]; s1=AD->Fem(); s2="";

28 listopada 2014 str. 12/24

376 Anna Borowska, Elżbieta Rzeszutko

(10) 1c = new 1cycle(c,s1,s2);
(11) delete A1; delete D1; delete AD;
(12) if(i+1<M.size() && M[i]->s2[1]==M[i+1]->s2[1]){i++;
(13) A1 = createAorD(HE->Rs,HE->moveD(M[i]->s1,1));
(14) D1 = createAorD(HE->Rs,HE->moveD(M[i]->s1,4));
(15) AD = A1->Prod(D1);
(16) 1c->s2=AD->Fem();
(17) delete A1; delete D1; delete AD;
(18) V2.push back(1c);}
(19) else V1.push back(1c);
(20) i++;}
(21) S = GenerateS2();
(22) GenerateS1(S);}
//------
(23) Perm* Plugs::GenerateS2(){
(24) Perm *S = new Perm(26);
(25) for(unsigned int i=0; i<V2.size(); i++)
(26) if(S->P[CTI(V2[i]->c[1])]==’ ’)
(27) for(int j=1; j<=V2[i]->s1.Length(); j++)
(28) if(V2[i]->s2.Pos(V2[i]->s1[j])!=0){
(29) S->P[CTI(V2[i]->c[1])]=V2[i]->s1[j];
(30) S->P[CTI(V2[i]->s1[j])]=V2[i]->c[1]; break;}
(31) return S;}
//------
(32) void Plugs::GenerateS1(Perm* S){
(33) bool b=true; String s1=""; int p1, p2;
(34) while(b){b=false;
(35) for(unsigned int i=0; i<V1.size(); i++)
(36) if(S->P[CTI(V1[i]->c[1])]==’ ’){s1="";
(37) for(int j=1; j<=V1[i]->s1.Length(); j++)
(38) s1+=S->P[CTI(V1[i]->s1[j])];
(39) p1=s1.Pos(’ ’); p2=s1.SubString(p1+1,s1.Length()).Pos(’ ’);
(40) if(p1!=0 && p2==0){b=true;
(41) S->P[CTI(V1[i]->c[1])]=V1[i]->s1[p1];
(42) S->P[CTI(V1[i]->s1[p1])]=V1[i]->c[1];}}}}
//------
(43) Perm* Plugs::createAorD(String rs, String dr){
(44) HE->setEnigma(rs,dr);
(45) char* A = new char[27]; A[0]=26;
(46) for(int i=1; i<=26; i++) A[i]=HE->codeLetter(pH[i],HE->Rt[1],HE->Rt[2],HE->Rt[3]);
(47) return new Perm(A);}
//------
(48) String Enigma::moveD(String dr, int k){
(49) String BE = dr, BEH="";
(50) for(int i=1; i<=k; i++){BEH=BE;
(51) BE[3]=ITC((CTI(BE[3])+1)%26);
(52) if(BEH[3]==tpR) BE[2]=ITC((CTI(BE[2])+1)%26);
(53) if(BEH[2]==tpM){
(54) BE[1]=ITC((CTI(BE[1])+1)%26); BE[2]=ITC((CTI(BE[2])+1)%26);}}
(55) return BE;}

6.4. How to transform messages

In order to reconstruct a permutation S, we can use messages (X25) and (X36) in the
same way. We can mix them, but if we analyze messages with the same letter k, we
must take a couple of messages of the same form. If we have two messages with the
same letter k and these messages are of different kinds (e.g., (X14) and (X25)), we
can transform one of them into the other form.

