
Waldemar Grabski∗, Michał Nowacki∗

CODE GENERATION FOR CSM/ECSM MODELS
IN COSMA ENVIRONMENT

The COSMA software environment, developed in the Institute of Computer Science, WUT,
was designed primarily for model checking of reactive systems specified in terms of Con-
current State Machines (CSM). However, COSMA supports also Extended CSM (ECSM).
The extensions allow for using complex data types and pieces of C/C++ code, attributed
to CSM states and/or transitions. Because of these extensions, ECSM models cannot be
verified by model checking, but they can be used as an intermediate step in code generation.
The underlying CSM represent then the flow of control within cooperating components and
the communication among them while the extensions specify the data structures and the
details of their processing.

The paper discusses the code generation from ECSM diagrams. The approach is illustrated
with an example.

Keywords: Model Checking, COSMA, Code Generation, CSM, ECSM, FSM

GENERACJA KODU PROGRAMU NA PODSTAWIE MODELU
CSM/ECSM W ŚRODOWISKU COSMA

Środowisko COSMA, rozwijane w Instutycie Informatyki Politechniki Warszawskiej, pow-
stało z myślą o weryfikacji modeli (model checking) systemów reaktywnych specyfikowanych
przy pomocy automatów CSM (Concurrent State Machines) jak i ich rozszerzonej wersji
(ECSM – Extended CSM). Rozszerzenie CSM o złożone struktury danych, atrybuty związane
z przejściami i stanami oraz możliwość bezpośredniego użycia kody w C/C++ powodują,
że model wyrażony w ECSM nie może być formalnie weryfikowany, a jedynie stanowić krok
pośredni przy generacji kodu. W takim podejściu model CSM reprezentuje sterowanie i komu-
nikację pomiędzy modułami systemu, podczas gdy ECSM – dane i szczegóły przetwarzania.

Artykuł omawia generację kodu z modelu ECSM zilustrowaną przykładem.

Słowa kluczowe: weryfikacja, COSMA, generacja kodu, CSM, ECSM, automaty skończenie
stanowe

∗ Institute of Computer Science, Warsaw University of Technology, Warszawa, Poland,
W.Grabski@ii.pw.edu.pl, M.Nowacki@ii.pw.edu.pl

Computer Science • Vol. 8 Special Edition • 2007

49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and Technology: Journals

https://core.ac.uk/display/229288603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

This paper presents a part of the research on the software environment which would
combine the UML behavioral specification, formal verification by model checking and
code generation. Presently, the commercial design tools that support Unified Modeling
Language (UML, e.g. [1]), hardly allow for the formal verification of the model. The
UML standards are still evolving, the new ideas appear and research is done to support
the designers with formal verification ([2, 3]) and code generation (e.g. HUGO [4]).
In the Institute of Computer Science, WUT, the COSMA [5] software environment
is used for these purposes. COSMA was primarily designed for model checking. It
is conceptually built upon a finite state model called Concurrent State Machines
(CSM,[6]) with extensions for complex data types and state actions in Extended
CSM(ECSM, see [7]). The general idea is to convert UML behavioral specifications
(in terms of state, sequence, cooperation diagrams) into CSM and ECSM models
and then to use model checking capabilities of COSMA for the formal verification of
selected safety/liveness properties as well as ECSM models for system simulation and
code generation.

For each module of the system, the control flow is specified as a finite state Con-
current State Machine, resembling unstructured (and formalized) UML state diagram.
The well-defined operation of the product of CSM provides the reachability graph of
a system, which can be model-checked against the safety or liveness properties, spec-
ified either in terms of temporal formulas or an “observing” automaton. This way,
the coordination between communicating / cooperating modules of the system can
be formally verified. The ECSM extensions allow to attribute pieces of C/C++ code
to states or transitions of CSM models. In contrast to CSM, the ECSM model can
only be informally verified by execution or by means of the simulation.

