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NOMENCLATURE

a/r1, dimensionless.

distance of the circle from the center of the torus,

(cm).

radivs or half axis length, (ecm).
= initial radius or half axis lenzth, (cm).
= coerficient in series solvtion, dimensionless
2 oonstant defined by equation (2.10).

= Dimensionless concentration of the solute.
= equilibrium conceniration (g. mole/liter)

= concentration of solute A.

initial concentration of solute A.
= Tinal concenitration of solute A.
= continucus phase

J;k = concentration at the point (X,2) and tine ,
(5. mole/liter).

C(T) = volumetric average concentration, dimensionless
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AB <~

= fraction extracted = 1 - ol

diffusivity, (cm2/sec).

= molecular diffusivity of the solute in the dispersed
phase, (cms/sec).

3 = effective diffusivity

diffusivity of A in B.

dic

(‘J

neter of the droplet, {cm).
fraction extracted = Cpy - Car/ Cag =~ Ca

If ctive diffusivity predicted by equation (2.35),
(em=/sec).
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number corresvonding to



viii

jﬁy = mass flux of snecles A relative To nass average
veloeity, (zm cme/sec).

Kg = overall nass transfer coeilicient, (cr/sec).

o~

€T COec:

-1y

¥ = dimensionless rass trans Ticlent.

p}
“

s trensfer coefficient.

&

kd = dispersed Dphase n=

ek

ko = instantaneous local mzss transfer coefficient at a
given time and pocsition on the interface.

n = mode of oscillation or indeX.
L = integer
n, = mass fluz, (gm/cm2sec).

R =_r = dimensionless radius.

i

L1

r = 4r = dimensionless radius of the torus.

r = radius of the torus, cylinder or sphere, (em).
ry = maximum radius of the torus, (cm).

ry = reaction rate, (gm/em> sec).

s = AT /(ax)2

= area of time dependent surface, (cm@).

w

b5

8g = characteristic reference area for constant surrface,
(cm=)

t = time, (sec)

t = tinme during free fall period

% = average circulation time in droplet
t

= characteristic constant for particular system considered.

e
]

droplet free fall ( or rise ) velocity, (cm/sec).
V = mass average velocity, (cm/sec).

Vy = ¥ conponent of mass average velocity normal to the
boundary for a moving surfact element, (cm/sec).

v -

Wy o= Mess fraction.

~

X = dimensionless X distance.



X = {ilm thiclmess, (cm).

rom the interface into the phase
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AX = step size in X directio
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N
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n
ck
D
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ze in 2 direction.

Jois

s

i = masg conceniration of the solute, (gm/cmB).

X
S

viscosity of dispersed phase and contlnuous phase
respectively, centipoise.

7% = dimensionless time variable defined by equation

(3018) .
% = torus radius, dimensionless.
A, = eigen value.

X = parameter in cguation (2.15), defined by
equation (2.18).

%, = defined by equation (C.3).

B, = defined by equation (C.4).
W, W = frequ ency and modified frequency of oscillation,
(radizns/sec).

o~ = interfacial tension, dynes/en.

"l

€ = dimensionless amplitude Factor.



A mathematical model for melecular dilliv 2ion in a

. E=zndlos a2nd Baron have assuucd 2

-

torus wWas gderive

u

system of tori in their eddy dirffusion model Ior liguid=-
liquid exbraction from dronlets. However, tae eileet of
torus curvalture was neglected in trelr studles, since

they assumed the torus could bhes represented by an inli-

)
[

te cyiinder. In this study, the ellect of torus cur-
vature was considered on the concentration profile and

the fractlion of the solute extracted. The partial

_.b

ferential equation describing the model cousists of

fu

if
three indepcendent variables, and a2 finite dilference
technique was employed for the solutlon of the mathe-
matical model.

It was found in this work that the concentration
profiles within a btorus differed from those in an

nfinite cylinder. However, it was also Tound thet the

e

I

ction of solute extracted in a torus was nearly

jode

tdentical to that predicted using the solution for an

]—h

afinite cylinder. 3ince the effect of the torus curvature
8 negligible, the solubtion for an infinite cylinder nay

he us Pd for diffusion to a torus.



I. IIZRCDUSTICH

dispersed phase of liquid droplets or gas tubbles

A

is vresent in many types of liguid contactors. Cne of

the major dGesign problems is to predict the rate of mass
transfer to {(or from) the dispersed phase. lNany mathe-
matical models have been proposed for zpredicting the
dispersed thase mass transfer coefficlent for internally
stagnant, circulating aznd/or oscillating droplets. These
2re reviewed in chapter II. |

The Eandlos and Rzron model (4) is based on the

assunvition that internal circulation is fully developed.

[

The circulation pattern within the spherical droplet is
essumed to be a system of tori (see rFigure 2.2). Zondlos
and Barcn derived their eddy diffusion model in cylindri-

cal coordinetes essuming an infinite cylinder for the

)

system of tori. Thus they neglected the effect of the
curvature of torus.

The purpose of this investigation is to consider
the effect of the torus curvature on the rate of nzss
(or heat) transfer in 2 torus. The gdsy dilfusivity

Term of the Handlos and Saron model vas oripinally de~

2]

ived for radial diffusion only (i.e., the eddy diffusi-
'vity term was derived without considering the elfceet

of torus curvature). Thus this term cannot be incor-
porated in the diffusion equation when the elffect of torus

curvature is considered. TIn this work only molecular
R B e . e T



diffusion in the torus is studied, since the molecular
diffusivity in normal liquids and zases is not akfunction
of the direction of mass transfer. It is believed that
the study of the molecular diffusion process will give
some insight into the ede diffusion model of Fendlos
and Baron.

It is also of interest to note that toroidal shaped
bubbles (9) occasionally form at ges orifices submerged
in 2 liguid (see Figure 1.4 and 1.3 which are reproduced
here Trom the work of Rennie and Smith (9))."It is thus.
vogsible that the diffusion process in these bubbles could
be described by the mathematical torus model to be developed
in this work.

The molecular diffusion equation in differential
form for a torus coordinate system is not reported in
the literature. Therefore it is derived here. The
unidirectional diffusion equations for a simple geometry

such as plane sheet, a cylinder and a sphere are generally

@

asily solved by analytic methods of methematical vhysics.
Completely analytical solutions are not reported in the

literature for many complex three dimensionzl problens,

OJ

gcause the differential equation is either not completely
separable or it is highly nonlimear. In this work, the
Cilffusion equation for the torus is solved numerically by
o finite difference technigue to obtain the coucentration

profile, the average concentration and the fraction
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extrascted in the torus as a function of tine o

The same btechnigue can be utilized to detesrulne the

tenmperature profile and averaze temderature in 2 torus

The analvitical and numerical solutions for the
fusion in 2 cylinder are alsc studied to

check the numerical vrocedurss used in this work.



IT. LITHERATURE REVIET

This cliapber brielly describes some of the models
which are currently zvailable for maés transfer (or aecat
transfer) inside droplets or bubbles. The models for
both oscillating and non oscillating droplets are
reviewed here. OCnly Xronig.and Frink's model considers

t of curvature of interrnal streamlines of the
droplet. Fandlos and Raron assumed the internal circula-
tion pattern to be a2 system of tori but they have neglected

the effect of torus curvature.

Solute transfer between a2 drop and»the field fluid
in a spray column takes place in three stages. The first
is during the period of drop formation, second is during
free fall or rise of the drop and tke third stage is
extraction at the coalesced layer.

The mass transfer mechanisms during the formation
of the droplet and the extraction at the coalescent
layer are discussed elsewhere (4).

