
Maciej Paszyński∗

h-RELATION PERSONALIZED COMMUNICATION
STRATEGY

This paper considers the communication patterns arising from the partition of geometrical
domain into sub-domains, when data is exchanged between processors assigned to adjacent
sub-domains. It presents the algorithm constructing bipartite graphs covering the graph
representation of the partitioned domain, as well as the scheduling algorithm utilizing the
coloring of the bipartite graphs. Specifically, when the communication pattern arises from the
partition of a 2D geometric area, the planar graph representation of the domain is partitioned
into not more than two bipartite graphs and a third graph with maximum vertex valency 2,
by means of the presented algorithm. In the general case, the algorithm finds h− 1 or fewer
bipartite graphs, where h is the maximum number of neighbors. Finally, the task of message
scheduling is reduced to a set of independent scheduling problems over the bipartite graphs.
The algorithms are supported by a theoretical discussion on their correctness and efficiency.

Keywords: scheduling, concurrent point-to-point communications

STRATEGIA KOMUNIKACJI OPARTA NA RELACJI h

W artykule omówiono problem szeregowania komunikacji pomiędzy procesorami przypisany-
mi do poddziedzin otrzymanych w wyniku podziału obszaru na podobszary, przy założe-
niu że dane wymieniane są pomiędzy sąsiadującymi podobszarami. W artykule przedsta-
wiony został algorytm tworzenia grafów dwudzielnych w oparciu o grafową reprezentację
obszaru podzielonego na podobszary. Przedstawiono również algorytm szeregowania bazują-
cy na kolorowaniu skonstruowanych grafów dwudzielnych. W szczególności, kiedy rozważamy
komunikację w obrębie obszarów dwuwymiarowych, graf reprezentujący podzielony obszar
dwuwymiarowy jest grafem planarnym, i rozważany algorytm zdekomponuje go na dwa
grafy dwudzielne oraz trzeci graf o maksymalnej walencji wierzchołka równej 2. W ogól-
nym przypadku (np. gdy rozważamy obszary trójwymiarowe) przedstawiony algorytm zna-
jdzie h − 1 lub mniej grafów dwudzielnych, gdzie h oznacza maksymalną liczbę sąsiadują-
cych podobszarów. Zadanie szeregowanie komunikatów zostało zredukowane do niezależnych
zadań szeregowania na grafach dwudzielnych. Artykuł podsumowuje analiza teoretyczna
poprawności i efektywności omówionych algorytmów.

Słowa kluczowe: szeregowanie, równoczesna komunikacja pomiędzy parami procesorów

∗ Department of Computer Science, AGH University of Science and Technology, al. Mickie-
wicza 30, 30-059, Kraków, Poland, maciej.paszynski@agh.edu.pl

7 października 2010 str. 1/18

Computer Science • Vol. 11 • 2010

81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and...

https://core.ac.uk/display/229288595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Main results of the paper. In the h-relation personalized communication problem,
each processor has possibly different amounts of data to share with some subset of
the other processors, such that each processor is the origin or destination of at most h
messages [2]. In the general case, where nothing can be assumed about the regularity
of the communication pattern, the h-relation personalized communication strategy
problem can be solved by using two transpose primitives [2] (all-to-all communications
where each processor has to send a unique block of data to every processor, and all
the blocks are of the same size).

The paper presents an alternative strategy for h-relation personalized communi-
cations (h-rpc) by employing bipartite graphs derived from the communication graph.
Through this reformulation, the task of message scheduling is reduced to a set of in-
dependent problems of scheduling over the bipartite graphs.

We present a simple algorithm for partitioning of the planar graph into two
bipartite graphs and another graph with maximum vertex valency 2. In a general case,
when the communication pattern is a non-planar graph, our algorithm partitions the
graph into h− 1 bipartite graphs.

In particular, we consider the communication pattern arising from the partition
of geometrical area into sub-domains, and data is exchanged between processors rep-
resenting adjacent sub-domains in a geometrical sense.

We show that an efficient implementation of message passing can be represented
as h-rpc strategy with h equal to the maximum number of neighboring sub-domains
over the graph representation of the partitioned computational domain.