The generation of code from ECSM models has to make use of the information
on communication and coordination among processes (which is determined by states
and labeled transitions of a CSM) and of data structures and the details of the pro-
cessing added up in a form of direct C/C++ pieces of code. In our methodology
the generated code is treated as a template which should be extended (for example
we check intermodule communication protocol without modeling parts of the system
which produces and consumes data). The next step in the life-cycle of the system – de-
bugging – also requires human interaction with the code. That’s why, in our opinion,
it is very important to generate the code which is human-friendly.

Recent addition to the COSMA, new tool called WSGenerator, allows to gener-
ate the program code from finite state machines model expressed by CSM/ ECSM
automata. The preliminary version of WSGenerator [8] was implemented as part of
the thesis by Łukasiuk [9]. In this paper we will present basic information about CSM
and ECSM, the splitting of the information between CSM and C/C++ code. The
simple example of the ATM-Bank system (as in [10]) and the generated code is given.

50 Waldemar Grabski, Michał Nowacki

2. CSM/ECSM model construction rules

The CSM machine is a finite state automaton consisting of states and labeled tran-
sitions between them. One of the states is an initial state. States can emit sets of
signals. Transitions are labeled with Boolean formulas which represent conditions
when a given transition is enabled and may be executed. These conditions depend
on signals generated in other automata or received from the environment. Operators
+, *, ! stand for Boolean sum, product and complement (respectively). Transitions
labeled with Boolean 1 are spontaneous ones, as they are unconditionally enabled. An
example of a CSM automaton is shown in Figure 1 (right). A state is represented as
rounded rectangle, with state name in the upper part (for e.g. RetF) and list of signals
emitted in this state – in lower part (e.g. ret F for RetF state). The transition from
the state IdleF to the state S4 is enabled when condition call F is true (signa call F
is emitted). A special loop transition is used for remaining in a state (for e.g. the label
!call F on transition for the state IdleF , which means absence of the signal call F).

1

! call_F

call_F

! ret_F

ret_F

1

1

S4

S2 RetF

ret_F

S5

IdleFWaitcallingF

call_F

SN
Other states

Fig. 1. CSM representation for function call: caller(left) and function(right)

ECSM is an extension of CSM which adds C/C++ actions to the states and
C/C++ conditions to the transitions. At present, designer of the system creates the
CSM model himself, but work on generating it from the UML is in progress. To
allow generation of the human-friendly code we additionally have to restrict structure
of the automaton (these restrictions will also define the allowed structures in the
UML model). In this chapter we describe the construction rules for the common
programming structures.

2.1. Calling function

In modeled system every function is represented by a single CSM/ECSM automaton.
The call to this function can be modeled in any other automaton in the system. The
mechanism that represents function call uses two signals: call xxx and ret xxx where
xxx is the function name. The automaton which models calling the function first
sends signal which represents function call (in figure Fig. 1 signal call F), and in the
next state it waits for signal which represents return from the function (ret F signal).
The automaton which models the function body has a form of the loop. It waits for
the call signal after which the execution of the function starts. Last state in the loop
represents the return from the function. After this the automaton returns to idle state.

Code generation for CSM/ECSM models in COSMA environment 51

Function parameters and result are transmitted as ECSM signal’s attributes (which
form a table of pointers attributed to particular signals). For a function with one
parameter of type short the following ECSM code will be added for sending call xxx :
call xxx[0] = (int)(short*)&value;, and on receiving side – for response to signal
call xxx : param = *(short*)(int)call xxx[0];. Function body can only contain
state structures which reflect constructions in structural programming languages. As
an instruction we understand: basic, conditional or while loop instruction and the
sequence of instructions.

2.2. Basic instruction

The basic instruction is modeled by a single state as shown in Figure 2. The ECSM
action in this state can contain piece of code which will be inserted into final program.