In this chapter only the mechanisms rostulated for
the extraction process during rise {or fzll) of the
droplet are discussed.

Wewman Model

¥ewman (8) derived a relation for mass transfer
in 2 sitagnant spherical drop using the following partial
differential equation obtained from Pick's second law

of diffusion.



(€)

$e = DH5 (75 (2.12)
CEC,, | T=" t=0 (2.11v)
C, is finite =0 t=t (2.1c)
c=C, T=Y t>e (2.14)

(This model assumes no continuous phase resistance, i.e.
’QC—-*OO)

The solution of the above equation nmay be expressed as

E =|— 61i ’ CXP( T\ﬂﬂt)

where ,nis the fraction of solute extracted.

The time averaged dispersed phase mass transfer

o

coefficient may be defined as

75-—-4—%(1-5 )

Xronig and Brink Model

(2.3)

Kronig and Brink (7) derived a relation for droplets
with internal circulation currents described by the
Hadamard-Rybczinski flow patterns. ‘“These flow patterns
were derived from the equations of motion simplified
for the Stoke's flow regime (h%;(l Y. It was assumed
that the solute diffusion is only in a direction perpen-
dicular to the internal streamlines (a condition encountered
for large droplet Peclet numbers) and that continuous

phase resistance is negligible. Thus the expression



for the fraction extrzcted 1is

E"']—_ ZB exp( )6)\1'1-,»1) (2.%)

™
and the expression for the dlspcrsea phase mass transfer

o

coefificient
=X In [Q— SR exp(-16A,2t ]
/gd 3t 8 Z;.B"C P 7:‘) (2.5)

B, and A,are given by Heertjes et al (15) for 1N L7

]

S

Rose and ¥intner lodel

Rose and Kintner (11) have developed a mass transfer
model for vigorously oscillating single liguid drops
nmoving in a liquid field which incorporates the concepts
of interfacial stretch and  internal droplet mixing.

To describe mass transfer from an oscillating drop,
the fluid spheroid is assumed. to oscillate from a nearly
spherical shape to an oblate ellipsoidal shave and back
to a spherical shape in one period of the oscillation.

All resistance to transfer (in both continuous and dispersed
phases) 1s assumed to be in a thin zone near the interface.
The core of the drop is assumed to be well mixed. This
pernits a single value to represent the drop internal
concentration as shown in Figure 2.1.

A material bvalance for the drop, based on the dis-

ersed phase, 1is

_dove) = Dacec
T = S ACGCO (5.6)

o)

where X is the thickness of the interfacial resistance

zZone.



Pigure 2.1 One Period of lMass Transfer Model



.

Since the veolume of the drop is constant, the mass

belance across the zone is

_vde,_
dt XACC ) (2.7)
The area of an ohlate ellipsoid is given by
)
A= 2ﬂa+T¢> L An H{g b7 A
a—b (2.8)
} (Q b):.
By assuming that
Cl:ao—%af,lﬂmw’tl ’ (2.9)

then o varies from g to (c15«1§, vhere a?is the amplitude

ciliation. The value of b can be found from the

[y

o

rtect that the drop has a constant volume. Hence

3V

4s tThe drop oscillates, X varies from X,to X as a

function of time. The value of X at any time is given by

__a,b—(a— —X.) — _
X Cl C xo) (b ) %Cibx—i-bxo £(JC)
Q_ 2dX,— X,
Po predict the initial zone thickaess for spherical

(2.11)

drop with uniform internal concentration of solute, the

two film theory is used.

Xo= —f—@-é— (2.12)
Ko
Wwhere
il — {fraction of resistance in dispersed phase)iz

—+(fraction of resistance in conbinuous phasezi) )
2.13

The frequency of oscilliation, W, 1s predicted from
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the equation
Fe b Nn+1)M-1)(N~+2)
a® =D +ENg (2.14)

The value of (O used in equation (2.9) is one half the
value of W in equation (2.14) due to the use of the atsolute
value of the sine function.

Estimation of the amplitudes of drop oscillations

( 4, 2ana cg) is made from motion piciures of falling drops

)

or the system of interest.

The solution of equation (2.6) with the boundary

conditions
C=Ca, t=t, (2.14a)
G=G, t=t, (2.14D)

is given by

4
| o 2, .
E=l—CXpl Vv fct){j@ﬂa o= I _?Idt

(2.15)

in which
Q_

S (m Y

(2.16)

The Surface Stretch lodel

Angelo, Lightfoot and Howard (5) have developed a
method for predicting rates of mass transier throuzgh
stretqhing cr shrinking phase boundaries of finite
liFetine a2t low mags traunsier rates. They have extended

the Denetration theory to systems in which the area of



11

the mass transier is a2 function of time. They linmit
consideration to situations in which the interface is
formed suddenly at zero time between Two immiscible
solutions of uniform composition and to very short contact
times. Diffusion in directions parallel to the interface
is assumed to be negligible. With these assumptions,

the continuity ecguation for any solute species A in

elther of the two phases 1s given Dby

aﬁ_+\é_4_-"_ld )

(2.17)
If the totel mass density § of the solution is coumstant
aﬁd the net rate of mass transfer is small, the fluid

velocity in the neighborhood of the interface is given

by

(EH%QSJ
uw

where U,W are relference coordinates of a point in the

—Y (2.18)

interfacial surface and the derivative represents the
local fractional rate of change (stretching) of inter-
Tacial area for a2 moving surface element.

Por isothermal isobaric systems with no Iorced

diffusion the mass flux is given by

h4—__°ADay (2.19)
Fquations (2.17) through (2.19) are then combined

give

2% _ (onS) DE_g BZ

ot ot  Juw dY 2 dy* -
(2.202)
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2 Y )

Trhey have solved this eguation with the ald of the boundary

conditions
5= 5. 70 to (2.200)
§=5. Y=o Y rinite  (2.200)
— = 2.20d4
g __j; y=o0 t Yo ( )

Trom the solution of the above egquatlons, the instantaneous
local mass btransfer coefficient may be obtained as
1

%D_(@M, )2 sy |
5 |\ T T T
Y i, (\/S%t)dt)i (2.21)

o 't . l

AT

where Qf——jL_ and

° ]
To compare the mass transfer behavior for varieble sur-~
fece area to that for the fixed area of the elementary
penetration theory, they have defined 2 dimensionless

mass transfer coefficient K in terms of reference arez

Ei as
S

K= S’G@—) - S, U(sm)dﬁ (2.22)

The time average value of K based on the reference area

., 15 defined by |
z 2 =5
2 SCt) dt 2
— T S (2.23)
0
The total amount of solute Tnﬂjj passing through the

mass transfer surface in the time interval zero to 1 is

given by
!