We include a theoretical discussion of the algorithm’s correctness and an analysis
of its complexities.

Routing h-relation. The h-rpc problem can be solved using a simple fixed-
pattern algorithm [17]. However, if there is a large variation in the message size,
the algorithm becomes inefficient. A scalable two-phase algorithm for the h-rpc was
proposed by Bader, Helman, and JáJá in [2] to mitigate this inefficiency. The authors
also noted that the problem can be solved by using two transpose primitives.

Some basic work with MPI primitive implementations was done by Johnsson
[12, 11, 7, 8]. Efficient implementation of the MPI primitives is described in papers
of Bader [1], Sundar et al. [16]; and the approach presented in [2] is acclaimed to be
the optimal strategy for routing h-relation.

The authors of [2] showed that the complexity of the algorithm is

O
(
τ + h+

(
h+ n

p + p2
)
σ
)

, where τ is the message initialization time, n is total
amount of data assumed to be distributed in n

p portions over p processors, and σ

is the time per byte at which processor can send or receive data through the net-
work (1

σ is the bandwidth of the network). In their paper, Goldman and Trystram
[5] noticed that when all the communication patterns are known by every processor,
a global knowledge algorithm can be used. By finding an optimal solution through

7 października 2010 str. 2/18

82 Maciej Paszyński

a permutation on the communication matrix, their solution becomes potentially bet-
ter; however, they used a greedy algorithm whose results can be far from the optimal
schedule.

In our approach, we use a global knowledge communication strategy based on
scheduling over bipartite graphs, with an overall complexity

O

(
τh+

n

p
σ

)
, (1)

which scales favorably when the processor count is increased.
Partitions of the planar graph. A bipartite graph is a graph whose set of ver-

tices can be decomposed into two disjoint sets such that no two graph vertices within
the same set are adjacent. A forest is an acyclic graph (set of possibly disconnected
trees). Every forest is a bipartite graph, but not every bipartite graph is a forest.
A vertex valency d(x) is the number of edges incident to it. The maximum vertex
valency in a graph G is denoted by ∆(G).

The problem of partitioning planar graphs has been extensively investigated in
graph theory using forests. An effective algorithm for finding three forest partitions of
every planar graph is presented in Chen et al. [19]. However, there are no theoretical
results on the upper bound for the valency of forests.

The most recent theoretical results are presented in He, Hou et al. [18], and can
be summarized as follows. Every planar graph G has an edge-partition in two forests
T1 and T2 and another graph H with ∆(H) ≤ 8. An exact evaluation of ∆(H) is still
an open problem, according to He Hou et al. [18]. There are examples of planar graphs
whose graphs H have the property ∆(H) = 2, which implies that 2 ≤ ∆(H) ≤ 8.
The theoretical results presented in He, Hou et al. [18] do not imply any simple graph
partition algorithm, since their proofs are based on mathematical induction over the
number of vertices and edges in G.

We present a simple linear time algorithm for partitioning a planar graph into
not more than three bipartite graphs {Bi}i=1,2,3 with ∆(B1) ≤ h, ∆(B2) ≤ h−1 and
∆(B3) ≤ 2. We use bipartite graphs that may not be forests, because we do not need
to map partitions into a set of forests, we only need partitions consisting of bipartite
graphs.

Scheduling over bipartite graphs. The usefulness of edge coloring for schedul-
ing data transfers in large parallel architectures has been demonstrated by several au-
thors, and a comprehensive survey of applications in various fields has been compiled
by Jain et al. [6]. The application of simple edge-coloring algorithms to scheduling
problems and evaluation of their experimental performance are presented by Marathe
et al. [10, 13]. In general, when nothing can be assumed about the regularity of a graph,
the problem of edge coloring is NP-complete (see [3, 4]). However, the problem of edge
coloring of bipartite graphs can be solved by a polynomial-time algorithm. The fastest
known bipartite graph coloring algorithm was developed by Rizzi et al. [14, 9]. The
computational complexity of the algorithm is O(n log n log v + e log v) where n is the

7 października 2010 str. 3/18

h-Relation personalized communication strategy 83

number of nodes, e is the number of edges, and v is the maximum vertex degree in
the graph.