28 listopada 2014 str. 13/24

The cryptanalysis of the Enigma Cipher. (. . .) 377

Example 6.4 Let us consider the following message
PBT VAD CAG

WPO makes up message settings for this message. After we shift PBT drum settings by
one key press we get PBU drum settings. Let us set up drums to PBU (instead of PBT)
and type two times message settings WPO (but shifted to the right by one letter i.e.,
POWPO? instead of WPOWPO). We obtain ADCAG? instead of VADCAG. We can see that
double-ciphered message settings are also shifted to the right by one letter. Thus if
we have two messages

ICE AJA ADV
PBT VAD CAG

one of the form (X14) and the other of the form (X25) but both with the same letter
k, we can transform one of them into the other form. We shall obtain

ICE AJA ADV
PBU ADC AG?

Next, program will add both these messages to the vector V2. Certainly, we can
transform messages of the form (X36) in the same way.

Justification. Let us consider a message X1 of the form (X25) i.e., αβγ x1kx3 x4kx6,
where α, β, γ, x1, x3, x4, x6, k belong to the set {A, B, . . . , Z}. Let us assume that
K1K2K3 makes up message settings of this message; i.e.,

A(K1) = x1, B(K2) = k, C(K3) = x3, D(K1) = x4, E(K2) = k, F (K3) = x6.

Let us press any key before coding and begin ciphering with the second letter.

B(K2) = k, C(K3) = x3, D(K1) = x4, E(K2) = k, F (K3) = x6.

We obtained kx3x4kx6? for drum settings shifted by one key press.

7. Reconstruction of the cryptologic bomb method

7.1. Historical specification of the bomb method

Rejewski’s bomb method was used to break the daily key settings of messages trans-
mitted after September 15, 1938. This semiautomatic device consisted of three couples
of the M3 Enigma machines in which rotors were propelled by an electric motor. Each
couple of machines analyzed one message of the form (X14) (or (X25) or (X36)). Ad-
ditionally, all three messages had to contain the same recurrent letter k (in double-
ciphered message settings). For each couple of machines, drums of the first Enigma
were shifted on the basis of initial drum settings (divergent information cf. [8, 9, 10]).
Drums of the second Enigma were shifted by pressing three keys in relation to drums
of the first Enigma (cf. [9]). Next, the bomb was activated. The machine stopped
when each couple of Enigmas reached a common code of recurrent letter k (diffe-
rent for each couple). Then, cryptologists read ring settings and activated the bomb
again. The bomb usually stopped a few times only (0, 1, 2, or 3). Next, all of the

28 listopada 2014 str. 14/24

378 Anna Borowska, Elżbieta Rzeszutko

obtained ring settings were checked manually. The bomb method did not solve plug
connections, but the plugboard settings did not have any influence on the work of
this method. The bomb did not guess the daily key settings when a recurrent letter
k had been changed by the plugboard (cf. [8, 9, 10]).

Example 7.1 Let us consider the two following messages that were generated for the
same ring settings and for the same order of drums I, II, III with turnover positions
Q, E, V respectively.

(1) CPV QTM KZE
(2) CQX MHW EVE

Double-ciphered message settings of these messages was generated for the following
drum settings.

L: CCCCCCCC
M: PQQQQQQQ
R: VWXYZABC

QTMKZE
MHWEVE

Let us notice that the right drum reached a turnover position V. It caused the
middle drum to turn from position P to Q. Since the third letter of the message (1)
and the first letter of the second message are the same and both of them are coded
for the same CQY drum settings, they are the code of the same letter x. Therefore,
the sixth letter of the message (1) and the fourth letter of the message (2) are also
the code of the same letter x (since six first letters make up double ciphered message
settings). These letters are identical (equal E) because both of them are the code of
the same sign x and both are ciphered for the same CQB drum settings. If these two
letters were not the same, it would mean the drums had been set in an order different
than I, II, III (cf. [8]). The existence of these messages does not guarantee that the
drums were set in order I, II, III. It may be a coincidence (because the Enigma ciphers
signs on the basis of rotor settings (i.e., differences between drum settings and ring
settings)), but we usually obtain only a few such coincidences (0, 1, 2 or 3).