— [ Dy \2
— bt :Y)} _
m(t) = K(Trt.,) (85051 (2.24)
As a specific case they have considered the elementary

penctration theory for which S=§g.Then from eguations
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(2.23) and (2.24) l _
_2 (N e
MA@)”‘@# (?r"_tl;> 6: SD%) S5t
and since Qf::%i

1
mty=2 (Bel) (§-5)5, (2.26)

(2.25)

The dimensionless mass transfer coeflTficient K for
several Tunctions S(T) is tadulated in ( 5 ). One

of these Tunctions they have discussed is that for which
SCY) =5, C1+€SmT) (2.27)
with
t._.~L_ _
o TTw (2.28)

In that case

Pj—

—_ 2 . : ‘
K—_::t—;[(HE,)T— €5m2T+ 615"’”‘4?] (2.29)
where €=¢c+3€° ( )
N 2.30a
—£€ ;£
El 2 R P (2.30D)
€= %“ (2.30¢)

Handlos and RBeron lodel

Eandlos and 3arcon (4) have proposed a dispersed
phase transfer mechaunism which shows promise in predicting
the very low resistance to mass transfer inside circulating
and/or oscillating droplets. Their eddy diffusion model
is devold of any consitant or parameter which must be
obtainéd from experimental measurements. However, it is

assumed that the velocities of continuous and dispersed
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phase are ¥nown and the velocity of fallinz (or rising)

&

droplets can be predicted (15)

The model is based oun the assumpiicn that internzl

rculaticn is fully developed. The circulation pattern

=0

c
within the spherical droplet is assumed to be a2 system
of tori. The cross sectional view of the drop is given

.2. Hzndles and EBaron further assumed that

N

Figure

|~l

in
"rendom radial vibrations" are superimpoéed upon the
streamlines. Handlos and 2aron do uct specifically state
the source of these vibrations, but oscillation of the
droplets is one likely source. Turbulence due to circu-~
lation is another possible source. The mixing between
stireamlines is due to these vibrations which asre the key
to their eddy diffusion mechanism. The entire transfer
process is assumed to take place within the outer surface
of the torus.

The differential mass balance on the system within
the torus is (15)

éC C
=% O — <. (E VG,) (2.51)

They assumed that the ZTinstein diffusion equation for

two dimension applies.
2

E=+%4 (2.32)

2 - »
where / 1is the mean sguare displacement of an element
of fluid during the average circulation time of the

element, and it i

(2.33)



Pigure 2.2

Handlos & Baron Stream Iines

15



Fandlos and 3aron further assumed that :E Tor their
model can be aporoximated by the value of‘iE fer Hadamard-
Rybezinskl iniernal circuletion veloecities and pattern
for laminar circulation.

Thus

__Ef__\_._ %_ %(J-,-ﬁ) (2.34)

Substitution of equations (2.33) and (2.34) in (2.32)

glves the reletion for eddy aiffusivity

U (6r=8r+3)d
2048(]+%} (2.35)

il

Handlos and Baron derived their model in cvlindrical

co~ordinates assuming an infinite cylinder Lfor the systenm
of tori. Therefore, eguation (2.31) tecomes

D_Qﬁ____'__a_(p:é_ca
5t ¥ or LB oy (2.36)

Thus they assumed, the mass transfer is only in radial
direction and the effect of the torus curvature is
negligible. Then equations (2.31) through (2.35) are

combined to give

dc,_. b 2 |r_ A y? &c}
ot 1=y oJ [O TSI e

where
b= —u
\18Cl+%*j‘;)d (2.38)
and
Y=1-Y

(2.39)



17

They emvployed the following boundary conditions
Ao Jg=0 t e (2.402)
Ca Y= t=1 (2.40%)
CfCA‘ o Y LI t=o (2.40c)

Thus with eguation (2.37) and the bLoundary conditions,

d.

[0

the following expression is obtaln

N 2
E,= 1 =22 B expeALD (2.41)

where four valuesg of )\qare available (15).

~

The dispersed vhase mass trausfer coefficient 1is

%a==fé%:ln1(lf—£g)' (2.42)
For large contact times, only the first term of the
series solution is dominant. Thérefore, by considering
just the first term in a series sclution, equatiouns

(2.41) and (2.42) lead to the following formulation of

the mass transfer coefficient:

AU -
/gd—— 766(‘+/(ﬂ,{i) (2.43)
Handlos and Baron considered the case of zero continuous
phase resistance and found )M = 2.88.

It can be seen that Hendlos and Baron have neglected
the effect of torus curvature. In the following chapter,
wathematical model for molecular diffuslon to a torus
is derived. This will give some insizhtv into the effect

of torus curvature on diffusion.



18

ITT. IATHRIATICAL I0DEL

Diffusion Hcuation For A Forus Zody

The eguation of continuity in mass units is gilven

by (1).

g§+§7-m=t (3.1)
where

MmN =S DV (3.2)

=3 (3.3)

N=2¢V (3.4)
Therefore,

Mﬁ=—§(5’v)=§iv (3.5)
From equations (3.2) znd (3.5)

TL=6V =50, Vw, (3.6)
Hence, equation (3.1) reduces to

5 (750)= V8D, VA, (3.7)

If constant density and diffusiviiy are assumed, equation
(3.7) becomes
—_— — 2
%53+§j,(v-v)+(v-vi)=o@%vg+7; (3.8)
Tor a fluid of consbant density -V is zero.
Dividing equation (3.8) b& molecular weight, one obtains
OCa s _ 2

- TV ve)=, VG +R, (3.9)

If there are no chemical changes and VV is zero (or

very small), then equation (3.9) reduces to

g_ctﬂ =.8,,VC, (3.10)

This is known as Fick's second law of nolecular diffusion.

The parametric equatiocns for a torus (13) are
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X = (a+75n8) Cosd (3.11)

M = (Al + T SimB) Sind | (3.12)
Z = YCos© | (3.13)

The part of the suriace of the torus in the first octant

—

is shown in Figure 3.1. Fick's second law in ocrthozonal-
L) -]

toroidal coordinates is (refer to appendix A)

oc, o oG], © Ta+rSme OCa
ot r(of+r&me){ Er(otﬂxsme) J 06 T ae]
dc; } (3.14%)

+5‘&>[{a+r&me) aa:]

Due to the symmetry of the torus, iﬁbequals tc zero. Thus

Sl

the partial differential eguation Ioxr Jdiflusion to 2 torus

is
Jo6_26 ., 13¢C, Smo A, | 06 . _Cuxb e
oZ),,gha_fL" ST T 7 or Tlarrsm®)or T 12 06° | Tla+rsme) 06

(3.15a)

The boundary conditions are
CA= C‘. t =0 O<Y<T,' o<6 £2m (3‘151))

G=G, t>o T= o<LO AT Loy
%%‘O tro  o<rdy 6= 3 (5.150)
In terms of the dimensionless variables
QZ% (3.16)
A=S (3.17)
=25 (5.18)
C:éf__c_a,_ (3.19)
CAO—C,,
equation (3.152) translforms i:nto

oc_ ot _Sine_ \OC Sc CosO oC
bl“"bk2+(k A+ RSenB bP+R 561+E(A+R&m6) 06
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and the houndary conditlons become

C = T=0 0(KR<I o0g6L2mn (3.20b)
C =0 T o R=|  ogegan (3.20c)
oc =537 2204
g 0 T >0  ogRLI 9——2-’57_- (3.204)

Tor A=eo0, bthe terms conitaining A in squation (3.20z2)

egual to zero and it becomes
OC _Jc . 1 dc, I Jc
==+ + 5 == 3.2Ce
OT QR* R 0R R* 0¢° ( )

Zquation (3.20e) describes diffusion to an infinite

cylinder.

A Coordinate Transformation:
ne numerical solution of equation (3.20a) in the

rectancvlar T 6 plane introduces some avwkward problenms.
In particular the point Y=01in the ¥ 6 plane Dbecomes the
line T=0 in the rectangular ¥, 6 plane and the only
boundary condition available zlong this line is the con=
dition that C(0,e,v) is finite and independent of © .

As a result, a transformation from the orthozonal-
toroidal co-cordinate system to cylindrical X,Z,d coordinate
system 1s introcduced and the solution to ecuatiocn (3.202)

is carried out in the rectangular x z plane. The trans-

formatioun is given by
A=557 = 5 S0 = RSn0 (5.21)
/[ = _727 2%&56253(939 (3.22)
and equation (3.20a) becomes
oc _dc . 1 _oc. ¢
OT OX: ATX oX T oz* - (5.238)



The boundary conditions transform into

C(X.Z 0)=]

CXHT-x2T)=o0

oc

o>z (X,0T)=0

oKz, X*Z<I

)

where -1 XL

22
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IV, IHZ SQLURIQON

.

