

# Scholars' Mine

# **Masters Theses**

Student Theses and Dissertations

1967

# Mass transfer from a torus shaped body

Kamalesh Suryakant Desai

Follow this and additional works at: https://scholarsmine.mst.edu/masters\_theses

Part of the Chemical Engineering Commons Department:

### **Recommended Citation**

Desai, Kamalesh Suryakant, "Mass transfer from a torus shaped body" (1967). *Masters Theses*. 5160. https://scholarsmine.mst.edu/masters\_theses/5160

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

## MASS TRANSFER FROM

A TORUS SHAPED BODY

BY

KAMALESH SURYAKANT DESAI \_ 1944

A

THESIS

submitted to the faculty of

THE UNIVERSITY OF MISSOURI AT ROLLA

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

Rolla, Missouri

Approved by John Sill Willok (advisor) Mives M.E. Findley

# TABLE OF CONTENTS

-

|                                    | Page       |
|------------------------------------|------------|
| ACKNOWLEDGEMENT                    | iv         |
| LIST OF FIGURES                    | v          |
| LIST OF TABLES                     | vi         |
| NOMENCLATURE                       | vii        |
| ABSTRACT                           | x          |
| I. INTRODUCTION                    | l          |
| II. LITERATURE REVIEW              | 5          |
| Mass Transfer Mechanisms           | 5          |
| Newman Model                       | 5          |
| Kronig and Brink Model             | 6          |
| Rose and Kintner Model             | 7          |
| Surface Stretch Model              | 10         |
| Handlos and Baron Model            | 13         |
| III MATHEMATICAL MODEL             | 18         |
| Diffusion Equation                 | 18         |
| A Coordinate Transformation        | 21         |
| IV. THE SOLUTION                   | 23         |
| The Method of Solution             | 23         |
| Classical Explicit Method          | 25         |
| Finite Difference Equations        | 26         |
| Volumetric Average Concentration   | <u>-</u> 0 |
| Analytical Solution For A Cylinder | יטע        |
| Computational Error                | 7.1        |
| Stability                          | )1<br>70   |
|                                    | 52         |
|                                    |            |

,

.

|       |                                                | Fage |
|-------|------------------------------------------------|------|
| ٧.    | RESULTS AND DISCUSSION                         | 34   |
|       | Foint Concentrations                           | 34   |
|       | Fraction Extracted                             | 36   |
|       | Effect of Mesh Size on Numerical Solution      | 37   |
|       | Analytical Solution For A Cylinder             | 37   |
| VI.   | CONCLUSION                                     | 52   |
| VII.  | APPENDICES                                     | 54   |
|       | A. Diffusion Equation                          | 55   |
|       | B. Humerical Solution of Equation (4.21)       | 56   |
|       | C. Analytical Solution for a Cylinder          | 57   |
|       | D. Truncation Error                            | 61   |
|       | E. Computer Program for the Numerical Solution | 63   |
| VIII. | BIBLICGRAPHY                                   | 70   |
| IX.   | VITA                                           | 71   |

۴.

,

۰.

#### ACKNOWLEDGEMENT

The author is grateful to Dr. R. M. Wellek, Associate Professor of Chemical Engineering, who suggested this investigation and served as a research advisor. His help, guidance and encouragement are sincerely appreciated. The author is also grateful to the following: (1) Computer Science Center of the University of Missouri at Rolla for the computer time; (2) Dr. J. L. Rivers for his suggestions in framing an orthogonal toroidal coordinate system for the torus; (3) Mr. W. V. Andoe, for the discussion of the finite difference technique used to solve the partial differential equation consisting of three independent variables.

# LIST OF FIGURES

v

| Figures |                                                                      | Page |
|---------|----------------------------------------------------------------------|------|
| 1.A     | Toroidal Bubble                                                      | 3    |
| l.B     | Break-up of a Toroid                                                 | 3    |
| 2.1     | One Period of Mass Transfer Model .                                  | 8    |
| 2.2     | Handlos and Baron Stream Lines                                       | 15   |
| 3.1     | A Part of the Torus ·                                                | 20   |
| 4.1     | Net Work                                                             | 24   |
| 4.2     | Three Dimensional Explicit Method Pattern                            | 27   |
| 5.1     | Fraction Extracted Versus Dimensionless Time                         | 48   |
| 5.2     | Dimensionless Concentration At X = -0.8<br>Versus Dimensionless Time | 49   |
| 5.3     | Dimensionless Concentration At X = +0.8<br>Versus Dimensionless Time | 50   |
| 5.4     | Part of the Cross Section of the Torus                               | 51   |
| E.l     | Network for Symbols Used in the Computer<br>Program                  | 66   |

,

# LIST OF TABLES

.

| Table |                                                                                                          | Page |
|-------|----------------------------------------------------------------------------------------------------------|------|
| 5.1   | Dissymmetry of the Concentration Profile (A = 1, $\Delta \tilde{\chi} = 0.0005$ , $\Delta \chi = 0.05$ ) | 38   |
| 5.2   | Dissymmetry of the Concentration Frofile (A = 2, $\Delta T = 0.0005$ , $\Delta X = 0.05$ )               | 39 - |
| 5.3   | Dissymmetry of the Concentration Profile (A = 4, $\Delta T$ = 0.0005, $\Delta X$ = 0.05)                 | 40   |
| 5.4   | Analytical and Numerical Solution for a Cylinder                                                         | 41   |
| 5.5   | Dissymmetry of the Concentration Profile $(A = 1, \Delta T = 0.0003, \Delta X = 0.04)$                   | 42   |
| 5.6   | Dissymmetry of the Concentration Frofile (A = 2, $\triangle l = 0.0003$ , $\triangle X = 0.04$ )         | 43   |
| 5•7   | Dissymmetry of the Concentration Profile (A = 4, $\triangle T = 0.0003$ , $\triangle X = 0.04$ )         | 44   |
| 5.8   | Difference in the Dimensionless<br>Concentration at $X = \pm 0.8$                                        | 45   |
| 5.9   | Fraction Extracted for a Torus and a Cylinder                                                            | 46   |
| 5.10  | Concentration at the Center of the Torus                                                                 | 47   |

,

#### NOMENCLATURE

 $A = a/r_1$ , dimensionless.

,

a = distance of the circle from the center of the torus,  
(cm).  
a = radius or half axis length, (cm).  

$$a_0$$
 = initial radius or half axis length, (cm).  
 $B_n$  = coefficient in series solution, dimensionless  
b = a constant defined by equation (2.10).  
C = Dimensionless concentration of the solute.  
 $O^{\mp}$  = equilibrium concentration (g. mole/liter)  
 $C_A$  = concentration of solute A.  
 $C_{AO}$  = initial concentration of solute A.  
 $C_{Af}$  = final concentration of solute A.  
 $C_{af}$  = final concentration of solute A.  
 $C_{af}$  = concentration at the point (X,Z) and time  
(g. mole/liter).  
 $\tilde{C}(\gamma)$  = volumetric average concentration, dimensionless  
 $D$  = diffusivity, (cm<sup>2</sup>/sec).  
 $D_L$  = molecular diffusivity of the solute in the dispersed  
phase, (cm<sup>2</sup>/sec).  
 $D_{\Xi}$  = effective diffusivity  
 $P_{AB}$  = diffusivity of A in B.  
d = diameter of the droplet, (cm).  
 $\Xi$  = fraction extracted =  $C_{AO} - C_{Af}/C_{AO} - C_{A}$   
 $\overline{E}$  = effective diffusivity predicted by equation (2.35),  
(cm<sup>2</sup>/sec).  
 $E_{M}$  = fraction extracted =  $1 - \tilde{C}(\gamma)$   
i = number corresponding to X axis  
j = number corresponding to Z axis

.

 $j_{Ay}$  = mass flux of species A relative to mass average velocity, (gm cm<sup>2</sup>/sec).  $K_{\rm D}$  = overall mass transfer coefficient, (cn/sec). K = dimensionless mass transfer coefficient. k<sub>d</sub> = dispersed phase mass transfer coefficient. k<sub>o</sub> = instantaneous local mass transfer coefficient at a given time and position on the interface. n = mode of oscillation or index. n = integer $n_1 = mass flux, (gm/cm^2 sec).$  $R = r_{1} = dimensionless radius.$ r = 4r = dimensionless radius of the torus. r = radius of the torus, cylinder or sphere, (cm).  $r_1 = maximum$  radius of the torus, (cm).  $r_A$  = reaction rate, (gm/cm<sup>3</sup> sec).  $s = \Delta \gamma / (\Delta x)^2$ S = area of time dependent surface,  $(cm^2)$ .  $S_0 = characteristic reference area for constant surface, (cm<sup>2</sup>).$ t = time, (sec)t = time during free fall period t = average circulation time in droplet  $t_{o}$  = characteristic constant for particular system considered. U = droplet free fall ( or rise ) velocity, (cm/sec). V = mass average velocity, (cm/sec).  $V_y = Y$  component of mass average velocity normal to the boundary for a moving surfact element, (cm/sec).  $W_A = mass fraction.$ X = dimensionless x distance.

viii

- X = film thickness, (cm).
- $X_{o}$  = initial film thickness.
- Y = coordinate axis
- Y = distance measured from the interface into the phase of interest.
- Z = dimensionless z distance
- z = coordinate axis

Greek Letters

 $\Delta X = \text{step size in } X \text{ direction.}$ 

- $\Delta Z = \text{step size in } Z \text{ direction.}$
- $S_{\rm s}$  = mass concentration of the solute, (gm/cm<sup>3</sup>).
- $\mathcal{M}_d, \mathcal{M}_c$  = viscosity of dispersed phase and continuous phase respectively, centipoise.
  - C = dimensionless time variable defined by equation (3.18).
  - $\xi$  = torus radius, dimensionless.
  - $\lambda_{n} = eigen value.$
  - $\propto$  = parameter in equation (2.15), defined by equation (2.16).
  - $\alpha_n$  = defined by equation (C.3).
  - $\beta_n$  = defined by equation (C.4).
  - $\omega, \omega' =$  frequency and modified frequency of oscillation, (radians/sec).
    - $\sigma$  = interfacial tension, dynes/cm.
    - $\epsilon$  = dimensionless amplitude factor.

# AESTRACT

A mathematical model for molecular diffusion in a torus was derived. Handlos and Baron have assumed a system of tori in their eddy diffusion model for liquidliquid extraction from droplets. However, the effect of torus curvature was neglected in their studies, since they assumed the torus could be represented by an infinite cylinder. In this study, the effect of torus curvature was considered on the concentration profile and the fraction of the solute extracted. The partial differential equation describing the model consists of three independent variables, and a finite difference technique was employed for the solution of the mathematical model.

It was found in this work that the concentration profiles within a torus differed from those in an infinite cylinder. However, it was also found that the fraction of solute extracted in a torus was nearly identical to that predicted using the solution for an infinite cylinder. Since the effect of the torus curvature is negligible, the solution for an infinite cylinder may be used for diffusion to a torus.

х

#### I. INTRODUCTION

A dispersed phase of liquid droplets or gas bubbles is present in many types of liquid contactors. One of the major design problems is to predict the rate of mass transfer to (or from) the dispersed phase. Many mathematical models have been proposed for predicting the dispersed phase mass transfer coefficient for internally stagnant, circulating and/or oscillating droplets. These are reviewed in chapter II.

The Handlos and Baron model (4) is based on the assumption that internal circulation is fully developed. The circulation pattern within the spherical droplet is assumed to be a system of tori (see Figure 2.2). Handlos and Baron derived their eddy diffusion model in cylindrical coordinates assuming an infinite cylinder for the system of tori. Thus they neglected the effect of the curvature of torus.

The purpose of this investigation is to consider the effect of the torus curvature on the rate of mass (or heat) transfer in a torus. The <u>eddy</u> diffusivity term of the Handlos and Earon model was originally derived for radial diffusion only (i.e., the eddy diffusivity term was derived without considering the effect of torus curvature). Thus this term cannot be incorporated in the diffusion equation when the effect of torus curvature is considered. In this work only <u>molecular</u>

diffusion in the torus is studied, since the molecular diffusivity in normal liquids and gases is not a function of the direction of mass transfer. It is believed that the study of the molecular diffusion process will give some insight into the eddy diffusion model of Handlos and Baron.

It is also of interest to note that toroidal shaped bubbles (9) occasionally form at gas orifices submerged in a liquid (see Figure 1.A and 1.B which are reproduced here from the work of Rennie and Smith (9)). It is thus possible that the diffusion process in these bubbles could be described by the mathematical torus model to be developed in this work.

The molecular diffusion equation in differential form for a torus coordinate system is not reported in the literature. Therefore it is derived here. The unidirectional diffusion equations for a simple geometry such as plane sheet, a cylinder and a sphere are generally easily solved by analytic methods of mathematical physics. Completely analytical solutions are not reported in the literature for many complex three dimensional problems, because the differential equation is either not completely separable or it is highly nonlinear. In this work, the diffusion equation for the torus is solved numerically by a finite difference technique to obtain the concentration profile, the average concentration and the fraction



Pigure 1.A Toroidal bubble



Figure 1.B Break-up of a toroid

extracted in the torus as a function of time of contact. The same technique can be utilized to determine the temperature profile and average temperature in a torus for heat transfer calculations.