SimpleInstruction
ECSM action:
printf(“ first”); assert(i >= 0);
for(i = 0, j = 0; j < 10; ++j) i += j;

Fig. 2. Simple Instruction

Of course this is the basic instruction from the model point of view. The ECSM action
can contain complex C/C++ code.
Example: code generated from automaton in Figure 2:

printf("first");
assert(i >= 0);
for(i = 0, j = 0; j < 10; ++j)
i += j;

2.3. Conditional execution

The model of the conditional execution contains an initial and end state. The name
of the end state must be the same as the initial state’s prefixed with ”End”. All
sequences from initial state to end state describe alternative executions (sequences
of instructions as described below). The end state has to be direct successor of the
initial state. If in all cases some code should be executed, additional transition between
these states has to be added with condition set to false. Figure 3 presents a model of
conditional execution with simple instructions on each path (that’s why there is an
arc from If to EndIf with always false condition).
Example: code generated from the automaton in Figure 3:

if(x > 0){
j = 1;

}
else{
j = 3;

}

52 Waldemar Grabski, Michał Nowacki

1

1

0

1

1

EndIf

State1

State

If

ECSM condition:
x > 0

ECSM action:
j = 1;

ECSM action:
j = 3; ECSM condition:

x <= 0

Fig. 3. Conditional instruction

2.4. While loop instruction

The model of the while loop contains the initial state and the end state. The name
of the end state must be the same as the initial state prefixed with ”End”. The
sequence of instructions form a loop which begins and ends in initial state. The loop
conditions are placed as an ECSM condition for transitions outgoing from initial state.
These two conditions must be complementary. One of them is used in generated code
as a condition for a loop. Automaton which models a while loop with two simple
instructions is shown in Figure 4.

1

1

1

State1
State

EndWhileWhile
ECSM condition: x < 0;

ECSM condition:
x >= 0;

ECSM action: printf(“out”);

ECSM action:
printf(“in”); j+= 1; Other states

Fig. 4. While loop instruction

Example: code generated for automaton in Figure 4:
while(x >= 0){
printf("in"); j += 1;

}
printf("out");

2.5. Instructions sequence

The instructions sequence is described as a sequence of instructions with a single
successor. Each of the sequence elements can be a simple or complex (conditional, loop
or the sequence of instructions) instruction. CSM and ECSM conditions on transitions
between the end of instruction and next instruction are always true.

3. Example: ATM-BANK system

The methodology described above will be illustrated in the ATM-Bank example as in
[10], except the concurrency in the Bank state diagram (we use the UML diagrams
as they are most universal). The bank system is simplified and it contains only one

Code generation for CSM/ECSM models in COSMA environment 53

ATM and only one card can be used. Cooperation between Bank and ATM consists
only of the validation of PIN and the validation of the card. The ATM class contains
no variables, all the information about the card is stored in the bank. In this system
there is only one card, so the information about it is represented as three variables
(cardValid, numIncorrect, maxNumberIncorrect) for representig the state of the
card.

The automatic teller machine communicates with the bank to validate PIN. The
bank can answer to this request in three ways. If both card and PIN are valid then
bank sends the information that PIN is valid. In second scenario – card is valid, but
PIN is incorrect – bank sends request to re-enter PIN. This system allows only three
incorrect PIN entries, after this the card is blocked. The third scenario is that the
bank sends the information that the card is invalid. In case of correct PIN, the ATM
dispenses the money, in case of incorrect PIN – allows PIN to be reentered twice, when
card is invalid – refuses to use the card and the card is returned. ATM’s behavior is
presented as UML state diagram (Fig. 5).

cardEntry

PINEntry Verification

ReturningCard

AmountEntry

GivingMoney

Counting

Dispensing

/^bank.verifyPIN()

reenterPIN

PINVerified

done

/^bank.abort

Fig. 5. ATM state diagram

No information about PIN entries is stored in ATM during one session or between
different sessions with bank. This information is stored in the Bank and is used when
ATM requests PIN checking. If card owner exceeds the number of allowed PIN errors
the card will be blocked and the system shouldn’t allow to withdraw money with this
card. The cardValid, numberIncorrect and maxNumberIncorrect attributes in the
bank class are used to implement this requirements. State diagram for the Bank is
presented in Figure 6.

idle

PINCorrect

entry /numIncorrect = 0

PINIncorrect

VerifyingPINVerifyingCard

done

 [else] / cardValid=false; ^atm.abort

 [numIncorrect<maxNumIncorrect] / numIncorrect++;^atm.reenterPIN

 / ^atm.PINVerified

 [else] / ^atm.abort

 [cardValid]bank.verifyPIN()