7.2. Schema of the bomb algorithm

1. Select 3 messages of the form (X14) or (X25) or (X36) with the same letter k.
2. Create 6 Enigma machines (two for each message). Let us name them E11, E12,

E21, E22, E31, E32, where the first index means the number of the message and
the second – the number of the Enigma in the couple.

3. Set up 6 Enigma machines in the following way.

• For each Enigma choose identical drums and set them up in the same order
(check all orders of drums – 5 ∗ 4 ∗ 3 = 60 possibilities for 5 drums)
• Set rings in any established way (the same for each Enigma)
• Set a plugboard according to the identity permutation (identically for each

Enigma)

28 listopada 2014 str. 15/24

The cryptanalysis of the Enigma Cipher. (. . .) 379

• For each couple of machines, shift the drums of the first Enigma (on the basis
of initial drum settings) to obtain a code of recurrent letter k by means of
a permutation A.
• For each couple of machines, shift the drums of the second Enigma by pres-

sing three keys in relation to the drums of the first Enigma (i.e., the second
Enigma codes a letter k by means of a permutation D).

4. By means of the instruction while test all possible ring settings and for each of
them determine codes of recurrent letter k (e.g., for k = A). Write down the ring
settings (0, 1, 2 or 3 possibilities) for which codes of recurrent letter are identical
(different for each couple). Check these possibilities and simultaneously guess the
plugboard settings. You can use the plugboard algorithm from section 6.

Example 7.2 Let us consider three messages

(1) CPV ADC AYL ABBYYYZKDOFAYOYAJKIXRDMVABMSCKCSWYZDHQZMRUZKBZROAULQOFJ
(2) EQC QZA UJA JTDCVNMYFJYLWIKWGWSZEZHRTPWRHKNSYZYDTMFUPVYWQWDDCWTGGKS
(3) FQM WAZ OAV ULFROOQRMTYVCRSBMPUUACABVQVZVZPHDCLCGVJPOKVDSASPAGZNAQF

We reveal that, these messages were generated for ring settings Rs = EHM, for drums
I, II, III and for the plugboard connections S = (ET)(IX)(MQ)(NV)(PU)(YZ).

Executing the bomb algorithm:

3. We show how the program will analyze messages for the order of drums I, II, III.

• Set ring settings to Rs = ZZZ.
• Set up drums of 6 machines in the following way.

E11: CPV, E12: CQY (drums of E12 are shifted by 3 key presses in relation to
drums of E11)

E21: EQE, E22: EQH (drums of E21 are shifted by 2 key presses in relation to
initial drum settings EQC)

E31: FQN, E32: FQQ (drums of E31 are shifted by 1 key press in relation to
initial drum settings FQM)

4. The program returns two results Rs = EHM and Rs = UDW.

• Check whether EHM makes up ring settings or not, i.e., set up drums in the order
L = I, M = II, R = III, set rings to EHM and execute the plugboard algorithm.
The program will return the following permutation S.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
S ABCDTFGHXJKLQVOUMRSEPNWIZY

• Set up plugboard according to the permutation S, set drums to CPV and type
double-ciphered message settings ADCAYL. Enigma will return a text RTY(RTY).
Thus, EHM ring settings are proper.
• If you execute the plugboard algorithm for UDW ring settings, you will not get

permutation S, because inside the plugBoard() method (cf. §6.3) there is the
readEnigma() method, which reads ring settings.