The analytical and numerical solutions for the molecular diffusion in a cylinder are also studied to check the numerical procedures used in this work.

#### II. LITERATURE REVIEW

This chapter briefly describes some of the models which are currently available for mass transfer (or heat transfer) inside droplets or bubbles. The models for both oscillating and non oscillating droplets are reviewed here. Only Kronig and Erink's model considers the effect of curvature of internal streamlines of the droplet. Handlos and Earon assumed the internal circulation pattern to be a system of tori but they have neglected the effect of torus curvature.

#### <u>Mass Transfer Mechanisms</u>

Solute transfer between a drop and the field fluid in a spray column takes place in three stages. The first is during the period of drop formation, second is during free fall or rise of the drop and the third stage is extraction at the coalesced layer.

The mass transfer mechanisms during the formation of the droplet and the extraction at the coalescent layer are discussed elsewhere (4).

In this chapter only the mechanisms postulated for the extraction process during rise (or fall) of the droplet are discussed.

# Newman Model

Newman (8) derived a relation for mass transfer in a stagnant spherical drop using the following partial differential equation obtained from Fick's second law of diffusion.

$$\frac{\partial c_{\star}}{\partial t} = \mathcal{D} \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial c_{\star}}{\partial r} \right)$$
(2.1a)

$$C_{A}=C_{A_{o}}$$
  $\gamma=\gamma$   $t=0$  (2.1b)

$$C_{A}$$
 is finite  $\gamma=0$  t=t (2.1c)

$$C_{A}=C_{A_{i}}$$
  $\gamma=\gamma$   $t>0$  (2.1d)

(This model assumes no continuous phase resistance, i.e.  $\mathcal{R} \longrightarrow \infty$ )

The solution of the above equation may be expressed as

$$E_{m} = \left| -\frac{6}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \exp\left(-\frac{n^{2}\pi^{2} \mathfrak{D} t}{r_{1}^{2}}\right) \right|$$
(2.2)

where  $E_m$  is the fraction of solute extracted.

The time averaged dispersed phase mass transfer coefficient may be defined as

$$k_{d} = -\frac{\gamma}{3t} ln(1 - E_{m})$$
 (2.3)

Kronig and Brink Model

Kronig and Brink (7) derived a relation for droplets with internal circulation currents described by the Hadamard-Rybczinski flow patterns. These flow patterns were derived from the equations of motion simplified for the Stoke's flow regime ( $N_{Re} \langle | \rangle$ ). It was assumed that the solute diffusion is only in a direction perpendicular to the internal streamlines (a condition encountered for large droplet Peclet numbers) and that continuous phase resistance is negligible. Thus the expression for the fraction extracted is

$$E_{m} = \left| -\frac{3}{8} \sum_{n=1}^{\infty} \beta_{n}^{2} \exp\left(-16\lambda_{n} \frac{\vartheta t}{\gamma_{n}^{2}}\right) \right|$$
(2.4)

and the expression for the dispersed phase mass transfer coefficient is

$$k_{d} = -\frac{\gamma}{3t} ln \left[ \frac{3}{8} \sum_{n=1}^{\infty} B_{n}^{2} C \times p(-16\lambda_{n} \frac{\vartheta t}{\gamma_{i}^{2}}) \right]$$
(2.5)

 $B_n$  and  $\lambda_n$  are given by Heertjes et al (15) for  $1 \le n \le 7$ Rose and Kintner Model

Rose and Kintner (11) have developed a mass transfer model for vigorously oscillating single liquid drops moving in a liquid field which incorporates the concepts of interfacial stretch and internal droplet mixing.

To describe mass transfer from an oscillating drop, the fluid spheroid is assumed to oscillate from a nearly spherical shape to an oblate ellipsoidal shape and back to a spherical shape in one period of the oscillation. All resistance to transfer (in both continuous and dispersed phases) is assumed to be in a thin zone near the interface. The core of the drop is assumed to be well mixed. This permits a single value to represent the drop internal concentration as shown in Figure 2.1.

A material balance for the drop, based on the dispersed phase, is

$$-\frac{d(VC_{A})}{dt} = \frac{\mathcal{D}}{X}A(C_{A}-C_{A}^{*})$$
(2.6)

where X is the thickness of the interfacial resistance zone.





Figure 2.1 One Period of Mass Transfer Model

Since the volume of the drop is constant, the mass balance across the zone is

$$-\frac{\sqrt{dc_{a}}}{dt} = \frac{\vartheta}{\chi} A \left( C_{a} - C_{a}^{*} \right)$$
(2.7)

The area of an oblate ellipsoid is given by

$$A = 2\pi a^{2} + \frac{\pi b^{2}}{(\frac{a^{2} - b^{2}}{a^{2}})^{2}} ln \left[ \frac{1 + (\frac{a^{2} - b^{2}}{a^{2}})^{\frac{1}{2}}}{1 - (\frac{a^{2} - b^{2}}{a^{2}})^{\frac{1}{2}}} \right]$$
(2.8)  
uning that

Ey assuming that

$$a = a_{o} + a_{p} \left| \operatorname{Sin} \omega' t \right|$$
 (2.9)

then a varies from  $a_{o}$  to  $(a_{o}+a_{p})$ , where  $a_{p}$  is the amplitude of oscillation. The value of b can be found from the fact that the drop has a constant volume. Hence

$$b = \frac{3V}{4\pi d^2}$$
(2.10)

As the drop oscillates, X varies from  $X_{o}$  to X as a function of time. The value of X at any time is given by

$$X = \frac{a_{o}^{2}b - (a - x_{o})^{2}(b - x_{o}) - 2abx_{o} + bx_{o}^{2}}{a^{2} - 2ax_{o} - x_{o}^{2}} = f(t)$$
(2.11)

To predict the initial zone thickness for spherical drop with uniform internal concentration of solute, the two film theory is used.

$$X_{o} = \frac{\mathcal{D}_{E}}{K_{p}}$$
(2.12)

where

 $\mathcal{D}_{\epsilon} = (\text{fraction of resistance in dispersed phase})\mathcal{D}_{\epsilon} + (\text{fraction of resistance in continuous phase})\mathcal{D}_{\epsilon}$ (2.13)

The frequency of oscillation,  $\omega$  , is predicted from

the equation

$$\omega^{2} = \frac{\sigma b}{\alpha^{3}} \frac{n(n+1)(n-1)(n+2)}{(n+1)f_{p} + nf_{p}}$$
(2.14)

The value of  $\omega'$  used in equation (2.9) is one half the value of  $\omega$  in equation (2.14) due to the use of the absolute value of the sine function.

Estimation of the amplitudes of drop oscillations  $(\alpha, and \alpha_{\rho})$  is made from motion pictures of falling drops for the system of interest.

The solution of equation (2.6) with the boundary conditions

$$C_{A} = C_{A_{s}}$$
  $t = t_{s}$  (2.14a)  
 $C_{A} = C_{A_{f}}$   $t = t_{f}$  (2.14b)

is given by

$$E = |-Cxp\left[\frac{2\pi \vartheta_{e}}{\sqrt{\int_{t_{o}}^{t_{e}} \int_{f(t)}^{t_{e}} \left\{\left(\frac{3\sqrt{3}}{4\pi \alpha^{2}}\right)^{2} \frac{1}{2\alpha} \ln\left(\frac{1+\alpha}{1-\alpha}\right) + \alpha^{2}\right\} dt}{t_{o}}\right]$$
(2.15)

in which

$$q^{2} = \frac{a^{2} - \left(\frac{3V}{4\pi a^{2}}\right)^{2}}{a^{2}}$$
(2.16)

## The Surface Stretch Model

Angelo, Lightfoot and Howard (5) have developed a method for predicting rates of mass transfer through stretching or shrinking phase boundaries of finite lifetime at low mass transfer rates. They have extended the penetration theory to systems in which the area of the mass transfer is a function of time. They limit consideration to situations in which the interface is formed suddenly at zero time between two immiscible solutions of uniform composition and to very short contact times. Diffusion in directions parallel to the interface is assumed to be negligible. With these assumptions, the continuity equation for any solute species A in either of the two phases is given by

$$\frac{\partial f_{A}}{\partial t} + V_{y} \frac{\partial f_{A}}{\partial y} = -\frac{\partial}{\partial y} (J_{Ay})$$
(2.17)

If the total mass density  $\beta$  of the solution is constant and the net rate of mass transfer is small, the fluid velocity in the neighborhood of the interface is given by

$$V_{y} = -y \left(\frac{\partial \ln S}{\partial t}\right)_{u,w}$$
(2.18)

where U,W are reference coordinates of a point in the interfacial surface and the derivative represents the local fractional rate of change (stretching) of interfacial area for a moving surface element.

For isothermal isobaric systems with no forced diffusion the mass flux is given by

$$\int_{AY} = -\partial_{AP} \frac{\partial f_{A}}{\partial Y}$$
(2.19)

Equations (2.17) through (2.19) are then combined to give

$$\frac{\partial f_{A}}{\partial t} - y \left(\frac{\partial \ln 5}{\partial t}\right)_{u,w} \frac{\partial f_{A}}{\partial y} = \mathcal{D}_{A} \frac{\partial f_{A}}{\partial y^{2}}$$
(2.20a)

They have solved this equation with the aid of the boundary conditions

| $S_{A} = S_{A_{\bullet}}$ | У>0  | t o      | (2.20b) |
|---------------------------|------|----------|---------|
| $S_{A} = S_{A\infty}$     | У→∞  | t finite | (2.20c) |
| $S_{A} = S_{A_{o}}$       | Y= 0 | t>0      | (2.20d) |

From the solution of the above equations, the instantaneous local mass transfer coefficient may be obtained as

$$\frac{\hat{k}_{\circ}}{\hat{s}} = \left(\frac{\vartheta_{AD}}{\pi t_{\circ}}\right)^{\frac{1}{2}} \frac{S(\hat{\tau})}{\left(\int_{\hat{s}}^{\hat{s}} \hat{s}(t) dt\right)^{\frac{1}{2}}}$$

$$\hat{\tau} = \frac{t}{t} \quad \text{and} \quad t_{\circ} = \frac{1}{\omega\pi}$$
(2.21)

To compare the mass transfer behavior for variable surface area to that for the fixed area of the elementary penetration theory, they have defined a dimensionless mass transfer coefficient K in terms of reference area

S. as

where

$$K = \frac{\frac{1}{k}}{\frac{1}{\left(\frac{\partial_{AB}}{T + t}\right)^{\frac{1}{2}}}} = \frac{S(\mathcal{X})}{\frac{1}{5}} \frac{1}{\left[\int \left(\frac{S(t)}{5}\right)^{2} dt\right]^{\frac{1}{2}}} \quad (2.22)$$

The time average value of K based on the reference area S is defined by

$$\overline{K} = \frac{2}{\tau} \left[ \int_{0}^{\tau} \left( \frac{S(t)}{S_{o}} \right)^{2} dt \right]^{\frac{1}{2}}$$
(2.23)

The total amount of solute  $\mathcal{M}_{A}(t)$  passing through the mass transfer surface in the time interval zero to t is given by

$$m_{A}(t) = \overline{K} \left( \frac{\partial_{AD}}{\overline{TT} t_{o}} \right)^{\frac{1}{2}} \left( S_{A_{o}} - S_{A_{o}} \right) S_{o} t \qquad (2.24)$$

As a specific case they have considered the elementary penetration theory for which  $S=S_{\circ}$ . Then from equations

(2.23) and (2.24)  

$$\mathcal{M}_{A}(t) = \frac{2}{(t)^{\frac{1}{2}}} \left( \frac{\vartheta_{AD}}{TT t_{o}} \right)^{\frac{1}{2}} \left( S_{A} - S_{AD} \right) S_{o} t \qquad (2.25)$$

and since  $T = \frac{t}{t}$ 

$$m_{n}(t) = 2 \left( \frac{\partial_{a} t}{\tau_{1}} \right)^{\frac{1}{2}} \left( S_{a} - S_{a} \right) S_{a}$$
(2.26)

The dimensionless mass transfer coefficient  $\bar{K}$  for several functions  $S(\mathcal{T})$  is tabulated in ( 5 ). One of these functions they have discussed is that for which

$$S(\gamma) = S(1 + \epsilon \sin^2 \gamma) \qquad (2.27)$$

with

$$t_{o} = \frac{1}{\pi \omega}$$
(2.28)

In that case  $\overline{K} = \frac{2}{\tau} \left[ (1+\epsilon_o)\tau - \epsilon_o \sin 2\tau + \epsilon_o \sin 4\tau \right]^{\frac{1}{2}}$ (2.29)

where

$$\begin{aligned} & \epsilon_{0} = \epsilon + \frac{5}{8} \epsilon^{2} \\ & \epsilon_{1} = \frac{\epsilon}{2} + \frac{\epsilon^{2}}{4} \\ & \epsilon_{2} = \frac{\epsilon^{2}}{32} \end{aligned}$$
(2.30a)  
(2.30b)  
(2.30c)

## Handlos and Baron Model

Handlos and Baron (4) have proposed a dispersed phase transfer mechanism which shows promise in predicting the very low resistance to mass transfer inside circulating and/or oscillating droplets. Their eddy diffusion model is devoid of any constant or parameter which must be obtained from experimental measurements. However, it is assumed that the velocities of continuous and dispersed phase are known and the velocity of falling (or rising) droplets can be predicted (15).