In this chavter, the formulas Tfor the concsntrotion
rrofile, the volumetric average conceniration and the
fraction extracted as a funcition of time are derived.

The Method of Solution

The solution of eguation (3.232) with its boundery

cl

conditions is difficult to obtain by the usual procedure
of mathematical physics, as a result, = numerical tec! chnigque
has been employed.

The nunerical method selected to solve'the model is
the Tinite difference technigue (3, 6, 9, 12). The explicit
Tinite difference method i1s chosen over the implicit
finite difference method for the following reasoms: (1)
The exnlicit method gives suificlently accurate resulis;
(2) It is easier to program on = computer; and (3) For
partial differential equations with three indevendent
variables, the explicit methods have been partially
developed in the literature (12). The most important
advantage of the implicit methods over the explicit
methods is that for a given accuracy the implicit methods
are faster.

The difference equations which approximate equation
(3.23a) are defined at a finite set of points as shown
in FPigure 4.1.

In a torus, symmetry is assumed about the angle
and the line Z=0 or @=L and 30 . Thereforve the point

0y Ry

concentration profile is required only for a semicircle
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le

noints.

iy

get o

r

nodal points

Fiy

There are ITive different types o
whiich have to be considered in the calculations. These
are as follows: (1) The points which have each adjoining
point spaced a complete increument AX from it, (for
exsmple, point A in Figure 4.1); (2) The points located

} The points near the boundary,

(&Y

along the line Z=0; (
(for example, nodal points O, 7 and.D in Figure 4.1);
(4) The points near the boundary in vhich two‘of their
neighboring nodes are petween them and the boundary,
(for exemple, nodel points E and G in rFigure 4.1);

(5) The points on the boundary, (for exaumple, point B).
The points of these five types are denoted as the sets
#3, 8P, UZl, UZ2 and BP, respectively.

Classical Explicit ¥ethod:

The partial derivatives of equation (3.23a) are

approximeted by the following finite differences:

oc C i Cuj

St = Chidmnid (5.1)

oc _ Cirjk—Ci ik (4.2)

oX 2 AX

gc, Comn 2 CLikt Con ik (4.3)

oX (A X

oc _ Cc.;».ﬁ—z)%;,&+ca Sk (&4.4)
x (AZ

Bguation (3.23a) then becomes

Civy, . Ci-',j,‘ﬁ
24X

C.i4n—Cii4 _ Cir, jt—2Ci j&+Cis ik, !
L) TR Lk — G, L,%, -1, +m_
AT Aax)
Ciimt"2C0jA+Ci ik

+ (AZ )2

(4.5)
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Settinzg AX=AZ and S=(\%%zand rearranging squation (4.5),
one obtains |
CljAn=(5+ a5 240 jAT(SFatx 22)Ce, j 4
+(5)Cl‘.':j+\,"k—(5)ci_a'j-|,'k +(I-= 45)Ci, 4 (4.6)

where i corresvonds to the ¥ axis

j correspends to the Z axis
Thus Cgkkis the concentration at the nodal point (I, J)
on "T=R" plane.

s o

Mnite Difference Eoquations

The overall schewe of solution is to calculate the
concentration profile for each svatial plane (X,Z2) <rom

the values of the previous plane. This is illustrated

B

in Pigure 4.2. From the boundary conditions of eqguation
(3.232), the concentration profile in the plane T=0is
known. The concentrations at the v»oints in sets ES, SP,
UEL 2nd UZ2 are unity and the councentrations at the
voints in the set BP are zero. The concentrations in

the plane T=ATare calculated by the explicit method

from the points in the T=0 plane (point CE in Figure 4.2).

This procedure is then repeated for the next time step.

44

a

|-t

he finite difference eguations for different sets

=

are derived as follows:

(1) Por ES set. Zquation (4.6) applies for calculation
of concentrations at points in the 3ES set.

(2) For SP set. ZIZquation (4.6) for the points on z=0

line tekes the following form
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- ™
/
i 1A
//" ™
24T
~_l
] T
T=AT S
Nl 7
B
o ‘ ﬁf 7
L |

Figure %4.2 Three Dimensional Explicit Method Pattern
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Cg,)o)-&: (5+A'_-’+_)Z Sé}x)cul [ 1&+< A+X S AX )CL -1, 01&

H(O)Cih+(S)Co -+ (1= 45)C; o8 (4.7)
From the symmebtry condition (3.234)
CL)—];EZCL )& (4.8)
Therefore,
Ciok= (Stghy 282)C0 o +(5—5Lr 28X)Cinoh
(4.9)

+(25)C; 8 + (1—45)Ci, 04

(3) Por sets UXLl and UZ2. The concentrations at the
nodes loczted at unegual increnents near the boundary
are calculated by means of a linear interpolation formula
since the normal five point formula is not applicable.

fhus equetion (4.6) is modified by the following
procedure: .
Phe linear interpolation formules for the points of the

sets UEl and UX2 are
Ce—Ciss j4u_ ALX AX _
Cishi Cint jda AX (4.10)

and
Ca—C Lg-1Bs ALZ ANZ
C':,j;kﬁ—ci,j-/,'kﬂ A (4.11)

where AX=AZ

(ALX)AX and (ALZ)AXare the distances of the points Cisy j, ke
and C( jk from the boundary, respectively; and C,is the
concentration of the point on the boundary. The above
equatibns [(4.10) and (4.11)] are used, depending uvon

the close neighborhood of these points from the boundery,
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either in the X or 2 direction.
For neszabtive values of X, ecuation (4.10) Dhecomes

Ca —Cin jB+ _ALXAX
CL‘:JI&*"I—CLHJ:) ,‘ﬁf!‘— A X ) ‘ (4 N 12)

Let C, be denoted as BC. Rearranging equation (£.12),

one obtains

CC J '&-H — BC_‘(TH)CLHJ,’&-H
o ALX (4.13)

where TH=]—ALX

The equation for Cyy j+4,,can be obteined Ifrom (4.6) on
replacing L by 4+! .

Therefore, equation (4.13) beconmes

C = 8CTH | (5t 582 Yo s H S S450C, 4+

(5 )Ci-r;J J+,B +(5 )Ci-u, Jn2+(1—45 ) C[+l, J,‘é/‘\ LX

(4.14)
Similarly for positive values of X
Ci,j Ae— BC=(THICiy jnt |
ALX (4.15)

The equation for Ci, 4, can be obtained from equation
(4.6) on replacing 1 by i-1l.

herefore, eguation (4.15) becomes

I -AX . [ A
A BETTH [( St 255 )Coj Ak (S—aw 22 )i ik

(5 )Ci—/,J+L,‘£+( 6)C[-I’j—l,‘k+Cl'—' 4‘5)C[—l,j‘1€%Lx ‘

(4.16)
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hen ALZis less than ALX, the linsar interpolation
formula (4.11) is used for both nesgative and positive
values of .
On rearransing equation (4.11)
Ci,J By = BC—(TH)Ci, jy A+
’ ALZ (4.17)

The equation for Cdj,rglcan be obtained from equation
> )

(4.6) on replacing j by j-1.

Therefore, equation (4.17) hecomes
_ S-AX . S-AX
Ci ;4= BC TH[(5+A+X SAXNCy, h (55 28 e, 4

+(5)CQL&“+C5)CQ}2ﬁ-F(I—ﬂﬁ)qdw%//ALZ

(4.18)

Jolumetric Averaze Concentration

A

o

ter obtaining the point concentrations from the
numerical solution of equation (3.23a), the volumetric
average concentration is determined as follows: (6).