28 listopada 2014 str. 16/24

380 Anna Borowska, Elżbieta Rzeszutko

7.3. Implementation of the algorithm

The Rings() method of the Bomb class generates potential ring settings for the current
order of drums and three messages of the form (X14) (or (X25) or (X36)). In the
beginning, 6 Enigmas are adjusted; i.e., for all machines rings are set to ZZZ and
drums are set up according to three-letter strings remembered in a table BE. By means
of a loop while all possibilities of ring settings are tested (17,576 possibilities). First,
each Enigma determines a code of a recurrent letter k by means of the codeNext()
method. If codes of this letter for each couple of Enigmas are the same, the Rings()
method writes down potential ring settings. Next, by means of the moveR() method,
the next ring settings are established for all Enigma machines. Let us notice that,
according to the specification of the M3 Enigma machine, the codeNext() method
first shifts drums, next calculates rotor settings and finally codes a sign. The moveD()
method is defined in section 6.3.
(1) void Bomb::Rings(String *BE, char c){
(2) char c1, c2, c3, c4, c5, c6; int i=0; String s;
(3) E11->setEnigma("ZZZ",BE[1]); E12->setEnigma("ZZZ",BE[2]); E21->setEnigma("ZZZ",BE[3]);
(4) E22->setEnigma("ZZZ",BE[4]); E31->setEnigma("ZZZ",BE[5]); E32->setEnigma("ZZZ",BE[6]);
(5) while(i<17576){i++;
(6) c1 = E11->codeNext(c); c2 = E12->codeNext(c); c3 = E21->codeNext(c);
(7) c4 = E22->codeNext(c); c5 = E31->codeNext(c); c6 = E32->codeNext(c);
(8) if(c1==c2 && c3==c4 && c5==c6) cout << "Rs = " + E11->Rs;
(9) s = E11->moveR(E11->Rs,1);
(10) E11->setRs(s); E12->setRs(s); E21->setRs(s); E22->setRs(s); E31->setRs(s); E32->setRs(s);}}
//------
(11) char Enigma::codeNext(char c){
(12) String DRH=moveD(Ds, 1);
(13) int* RT = new int[4];
(14) for(int i=1; i<=3; i++) RT[i]=(26+CTI(DRH[i])-CTI(Rs[i]))%26;
(15) return codeLetter(c,RT[1],RT[2],RT[3]);}
//------
(16) String Enigma::moveR(String ri, int k){
(17) String RI = ri, RIH="";
(18) for(int i=1; i<=k; i++){RIH=RI;
(19) RI[3]=ITC((CTI(RI[3])+1)%26);
(20) if(RIH[3]==’Z’){
(21) RI[2]=ITC((CTI(RI[2])+1)%26);
(22) if(RIH[2]==’Z’)RI[1]=ITC((CTI(RI[1])+1)%26);}}
(23) return RI;}

7.4. Computational complexity

The total running time of the Rings() method for the established order of drums,
by using a computer with an AMD Turion 64 X2 processor clocked at 1.9GHz, is
about 5 seconds. The coding of letters (which is called 6 times for each of the 17576
ring settings) is the most time-consuming operation within this method. We have to
repeat the method 6 times (i.e., for each possible order of 3 drums). The Rings()
method returns several (0, 1, 2 or 3) ring settings. To guess which result is correct,
we can call the PlugBoard() method for each of the listed ring settings. This method
produces a result immediately (in a fraction of a second). Thus, we get a proper daily
key (for 3 drums) after about 30 seconds. The cryptologists used 6 crypto bombs (one
bomb for each order of drums), which were activated simultaneously. They obtained

28 listopada 2014 str. 17/24

The cryptanalysis of the Enigma Cipher. (. . .) 381

the result after about 2 hours. When the German service added two additional drums,
cryptologists needed 60 bombs. The running time of the Rings() method for 5 drums
is about 300 seconds. We can see that a computer program gives a quicker result.
H. Zygalski designed a better and cheaper method – perforated sheets. This method
is completely independent from plug connections. An implementation of Zygalski’s
method is presented in full in [2].

8. The implications of the work and conclusions

We can solve the Enigma cipher (by analyzing and completing historic information)
because trained Polish and (later) British cryptologists did it earlier. The Enigma
cipher is not trivial and its breaking on the basis of eavesdropped messages (witho-
ut the help of spies, mistakes of operators and numerous favorable coincidences) is
practically impossible even nowadays. Zygalski’s sheets method is more complicated
but effective in each case. The reader can find the full algorithm in [2]. Both of the-
se methods are interesting exercises and encourage the study of current problems of
cryptology. If the reader has the required skills, one can try to build his own electronic
variant of the Enigma-E machine.