The model is based on the assumption that internal circulation is fully developed. The circulation pattern within the spherical droplet is assumed to be a system of tori. The cross sectional view of the drop is given in Figure 2.2. Handlos and Earon further assumed that "random radial vibrations" are superimposed upon the streamlines. Handlos and Baron do not specifically state the source of these vibrations, but oscillation of the droplets is one likely source. Turbulence due to circulation is another possible source. The mixing between streamlines is due to these vibrations which are the key to their eddy diffusion mechanism. The entire transfer process is assumed to take place within the outer surface of the torus.

The differential mass balance on the system within the torus is (15)

$$\frac{\partial C_{a}}{\partial t} = \nabla \left( \bar{E} \nabla C_{A} \right) \tag{2.31}$$

They assumed that the Einstein diffusion equation for two dimension applies.

$$\overline{\overline{E}} = \frac{Z^2}{4t}$$
(2.32)

where  $Z^2$  is the mean square displacement of an element of fluid during the average circulation time of the element, and it is given by Ζ

$$r^{2} = \frac{d^{2}}{96} (6r^{2} - 8r - 3)$$

(2.33)



Figure 2.2 Handlos & Baron Stream Lines

Handlos and Baron further assumed that  $\overline{t}$  for their model can be approximated by the value of  $\overline{t}$  for Hadamard-Rybezinski internal circulation velocities and pattern for laminar circulation.

Thus

$$\overline{t} \cong \frac{16}{3} \frac{d}{U} \left( 1 + \frac{\lambda_d}{\lambda_c} \right)$$
(2.34)

Substitution of equations (2.33) and (2.34) in (2.32) gives the relation for eddy diffusivity

$$\overline{E} = \frac{U(6\underline{r}^2 - 8\underline{r} + 3)d}{2048(1 + \frac{Md}{Mc})}$$
(2.35)

Handlos and Baron derived their model in <u>cylindrical</u> co-ordinates assuming an infinite cylinder for the system of tori. Therefore, equation (2.31) becomes

$$\frac{\partial C}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left( \bar{E} \frac{\partial C}{\partial r} \right)$$
(2.36)

Thus they assumed, the mass transfer is only in radial direction and the effect of the torus curvature is negligible. Then equations (2.31) through (2.35) are combined to give

$$\frac{\partial C}{\partial t} = \frac{b}{1-y} \frac{\partial}{\partial y} \left[ (1-5y+10y^2-6y^3) \frac{\partial C}{\partial y} \right]$$
(2.37)

where

$$b = \frac{\mathcal{U}}{128(1+\frac{\mathcal{U}_d}{\mathcal{U}_c})d}$$
(2.38)

and

$$\underline{\gamma} = 1 - \overline{\lambda} \tag{2.39}$$

)

They employed the following boundary conditions :

> C°= o (2.40a)Y=1t=t (2.40b) C,

t >0

$$C_{A} = C_{A_{o}}$$
  $o \langle Y \langle I \rangle$   $t = 0$  (2.40c)

Thus with equation (2.37) and the boundary conditions, the following expression is obtained.

$$E_{m} = 1 - 2\sum_{n=1}^{N} B_{n}^{2} \exp(-\lambda_{n} bt)$$
 (2.41)

where four values of  $\lambda_n$  are available (15).

Y=0

The dispersed phase mass transfer coefficient is defined as

$$k_{d} = -\frac{d}{6t} ln(I - E_{m})$$
 (2.42)

For large contact times, only the first term of the series solution is dominant. Therefore, by considering just the first term in a series solution, equations (2.41) and (2.42) lead to the following formulation of the mass transfer coefficient:

$$k_{d} = \frac{\lambda_{i} U}{768(1 + \frac{M_{d}}{M_{c}})}$$
(2.43)

Handlos and Baron considered the case of zero continuous phase resistance and found  $\lambda_1$  = 2.88.

It can be seen that Handlos and Baron have neglected the effect of torus curvature. In the following chapter, mathematical model for molecular diffusion to a torus is derived. This will give some insight into the effect of torus curvature on diffusion.

## III. MATHEMATICAL MODEL

## Diffusion Eduction For A Torus Eddy

The equation of continuity in mass units is given by (1).

$$\frac{\partial f_{A}}{\partial t} + \nabla \overline{\mathcal{N}}_{A} = \widehat{\mathcal{V}}_{A}$$
(3.1)

where

$$\overline{\mathcal{D}}_{A} = \mathcal{W}_{A} \overline{\mathcal{D}} - \mathcal{G} \mathcal{D}_{AB} \nabla \mathcal{W}_{A}$$
(3.2)

$$W_{A} = \frac{S_{A}}{e}$$
(3.3)

$$\overline{\gamma} = 9\overline{\nabla}$$
 (3.4)

Therefore,

$$W_{A}^{\gamma\gamma} = \frac{S_{A}}{f}(S\gamma) = S_{A}^{\gamma} V \qquad (3.5)$$

From equations (3.2) and (3.5)  $\overline{\mathcal{N}}_{A} = \widehat{\varsigma}_{A} \nabla - \widehat{\varsigma} \widehat{\mathcal{D}}_{AB} \nabla W_{A}$  (3.6)

Hence, equation (3.1) reduces to

$$\frac{\partial g_{A}}{\partial t} - (\nabla \cdot g_{A} \vee) = \nabla \cdot g_{AB} \nabla W_{A} + \gamma_{A} \qquad (3.7)$$

If constant density and diffusivity are assumed, equation (3.7) becomes

$$\frac{\partial \mathcal{G}_{A}}{\partial t} + \mathcal{G}_{A}(\nabla \cdot \nabla) + (\nabla \cdot \nabla \mathcal{G}_{A}) = \mathcal{D}_{AB} \nabla \mathcal{G}_{A}^{2} + \mathcal{G}_{A}^{2}$$
(3.8)

For a fluid of constant density  $\nabla \overline{\nabla}$  is zero.

Dividing equation (3.8) by molecular weight, one obtains

$$\frac{\partial C_A}{\partial t} + (\nabla \cdot \nabla C_A) = \mathcal{D}_{AB} \nabla^2 C_A + R_A \qquad (3.9)$$

If there are no chemical changes and  $\nabla$  is zero (or very small), then equation (3.9) reduces to

$$\frac{\partial C_{A}}{\partial t} = \mathscr{D}_{AB} \nabla^{2} C_{A}$$
(3.10)

This is known as Fick's second law of molecular diffusion. The parametric equations for a torus (13) are

$$X = (a + r \sin \theta) \cos \phi \qquad (3.11)$$

$$Y = (a + r \sin \theta) \sin \phi \qquad (3.12)$$

$$Z = r \cos \theta \qquad (3.13)$$

The part of the surface of the torus in the first octant is shown in Figure 3.1. Fick's second law in orthogonaltoroidal coordinates is (refer to appendix A)

$$\frac{\partial C_{a}}{\partial t} = \frac{\mathcal{D}_{aB}}{r(a+r\sin\theta)} \left\{ \frac{\partial}{\partial r} \left[ r(a+r\sin\theta) \frac{\partial C_{a}}{\partial r} \right] + \frac{\partial}{\partial \theta} \left[ \frac{a+r\sin\theta}{r} \frac{\partial C_{a}}{\partial \theta} \right] + \frac{\partial}{\partial \phi} \left[ \frac{r}{(a+r\sin\theta)} \frac{\partial C_{a}}{\partial \phi} \right] \right\}$$
(3.14)

Due to the symmetry of the torus,  $\frac{\partial C_{s}}{\partial \Phi}$  equals to zero. Thus the partial differential equation for diffusion to a torus is  $\frac{1}{\partial_{HS}}\frac{\partial C_{s}}{\partial t} = \frac{\partial^{2}C_{s}}{\partial r^{2}} + \frac{1}{r}\frac{\partial C_{s}}{\partial r} + \frac{Sin\theta}{(a+rSin\theta)}\frac{\partial C_{s}}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}C_{s}}{\partial \theta^{2}} + \frac{C_{\alpha S}\theta}{r(a+rSin\theta)}\frac{\partial C_{s}}{\partial \theta}$ 

The boundary conditions are

| $C_{A} = C_{A_{\bullet}}$           | t=0  | o≤r <r,< th=""><th>0 ≼ θ ≰2π</th><th>(3.15b)</th></r,<> | 0 ≼ θ ≰2π                                | (3.15b) |
|-------------------------------------|------|---------------------------------------------------------|------------------------------------------|---------|
| $C_{A} = C_{A_{i}}$                 | t>0  | γ=γ,                                                    | ο≼θ ≼2π                                  | (3.150) |
| $\frac{\partial G}{\partial G} = 0$ | t >0 | 0 <i>≤</i> r <i>&lt;</i> r,                             | $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$ | (3.15a) |

In terms of the dimensionless variables

$$R = \frac{\gamma}{\gamma_{r}} \tag{3.16}$$

$$A = \frac{\alpha}{\gamma}$$
(3.17)

$$\tilde{l} = \frac{\delta l}{l_{1}^{2}}$$
(3.18)

$$C = \frac{C_{A} - C_{A_{i}}}{C_{A_{o}} - C_{A_{i}}}$$
(3.19)

equation (3.15a) transforms into  $\frac{\partial C}{\partial T} = \frac{\partial^2 C}{\partial R^2} + \left(\frac{1}{R} + \frac{\sin \theta}{A + R \sin \theta}\right) \frac{\partial C}{\partial R} + \frac{1}{R^2} \frac{\partial^2 C}{\partial \theta^2} + \frac{\cos \theta}{R(A + R \sin \theta)} \frac{\partial C}{\partial \theta}$ 



Figure 3.1 A Part of the Torus

and the boundary conditions become

| C = 1            | ζ=       | o o≰R     | <1 0«   | <b>έθ</b> ≰2π                   | (3.20b) |
|------------------|----------|-----------|---------|---------------------------------|---------|
| C =0             | ッ て >    | R=        | / ○≼    | ≼θ≼2π                           | (3.20c) |
| 0= <u>26</u>     | ·        | .0 0      | (I O    | $=\frac{\pi}{2},\frac{3\pi}{2}$ | (3.20d) |
| $A = \infty$ , t | he terms | containin | ng A in | equation                        | (3.20a) |

equal to zero and it becomes

For

$$\frac{\partial C}{\partial C} = \frac{\partial^2 C}{\partial R^2} + \frac{I}{R} \frac{\partial C}{\partial R} + \frac{I}{R^2} \frac{\partial^2 C}{\partial \theta^2}$$
(3.20e)

Equation (3.20e) describes diffusion to an infinite cylinder.

#### A Coordinate Transformation:

The numerical solution of equation (3.20a) in the rectangular  $\gamma, \Theta$  plane introduces some awkward problems. In particular the point  $\gamma=0$  in the  $\gamma, \Theta$  plane becomes the line  $\gamma=0$  in the rectangular  $\gamma, \Theta$  plane and the only boundary condition available along this line is the condition that  $C(0,\Theta,\gamma)$  is finite and independent of  $\Theta$ .

As a result, a transformation from the orthogonaltoroidal co-ordinate system to cylindrical  $X, Z, \Phi$  coordinate system is introduced and the solution to equation (3.20a) is carried out in the rectangular x, Z plane. The transformation is given by

$$X = \frac{x - \alpha}{\gamma_i} = \frac{\gamma}{\gamma_i} \sin \theta = R \sin \theta$$
(3.21)

$$Z = \frac{Z}{\gamma_{r}} = \frac{\gamma}{\gamma_{r}} \cos \Theta = R \cos \Theta \qquad (3.22)$$

and equation (3.20a) becomes

$$\frac{\partial c}{\partial \tau} = \frac{\partial^2 c}{\partial X^2} + \frac{1}{A + X} \frac{\partial c}{\partial X} + \frac{\partial^2 c}{\partial Z^2}$$
(3.23a)

The boundary conditions transform into

$$C(X,Z,0) = I$$
 (3.23b)

$$C(X, \pm \sqrt{1-X^2}, \tau) = 0$$
 (3.23c)

$$\frac{\partial C}{\partial Z}(X,0,\mathcal{T}) = 0 \tag{3.23d}$$

where  $-1 \leq X \leq 1$ ,  $0 \leq Z \leq 1$ ,  $X^2 + Z^2 \leq 1$ 

•

.

.

.

#### IV. THE SOLUTION

In this chapter, the formulas for the concentration profile, the volumetric average concentration and the fraction extracted as a function of time are derived. <u>The Method of Solution</u>

The solution of equation (3.23a) with its boundary conditions is difficult to obtain by the usual procedures of mathematical physics, as a result, a numerical technique has been employed.

The numerical method selected to solve the model is the finite difference technique (3, 6, 9, 12). The explicit finite difference method is chosen over the implicit finite difference method for the following reasons: (1) The explicit method gives sufficiently accurate results; (2) It is easier to program on a computer; and (3) For partial differential equations with three independent variables, the explicit methods have been partially developed in the literature (12). The most important advantage of the implicit methods over the explicit methods is that for a given accuracy the implicit methods are faster.