Fig. 6. Bank state diagram

54 Waldemar Grabski, Michał Nowacki

4. ECSM model of the bank system

Our model consists of two parts: ATM and Bank. ATM is represented as a single
function (atm) modeled by a single automaton (Fig. 7). Bank is represented as a
group of functions, where one (bankVerifyPIN) is called from ATM, while the other
ones (checkCard, checkPIN) are internal. In all cases the CSM level models function
calls and program structure, while ECSM – system logic actions and conditions. In
this paper, for Bank part, we present only CSM/ECSM automata for bankVerifyPIN
and checkPIN.

1

1

1

1

! ret_bankVerifyPIN

ret_bankVerifyPIN

ret_bankVerifyPIN

! ret_bankVerifyPIN

1

1

1
0

1

1

1

1

1

11

1

1 1

1

! call_atm

call_atm

PINReentry

EndWhile

retAtm

ret_atm

CardAbort

w aitCallEnd2

w aitCallEnd

PinEntry3

enterPIN

CheckWithBank3

call_bankVerifyPIN

Decision

While

EndDecision

CheckWithBank2

call_bankVerifyPIN

PinEntry2

enterPIN

DispersingMoney

giveMoney

CountingMoney AmountEntry

ReturningCard

takeCard

CardEntry

ECSM action:
call_bankVerifyPIN[0]=
 (int)(short*)&pin;

ECSM condition:
vericationResult == REENTER

ECSM condition:
vericationResult != REENTER

Fig. 7. ATM’s automaton model (with some of the ECSM actions and conditions)

Each function is represented by a single CSM/ECSM automaton. Because of
the similarities in these functions and mechanism for calling them, we present only
checkPIN (Fig. 8) and bankVerifyPIN (Fig. 9) functions.

In the automaton representation of the Bank’s main function (Fig. 9) only some
of the ECSM’s conditions and actions were shown.

The remaining are:

• the ECSM conditions based on the value of numIncorrect for outgoing transitions
from PINInvalid state,

• the ECSM action returnValue = ABORT; in CardInvalid state,
• the ECSM actions for function calls: checkCard and checkPIN .

Code generation for CSM/ECSM models in COSMA environment 55

1

1

1

1

01

1call_checkPIN

! call_checkPIN

EndIf

WaitEnd

ret_checkPIN

retCP

validCP

IfidleCP ECSM action:
returnValue =
 false;

ECSM action:
returnValue = true;

ECSM condition:
! InternalCheckPIN(pin);

ECSM condition:
InternalCheckPIN(pin);

ECSM action:
ret_checkPIN[0] =
(int)(bool*)&returnValue;

ECSM action:
pin=*(short*)(int)call_checkPIN[0];

Fig. 8. Automaton model of checkPIN function

ret_checkPIN

! ret_checkPIN

ret_checkCard

! ret_checkCard

1

1

1
1

0

1

1

1

1

1

0
1

1

1

0

1

1

1

1

call_bankVerifyPIN

! call_bankVerifyPIN

WaitCheckPINEnd

WaitCheckCardEnd

ret

ret_bankVerifyPIN

EndDecisionCheckPIN

DecisionCheckCardCallCheckCard

call_checkCard

EndPINInvalid ToManyErrors

Retry

PINValid

PINInvalid

CardInvalid

DecisionCheckPIN

EndDecisionCheckCard
CallCheckPIN

call_checkPIN

idle

ECSM action:
pin=*(short*)(int)call bankVerifyPIN[0];

ECSM action:
ret_bankVerifyPIN[0]=
 (int)(short*)&returnValue;

ECSM condition:
ret checkCard[0]==false;

ECSM condition:
ret checkCard[0]==true;

ECSM condition:
ret checkPIN[0] == true

ECSM action:
returnValue = OK; numIncorrect = 0;

ECSM action:
returnValue= REENTER; numIncorrect++;

ECSM action:
returnValue = ABORT;

ECSM condition:
ret_checkPIN[0] == false

Fig. 9. Bank’s main function (bankV erifyPIN)

4.1. The code generated from CSM/ECSM Model

Below, the generated code for presented part of the model is shown1.