By definition

JcxzTydv

C(t) =~ ,
V//CiV (4.19)

v
The elemental volume(ﬁ/of the torus for the numerical

calculations is gilven by the following equation

dV=2m(A+X)dx dz (4.20)

so that %
Cr) = 4TLﬂA+X)deC()<Z'Z“)dZ |
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The voluretric average concentration is then determined

by numerical intezration of equation (4.21) as showm

fd

|.J~

appendix B. The frection extracted is calculated

I

from the following eguation:

E=1-C) (&.22)

Analviical Solution For A Cylinder

Tor molecular diffusion into a cylinder, the eguations
for calculation of the point and average concentrations
are discussed in appendix C.
As rentioned earlier in this work, the solutions
for the Torus will be compared with that for an infinite
linger.

Connutational Error

Let C dencte the exact solution of the difference
equation and (C the exact solution of the differential
equation, both solutions satisfying the given boundary
and ianitial conditions. If (C is substituted into the
difference equation (4.6), there will be a remainder

term or truncation error, sc that

.. S- AX ! S.AX
CL,_];&ﬂ: ( A+)( )CL-H s 'k + (. T AHX )C —l J 'b\
+(S)Ci juk +(5)Ci jh+ (1= 43)Ci j 4 +T;
' (4.23)
where ].. is the truncation error.
Assuming that C has coatinuous pariizl derivatives with

respect to X and Z of order four, truncation error

equation derived in appendix D is



_ 1 T e Ay S OF
= 2A?%%2 6CA+X)CAX)§§5 3 (A% (bx4+%§‘*> ,
_ (.10)-
and TJ:O(A‘Z“)%—O(AX)1 | | (D.11)

Thus, the truncation error is a function of 4 and step
sizes. In crder to reduce the nagnitude of the truncation
error, both AT and AXshould be very smxall. It can be

seen from (D.11) that if mesh size and the time step

are iacreased iﬁ the same proportion, the error intro-
duced by the change in the time step will de more than
that for the change in the mesh size.

Stavility

In addition to convergence of the finite difference
equation, stability is essential in the sense that
inevitable rounding errors in the calculation must not
swamp the true finite difference sclution.

The stability criteria for parobolic partial dififeren=~
tial equations with constant coefficient and two or three
independent variables are discussed in the references
(3, 9, 11). The stability criterion for the finite
difference eguation aprroximation of the parobolic equa-

tion of the type

oc_ L o
0T~ ox* ' oz*
isé%%;<;z%.(fbr a sgquare mesh) (8).

Houation (3.23a) consists of an additional lower
ordervpartial derivative with a variable coeflficlent.

It is reported (3) that the presence of the lower order



term in differential eguation has no great elfect on

gher order

o

2bility criterion, in comparison to h

ct
!,:_S'
e
w
<y

-

terms, in the Jormaticn of difference equation. Therefore
the stability criterion for the finite difference equaticn
of equation (3.23a) can be expected to be similar to the
above egqustion.

Values of.Lszgreater than 0.25 were tried as a test

X
but the solutions were found to be unstadble.



V. RISULTS AND DISCUSSION

Point Concentrations

4s described in the previcus chenter, the voint
concentraticns were calculated as a function of time
for varlous values of the parameter A. The parameter
4 eppearing in the partial differential equation (3.20a)
has a definite physical significance. The two extrene
values of A transform this equation to the diffusion
equations for a stagnant sphere and a cylinder. Yhen

A =o01in equation (3.20z2), it describes molecular aiffu-~
sion into a sphere; and for A—se0, it reduces to the
case of diffusion in an infinite cylinder. Since =z torus
is a s0lid of revolution obtained by rotating a circle
of radius vy at a distance @ from the x-axis, the sphere
is a specizl case when A=0.

Thus there is a certain similarity in the molecular
diffusion equations for a torus, a sphere and a cyliader.
However, the parametef A in the diffusion equation for
a torus 1s attributed to the dissymmetry of the councen-
tration profile. For molecular diffusion into a sphere
or cylinder, the concentratlion profile is symmetrical
about both the coordinate axes.

The concentrations for different values of A at
¥ =X0.8 CZ:mﬁline) are shown in Tables (5.1, 5.2 and
5.3) to illustrate the dissymmetry of the concentration
profile. The variation of the point concentration with

time is presented in Figures 5.2 and 5.3.



It can be coserved that the concentration at X= ~0.0
is higher than at X = +0.8. This could be explained as
follows.

Referring to Figure 5.4, the points ¥=+0.8 and ¥=-0.8
are in the semicircles A3D and ACD, respvectively. The
surface of the revolution obtained by revolving the
arc ABD about the Z =2xis is-larger than the surface of
the revolution generated by the arc ACD. Since the torus
surface comprises of these two surfaces, the surface
area of the right half of the torus is larger than the
left half. The magnitudes of these areas are Qﬁﬁiﬁ(ug%g
and QTﬁlf(j—-%j respectively, and their ratio is
(+%)/(1-2) . Thus the total transport of the solute
on the torus surface should be more near X=+0.C than near

X -0.8 . Conseguently the concentration is less at

1

L = +0.8 than the value of the conceuntration at X = -0.8
This is true for all the points in the right-half portion
of the torus.

For large values of A, the difference in the values
of the concentrations at these points is smaller (refer
to Table 5.8). The value of A determines the curvature
of the torus. When A is small, the effect of the torus
curvature is predominant and hence the difference in the
concentrations at ¥=%0.8 (diametrically opposite voints)
is larze. As A increases, this difference diminishes
and for A——>oo,conceﬁtrations are equal. Thus for large

values of 4, the concentration profile tends to be

symmetrical. Vhen the value of A is very large the
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sclution should approach that for an infinite cylinder
(in which case, the councentration profile is symmetriéal).
The values of the concentraztion at the center of the
torus are shown in Table (5.10). As A increcases, the
concentration decreases because of the corresponding

increase in the surface arez.

fraction Extracted

The dimensionless average concentration is calcu-
lated as shown in appendix B. fhe %raction extracted
for various values of dimensionless time and A is given
in Tebles (5.1, 5.2 and 5.3). The fraction extracted
is approximately the same for all values of 4; this zizhkt be
expected since the surface area to volume ratio ( 2/ )

is independent of A. Geometrically the torus is a bent

cylinder, and hence the IFraction extracted from torus

is nearly the same as for a cylinder. Therefore a single
graph is plotted for the Ifractlion extracted versus the
dimensionless time regardless of the value of A.

The values of the fraction extracted for a torus
and cylinder are not exactly the same, possibly because
of the computational error. The truncation error
formula is derived in avppendix D. It is a function of
A, The results for a cylinder and a torus show that
the value of the point concentration at diametrically
opposite points in a cylinder is between the values of
concentrations at these points ia a torus. Thus the

parameter A introduces dissymmetry in the concentration



trofile but does not change the value oi tiie fraction
extracted.

offect of Mesh Size on umerical Solution

The mesh size AX=zo-Hwas changed to 0.-04. The %time
step had to be changed 1o AT=0-0005tc satisiy the stability
criterion. The results obtained are given in Tables
(5.5, 5.6 and 5.7). As expected, the smaller mesh size
gives slightly more accurate results, but the difference
in the results obtained due to a change in the mesh size
is insignificant at large contact times.

Anelviical Solution for a Cylinder

The point ccncentration and fraction extracted for
diffusion from a cylinder were obdbtained from the equations
discussed in appendix C. These analytical solutions were
derived for diffusion in the radial direction only.