The difference equations which approximate equation (3.23a) are defined at a finite set of points as shown in Figure 4.1.

In a torus, symmetry is assumed about the angle  $\phi$ and the line Z=0 or  $\Theta = \frac{\pi}{2}$  and  $\frac{3\pi}{2}$ . Therefore the point concentration profile is required only for a semicircle



•

Figure 4.1 Net Work

**.** .

set of points.

There are five different types of nodel points which have to be considered in the calculations. These are as follows: (1) The points which have each adjoining point spaced a complete increment  $\Delta X$  from it, (for example, point A in Figure 4.1); (2) The points located along the line Z=O; (3) The points near the boundary, (for example, nodal points C, F and D in Figure 4.1); (4) The points near the boundary in which two of their neighboring nodes are between them and the boundary, (for example, nodal points E and G in Figure 4.1); (5) The points on the boundary, (for example, point B). The points of these five types are denoted as the sets E3, SP, UEL, UE2 and EP, respectively.

#### Classical Explicit Method:

The partial derivatives of equation (3.23a) are approximated by the following finite differences:

$$\frac{\partial c}{\partial \tau} = \frac{C_{i,j,k+\tau} - C_{i,j,k}}{\Delta \tau}$$

$$\frac{\partial c}{\partial \tau} = \frac{C_{i+1,j,k+\tau} - C_{i-1,j,k}}{\Delta \tau}$$

$$(4.1)$$

$$\frac{1}{2\Delta x} = \frac{1}{2\Delta x}$$
 (4.2)

$$\frac{\partial^2 C}{\partial X^2} = \frac{C_{i+1,j,k} - 2C_{i,j,k} + C_{i-1,j,k}}{(\Delta X)^2}$$
(4.3)

$$\frac{\partial^2 C}{\partial Z^2} = \frac{C_{i,j+1,k} - 2C_{i,j,k} + C_{i,j-1,k}}{(\Delta Z)^2}$$
(4.4)

Equation (3.23a) then becomes

$$\frac{C_{i,j,k+1}-C_{i,j,k}}{\Delta \tau} = \frac{C_{i+1,j,k}-2C_{i,j,k}+C_{i-1,j,k}}{(\Delta X)^2} + \frac{1}{A+X} \frac{C_{i+1,j,k}-C_{i-1,j,k}}{2\Delta X}$$

$$+ \frac{C_{i,j+1,k}-2C_{i,j,k}+C_{i,j-1,k}}{(\Delta Z)^2}$$
(4.5)
Setting  $\triangle X = \triangle Z$  and  $S = \underbrace{\triangle Y}_{(\triangle X)^2}$  and rearranging equation (4.5), one obtains

$$C_{i,j,k+1} = (S + \frac{1}{A+X} + \frac{S \cdot \Delta X}{2})C_{i+1,j,k} + (S + \frac{1}{A+X} + \frac{S \cdot \Delta X}{2})C_{i-1,j,k} + (S)C_{i,j+1,k} - (S)C_{i,j-1,k} + (1 - 4S)C_{i,j,k}$$

$$(4.6)$$

where i corresponds to the X axis

j corresponds to the z axis Thus  $C_{i,j,k}$  is the concentration at the nodal point (I, J) on "T = k" plane.

### Pinite Difference Equations

The overall scheme of solution is to calculate the concentration profile for each spatial plane (X,Z) from the values of the previous plane. This is illustrated in Figure 4.2. From the boundary conditions of equation (3.23a), the concentration profile in the plane (=ois known. The concentrations at the points in sets ES, SP, UEL and UE2 are unity and the concentrations at the points in the set EP are zero. The concentrations in the plane  $T = \Delta T$  are calculated by the explicit method from the points in the T=o plane (point CE in Figure 4.2). This procedure is then repeated for the next time step.

The finite difference equations for different sets are derived as follows:

(1) For ES set. Equation (4.6) applies for calculation of concentrations at points in the ES set.

(2) For SP set. Equation (4.6) for the points on z=0 line takes the following form



Figure 4.2

Three Dimensional Explicit Method Pattern

$$C_{i,o,k} = \left(S + \frac{1}{A+X} \frac{S \Delta X}{2}\right) C_{i+1,o,k} + \left(S - \frac{1}{A+X} \frac{S \Delta X}{2}\right) C_{i-1,o,k} + (S)C_{i,i,k} + (S)C_{i,-1,k} + (I-4S)C_{i,o,k}$$

$$(4.7)$$

From the symmetry condition (3.23d)

$$C_{i,-1,k} = C_{i,1,k}$$
 (4.8)

Therefore,

$$C_{i,o,k} = (S + \frac{1}{A + X} \frac{S \cdot \Delta X}{2}) C_{i+1,o,k} + (S - \frac{1}{A + X} \frac{S \cdot \Delta X}{2}) C_{i-1,o,k}$$

$$+ (2S) C_{i,1,k} + (1 - 4S) C_{i,o,k}$$
(4.9)

(3) For sets UEL and UE2. The concentrations at the nodes located at unequal increments near the boundary are calculated by means of a linear interpolation formula since the normal five point formula is not applicable.

Thus equation (4.6) is modified by the following procedure:

The linear interpolation formulas for the points of the sets UEl and UE2 are

$$\frac{C_{\mathsf{B}}-C_{i\pm i,j,k+i}}{C_{i,j,k+i}-C_{i\pm i,j,k+i}} = \frac{ALX \cdot \Delta X}{\Delta X}$$
(4.10)

and

$$\frac{C_{B} - C_{i,j-l,k+l}}{C_{i,j,k+l} - C_{i,j-l,k+l}} = \frac{ALZ \cdot \Delta Z}{\Delta Z}$$

$$(4.11)$$

where  $\Delta X = \Delta Z$ 

 $(ALX)\Delta X$  and  $(ALZ)\Delta X$  are the distances of the points  $C_{i\pm 1,j,k+1}$ and  $C_{i,j-1,k}$  from the boundary, respectively; and  $C_e$  is the concentration of the point on the boundary. The above equations [(4.10) and (4.11)] are used, depending upon the close neighborhood of these points from the boundary, either in the X or Z direction.

For negative values of X, equation (4.10) becomes

$$\frac{C_{B} - C_{i+1, j, k+1}}{C_{i, j, k+1} - C_{i+1, j, k+1}} = \frac{A \perp X \Delta X}{\Delta X}$$
(4.12)

Let  $C_{s}$  be denoted as EC. Rearranging equation (4.12), one obtains

$$C_{i,j,k+1} = \frac{BC - (TH)C_{i+1,j,k+1}}{ALX}$$
(4.13)

where TH = I - ALX

The equation for  $C_{i+1,j,k+1}$  can be obtained from (4.6) on replacing *i* by i+1.

Therefore, equation (4.13) becomes

$$C_{i,j,k+l} = BC - TH \left[ (S + \frac{1}{A+X} \frac{S \cdot \Delta X}{2}) C_{i+2,j,k} + (S - \frac{1}{A+X} \frac{S \cdot \Delta X}{2}) C_{i,j,k} + (S) C_{i+1,j+1,k} + (S) C_{i+1,j+$$

Similarly for positive values of X

$$C_{i,j,k+1} = \frac{BC - (TH)C_{i-1,j,k+1}}{ALX}$$
(4.15)

The equation for  $C_{i-i,j,k+i}$  can be obtained from equation (4.6) on replacing i by i-l. Therefore, equation (4.15) becomes

$$C_{i,j,k+1} = BC - TH \left[ \left( S + \frac{1}{A+X} \frac{S \cdot \Delta X}{2} \right) C_{i,j,k} + \left( S - \frac{1}{A+X} \frac{S \cdot \Delta X}{2} \right) C_{i-2,j,k} \right]$$

$$(5) C_{i-1,j+1,k} + (5) C_{i-1,j-1,k} + (1-4s) C_{i-1,j,k} \right] / ALX$$

(4.16)

When ALZ is less than ALX, the linear interpolation formula (4.11) is used for both negative and positive values of X.

On rearranging equation (4.11)

$$C_{i,j,k+1} = \frac{BC - (TH)C_{i,j-1,k+1}}{ALZ}$$
(4.17)

The equation for  $C_{i,j-1,k+1}$  can be obtained from equation (4.6) on replacing j by j-1. Therefore, equation (4.17) becomes

$$C_{i,j,k+i} = BC - TH \left[ (S + \frac{1}{A+X} \frac{S \cdot \Delta X}{2})C_{i+i,j-i,k} + (S - \frac{1}{A+X} \frac{S \cdot \Delta X}{2})C_{i-i,j-i,k} + (S - \frac{1}{A+X} \frac{S \cdot \Delta X}{2})C_{i-i,j-i,k} \right] / ALZ$$

$$+ (S)C_{i,j,k} + (S)C_{i,j-2,k} + (1 - 4S)C_{i,j-i,k} \right] / ALZ$$

$$(4.18)$$

### Volumetric Average Concentration

so that

After obtaining the point concentrations from the numerical solution of equation (3.23a), the volumetric average concentration is determined as follows:(6). By definition

$$\overline{C}(\tau) = \frac{\int C(X,Z,T) dV}{\int \int dV}$$
(4.19)

The elemental volume dv of the torus for the numerical calculations is given by the following equation  $dv = 2\pi (A+x)dx dz$  (4.20)

$$\overline{C}(\tau) = \frac{4\pi \int (A+x) dx \int C(X,Z,\tau) dZ}{2\pi^2 A}$$
(4.21)

The volumetric average concentration is then determined by numerical integration of equation (4.21) as shown in appendix B. The fraction extracted is calculated from the following equation:

$$E_{m} = \left| -\overline{C}(\gamma) \right|$$
(4.22)

### Analytical Solution For A Cylinder

For molecular diffusion into a cylinder, the equations for calculation of the point and average concentrations are discussed in appendix C.

As mentioned earlier in this work, the solutions for the torus will be compared with that for an infinite cylinder.

#### Computational Error

Let C denote the exact solution of the difference equation and C the exact solution of the differential equation, both solutions satisfying the given boundary and initial conditions. If C is substituted into the difference equation (4.6), there will be a remainder term or truncation error, so that

 $C_{i,j,k+1} = (S - \frac{1}{A+X} \frac{S \cdot \Delta X}{2}) C_{i+1,j,k} + (S - \frac{1}{A+X} \frac{S \cdot \Delta X}{2}) C_{i+1,j,k} + (S) C_{i,j+1,k} + (S) C_{i,j-1,k} + (I - 4S) C_{i,j,k} + T_{ij}$  (4.23)

where  $T_{ij}$  is the truncation error. Assuming that C has continuous partial derivatives with respect to X and Z of order four, truncation error equation derived in appendix D is

$$T_{ij} = \frac{1}{2} \Delta \gamma \frac{\partial^2 c}{\partial \gamma^2} - \frac{1}{6(A+X)} (\Delta \chi)^2 \frac{\partial^3 c}{\partial \chi^3} - \frac{1}{12} (\Delta \chi)^2 \left( \frac{\partial^4 c}{\partial \chi^4} + \frac{\partial^4 c}{\partial Z^4} \right)$$
(D.10)  
and 
$$T_{ij} = O(\Delta \gamma) + O(\Delta \chi)^2$$
(D.11)

Thus, the truncation error is a function of A and step sizes. In order to reduce the magnitude of the truncation error, both  $\Delta \gamma$  and  $\Delta \chi$  should be very small. It can be seen from (D.11) that if mesh size and the time step are increased in the same proportion, the error introduced by the change in the time step will be more than that for the change in the mesh size.

#### Stability

In addition to convergence of the finite difference equation, stability is essential in the sense that inevitable rounding errors in the calculation must not swamp the true finite difference solution.

The stability criteria for parobolic partial differential equations with constant coefficient and two or three independent variables are discussed in the references (3, 9, 11). The stability criterion for the finite difference equation approximation of the parobolic equation of the type

$$\frac{\partial c}{\partial \gamma} = \frac{\partial^2 c}{\partial \chi^2} + \frac{\partial^2 c}{\partial Z^2}$$

 $\operatorname{is} \frac{\Delta \Upsilon}{(\Delta X)^2} \leqslant \frac{1}{4}$  (for a square mesh) (8).

Equation (3.23a) consists of an additional lower order partial derivative with a variable coefficient. It is reported (3) that the presence of the lower order term in differential equation has no great effect on the stability criterion, in comparison to higher order terms, in the formation of difference equation. Therefore the stability criterion for the finite difference equation of equation (3.23a) can be expected to be similar to the above equation.

Values of  $\Delta \gamma_{(\Delta X)^2}$  greater than 0.25 were tried as a test but the solutions were found to be unstable.

### V. <u>RESULTS AND DISCUSSION</u>

#### Point Concentrations

As described in the previous chapter, the point concentrations were calculated as a function of time for various values of the parameter A. The parameter A appearing in the partial differential equation (3.20a) has a definite physical significance. The two extreme values of A transform this equation to the diffusion equations for a stagnant sphere and a cylinder. When A = 0 in equation (3.20a), it describes molecular diffusion into a sphere; and for  $A \longrightarrow \infty$ , it reduces to the case of diffusion in an infinite cylinder. Since a torus is a solid of revolution obtained by rotating a circle of radius  $\gamma$  at a distance  $\alpha$  from the x-axis, the sphere

is a special case when Q = O.