Let us assume that we know the decryption method and we have a computer
and then a cryptologist introduces a change. We can guess that this change can
thwart all work of crypto analyzers. We can notice that breaking an Enigma key takes
time, even today. Decryption algorithms always have huge computational complexity.
The interesting history of the Enigma machine confirms the fact that cryptology will
always be of great (commercial, diplomatic, and military) importance.

References

[1] Bauer F.L.: Decrypted Secrets. Methods and Maxims of Cryptology. Springer-
Verlag Berlin Heidelberg, 2007.

[2] Borowska A.: The Cryptanalysis of the Enigma Cipher. Advances in Computer
Science Research, vol. 10, pp. 19–38, 2013.

[3] Brynski M.: Elements of the Galois Theory. Alfa Publishing House, Warsaw,
1985.

[4] Buchmann J.A.: Introduction to Cryptography. PWN, Warsaw, 2006.
[5] Christensen C.: Polish Mathematicians Finding Patterns in Enigma Messages.

Mathematics Magazine, pp. 247–273, 2007.
[6] Deavours C.A., Kruh L.: Machine Cryptography and Modern Cryptanalysis. Ar-

tech House Publishers, 1985.
[7] Garlinski J.: Enigma. Mystery of the Second World War. University of Maria

Curie-Sklodowska Publishing House, Lublin, 1989.
[8] Gay K.: The Enigma Cypher. The Method of Breaking. Communication and

Connection Publishing House, Warsaw, 1989.
[9] Grajek M.: Enigma. Closer to the Truth. REBIS Publishing House, Poznan, 2007.

28 listopada 2014 str. 18/24

382 Anna Borowska, Elżbieta Rzeszutko

[10] Gralewski L.: Breaking of Enigma. History of Marian Rejewski. Adam Marszalek
Publishing House, Torun, 2005.

[11] Kahn D.: Enigma Unwrapped. In: New York Times Book Review, 29.XII.1974.
[12] Kasperek C., Woytak R.: Polish and British Methods of Solving Enigma. In:

Enigma: How the German Machine Cipher Was Broken and How It Was Re-
ad by the Allies in World War Two. University Publications of America, 1984.
Appendix F of Enigma by W. Kozaczuk.

[13] Katz J., Lindell Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC, 2007.

[14] Koblitz N.: Algebraic Aspects of Cryptography. WNT, Warsaw, 2000.
[15] Koblitz N.: A Course in Number Theory and Cryptography. WNT, Warsaw, 2006.
[16] Kozaczuk W.: How the German Machine Cipher Was Broken and How It Was

Read by the Allies in World War Two. University Publications of America, 1984.
(Edited and translated by Christopher Kasparek).

[17] Kozaczuk W., Straszak J.: Enigma. How the Poles Broke the Nazi Code. Hippo-
crene Books, 2004.

[18] Lang S.: Linear Algebra. Springer-Verlag, New York, 1987.
[19] Menezes A.J., van Oorschot P.C., Vanstone S.A.: Handbook of Applied Crypto-

graphy (Discrete Mathematics and Its Applications). CRC Press, 1996.
[20] Mostowski A., Stark M.: Elements of Higher Algebra. PWN, Warsaw, 1970.
[21] Pieprzyk J., Hardjono T., Seberry J.: Fundamentals of Computer Security.

Springer-Verlag Berlin Heidelberg, Germany, 2003.
[22] Rejewski M.: An Application of the Theory of Permutations in Breaking the

Enigma Cipher. Applications Mathematicae, vol. 16(4), 1980.
[23] Rejewski M.: How did Polish Mathematicians Decipher the Enigma. Polish Ma-

thematics Association Yearbooks. Series 2nd: Mathematical News, (23), 1980.
[24] Scott W.R.: Group Theory. Courier Dover Publications, 1964.
[25] Seberry J., Pieprzyk J.: Cryptography: An Introduction to Computer Security.