1 The presented code is formated by hand to save space by adjusting white spaces. The
CSM/ECSM ATM-BANK model, unedited generated code and WSGenerator tool is available
on http://www.ii.pw.edu.pl/cosma/code_generator.htm.

56 Waldemar Grabski, Michał Nowacki

This code was created by the new Cosma module (WSGenerator).

enum VerifyPINReturnType{ ABORT, REENTER, OK };

void atm(){
short pin; pin=0;
VerifyPINReturnType verificationResult;
verificationResult = ABORT;
pin = InternalGetPIN();
vericationResult = bankVerifyPIN(pin);
while (vericationResult == REENTER)
{ pin=InternGetPIN();
vericationResult=bankVerifyPIN(pin);}

if (vericationResult == ABORT) { }
else
if (vericationResult==OK)
{printf("Take money.");}

else{ assert(0 && "Impossible situation"); }
printf("Take card.");
}

VerifyPINReturnType bankVerifyPIN(short pin){
bool pinValid; bool cardValid;
short maxNumIncorrect; short numIncorrect;
VerifyPINReturnType returnValue;
pinValid = false; cardValid = false;
maxNumIncorrect = 2; numIncorrect = 0;
returnValue = ABORT;

cardValid = checkCard();
if (!cardValid){
returnValue = ABORT;

}else{
pinValid = checkPIN(pin);
if (pinValid){
returnValue=OK;
numIncorrect=0;

}else{
if (numIncorrect <= maxNumIncorrect){
numIncorrect ++;
returnValue = REENTER;

}else{ returnValue = ABORT; }
}

}

Code generation for CSM/ECSM models in COSMA environment 57

return returnValue;
}

bool checkPIN(short pin){
bool returnValue;
returnValue = false;
if (! InternalCheckPIN(pin))
{ returnValue = false; }

else
{ returnValue = true; }

return returnValue;
}

5. Conclusions

The quality of the created system strongly depends on quality of design, so the support
for the designer, from the very beginning of the design process is very important. It
can be achieved with the tools for:

• creating the description of the system in clear and unambiguous way,
• formal verification of the model,
• automatic code generation.

We have shown the approach to the automatic code generation, which produces pro-
gram code in the form that simplifies the programmer’s work in the debugging and
extending the application, while the communication skeleton of the system (speci-
fied in terms of CSM) can be still formally model-checked. One can hope that the
transformation of UML state diagrams into CSM/ECSM will be added to COSMA en-
vironment soon so that the results described above will be used also for the generation
of the code from this commonly known specification.

References

[1] Unified Modeling Language: http://www.omg.org/technology/documents/
formal/uml.htm

[2] Berard B. (ed.) et al.: Systems and Software Verification: Model-Checking Tech-
niques and Tools, Springer Verlag, 2001

[3] Clarke E.M., Grumberg O., Peled D.A.: Model Checking, MIT Press, 2000
[4] Project Hugo: http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
[5] COSMA project: http://www.ii.pw.edu.pl/cosma/
[6] Mieścicki J.: Concurrent StateMachines, the formal framework for model-
checkable systems, ICS Research Report 5/2003

[7] Krystosik A.: ECSM — Extended Concurrent State Machines. ICS Research Re-
port 2/2003

58 Waldemar Grabski, Michał Nowacki

[8] WSGenerator tool: http://www.ii.pw.edu.pl/cosma/code_generator/
[9] Łukasiuk K.: Construction of Internet applications based on client—server archi-
tecture using COSMA design environment. M.Sc. diploma ISC, 2006 (in Polish)

[10] Knapp A., Merz S.: Model Checking and Code Generation for UML State Ma-
chines and Collaborations, Proc. 5th Wsh. Tools for System Design and Verifica-
tion 2002, p. 59–64

Code generation for CSM/ECSM models in COSMA environment 59