Thus there is a certain similarity in the molecular diffusion equations for a torus, a sphere and a cylinder. However, the parameter A in the diffusion equation for a torus is attributed to the dissymmetry of the concentration profile. For molecular diffusion into a sphere or cylinder, the concentration profile is symmetrical about both the coordinate axes.

The concentrations for different values of A at  $X = \pm 0.8$  (Z=0 line) are shown in Tables (5.1, 5.2 and 5.3) to illustrate the dissymmetry of the concentration profile. The variation of the point concentration with time is presented in Figures 5.2 and 5.3.

It can be observed that the concentration at X = -0.8is higher than at X = +0.8. This could be explained as follows.

Referring to Figure 5.4, the points X=+0.8 and X=-0.8 are in the semicircles ABD and ACD, respectively. The surface of the revolution obtained by revolving the arc ABD about the Z axis is larger than the surface of the revolution generated by the arc ACD. Since the torus surface comprises of these two surfaces, the surface area of the right half of the torus is larger than the left half. The magnitudes of these areas are  $2\pi^2 \alpha \gamma(1+\frac{2}{\pi})$ and  $2\pi^2 \alpha \gamma(1-\frac{2}{\pi})$  respectively, and their ratio is  $(1+\frac{2}{\pi})/(1-\frac{2}{\pi})$ . Thus the total transport of the solute on the torus surface should be more near X=+0.2 than near X = -0.8 . Consequently the concentration is less at X = +0.8 than the value of the concentration at X = -0.8This is true for all the points in the right-half portion of the torus.

For large values of A, the difference in the values of the concentrations at these points is smaller (refer to Table 5.8). The value of A determines the curvature of the torus. When A is small, the effect of the torus curvature is predominant and hence the difference in the concentrations at  $X=\pm0.8$  (diametrically opposite points) is large. As A increases, this difference diminishes and for  $A \rightarrow \infty$ , concentrations are equal. Thus for large values of A, the concentration profile tends to be symmetrical. When the value of A is very large the

solution should approach that for an infinite cylinder (in which case, the concentration profile is symmetrical).

The values of the concentration at the center of the torus are shown in Table (5.10). As A increases, the concentration decreases because of the corresponding increase in the surface area.

### Fraction Extracted

sterner 1 and

The dimensionless average concentration is calculated as shown in appendix B. The fraction extracted for various values of dimensionless time and A is given in Tables (5.1, 5.2 and 5.3). The fraction extracted is approximately the same for all values of A; this might be expected since the surface area to volume ratio ( $2/\gamma$ , ) is independent of A. Geometrically the torus is a bent cylinder, and hence the fraction extracted from torus is nearly the same as for a cylinder. Therefore a single graph is plotted for the fraction extracted versus the dimensionless time regardless of the value of A.

The values of the fraction extracted for a torus and cylinder are not exactly the same, possibly because of the computational error. The truncation error formula is derived in appendix D. It is a function of A. The results for a cylinder and a torus show that the value of the point concentration at diametrically opposite points in a cylinder is between the values of concentrations at these points in a torus. Thus the parameter A introduces dissymmetry in the concentration

profile but does not change the value of the fraction extracted.

Effect of Mesh Size on Numerical Solution

The mesh size  $\Delta \chi = 0.05$  was changed to 0.04. The time step had to be changed to  $\Delta \chi = 0.0003$  to satisfy the stability criterion. The results obtained are given in Tables (5.5, 5.6 and 5.7). As expected, the smaller mesh size gives slightly more accurate results, but the difference in the results obtained due to a change in the mesh size is insignificant at large contact times.

### Analytical Solution for a Cylinder

The point concentration and fraction extracted for diffusion from a cylinder were obtained from the equations discussed in appendix C. These analytical solutions were derived for diffusion in the radial direction only.

The point concentration at R=OS and fraction extracted are given in Table (5.4). These results are compared with the numerical solution obtained for a cylinder in which diffusion in  $\Theta$  direction is also considered. However, because of symmetry in  $\Theta$  direction both the results are nearly identical.

## TABLE(5.1)

.

| Dimensionless                                                                                                                                                                                                                                                                | Dimensionless                                                                                                                                                                                                                                                                                                                                                | Concentration                                                                                                                                                                                                                                                                                                                                                           | Praction                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| time                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                            | C)                                                                                                                                                                                                                                                                                                                                                                      | Extracted                                                                                                                                                                                                                                                                                                                                                               |
| (TAU)                                                                                                                                                                                                                                                                        | X = -0.8                                                                                                                                                                                                                                                                                                                                                     | X = +0.6                                                                                                                                                                                                                                                                                                                                                                | (Em)                                                                                                                                                                                                                                                                                                                                                                    |
| 0.002<br>0.004<br>0.006<br>0.008<br>0.012<br>0.014<br>0.016<br>0.018<br>0.02<br>0.04<br>0.06<br>0.08<br>0.10<br>0.11<br>0.12<br>0.13<br>0.14<br>0.15<br>0.16<br>0.17<br>0.18<br>0.19<br>0.20<br>0.21<br>0.22<br>0.23<br>0.24<br>0.25<br>0.26<br>0.27<br>0.28<br>0.29<br>0.30 | 0.99956<br>0.97899<br>0.95216<br>0.92627<br>0.90257<br>0.83104<br>0.86146<br>0.84356<br>0.82709<br>0.81186<br>0.70104<br>0.62771<br>0.57097<br>0.52325<br>0.50156<br>0.48093<br>0.46117<br>0.44214<br>0.42375<br>0.40594<br>0.38868<br>0.37195<br>0.35572<br>0.34001<br>0.32480<br>0.31009<br>0.29590<br>0.28221<br>0.26902<br>0.25634<br>0.22123<br>0.21048 | 0.99881<br>0.95449<br>0.89707<br>0.64197<br>0.79224<br>0.74798<br>0.70034<br>0.67354<br>0.64205<br>0.61366<br>0.43063<br>0.27125<br>0.22690<br>0.20903<br>0.19328<br>0.17926<br>0.16668<br>0.15531<br>0.14499<br>0.13557<br>0.12694<br>0.11900<br>0.11167<br>0.10490<br>0.09861<br>0.09277<br>0.08734<br>0.08227<br>0.07754<br>0.07311<br>0.06897<br>0.06509<br>0.06145 | 0.11234<br>0.14928<br>0.17763<br>0.20145<br>0.22233<br>0.24109<br>0.25323<br>0.27408<br>0.28887<br>0.30276<br>0.41110<br>0.48912<br>0.55111<br>0.60270<br>0.62555<br>0.64676<br>0.66654<br>0.68502<br>0.70233<br>0.71358<br>0.73385<br>0.74823<br>0.76177<br>0.77454<br>0.78659<br>0.79796<br>0.80870<br>0.81886<br>0.82845<br>0.83753<br>0.84611<br>0.85423<br>0.86919 |

# DISSUMPTRY OF THE CONCENTRATION PROFILE $(A = 1, \Delta) = 0.0005, \Delta X = 0.05)$

Refer to the

# TABLE(5.2)

•

| In the second                                                                                                                                                                                                                       | ۲. ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲                                                                                                                                                                                                                                                                                                                                 | LAR LE COMMAN DE LE COMMANDE DE LE C                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensionless<br>time                                                                                                                                                                                                                                                                                                                 | Dimensionless<br>((                                                                                                                                                                                                                                                                                                                                                     | Fraction                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |
| (TAU)                                                                                                                                                                                                                                                                                                                                 | X = -0.8                                                                                                                                                                                                                                                                                                                                                                | X = +0.8                                                                                                                                                                                                                                                                                                                                                                          | (En)                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.002<br>0.004<br>0.006<br>0.008<br>0.010<br>0.012<br>0.014<br>0.016<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.011<br>0.12<br>0.13<br>0.14<br>0.15<br>0.16<br>0.17<br>0.18<br>0.19<br>0.22<br>0.21<br>0.22<br>0.22<br>0.23<br>0.24<br>0.25<br>0.26<br>0.27<br>0.28<br>0.29<br>0.30 | 0.99854<br>0.95946<br>0.90843<br>0.85958<br>0.81554<br>0.77636<br>0.74153<br>0.71043<br>0.68251<br>0.65730<br>0.49330<br>0.40405<br>0.34481<br>0.30095<br>0.28263<br>0.26606<br>0.25091<br>0.23693<br>0.22394<br>0.21180<br>0.20041<br>0.18968<br>0.17956<br>0.16999<br>0.16999<br>0.16094<br>0.15236<br>0.12919<br>0.12226<br>0.11568<br>0.10944<br>0.10353<br>0.09792 | 0.99834<br>0.95517<br>0.89865<br>0.64442<br>0.79549<br>0.75196<br>0.71326<br>0.67873<br>0.64776<br>0.61983<br>0.43971<br>0.34400<br>0.28231<br>0.23818<br>0.22029<br>0.20445<br>0.19028<br>0.17749<br>0.16537<br>0.16537<br>0.15525<br>0.14549<br>0.13648<br>0.42815<br>0.12041<br>0.1322<br>0.16650<br>0.10024<br>0.09437<br>0.08888<br>0.08374<br>0.07891<br>0.07612<br>0.06611 | 0.11237<br>0.14930<br>0.20154<br>0.20154<br>0.22246<br>0.24128<br>0.25848<br>0.27439<br>0.28925<br>0.30321<br>0.41232<br>0.49120<br>0.55407<br>0.60650<br>0.62976<br>0.62976<br>0.67152<br>0.69035<br>0.70300<br>0.72456<br>0.72456<br>0.74012<br>0.75475<br>0.76852<br>0.78150<br>0.79372<br>0.80525<br>0.81612<br>0.82688<br>0.82688<br>0.83606<br>0.84519<br>0.85381<br>0.86963<br>0.87688 |

# DISSYMMETRY OF THE CONCENTRATION PROFILE (A = 2, $\Delta T = 0.0005$ , $\Delta X = 0.05$ )

.

,

# TABLE(5.3)

| DISSYMMETE | Y C | EHT E        | CONCENT | RATION | PROFILE |
|------------|-----|--------------|---------|--------|---------|
| (A =       | 4,  | <u>∆</u> (†= | 0.0005, | ∆X =   | 0.05)   |

| Dimensionless<br>time<br>(TAU)                                                                                                                                                                                                                                      | Dimensionless $X = -0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                        | Concentration<br>C) $X = +0.8$                                                                                                                                                                                                                                                                                                                               | Fraction<br>Extracted<br>(Em)                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.002<br>0.004<br>0.006<br>0.008<br>0.01<br>0.012<br>0.014<br>0.016<br>0.018<br>0.02<br>0.04<br>0.06<br>0.08<br>0.1<br>0.11<br>0.12<br>0.13<br>0.14<br>0.15<br>0.16<br>0.17<br>0.18<br>0.19<br>0.20<br>0.21<br>0.22<br>0.23<br>0.24<br>0.25<br>0.26<br>0.29<br>0.30 | 0.99845<br>0.95755<br>0.90407<br>0.85284<br>0.80664<br>0.76555<br>0.72902<br>0.69643<br>0.64079<br>0.46997<br>0.31806<br>0.27424<br>0.25617<br>0.23997<br>0.22528<br>0.21184<br>0.19945<br>0.18797<br>0.17728<br>0.16728<br>0.16728<br>0.16728<br>0.15791<br>0.14911<br>0.14911<br>0.14082<br>0.12565<br>0.11870<br>0.12565<br>0.11870<br>0.12565<br>0.11870<br>0.12565<br>0.11870<br>0.12565<br>0.11870<br>0.12565<br>0.10036<br>0.09454<br>0.08930<br>0.08435 | 0.99837<br>0.95569<br>0.89984<br>0.94627<br>0.79794<br>0.75495<br>0.71673<br>0.66264<br>0.65206<br>0.62447<br>0.44646<br>0.35170<br>0.29044<br>0.24543<br>0.22852<br>0.21261<br>0.19834<br>0.18541<br>0.16279<br>0.16279<br>0.15282<br>0.14358<br>0.13500<br>0.12701<br>0.11258<br>0.10605<br>0.09992<br>0.09418<br>0.08877<br>0.08370<br>0.07892<br>0.07020 | 0.11237<br>0.14930<br>0.17768<br>0.20154<br>0.22247<br>0.22247<br>0.24129<br>0.25850<br>0.27442<br>0.28928<br>0.30324<br>0.41244<br>0.49141<br>0.55439<br>0.60693<br>0.63024<br>0.65190<br>0.67210<br>0.69099<br>0.70868<br>0.72528<br>0.74088<br>0.72528<br>0.74088<br>0.72528<br>0.74088<br>0.75555<br>0.76936<br>0.78237<br>0.79462<br>0.80618<br>0.81707<br>0.82734<br>0.82734<br>0.85438<br>0.85438<br>0.85438<br>0.87788 |

## TABLE(5.4)

.