Prentice-Hall, Sydney, 1988.
[26] Stoklosa J., Bilski T., Pankowski T.: Data Security in Computer Systems. PWN,

Warsaw, 2001.
[27] Wythoff G.: The Invention of Wireless Cryptography. The Appendix – Futures

of the Past, vol. 2(3), 2014.
[28] Zielinska E., Mazurczyk W., Szczypiorski K.: Trends in Steganography. Commu-

nications of the ACM, vol. 57(3), pp. 86–95, 2014.

Appendix A.
The construction of the M3 Enigma machine

The M3 Enigma machine is an electro-mechanical device. This machine consists of
an alphabetical 26-letter keyboard, a lampboard (set of 26 lights), a plugboard, a set

28 listopada 2014 str. 19/24

The cryptanalysis of the Enigma Cipher. (. . .) 383

of three rotating, encrypting discs (called drums) placed on a shared shaft, two fixed
wheels: an entry wheel and a reflector, a battery and a turning mechanism (used to
turn one, two or three drums after pressing any key).

Figure 1 presents a simplified diagram of how the Enigma works (a hypothetical
electric circuit). Pressing any key (e.g., the key W) makes the closure of an electric
circuit. After that, the current flows through the different components in the present
configuration of the circuit. It starts from the battery (3) and flows through a connec-
tion under the pressed key (2) to the plugboard (1). Next, it flows through the entry
wheel (E), via three drums (R, M and L) to the reflector (B). The reflector inverts the
signal (but using a completely different route). From the reflector, the current passes
through drums L, M and R to the entry wheel (E), to the plugboard (1) and finally
to an appropriate lamp (4) (which represents a letter different from W), causing it to
light up (cf. [9]).

Figure 1. The diagram presents how the military Enigma machine works (1) the plugboard,
(2) the keyboard, (3) the battery, (4) the lampboard, (5) disks: three drums (L, M, R), the

entry wheel (E) and the reflector (B).

28 listopada 2014 str. 20/24

384 Anna Borowska, Elżbieta Rzeszutko

The German Land Forces and Air Force used five kinds of drums denoted by I,
II, III, IV, V. Each drum is a disc with a diameter of approximately 10cm. Inside the
drum, there is a second disc (called a rotor). On one side of each rotor, there are 26
brass spring pins, and on the other side, there are 26 flat electrical contacts. Both
pins and contacts are arranged in a circle near the edge of the rotor and represent
26 letters of the alphabet. Each rotor hides 26 insulated wires. The wires connect the
pins on one side to the contacts on the other in an established way (different for each
type of drum) (cf. [10, 8]). As the drums are mounted side-by-side on the shaft, the
pins of one drum touch the contacts of the neighboring one, forming 26 fragments
of an electrical circuit (cf. [10]). Each drum has a metal rotating ring applied to the
rotor. Engraved numbers (on this ring) correspond to the 26 letters of the alphabet.
On the edge of the rotor, there is one distinguished place. The letter on the ring which
is engraved opposite this position is treated as the ring setting. Individual kinds of
cipher drums also differ by the so-called turnover positions. The turnover positions of
the five kinds of drums were as follows I – Q, II – E, III – V, IV – J, V – Z (cf. [8]).

Pressing any key causes additionally one, two, or three cipher drums to turn one
twenty-sixth of a full rotation (before the electrical circuit closure). More precisely,
after pressing the key, the right drum turns 1/26 of a full rotation. When this drum
reaches the turnover position, the middle drum turns 1/26 of a full rotation as well.
When the second drum reaches the turnover position, the left and middle drums turn
1/26 of a full rotation (so-called ”double step”) (cf. [7, 10]). In this way, each letter
is coded with the drums in different positions.

The position of each movable drum is given as a number (engraved on a ring)
which can be seen through a window in the lid of the machine. The rotor position is
defined as the difference between the position of the drum and the ring setting.