The pcint concentration at E=08and fraction extracted
are given in Table (5.4). These results zre compared
with the numerical solution obtained for a cylinder in

-

Wi

Je

ch diffusion in @ direction is also counsidered.
However, because of gymmetry in 6 direction both the

results are nearly identical.



TARLE(5.1)
DISSYITIUTRY OF 2FR QOUCANTRALTION PROIILE
(& =1, AT= 0.0005, AX= 0.05)
Dimensionless Simensionless Concentration Traction
time (C) Bxtracted
(PAT) L= =0.3 L = +0.8 (Em)
0.002 0.9938558 0.99881 G.11234
0.004 0.97899 0.95%449 0.14928
0.006 0.95216 0.89707 C.17763
0.008 0.92627 0.34197 0.20145
0.01 0.80257 0.79224 0.22253
0.012 0.83104 0.74798 0.24109
0.014 0.86146 0.70C04 0.25323
0.016 0.84358 C.567354 0.27408
0.018 0.32709 0.64205 0.233837
0.02 0.51186 0.61366 0.30276
0.04 0.70104 0.43063 0.41110
0.06 0.62771 0.33358 0.43912
0.08 C.57097 0.27125 0.55111
0.10 0.52325 0.22690 0.60270
0.11 0.50156 0.20903 0.62555
0.12 0.48093 0.193%28 0.64676
0.13 0.46117 0.17926 0.66654
0.14 O.44214 0.16668 0.68502
0.15 0.42375 0.15531 0.70233
0.16 0.40594 0.14499 0.71358
0.17 0.38868 0.13557 0.73385
0.18 0.37195 0.12694 0.74823
0.19 0.35572 0.11900 0.76177
0.20 0.34001 0.11167 0.77454
0.21 0.32480 0.10450 0.78659
0.22 - 0.31009 0.02861 0.79796
0.23 0.29590 0.09277 0.80870
0.24 0.28221 0.08734 0.81886
0.25 0.26902 0.08227 0.82845
0.26 0.25634 0.07754 0.83753
0.27 0.24415 0.07311 0.84611
0.28 0.23245 0.06897 0.85423
0.29 0.22123 0.06509 0.86191
0.30 0.21048 0.06145 0.86919




TABLE

s

(5.2)
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LISSYNIETRY OF THE CCUCHITRATION PROFILE
(A =2, AT= 0.0005, AX= 0.05)
Dimensionless Dimensionless Concentration Fraction
time (¢) Txtracted
(TAT) ¥ = =0.5 ¥ = +0.¢& (2n)
0.002 0.993854 0.99834 0.11237
0.004 0.95%45 G.95517 0.14930
0.00€ 0.90843 - 0.898¢E5 0.17768
0.008 0.85958 0.C4442 1 0.20154
0.010 0.81554 0.79549 0.222486
0.012 0.77636 0.75196 0.24128
0.014 0.74153 0.71326 0.25348
0.016 0.71043 0.67873 0.27439
0.018 0.68251 0.64776 0.28925
0.02 0.65730 0.61983 0.30321
0.04 0.49330 0.43971 0.41232
0.06 0.40405 0.34400 0.49120
0.08 0.34481 0.28231 0.55407
0.10 0.30095 0.23818 0.60650
c.11 0.28263 0.22029 0.62976
0.12 0.26606 0.20445 0.65137
0.13 0. 25001 0.19028 0.67152
0.14 0.236093 0.17749 0.68035
0.15 0.22394 0.16537 0.70300
0.16 0.21180 0.15525 0.72456
0.17 0.20041 0.14549 0.74012
0.18 0.18968 0.13%648 0.75475
0.19 0.17956 0.42815 0.76852
0.20 0.16999 0.12041 0.78150
0.21 0.16094 0.11322 0.79372
0.22 0.15236 0.16650 0.80525
0.23 0.14422 0.10024 0.81612
0.24 0.13613% 0.09437 0.82688
0.25 0.12919 0.08883 0.83606
0.26 0.12226 0.08374 0.84519
0.27 0.11568 0.07891 0.85381
0.26 0.10944 0.07438 0.861g5
0.28 0.10353 0.07012 0.86963
0.30 0.09792 0.06611 0.&87688
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DISSYMMETRY C2 THZ CONCEVTRATION PROFILE
(L =4, AU= 0.0005, AX= 0.05)
Dimensionless Dimensionless Concentration Traction
time (C) Axtractea
(TAU) X = =0.8 Y = 0.8 (Em)
0.002 0.90845 0.98837 0.11237
0.004 0.95755 0.85569 0.14930
0.006 0.90407 0.89984 - C.177€8
0.008 0.85284 0.94827 C.20154
0.01 0.8066% 0.79754 o. 52587
0.012 0.7T6555 0.75495 0.24129
0.0x4 0.72802 0.71873 0.25850
0.016 0.69643 0.60264 0.27442
0.018 0.66718 0.65206 0.283928
0.02 0.64079 0.62447 0.30324
0.04 0.469357 0.44646 C.41244
0.06 0.37814 0.35170 0.49141
0.08 0.31806 0.29044 0.55439
0.1 0.27424 0.24543 0.60693
0.11 0.25617 0.22852 0.63024
0.12 0.23997 0.21261 0.65190
0.13 0.22528 0.19834 0.67210
0.14 0.21184 0.138541 0.69099
0.15 0.16945 0.17361 0.70868
0.1€ 0.18797 0.16279 0.72528
0.17 0.17728 0.15252 0.74088
0.18 0.16728 0.14358 0.75555
0.19 0.15791 0.13500 0.76936
0.20 0.14911 0.12701 0.78237
0.21 0.14082 0.11956 0.79462
0.22 0.13302 0.11258 0.80618
0.23 0.12565 0.10605 0.81707
0.24 0.11870 0.09992 0.382734
0.25 0.11214 0.09418 0.83703
0.26 0.10593 0.08877 0.84617
0.27 0.10036 0.08370 0.85438
0.28 0.09454 0.07892 0.86294
0.29 0.08930 0.07443 0.87063
0.30 0.08435 0.07020 0.87788
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AL AXD MUMERICAL SOLUTICH POR 4 CYLINDER

Dimensionless|Dimensionless Concentratiocd Fraction Zrtracted

Time c) (im)

(ratn) Analveical tumeriecal snalvticel | Tunericel
0.002 0.29225 0.08840 0.09e21 0.11237
0.004 0.97153 0.905643 0.01328E83 0.14930
0.006 0.92399 C.90152 0.16872 0.17768
0.008 0.8724¢ 0.84388 0.19371 0,20154
0.010 0.82376 0.&0140 0.21547 0.22247
0.cl2 0.77853 0.75917 0.23495 0.2417%0
0.014 0.759G0 0.72163 0.25268 0.25850
0.018 0.67260 0.55809 0.28428 0.28929
0.02 0.74303 0.63099 0.29856 0.30325
0.04 0.46053 0.45591 0.40960 0.41247
0.06 0.36428 0.36237 0.48943 0.49148
0.08 0.30243 0.30162 0.55262 0.55448
0.10 0.25803 0.25773 0.60582 0.60706
C.1l1l 0.23992 0.23977 0.62927 0.63038
0.1l2 0.22380 0.22376 0.65106 0.65206
0.13 0.20382¢% 0.20952 0.67137 0.67228
0.14 0.19610 0.1881¢ 0.06903%6 0.69118
C.15 0.18403 0.184186 0.70814 0.7083E8
.16 0.17292 0.17307 0.72482 0.72550
0.17 0.16263 0.16281 0. 74049 0.74111
0.18 0.15307 0.15326 0.75522 0.75580
0.19 0.14416 0.14436 0.76309 0.7569561,
0.20 0.13583 0.13504 0.75215 - 0.78263
0.21 0.12803 0.12824 0.79445 0.75489
0.22 0.12072 0.12092 0.80605 0.280645
0.23 0.11384 0.11404 0.81696 0.81735
0.24 C.10738 0.10757 0.22729 0.82763
0.25 0.10130 0.10149 0.83701 0.83732
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TABLE(5.5)
DISSYUEETRY OF THD CQOIICEITIRATTION FROXILE
(L =1, A= 0.0003, AX=0.04)
Dimensionless Dimensionless Concentration Fraction
time () Extracted
(2AT) X =-0.8 1 X=+0.8 (Em)
0.006 0.95931 0.90402 0.17520
0.012 0.89328 0.75474 0.23923
0.018 0.84102 0.64683 0.28733
0.06 0.64175 0.33391 0.48829
0.12 0.49263 0.19306 0.64613
0.15 0.43436 0.15508 0.70174
0.18 0.38152 C.12672 0.74767
0.21 0.33338 0.10471 0.76606
0.24 0.28935 0.08718 0.831806