# ANALYTICAL AND NUMERICAL SOLUTION FOR A CYLINDER

| and a state of the second s                                                                                                                      | . Jahoo waa ing Karin Ministra ang Karing                                                                                                                                                                                                                        | *<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ىرىنى ئەلەرلىرىنى بىلىلەر ئەتتىرىكى بىر يېزى تىلەر تەتتىرىكى بىلەر<br>1                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensionless<br>Time                                                                                                                                                                                                                | Dimensionless                                                                                                                                                                                                                                                                                                                          | Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fraction 1                                                                                                                                                                                                                                                                                                        | Extracted                                                                                                                                                                                                                                                                                                                   |
| (TAU)                                                                                                                                                                                                                                | Analytical                                                                                                                                                                                                                                                                                                                             | Numerical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analytical                                                                                                                                                                                                                                                                                                        | Fumerical                                                                                                                                                                                                                                                                                                                   |
| 0.002<br>0.004<br>0.006<br>0.008<br>0.010<br>0.012<br>0.014<br>0.018<br>0.02<br>0.04<br>0.06<br>0.08<br>0.10<br>0.11<br>0.12<br>0.13<br>0.14<br>0.15<br>0.16<br>0.17<br>0.18<br>0.19<br>0.20<br>0.21<br>0.22<br>0.23<br>0.24<br>0.25 | 0.99825<br>0.97163<br>0.92399<br>0.87249<br>0.82376<br>0.77953<br>0.73990<br>0.67260<br>0.74393<br>0.46053<br>0.36428<br>0.30243<br>0.23992<br>0.23992<br>0.23992<br>0.23992<br>0.22380<br>0.20929<br>0.19610<br>0.18403<br>0.17292<br>0.16263<br>0.15307<br>0.14416<br>0.13583<br>0.12803<br>0.12072<br>0.11384<br>0.10738<br>0.10130 | 0.99840<br>0.95643<br>0.90152<br>0.84888<br>0.80140<br>0.75917<br>0.72163<br>0.65809<br>0.63099<br>0.45591<br>0.36237<br>0.25773<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23977<br>0.23972<br>0.19619<br>0.19619<br>0.19619<br>0.195326<br>0.14436<br>0.13604<br>0.12824<br>0.12092<br>0.11404<br>0.10757<br>0.10149 | 0.09891<br>0.013868<br>0.16872<br>0.19371<br>0.21547<br>0.23495<br>0.25268<br>0.29856<br>0.40960<br>0.48943<br>0.55292<br>0.60582<br>0.62927<br>0.65106<br>0.67137<br>0.69036<br>0.70814<br>0.72482<br>0.74049<br>0.72482<br>0.74049<br>0.75522<br>0.76909<br>0.78215<br>0.80605<br>0.81698<br>0.82729<br>0.83701 | 0.11237<br>0.14930<br>0.17768<br>0.20154<br>0.22247<br>0.24130<br>0.25850<br>0.28929<br>0.30325<br>0.41247<br>0.49148<br>0.55448<br>0.60706<br>0.63038<br>0.65206<br>0.67228<br>0.69118<br>0.72550<br>0.74111<br>0.75580<br>0.74111<br>0.75580<br>0.76961<br>0.78263<br>0.79489<br>0.80645<br>0.81735<br>0.82763<br>0.83732 |

| TAEL | 5(5. | 5) |  |
|------|------|----|--|
|      |      |    |  |

| DISSYMMETRY | OF THE            | CONCENTRATION        | PROFILE |
|-------------|-------------------|----------------------|---------|
| (A = 1,     | $\Delta \gamma =$ | 0.0003, $\Delta X =$ | 0.04)   |

| Dimensionless | Dimensionless | Concentration | Fraction  |
|---------------|---------------|---------------|-----------|
| time          | (C            | )             | Extracted |
| (TAU)         | X = -0.8      | X = +0.8      | (Em)      |
| 0.006         | 0.95931       | 0.90402       | 0.17520   |
| 0.012         | 0.89328       | 0.75474       | 0.23923   |
| 0.018         | 0.84102       | 0.64683       | 0.28733   |
| 0.06          | 0.64175       | 0.33391       | 0.48829   |
| 0.12          | 0.49263       | 0.19306       | 0.64613   |
| 0.15          | 0.43436       | 0.15508       | 0.70174   |
| 0.18          | 0.38152       | 0.12672       | 0.74767   |
| 0.21          | 0.33338       | 0.10471       | 0.78606   |
| 0.24          | 0.28985       | 0.08718       | 0.81806   |

.

# TABLE(5.6)

# DISSYMMETRY OF THE CONCENTRATION PROFILE (A = 2, $\triangle T = 0.0003$ , $\triangle X = 0.04$ )

| Dimensionless<br>Time<br>(TAU) | Dimensionless<br>(C<br>X = -0.8 | Concentration<br>X = +0.8 | Fraction<br>Extracted<br>(Em) |
|--------------------------------|---------------------------------|---------------------------|-------------------------------|
| 0.006                          | 0.91510                         | 0.90555                   | 0.17528                       |
| 0.012                          | 0.78344                         | 0.75874                   | 0.23947                       |
| 0.018                          | 0.68804                         | 0.65263                   | 0.28778                       |
| 0.06                           | 0.40542                         | 0.344 <b>4</b> 3          | 0.49058                       |
| 0.12                           | 0.26657                         | 0.20430                   | 0.65105                       |
| 0.15                           | 0.22431                         | 0.16568                   | 0.70776                       |
| 0.18                           | 0.18998                         | 0.13630                   | 0.75455                       |
| 0.21                           | 0.16118                         | 0.11305                   | 0.79357                       |
| 0.24                           | 0.13672                         | 0.09422                   | 0.82625                       |

### TABLE(5.7)

## DISSYMMETRY OF THE CONCENTRATION PROFILE

| Dimensionless<br>Time<br>(TAU)                                          | Dimensionless<br>(C<br>X = -0.8                                                                            | Concentration<br>X = +0.8                                                                       | Fraction<br>Extracted<br>(En)                                                                   |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 0.006<br>0.012<br>0.018<br>0.06<br>0.12<br>0.15<br>0.18<br>0.21<br>0.24 | 0.91084<br>0.77247<br>0.67238<br>0.37904<br>0.24013<br>0.19953<br>0.16732<br>0.16732<br>0.14084<br>0.11871 | 0.90671<br>0.76176<br>0.65699<br>0.35223<br>0.21252<br>0.17347<br>0.14344<br>0.11942<br>0.09980 | 0.17528<br>0.23949<br>0.28782<br>0.49080<br>0.65160<br>0.70845<br>0.75538<br>0.79448<br>0.82723 |

 $(A = 4, \Delta T = 0.0003, \Delta X = 0.04)$ 

TABLE(5.8)

# DIFFERENCE IN THE DIMENSIONLESS CONCENTRATION AT X = 70.8 .

-

-

| 0.01 0.11033 0.02005 0.008 | .0  |
|----------------------------|-----|
|                            | 370 |
| 0.1 0.29635 0.06177 0.027  | 781 |
| 0.2 0.22834 0.04958 0.022  | 210 |

. .

| TABLE( | 5. | 9) |
|--------|----|----|
|--------|----|----|

# FRACTION EXTRACTED FOR A TORUS AND A CYLINDER

| TAU  | A = 1.0 | A = 2.0 | A = 4.0 | Cylinder |
|------|---------|---------|---------|----------|
| 0.01 | 0.22233 | 0.22246 | 0.22247 | 0.22247  |
| 0.04 | 0.41110 | 0.41232 | 0.41244 | 0.41247  |
| 0.1  | 0.60270 | 0.60650 | 0.60693 | 0.60706  |
| 0.15 | 0.70233 | 0.70800 | 0.70868 | 0.70888  |
| 0.2  | 0.77454 | 0.78150 | 0.78237 | 0.78263  |
| 0.25 | 0.82845 | 0.83606 | 0.83703 | 0.83732  |

# TABLE(5.10)

.

. <sup>2</sup>.

.

CONCENTRATION AT THE CENTER OF THE TORUS

| TAU  | DIMENSIONLESS CONCENTRATION<br>(C) |        |                  |  |  |  |  |  |  |  |
|------|------------------------------------|--------|------------------|--|--|--|--|--|--|--|
|      | A = 1                              | A = 2  | $\mathbf{A} = 4$ |  |  |  |  |  |  |  |
| 0.02 | 1.0000                             | 1.0000 | 1.0000           |  |  |  |  |  |  |  |
| 0.04 | 0.9966                             | 0.9963 | 0.9962           |  |  |  |  |  |  |  |
| 0.05 | 0.9879                             | 0.9871 | 0.9869           |  |  |  |  |  |  |  |
| 0.10 | 0.8566                             | 0.8485 | 0.8472           |  |  |  |  |  |  |  |
| 0.12 | 0.7851                             | 0.7736 | 0.7717           |  |  |  |  |  |  |  |
| 0.14 | 0.7137                             | 0.6993 | 0.6970           |  |  |  |  |  |  |  |
| 0.16 | 0.6456                             | 0.6288 | 0.6261           |  |  |  |  |  |  |  |
| 0.18 | 0.5823                             | 0.5636 | 0.5607           |  |  |  |  |  |  |  |







al. E. l. Refere



Figure 5.4 Part of the Cross Section of the Torus

51

#### VI. CONCLUSIONS

The partial differential equation for molecular diffusion into a torus is derived in this study. This equation reduces to special cases for the two extreme values of the parameter A. For A = 0, it describes molecular diffusion into a sphere and for A =  $\infty$ , it reduces to the case of an infinite cylinder. The partial differential equation is solved by the explicit finite difference method for the values of A = 1, 2, 4, and  $\infty$ . The finite difference equation is stable for  $\frac{\Delta \Upsilon}{(\Delta X)^2} \leq \frac{1}{4}$ ; it is unstable for  $\frac{\Delta \Upsilon}{(\Delta X)^2} > \frac{1}{4}$ 

The following conclusions are presented from an analysis of the results:

(1) The concentration profile is symmetrical about both the coordinate axes (X and Z) for molecular diffusion into a sphere and cylinder, but the parameter A appearing in the partial differential equation for the torus results in a dissymmetry of the concentration profile about the Z-axis.

(2) The torus curvature (i.e., the magnitude of the parameter A) affects the concentration profile within the torus. For small values of A, the effect of the curvature is significant and hence the values of the point concentrations vary widely from concentrations in a cylinder. (For example, at X = -0.8 and T = 0.1, the variations in the point concentrations are 15.6% and

6.28% for A = 2 and A = 4, respectively). When A is large, the concentration profile tends to be symmetrical; and for very large A, the values of concentrations in the torus correspond almost exactly to those for a cylinder.

(3) The fraction extracted (which is related to the average concentration of the solute in the torus) at various values of the dimensionless time is independent of the parameter A. This appears to be consistent with the physical situation. The value of the point concentration in a cylinder for a given radius is between the two values of the point concentration at diametrically opposite points (along X axis) in a torus.

(4) The effect of diffusion in  $\ominus$  direction on the point concentration and the fraction extracted is negligible in comparison to radial direction.

(5) The assumption that the effect of the torus curvature is negligible in the eddy diffusion model of Handlos and Baron, may be justified.

VII. APPENDICES

,

ł

.

•

.

-

### APPENDIX A

### Diffusion Equation

For a torus (11)  

$$X = (a + r \sin \theta) \cos \phi \qquad (3.11)$$

$$Y = (a + r \sin \theta) \sin \phi \qquad (3.12)$$

$$Z = r(a + \theta) \sin \phi \qquad (3.12)$$

$$Z = \Upsilon Cos \Theta \tag{3.13}$$

and

$$(ds)^{2} = (dx)^{2} + (dy)^{2} + (dz)^{2}$$

$$(A.1)$$

$$dx = -(a+r\sin\theta)\sin\phi d\phi + \cos\phi(r\cos\theta d\theta + dr\sin\theta)$$

$$(A.2)$$

$$dy = (a+r\sin\theta)\cos\phi d\phi + \sin\phi(r\cos\theta d\theta + dr\sin\theta)$$

$$(A.3)$$

$$dz = -r\sin\theta d\theta + dr\sin\theta$$

$$(A.4)$$

so that

$$(ds)^{2} = (dr)^{2} + r^{2}(d\theta)^{2} + (a + r\sin\theta)^{2}(d\phi)^{2}_{(A.5)}$$

Comparing equation (A.5) with  $(ds)^2 = h(du_1)^2 + h_2(du_2)^2 + h_3(du_3)^2$ (A.6)h=1(4.7)

$$h_2 = \gamma$$
 (4.8)

$$h_{\overline{s}}(a+r\sin\theta)$$
 (A.9)

Therefore  $\nabla C_{A} = \frac{1}{r(a+r\sin\theta)} \left\{ \frac{\partial}{\partial r} \left[ r(a+r\sin\theta) \frac{\partial C_{A}}{\partial r} + \frac{\partial}{\partial \theta} \left[ \frac{(a+r\sin\theta)}{r} \frac{\partial C_{A}}{\partial \theta} \right] \right\}$  $+\frac{\partial}{\partial \Phi}\left[\frac{\gamma}{(\alpha+r\sin\theta)}\frac{\partial c_{\alpha}}{\partial \phi}\right]$ (A.10) and Fick's second law of molecular diffusion is given by  $\frac{\partial C_A}{\partial t} = \mathcal{D}_{AB} \nabla C_A$ (A.ll)

where  $\bigtriangledown^2_{C_A}$  is expressed by equation (A.10)

### APPENDIX B

Numerical Solution of Equation (4.21)  

$$\overline{C}(\mathcal{T}_{k}) = \underbrace{4\pi \int (A+x) dx \int C(X,Z,\mathcal{T}) dz}_{2\pi^{2}A} \qquad (4.21)$$

Let

$$F(X,\mathcal{T}_k) = \int C(X,Z,\mathcal{T}_k) dZ \qquad (B.1)$$

so that

 $\overline{C}(\mathcal{T}_{k}) = \frac{2}{\prod A} \int (A+X) F(X,\mathcal{T}_{k}) dx \qquad (B.2)$ Introducing the trapezoidal rule as the quadrature formula

for the evaluation of integrals  

$$F(X_{i}, \mathcal{T}_{k}) = \int_{C} C(X_{i}, Z_{j}, \mathcal{T}_{k}) dZ$$

$$= \frac{\Delta X}{2} (C_{i}, \mathcal{T}_{k} + 2C_{i,2}\mathcal{T}_{k} + \dots + C_{i,B-1}\mathcal{T}_{k})$$

$$+ \frac{h_{iu}}{2} (C_{i,B-1}\mathcal{T}_{k} + C_{i,B}\mathcal{T}_{k}) \quad (B.3)$$

where

B-1 denotes the point next to the boundary

B denotes the point on the boundary

 $h_{i\mu}$  is the distance between these two points in the Z direction.