Connections of the entry wheel in the M3 Enigma machine are represented by
the identity permutation (cf. [8]). The reflector (reversal drum) pairs the outputs of
the last rotor, redirecting the current back through the drums using a different path.

In order to decode a text encrypted with the M3 Enigma machine, the receiver
had to set up his Enigma in the same way as the sender had set up his during
ciphering. Each military unit that used the Enigma was provided with the Enigma
machine’s initial settings in the form of tables of the daily key settings. Daily key
settings (since September 15, 1938) consisted of the wheel order (i.e., the choice of
drums and the order in which they were fitted), the ring settings and connections
of the plugboard (cf. [7]). Since September 15, 1938, the Germans [. . .] changed the
manner of announcing message settings. Starting with this date, the operator was
forced to choose his own arbitrary three letters, which he placed in the headline of the
message without ciphering [these letters played a role of the initial drum settings].
Next, he set the drums to these letters and chose three other letters as the message
settings. These letters [. . .] after two-time coding, were placed at the beginning of the
message and then the drums were set to the message settings and the actual ciphering
of the message began (cf. [23]).

28 listopada 2014 str. 21/24

The cryptanalysis of the Enigma Cipher. (. . .) 385

The security of the Enigma cipher depends on its large key space. The
full size of the key space equals the product of the following values: the number of
possible drum orders (NDo), the number of possible ring settings (NRs), the number
of possible initial drum settings (NDs) and the number of possible plugboard settings
(NPs), where:

NDo =
k!

(k − 3)!
for k = 3, NDo = 6 and for k = 5, NDo = 60,

where k is the number of drums,
NDs = 263 = 17576 Since we have to place one of the 26 letters on each of the

three positions2 (until September 15, 1938).
NRs = 263 = 17576 We establish a ring setting for each of 3 drums.

NPs =
(262n)(2nn)

2n
n! where n is the number of plug connections (cf. [8])

For instance:
• From 1.10.1936 to 15.09.1938 k = 3 and n = 5− 8,

e.g., for n = 8 we have 6× 17576× 17576× 10, 767, 019, 638, 375 possible keys.
• From 15.09.1938 to 15.12.1938 k = 3 and n = 5− 8,

e.g., for n = 8 we have 6× 17576× 10, 767, 019, 638, 375 possible keys.
• From 15.12.1938 to 1.1.1939 k = 5 and n = 5− 8,

e.g., for n = 8 we have 60× 17576× 10, 767, 019, 638, 375 possible keys.
• From 1.1.1939 to 9.1939 k = 5 and n = 7− 10,

e.g., for n = 10 we have 60× 17576× 150, 738, 274, 937, 250 possible keys.
The fact that the Allies read German messages was ultra-secret information (the

biggest secret of the Second World War after the atomic bomb (cf. [11])). Nearly
until the end of the war, the German command-in-chief treated the Enigma cipher as
absolute. On the basis of opinions of experts from special committees, they precluded
any effective decryption. They were aware that, in theory, the Enigma cipher could be
broken. Therefore, from time to time, they introduced changes in the way of generating
messages and the construction of the Enigma machine. For example, on December 15,
1938, two additional drums were added; on September 15, 1939, German cryptologists
changed the manner of announcing message settings. They introduced these changes
in order to foil any attempts of decryption (cf. [8])

Appendix B.
The work of Polish mathematicians

Three Polish mathematicians (M. Rejewski, H. Zygalski and J. Różycki) broke the
German Enigma at the beginning of 1933. In the years 1933–1939, their daily duties in
the Cipher Bureau (the B.S.-4) consisted in breaking daily keys for individual Enigma
networks, detecting changes in the manners of generating messages and changes in the

2The set of all initial drum settings consists of 26×26×26 possible settings. However, the full
rotation of three drums gives 26×25×26 possible settings (due to the double step on the middle
drum).