DISSYIMATRY 07 THE

[Rebe R e Sy

TABLE(5.6)

celic

TTRATTION PROFILE

b3

0.13672

(4 = 2, A= 0.0003, AX= 0.04)

Dimensicnless Dimensionless Concentration Trection
Time (C) - Ixtracted

(TAU) X = ~0.3 L= 4+0.8 (Zm)
0.006 0.91510 0.90555 0.17528
0.012 0.783%44 0.75874 0.23947
0.018 0.68304 0.65263 0.28778
0.06 0.40542 0.34443 0.49058
0.12 0.26657 0.20430 0.65105
0.15 0.22431 0.16568 0.70776
0.18 0.18998 0.13630 0.75455
0.21 0.16118 0.11305 0.79357
0.24 0.09422 0.82625




TABLE(5.7)

Ik

DISSYMMETRY OF TEE CONCENTRAIION PROFILE

(4 = 4, AT= 0.0003, AX= 0.04)

Dimensionless Dimensionless Concentration Fractlon
Time (C) Extracted
(2AU) X = -0.8 X = 4+0. (Zn)
0.006 0.91084 0.90671 0.17528
0.012 0.77247 0.76176 0.23949
0.018 0.67238 0.65699 0.28782
0.06 C.37904 0.35223 0.49080
0.12 0.24013 0.21252 0.65160
0.15 0.19953 0.17347 0.70845
0.18 0.16732 0.14344 0.75538
0.21 0.14084 0.11942 0.79448
0.24 0.11871 0.09G680 0.82723




TARLE(5.8)

- - ———

DIFFTRENGE IN THE DIMETSIONLISS CCHCINTRATION AT X = +0.8

A
TAU 1.0 2.0 4.0
0.01 0.11033 0.02005 0.00370
0.1 0.29635 - 0.06177 0.02781

0.2 0.22834 0.04958 0.02210




TABLE(5.9)

FRACTIOR EXTRACTED FOR A TORUS A¥D A CYLINDER

AU A =1.0 A = 2.0 £ =40 Cylinder
0.01 0.22233 0.22246 0.20247 0.22247
0.04 0.41110 0.41232 0.41244 0.41247
0.1 0.60270 0.60650 0.60693 0.60706
0.15 0.70233 0.70800 0.70868 0.70888
0.2~ 0.7T454 0.78150 0.78237 0.78263

0.82845 0.83606 0.83703 0.83732

0.25
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DIMEISIONLESS CONCENTRATION

TAU (c)

4 =1 A =2 A =4
0.02 1.0000 1.0000 1.0000
0.04 0.9966 -0.9963 0.9962
0.05 0.9879 0.9871 0.9869
0.10 0.8566 0.8485 0.8472
0.12 0.7851 0.7736 0.7717
0.14 0.7137 0.6993 0.6970
0.16 0.6456 0.6288 0.6261
0.18 0.5823 0.5636 0.5607
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VI. CONCLUSIOHS

The partial differential equation for molecular
diffusion into a torus is derived in this study. This
equation reduces to special cgses for the tiwo extreme
values of the parameter A. For A = O, it describes
molecular diffusion into a sphere and for A = o0, it
reduces to the case of an infinite cylinder. The partial
differential equation is solved by ‘the explicit finite
difference method for the values of A = 1, 2, 4, and o0 .
The finite difference eguation is stable forié%%l<;7% 3
it is unstable for ég%} 777%

he following conclusions are presented from an
analysis of the results:

(1) The concentration profile is symmetrical about
both the coordinate axes (X and Z) for molecular diffu-
sion into a sphere and cylinder, but the parameter A
aépearing in the partial differential equation for the
torus results in a dissymmeitry of the concentration pro-
file about the Z-axis.

(2) The torus curvature (i.e., the magnitude of the
parameter A) affects the conceantration profile within
the torus. For small values of 4, the eflfect of the
curvature is significant and hence the values of the
vpoint concentrations vary widely from concentrations in
a cylinder. (For example, at X = -0.8 and T = 0.1, the

variations in the point concentrations are 15.69 and
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£.28% for A = 2 end & = 4, respectively). ihen A is

and for very large 4, the values of concentrations in
the torus correspond almost exactly to those for a
cylinder.

(3) The fraction extracted (which is related to the
average concentration of thé solute in the torus) at
various values of the dimensionless %ime is independent
of the parameter A. This appears to be consistent with
the physical situation. The value of the point concen~
ftration in a cylinder for a given radius 1s befween the
two values of the point concentration at diametrically
opposite points (along X axis) in a torus.

(4) The effect of diffusion in B direction on the
roint concentration and the fraction extracted is negli-
gible in comparison to radial direction.

(5) The assumption that the effecf of the torus
curvature is negligible in the eddy diffusion model of

Handlos and Baron, may be justified.
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APEINDIX A

Diffusion Bouvation

For a torus (11)

X:<Q+T&ﬂle>(;®$¢ (3.11)
Y =(a+7Sime)Sind (3.12)
Z=YCssO : (3.13)

and

(ds )= (X Vo ¢ dy ) Cdz )

dx =—(a+r5in0) Simddd+Csd (Fesode + dr5inb) (a
dY = (a+rSm8) CosBdp+SimP(FCosodo +drSm8) (a.3)
dz =-vSime do + drSimd (&.4)

so that

(ds) =(dry +7(doy+ (d +75imO) () (4.5)

Comparing equation (A.5) with

(dsy=hdu )+ h,(dw,)y+h (dua)

(4.6)
hle (A.7)
hz=r | (£.8)
nE(@+1rSine) (4.9)
Qvegceior { [T(Ol rSne) CEI +_©_[ga+r&;ne)§£{]
4~ y(a+rSime) | or o' oe T 00
+aa>[ca+m 6“@1}) (2-20)
and Pick's second law of molecular diffusion is given by
OG- 0, VC, (4.11)

bt

where <7(: is expressed by equation (4.10)
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APPIIDIX B

iy

Turmerical Solution of Bouastion (4.21)
V"_'""i
_ 47f A+X)dlx ﬁ(x ZT)dz
Cty = 2 (4.21)
. QJT:A
: NT—x2 '
e FOXR) = fe(xzm)dz (1)
so that ° .
T = 75 [ (A+X) FOXT)dx (3.2)

~
Introducing the trapezoidal rule as the guadrature formula

for the evaluation of 1ntegrals

FOGR) ~fccx Z%)dz

= %— (CiA+2C ket . 4Cig,h)

+ h:;‘“ (Ciak+Cigt)  (3.3)

where
B~1 denotes the point next to the boundary
B denotes the point on the boundary
h; is the distance between these two pcints in the
Z direction.
Thus
()= _7%_ % [(A+X) FOX [ Te) +2AH) FOG T+ - .

o ,+2(A+x5..)r(x,,,.,, k)+(A+xB)FCX8fQ)}

(B.4)
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APPEIDIY G

Adnalvticel Solution Yor A Cylinder

Gquation (3.20a) For diffusion into a torus reduces
to that for a cylinder when A —so0, Ilolecular diffusion
equation for an infTinite cylinder is

0G_ 13
ot = Té—fw"am) : (C.1la)

with the following boundary conditions
=C — o]

CA:CAO oL <Y, t=o0 (c.1e)
The analytical solution of eguation (C.la) with its

boundary counditions is given by (2).