Thus  

$$C(\mathcal{T}_{k}) = \frac{2}{\tau \tau A} \frac{\Delta X}{2} \left[ (A+X_{i}) F(X_{i},\mathcal{T}_{k}) + 2(A+X_{2}) F(X_{2},\mathcal{T}_{k}) + \dots + 2(A+X_{g-1}) F(X_{g-1},\mathcal{T}_{k}) + (A+X_{g}) F(X_{g},\mathcal{T}_{k}) \right]$$

(B.4)

### <u>APPENDIX</u> C

## Analytical Solution For A Cylinder

Equation (3.20a) for diffusion into a torus reduces to that for a cylinder when  $A \longrightarrow \infty$ . Molecular diffusion equation for an infinite cylinder is

$$\frac{\partial C_{A}}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} (r \mathcal{D} \frac{\partial C_{A}}{\partial r})$$
(C.la)

with the following boundary conditions

$$C_{A} = C_{A}, \quad \Upsilon = \Upsilon, \quad t \ge 0$$
 (C.1b)

$$C_{A} = C_{A_{o}} \quad o \leqslant r < r, \quad t = 0 \quad (C.lc)$$

The analytical solution of equation (C.la) with its boundary conditions is given by (2).

$$\frac{C_{A}-C_{A_{i}}}{C_{A_{o}}-C_{A_{i}}} = \frac{2}{\gamma_{i}} \sum_{n=1}^{\infty} C^{-\mathcal{O}\alpha_{n}^{2}t} \frac{J_{o}(\gamma \alpha_{n})}{J_{i}(\gamma_{i}\alpha_{n})}$$
(C.2)

where  $\prec_n$  are the roots of

$$\int_{\mathbf{a}} (T_n \boldsymbol{\alpha}_n) = 0 \tag{0.3}$$

Let

$$\alpha_n = \beta_n \qquad (0.4)$$

$$\frac{1}{\gamma} = \mathcal{K}$$
(0.5)  
$$\frac{\partial t}{\gamma^2} = \mathcal{V}$$
(0.6)

and

$$\frac{C_{\mathbf{A}}-C_{\mathbf{A}}}{C_{\mathbf{A}_{\mathbf{b}}}-C_{\mathbf{A}_{\mathbf{i}}}} = C \tag{C.7}$$

Then equation (C.2) transforms into

$$C = 2 \sum_{\eta=i}^{\infty} \tilde{C}^{\beta_n^2} \tilde{\gamma} \frac{J_o(R\beta_n)}{\beta_n J_i(\beta_n)}$$
(C.8)

Thus from equation (C.8), the dimensionless concentration can be determined for the various values of R and  $\Upsilon$ .

The formula for the dimensionless volumetric average concentration is derived from equation (C.8) and it is

given by

$$\overline{C}(\widehat{\gamma}) = 4 \sum \frac{e^{-\beta_n^2} \widehat{\gamma}}{\beta_n^2}$$

### (0.9)

The computer programs are written for the calculation of the point concentration and volumetric average concentration from equations (C.8) and (C.9) respectively. Forty values of  $\beta_n$  are reported in (14).

| LEVEL: 1JUL66           | IBM OS/360 BASIC FORTRAN IV (E) COMPILATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ລວວງ                    | ANALYTICAL SOLUTION FOR DIFFUSION TO A CYLINDER<br>CALCULATION OF POINT CONCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S.0001<br>S.0002        | DIMENSION $A(40)$ , $B(40)$ , $B1(40)$<br>READ(1,200) ( $A(J)$ , $J=1$ , 40)<br>WRITE(3,101)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <u>S.0004</u>           | $\frac{1}{100} \frac{1}{20} \frac{1}{3} \frac{1}{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S.0005<br>S.0006        | $X = \Lambda (J) * (J) $ |
| S.0007<br>S.0008        | CALL BESJ (X,N,BESS, 00005,IER)<br>20 B(J)=BESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S.0009<br>S.0010        | $\begin{array}{c} 10  30  J = 1,40 \\ X = \Lambda(.1) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S.0011<br>S.0012        | $N = 1$ $C \wedge 1 + BES + (X \cdot N \cdot BESS - 00005 \cdot JEB)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>\$.0013</u>          | 30 B1(J)=BESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S.0014<br>S.0015        | $D_{10} = 1,600$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>S.0015</u><br>S.0017 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S.0018<br>S.0019        | P = A (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u> </u>                | IF(P**2*TAU-170.)40,10,1040 SUM=SUM+2.*B(J)/(B1(J)*EXP((P**2)*TAU)*P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S.0022<br>S.0023        | 10 WRITE(3,100)TAU,SUM<br>00 FORMAT(10X,F15,5,F18,8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u> </u>                | OI FORMAT(725X, TAU', 5X, MESH POINT')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S.0026                  | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| TRM DS/360 BASIC FORTRAN IV (E) COMPILATION | VALYTICAL SALUTIAN FAR DIFFUSION TO A CYLINDER<br>Alculation af fraction fytracted | NURLE PRECISION A(40)<br>NURLE PRECISION TAU, SUM, B, DTA, P, FE | FAU(]+200)(A(J)+J=L+40)<br>TA=0.0005 | 0 11 K=1,700<br>AU=DTA*K |        | = \ (. \)<br>= \ (. \) | =①EXP((R*キ2)*TAU)*(氏*キ2)<br>IM=SUM+4.0/P | E=1.0-SUM<br>0TTF(2.100)TAU.FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRMAT([AX,F15.5,10X,F15.5)<br>DRMAT(F18.8) | QN     |  |   |   |
|---------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|--------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|--|---|---|
| UL 66                                       |                                                                                    |                                                                  | <u>-</u>                             |                          | 15     |                                                                                                                                | 20 P=                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 FC                                     | Ē      |  |   | • |
| LEVEL: 1J                                   |                                                                                    | 5.0001<br>5.0002                                                 | 5,0003                               | 5.0005<br>5.0005         | S.0007 | S.0009<br>S.0010                                                                                                               | 5.0017                                   | S.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S.0015                                     | S.0017 |  |   |   |
| Converse a real of the set                  |                                                                                    |                                                                  |                                      | New Interview            |        |                                                                                                                                |                                          | Algoright the second seco |                                            |        |  | • |   |

.

÷

.

### APPENDIX D

#### Truncation Error

Expand each term of equation (4.23) by Taylor's series (8). The argument of 0 in right side of the equation is (I, J, K).  $C(I,J,K+I) = C + \frac{\partial C}{\partial T} \Delta T + \frac{\partial C}{\partial T^2} \frac{(\Delta T)^2}{2!} \qquad (D.1)$   $C(I+I,J,K) = C + \frac{\partial C}{\partial X} \Delta X + \frac{\partial C}{\partial X^2} \frac{(\Delta X)^2}{2!} + \frac{\partial C}{\partial X^3} \frac{(\Delta X)^3}{3!} + \frac{\partial C}{\partial X^4} \frac{(\Delta X)^4}{4!} \qquad (D.2)$   $C(I-I,J,K) = C - \frac{\partial C}{\partial X} \Delta X + \frac{\partial C}{\partial X^2} \frac{(\Delta X)^2}{2!} - \frac{\partial C}{\partial X^3} \frac{(\Delta X)^3}{3!} + \frac{\partial C}{\partial X^4} \frac{(\Delta X)^4}{4!} \qquad (D.3)$   $C(I,J+I,K) = C + \frac{\partial C}{\partial Z} \Delta Z + \frac{\partial C}{\partial Z^2} \frac{(\Delta Z)^2}{2!} + \frac{\partial C}{\partial Z^3} \frac{(\Delta Z)^3}{3!} + \frac{\partial C}{\partial Z^4} \frac{(\Delta Z)^4}{4!} \qquad (D.4)$   $C(I,J-I,K) = C - \frac{\partial C}{\partial Z} \Delta Z + \frac{\partial C}{\partial Z^2} \frac{(\Delta Z)^2}{2!} - \frac{\partial C}{\partial Z^3} \frac{(\Delta Z)^3}{3!} + \frac{\partial C}{\partial Z^4} \frac{(\Delta Z)^4}{4!} \qquad (D.5)$ 

Since a square mesh is used,  $\Delta \chi = \Delta Z$ Substitute these terms in equation (4.23) and let  $\rho = \frac{1}{A+X} - \frac{5 \cdot \Delta X}{2}$ 

This on simplification gives

$$\frac{\partial c}{\partial \tau} \Delta \tau_{+} \frac{\partial c}{\partial \tau^{2}} (\Delta \tau)^{2} = 2 P \Delta X \frac{\partial c}{\partial x} + S(\Delta x)^{2} \frac{\partial c}{\partial x^{2}} + \frac{1}{3} P(\Delta X)^{3} \frac{\partial c}{\partial x^{3}} + \frac{1}{6} S(\Delta x)^{4} \frac{\partial c}{\partial x^{4}} + S(\Delta x)^{2} \frac{\partial c}{\partial z^{2}} + \frac{1}{12} S(\Delta x)^{4} \frac{\partial c}{\partial z^{4}} + T_{ij} \Delta \tau$$

$$(D.7)$$
From equation (3.23a)

$$\frac{\partial c}{\partial \gamma} \Delta \gamma = S(\Delta X)^2 \frac{\partial^2 c}{\partial X^2} + S(\Delta X)^2 \frac{\partial^2 c}{\partial Z^2} + 2P \Delta X \frac{\partial c}{\partial X} \quad (D.8)$$

Therefore (D.7) becomes

$$\frac{\partial^2 c}{\partial \tau^2} \left( \Delta \tau \right)^2 = \frac{1}{3} P(\Delta x)^3 \frac{\partial^3 c}{\partial x^3} + \frac{1}{12} S(\Delta x)^4 \frac{\partial^4 c}{\partial x^4} + \frac{1}{12} S(\Delta x)^4 \frac{\partial^4 c}{\partial z^4} + T_{ij} \Delta \tau$$
(D.9)

Substituting the values of S,P and rearranging the terms, truncation error is given by

$$T_{ij} = \frac{1}{2} \Delta \gamma \frac{\partial^2 c}{\partial \gamma^2} - \frac{1}{6(A+X)} (\Delta X)^2 \frac{\partial^3 c}{\partial X^3} - \frac{1}{12} (\Delta X)^2 \left( \frac{\partial^4 c}{\partial X^4} + \frac{\partial^4 c}{\partial Z^4} \right)$$
(D.10)

Thus

$$T_{ij} = O(\Delta \mathcal{X}) + O(\Delta \mathcal{X})^2$$
 (D.11)

## APPENDIX E

## Computer Program For The Numerical Solution

The computer program listed in this appendix has each line numbered on the left side of the program. The program is explained by reference to these numbers and the grid work presented in Figure E.l. It is designed to run on the IEM model 360 computer. The language is in Fortran IV.

## Explanation of the Computer Program

This program is written for solving equation (3.23a) by the finite difference method. The overall procedure for calculation is to proceed from Z=0 to  $Z=\sqrt{1-x^2}$  for each value of x varying between -1 to +1. In the following explanation, it is assumed that  $\Delta X=0.05$ ,  $\Delta T=0.0005$ ,

C(X, Z, 0) = 1 and  $C(X, \pm \sqrt{1-X^2}, 7) = 0$ .

Lines 1 through 4 dimension and double precision the program variables.

Lines 8 through 12 define the essential central variables. AI = A;  $DTA = \Delta \Upsilon$ ;  $DX = \Delta X$ ; BC = boundary condition on the surface; PI = initial concentration in the torus.

Lines 13 through 16 represent the constant terms of the finite difference equations.

Lines 17 through 20 are the terms which control various DO loops. NT = number of time steps; NX = number of spatial increments in the X direction ( NX = 40 for X = 0.05 ); NZ = NX + 1; NZ = number that locates nodal points along Z=0 line.

Lines 21 through 45 calculate the location of the nodal points, stores the values of X and Z at each nodal point and on the boundary. It also defines the initial concentration profile.