28 listopada 2014 str. 22/24

386 Anna Borowska, Elżbieta Rzeszutko

Enigma machine construction as well as designing new ways of breaking daily keys.
They gave the results of their work to the chiefs of Cipher Bureau, who decided on
the importance and the order of reading messages. Since the Enigma ciphers a text
by means of involutions, in order to decode a message, decoders had to set up their
Enigma in the same way as the sender had set up his while ciphering. Messages were
read by initiated operators. To that end, the AVA factory made 17 Enigma doubles
in the years 1933–1939. In 1938, an experiment was carried out. Its result was that
a 10-person team (consisting of cryptologists and operators) of the B.S.-4 read 75% of
intercepted Enigma messages. On September 15, 1938, German cryptologists changed
the manner of announcing message settings. The decryption method (based on cha-
racteristics catalogues) became useless. In October 1938, M. Rejewski designed the
cryptologic bomb method. The bombs returned a result within 2 hours. Coders acti-
vated 6 machines simultaneously (one bomb for each order of 3 drums). On December
15, 1938, the German service increased the number of drums from 3 to 5. That is,
in the machine there were still only three drums on the shaft, but from then on the
three were chosen from a set of five. M. Rejewski quickly discovered the connections
of two new drums. Breaking daily keys by means of the bomb method was no longer
effective, as operators needed 60 bombs instead of 6. On January 1, 1939, the Ger-
man service increased the number of pairs of letters changed by the plugboard. From
then on, they applied from 7 to 10 connections. As Rejewski constructed the crypto
bomb, at the same time, another decryption method (Zygalski’s sheets method) was
designed in the B.S.-4. The cryptologists needed to make 6 sets of perforated sheets
(one set for each order of 3 drums). Each set consisted of 26 sheets. They had to cut
out (with a razor blade) about a thousand perforations in each sheet of paper. They
only made 2 of 6 sets because of the lack of initiated staff. In July 1939, Polish cryp-
tologists met British and French cryptologists. Poles revealed all of their knowledge
and abilities to read Enigma. After the outbreak of WWII (September 1, 1939), some
of the staff of the Cipher Bureau were evacuated to Romania and then to France. The
French-Polish radio-intelligence unit ”Bruno” (about 70 people) was stationed about
40 kilometers from Paris. All materials, equipment, and machines (with the excep-
tion of two Enigmas) had been destroyed before leaving Poland. The British provided
the unit with the whole collection of 60 sets of 26 perforated Zygalski sheets (for 5
drums). Since the British Cipher Bureau had more resources at that time, out of every
100 keys that were recovered, 83 came from the British and 17 came from the Poles.
In May 1940, German cryptologists again radically changed the mechanism of using
Enigma. French general G. Bertrand wrote: Superhuman efforts and incessant work
day and night were needed in order to overcome this new obstacle: on 20 May [thanks
to Polish cryptologists] decryption was restarted (cf. [8]). In June 1940 France signed
a truce with Germany. On 24 June, the staff of ”Bruno” (15 Poles and 7 Spaniards)
were transported to Algeria. From Africa, the cryptologists returned to France where,
in October 1940, they began work in the unit ”Cadix” (32 employees), which stayed
in contact with London. There, Polish cryptologists solved ciphers different from the
Enigma cipher. The British cryptologists dealt with Enigma.

28 listopada 2014 str. 23/24

The cryptanalysis of the Enigma Cipher. (. . .) 387

Affiliations

Anna Borowska
Faculty of Computer Sciences, Bialystok University of Technology, Bialystok, Poland,
a.borowska@pb.edu.pl

Elżbieta Rzeszutko
Faculty of Electronics and Information Technology, Warsaw University of Technology,
Warsaw, Poland, E.Rzeszutko@tele.pw.edu.pl

Received: 12.08.2014
Revised: 8.11.2014
Accepted: 11.11.2014

28 listopada 2014 str. 24/24

388 Anna Borowska, Elżbieta Rzeszutko