CmCn _ 2.2 DGt ] 0d,)

Ca— — G, o A 4= ", Ly:o(h) (c.2)

where & are the roots of
&]‘,(TI'O(”):O (G.3)
Let 70,=p, (c.4)
F=R (c.5)
gy%:? (c.86)

[

and G=Ch _ -

CH“CA, (c.7)

Then equation (C.2) transforms into

C=2F FTIRA) (6.8)
N=1 .B;, JCF,,)
Thus from eguation (C.8), the dimensionless concentration
can be determined for the various values of R and ¢
The formula for the dimensionless volumetric average

concentration is derived from equation {(C.8) and it is



given by ,

g2
=4 "%'i

The computer programs are written for the calculation
of the point concentration and volumetric average concen-
tration from equations (C.8) and (C.9) resvectively.

Forty values of P, are reported in (14).
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APELIDIY D

Zxpand each term of equation (4.23) by Teylor's
series (8). The argument of C in right side of the
equation is (I, J, X).

8¢ 3c_caty*
C(IJ K+) =CFS A‘”C—i—a(t R

—c4 2 Ax4 OC
C T, T R=Cr SEAX+ G (__2_+

e Ax)
& |
cE130=C-8 axe I5, (axf- Je (wd, 8 ()’ (2.3)

. dc g (azf Fc azf Ot @zt
C(I,J+LK)=C+ AZ—-}—aZp_(-ZI +bh25%()+é§47"7 (D.4)

3 4
cnr4-C-§az+ S5 LB L 0L L2 5.5

Since a square mesh is used, AX=AZ

Substitute these terms in equation (4.23) and let

p“A+x 5_9_&

so that

C Q¢ ar €. (AT=(5+4p) C+g_cAX+acch>+ac (Ax)+©c(Ax_)
ox> OX* 4

(5=P) [ C- & nx+ TG (ax SC LAX>.+54'C (AX_j

oT oT* 2!

OX* 2T 9X3® 3

+(5) C+.g—<>a><+bc (axy, Fc CAJ&*CC_

21 2z3 3/ 0oz*

+(5) C—Q-C:A)H-QQ Caxf g (ax?, o' L—)
21 Qz3 3(f 6)2 4

+((——45)C—f— GA
This om simn‘ificatlon glives

28 ATy BE, )= 2P ax S5+ s(axy 95+ P<A><)5§

...I.._

+L s(AX)" € +50a%) 5C1+ SCAX)fLC;rA't

(D. 7)



Tron equgtion(B 23a)

b_ dc
AT SCAXS +SCAX)Q—1+2PAXDX (5.5)

Therefore (D.7) becomes

Je (AT 1 PCaXT T Gt L 58X a‘*c+ smxf‘a'* C,T;; AT
Dt 21 3 ox®

(p.9)
Substituting the values of §,P and rearranging the terms,

truncetion error is given by

AT AP, L caxy (Y, %
Y27 o 6CA+X)( ox3 12 (% 5—2")(13 10)

Thus 2
TH = O (AY)+0( LX)
J (D.11)
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Computer Erozram For The Fumerical Sclution

The compuber vregram listed in this appendix has
each line numbered on the left side of the program. The
program is explained by reference tc these numbers and
the grid work presented in Figure E.1. It is cesigned
to run on the IBM model 360 computer. The language is
in Fortran IV. :

Exolanation of the Compvuter Frogran

This program is written for solving equation (3.232)
by the finite difference method. The overall procedure
for calculation is to proceed from Z=0 to Z=/ix*for each
value of x varying between ~1 to +1. In the following
explanation, it is assumed that AX=005, AT=0-0005 ,

C(X,Z,0)=1 and CLX,i‘\/W"‘,T}O-

Iines 1 through 4 dimension and double precision
the program variables.

Iines 8 through 12 define the essential cenbtral
variables. Al=A ; DTA=AT; DX=AX ; BC = boundary
condition on the suriface; PI = initial concentration
in the torus.

ines 13 through 16 represent the constant terms
of the finite difference equations.

Lines 17 through 20 are the terms which control
verious D0 loops. KT = number of tTime steps; X =

number of spatial increments in the X direcition



Y - o L. . o ey T
( FX =40 for X = 0.05 ) 1z o= «X + 1; T2 = aumber

ck
oy
)

d.
[

ocates nodal points alonk Z2=0 1line.
Lines 21 through 45 calculate the loes ion of the
nodal points, stores the values of X and Z a2t each
nodal point and on the boundary. It also defines the
initial concentration profile.

Iines 25 through 35 contain the routine for locating
the upprer nodes on each line of constant ¥X. The ey to
the node location routine isvstoring a floaﬁing voint

number in a fixed point location and taking =

) s - o *5..
of the round off. In line 28 the factor of BxI0” had %o
be used to compensate for computer round off errcr wilen

caiculating a Tflcating point number.

In 2ll parts of the program, I corresponds to the
X direction and J to the 2 direction. In the overal; schneme
of the solution two +time planes, denoted as C(I,J) and
3(I,7), are used. Initially, C(I,J) is stored and then
by classical explicit method B(I,J) is calculated. Then,
the values of B(I,J) are stored in C(I,J) locations and
C(I,J) is printed out and another B(I,d) set is calculated.

is the explicit method calculation

[€)}

Tines 47 through 8

Ly}

of the concentrations at all points. DILine 47 is the DO
loop for time steps. Iine 48 is the loop foxr steps
from Z=0 to Z=JT=x> for each value of ¥X. Iines 53 and 5&
test the node to see if it has an unequal increment. Ia

lines 57 and 58, ALY and ALZ are the distances, number



of increments between the nodes (IFl, J) or ( I, J=1 )

A
LGS -

and boundary through the node ( I,J ). Iine 59 de

mines whebther ALX or ALZ is larger. Iine 67 tests whether

A

-

tY

=0

i3

s negative or vositive. ILine §9 czlculates the con-
centraticn at the points Ffor negative ¥ and ALX less than
ALZ. TIine 75 calculates the concentrations at the points
for ALZ less than AIX. Iine 80 calculates the concen-
tration at the poinds on Z=0O line. Iine 83 calculztes
the concentrations for the BS set of points.

Iines 87 through 101 calculzte the dimensionless
volumetric average concenbvration using the trapezoidal
rule for double integration.

ine 102 defines the fraction extracted. TITine 103
prints out the value of the previous T , point concen-
tration a2t Z=0 and X=-0-8and fraction extracted at the
corresponding value of T .

Tines 104 %o 110 switch the values B(I,J) to C(I,J)
Tfor calculations at the next time step.

Line 111 defines the next time step. ILime 112 is
the end of the time DO loopn.

For the numerical solution to the diffusion eguation
0f 2 cylinder, the following changes in the program are
necessary.

A1 =0, SC1 =0, B3 = 2:DX , STP = STF + FXT (I)
7T .
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