Lines 25 through 35 contain the routine for locating the upper nodes on each line of constant X. The key to the node location routine is storing a floating point number in a fixed point location and taking advantage of the round off. In line 28 the factor of  $5 \times 10^5$  had to be used to compensate for computer round off error when calculating a floating point number.

In all parts of the program, I corresponds to the X direction and J to the Z direction. In the overall scheme of the solution two time planes, denoted as O(I,J) and B(I,J), are used. Initially, O(I,J) is stored and then by classical explicit method B(I,J) is calculated. Then, the values of B(I,J) are stored in O(I,J) locations and O(I,J) is printed out and another B(I,J) set is calculated.

Lines 47 through 86 is the explicit method calculation of the concentrations at all points. Line 47 is the DO loop for time steps. Line 48 is the loop for steps from Z=0 to  $Z=\sqrt{1-x^2}$  for each value of X. Lines 53 and 54 test the node to see if it has an unequal increment. In lines 57 and 58, ALX and ALZ are the distances, number

of increments between the nodes  $(I^{\pm}I, J)$  or  $(I, J^{-1})$ and boundary through the node (I,J). Line 59 determines whether ALX or ALZ is larger. Line 67 tests whether X is negative or positive. Line 69 calculates the concentration at the points for negative X and ALX less than ALZ. Line 75 calculates the concentrations at the points for ALZ less than ALX. Line 80 calculates the concentration at the points on Z=0 line. Line 83 calculates the concentrations for the ES set of points.

Lines 87 through 101 calculate the dimensionless volumetric average concentration using the trapezoidal rule for double integration.

Line 102 defines the fraction extracted. Line 103 prints out the value of the previous  $\Upsilon$ , point concentration at Z=0 and X=-0.8and fraction extracted at the corresponding value of  $\Upsilon$ .

Lines 104 to 110 switch the values B(I,J) to C(I,J) for calculations at the next time step.

Line 111 defines the next time step. Line 112 is the end of the time DO loop.

For the numerical solution to the diffusion equation of a cylinder, the following changes in the program are necessary.

Al = 0, SCl = 0, B3 =  $2 \cdot DX$ , STF = STF + FXT (I)  $T_1$ 



Metwork wor Symbols Used in the Computer Program Figure E.1

| LEVEL: 1JU                               | 1166              | IBM OS/360 BASIC FORTRAN IV (E) COMPILATION                                                                                                                                                      |
|------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | C                 | MASS TRANSFER FROM A TORUS<br>SOLUTION IN RECTANGULAR COORDINATES BY EXPLICIT METHOD                                                                                                             |
| S.0001<br>S.0002<br>S.0003<br>S.0004     |                   | DOUBLE PRECISION C(41,21),B(41,21),X(41),Z(41,21),M(41)<br>DOUBLE PRECISION DTA,DX,BC,PI,S,S2,SC1,S4,AN,ANN<br>DOUBLE PRECISION FXT(41),STF,B3,CAV,SUMF<br>DOUBLE PRECISION TAU,A1,ALX,ALZ,TH,FE |
| S.0005<br>S.0006<br>S.0007               | 100<br>101<br>CCC | WRITE(3,101)<br>) FORMAT(710X,F15.5,15X,F15.5,15X,F15.5,5X,F10.5)<br>FORMAT(17X,'TAU',25X,'MESH POINT',25X,'FE',5X,'MESH POINT')<br>PHYSICAL AND MATHEMATICAL CONTROL VARIABLES                  |
| S.0003<br>S.0009<br>S.0010<br>S.0011     |                   | A1=2.000000<br>DTA=0.0005<br>DX=0.05<br>BC=0.0                                                                                                                                                   |
| S.0012<br>S.0013<br>S.0014               | 000               | PI=1.0<br>CALCULATION OF CONSTANT TERMS<br>S=DTA/(DX**2)<br>S2=S*DX/2.                                                                                                                           |
| S.0015<br>S.0016<br>S.0017               | ccc               | S4=(14.*S)<br>B3=(1.0/(3.14159265*A1))*DX*2.0<br>NESTING CONTROL CONSTANTS<br>NT=600                                                                                                             |
| S.0019<br>S.0019<br>S.0020               | ccc               | NX=?/DX<br>MZ=NX+1<br>NZ=1<br>CALCULATION OF NESTING INDICES AND STORAGE OF INITIAL CONDITIONS                                                                                                   |
| \$.0021<br>\$.0022<br>\$.0023<br>\$.0024 |                   | C(I,N7)=BC<br>C(MZ,NZ)=BC<br>X(2)=-0.95<br>DO 1 I=2,NX                                                                                                                                           |
| \$.0025<br>\$.0026<br>\$.0027<br>\$.0028 |                   | AN=DSQRT(1{X(1)**2})/DX<br>N=AN<br>ANN=N<br>JF(AN-ANN-5.0E-5)2,2,3                                                                                                                               |
| S•0029<br>S•0030<br>S•0031<br>S•0032     | 2                 | 2 CONTINUE<br>M(I)=N7+N<br>GO TO 4<br>3 CONTINUE                                                                                                                                                 |
| S.0034<br>S.0035                         | 4                 | M(I)=N/+N+I<br>4 CONTINUE<br>MB=M(I)                                                                                                                                                             |

| •                                                                                                              |                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                | 5.0036                                     |          | C(I,MB) = BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                | 5.0037                                     |          | 7(1,MR) = DSQRT(1,-X(1) * 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                | 5.0038                                     |          | $L \Delta = N Z$<br>$M \Delta = M (T) - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | S.0040                                     |          | DD = LA, MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                | S.0041                                     |          | C(I,J) = PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                | S-0042                                     |          | 7(J, J) = (J - NZ) * DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                | 5.0043                                     | Ó        | $X(T+1) = (T-2\Omega) \times DX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                | 5.0045                                     | 1        | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                | ~ ~ ~ ~ ~ ~                                | CCC      | CALCULATION OF CONCENTRATION PROFILES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                | S.0046                                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                | S.0047                                     |          | DO 70 KK=1, NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                | 5.0048                                     |          | 100 - 200 - 1 = 200  A<br>1  A = NZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                                                                                                              | S.0050                                     |          | MA = M(J) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                | 5.0051                                     | ******** | $SCI = I \cdot / (\Lambda I + X (T)) * S2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ан.<br>1917 - Алтан                                                                                            | S-0052                                     |          | $D_{1}^{0}$ 24 J=LA,MA<br>TELEOADEL7/T INTERVATOR (1 -/Y/T) ++ 20002E 2E 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                | 5.0053                                     | 25       | 1 F ( ( ) A B 5 ( / X 1 ) J / F ) A / * * Z = ( 1 • = ( A ( 1 ) * * Z / / / Z ) + Z 0<br>CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                | 5.0055                                     |          | IF((DABS(X(1))+DX)**2-(1Z(1.J)**2))27.27.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                |                                            | 00       | CALCUTION OF CONCENTRATION AT NODES WITH UNEQUAL INCREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                | 5.0056                                     | 26       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                | 5.0058                                     |          | $\frac{AL}{A} = (DSORT(DABS(1) - (X(1) + *2))) - DABS(7(1 - 1) + DX)/DX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                | S.0059                                     |          | IF(ALX-ALZ)28,28,29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                | \$.0060                                    | 28       | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                | $\frac{S_{\bullet}0061}{S_{\bullet}00(2)}$ |          | $\frac{1}{10} = \frac{1}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                | 5.0063                                     | 29       | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                | S.0064                                     |          | TH=(1ALZ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                | <u>S.0065</u>                              |          | $\frac{G_{1}}{G_{1}} = \frac{G_{1}}{G_{1}} = \frac{G_{1}}{G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                | 5.0066                                     | ີ 30     | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5                                                                                                              | S.0067                                     |          | IF(X(I)+0.0)62,62,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                |                                            | <u> </u> | X LESS THAN ZERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                | 5.0068                                     | 62       | UUNTINUE<br>B(I,J)=(BC-(TH*((S+SC1)*C(I+2,J)+(S-SC1)*C(I,J)+S*C(I+1,J+1)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                | , <b>.</b>                                 |          | / <u>S*C(I+1,J-1)+(14.*S)*C(I+1,J)))/ALX</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| preside distances                                                                                              | <u>S.0070</u>                              | ~~~      | $\frac{(1)}{2} \frac{1}{2} $ |
|                                                                                                                | \$ 0071                                    | 63       | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                | 5.0072                                     |          | B(I,J) = (BC - (TH*(IS+SC1)*C(I,J)+(S-SC1)*C(I-2,J)+S*C(I-1,J+1)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                |                                            |          | /S*C(I-1,J-1)+(14.*S)*C(I-1,J)))/ALX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and and a second se | S.0073                                     |          | GO TO 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                |                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

.

68

.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | C ALT LESS THAN ALX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0074     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0075      | $+((,,1)) 3 \times 2 + ((-(,-(-(-(-(-(-)))) \times ((-(-(-(-(-(-))))) \times ((-(-(-(-(-(-(-(-(-))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Severs      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S 0076      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0070      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0077      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0015      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.070       | C CALCULATION OF CONCLATANTION ALONG 2-0 LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0019      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0080      | · D \ 1 9 0 ) ~ ( 0 T 5 0 1 / m 5 ( 1 T 1 9 0 / T ( ) T 5 0 1 / m 5 ( 1 T 1 9 0 / T 2 m 5 m 5 ( 1 9 0 T 1 / T<br>/ / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| والمراجع ويتعادلها ويتعاد المراجع المتعاوني المعاو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0081      | 511 10 57<br>C CALCULATION OF CONCENTRATION AT FOULLEY SPACED DOINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000       | C CALCULATION OF CONCENTRATION AT EQUALLY SPACED PUINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0082      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0083      | $\frac{1}{1} + \frac{1}{1} + \frac{1}$                                                                                                                                                                                                          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000/      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0084      | 39 UNNTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0085      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0086      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.007       | CCC CALLULATION OF THE VOLUME AVERAGE CUNCENTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S•0087      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0088      | $SUP = 0 \cdot 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0089      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0040      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0031      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| on destanding the bir work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.004/      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0045      | STORT FOR THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0094      | $\frac{1}{2} \int \frac{1}{2} $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0045      | (1, 1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 0004      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S 00000     | STE=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0091      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0000      | $STE = STE + (\Delta 1 + X(T)) * EXT(T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 0100      | 90 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0101     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0102     | FF=1, $O-CAV$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0103      | WRITE(3.100)TAU.C(37.1).FE.C(5.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| And a second sec | 2.010       | CCC COMPENSATION FOR LIMITED COMPUTER STORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C 0104      | 0.00 + 1.1 = 2.0 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$ 0105     | $1 \Delta = N \tilde{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0106      | $M\Lambda = M(I) - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,0107      | $DO(45) J = LA \cdot MA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ទី ំព័រ៍ព័ង | C(I,J) = B(I,J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0109      | 46 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.0110      | 41 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.0111      | TAU=DTA * KK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0112      | 70 CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.0113      | CALL EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0114      | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

- (1) Bird, R. B., Stewart, W. E. and Lightfoot, E. N., "Transport Phenomena", p. 555, John Wiley and Sons, New York (1960).
- (2) Crank, J., "The Mathematics of Diffusion", Oxford University Press, London (1956).
- (3) Fox, L., "Numerical Solution of Ordinary And Partial Differential Equations", p. 246, Addison-Wesley Company, Massachusetts (1962).
- (4) Eandlos, A. E. and T. Baron, A. I. Ch. E. Journal, <u>3</u>, 127 (1957).
- (5) Jacob B. Angelo, <u>et al</u>, A. I. Ch. E. Journal, <u>12</u> 751 (1966).
- (6) Johns, L. E., Ph.D. Thesis, (1964), Carnegie Institute of Technology.
- (7) Kronig, R. and J. E. Brink, Applied Science Research, A-2, 142.
- (8) Metanan, A. B., Trans. Am. Institute Chemical Engineers, 27, 203 (1931).
- (9) Richtonyer, R. D., "Difference Method For Initial Value Problems", Interscience Publishers Inc., New York (1957).
- (10) Rose, P. M. and R. C. Kintner, A. I. Ch. E. Journal <u>12</u>, 530 (1966).
- (11) Saulyer, V. K., "International Series of Monographs In Pure and Applied Mathematics", Macmillan Company, New York (1964).
- (12) Taylor, A. E., "Advanced Calculus", p. 371, Ginn and Company, New York (1955).
- (13) Treybal, R. E., "Liquid Extraction", p. 470, McGraw-Hill Book Company, New York (1963).
- (14) Watson, G. N., "A Treatise on the Theory of Bessel Functions", p. 748, Macmillan Company, New York (1945).
- (15) Wellek, R. M. and A. H. P. Skelland, A. I. Ch. E. Journal, <u>11</u>, 557 (1965).

## IX. VITA

The author, Kamalesh Suryakant Desai, was born on April 27, 1944, in Parantij, India. He attended high school in Bombay and graduated in 1960. After high school, the author attended the University of Bombay and received the degree of Bachelor of Chemical Engineering in 1966. In September, 1966, he enrolled as a candidate for the Master of Science degree in Chemical Engineering at the University of Missouri at Rolla.