2. Graph partition algorithm

Graph representation of the partitioned domain. Let us consider a domain
divided into sub-domains. A graph representation of the domain can be created,

G = (V,E) (2)

where graph vertices V denote sub-domains, and edges E = {{u, v} : u, v ∈ V } de-
note their adjacency. A graph G is assumed to be undirected, since the sub-domains
adjacency relation is symmetric.

Partition of the graph. The layer-connection algorithm can be applied to the
graph representation of the domain. The goal of this algorithm is to partition the
graph into a set of subgraphs called layers and connections (Figs. 1 and 2).

Fig. 1. Example of a nice message scheduling for partitioned 2D domain: (a) 2D domain par-
titioned into sub-domains. (b) Planar graph representation of partitioned domain. (c) Layer
and connection subgraphs. (d) Partition of the planar graph into two bipartite graphs: union
of all connection subgraphs B1; union of all layer subgraphs B2. (e) Edge-coloring of bipartite

graphs. (f) Six sets of messages to be sent

7 października 2010 str. 4/18

84 Maciej Paszyński

(a) (b) (c)

(d) (e) (f) (g) (h)

Fig. 2. Example of the worst case of message scheduling for 2D partitioned domain: (a) 2D
domain partitioned into sub-domains. (b) Planar graph representation of partitioned do-
main. (c) Layer and connection subgraphs. (d) Second execution of layer-connection algo-
rithm over layers. (e) Sub-layer and sub-connection subgraphs. (f) Partition of the planar
graph into three bipartite graphs: union of all connection subgraphs B1; union of all sub-con-
nection sub-graphs B2; union of all sub-layer subgraphs B3. (g) Edge-coloring of bipartite

graphs. (h) Nine messages to be sent.

A single vertex representing a sub-domain located on the boundary of the domain
is selected randomly and assigned to the first layer. Then all neighbors of the previ-
ously selected vertex are assigned to the second layer. The procedure is repeated by
assigning the sequence of neighboring vertices to consecutive layers until all vertices
have been assigned to some layer.

More formally, we select one vertex u0 in the graph and create an attributing
function (3) that assigns a layer index to each graph vertex, such that within a minimal
length path connecting the vertex with the initial vertex u0, all vertices belong to
a different layer.

f : V → {1, . . . , NL} :

v → f (v) = i,

where i = arg min〈v1,...,vk〉 : v1=u0,vk=vk

(3)

7 października 2010 str. 5/18

h-Relation personalized communication strategy 85

The path 〈v1, . . . , vk〉 is defined here as a sequence of graph vertices v1, . . . , vk ∈ V
such that each vertex is connected with its successor and ancestor {vi−1, vi} ∈ E

∀i = 1, . . . , k. The path length k is assumed to be minimal (it is the shortest path
connecting vertices u0 and v). Such a path exists for each vertex since the domain is
assumed to be compact. NL denotes the resulting number of layers.

Layers and connections. The i-th layer is defined as a subgraph containing all
vertices attributed (by the f attributing function) with value i, and all edges between
these vertices present in the original graph G.

Li =
(
V Li , E

L
i

)
⊂ G :

V Li = {u ∈ V : f(u) = i }
ELi = {{u, v} ∈ E : f(u) = f(v) = i}
i = 1, . . . , NL

(4)

The i-th connection is defined as a subgraph containing all vertices attributed
(by the f attributing function) with i and i+ 1 values, and all edges between vertices
assigned to layer i and i+ 1.

Ii =
(
V Ii , E

I
i

)
⊂ G :

V Ii = {u ∈ V : f(u) ∈ {i, i+ 1}}
EIi = {{u, v} ∈ E, f(u) = i, f(v) = i+ 1}
i = 1, . . . , NL− 1

(5)

Graph partition algorithm. Here we describe the graph-partitioning algorithm
for partitioning the graph G into a set of bipartite subgraphs with disjoint edges. The
input for the algorithm is the graph G, and the output is the set of bipartite graphs
{Bi}i=1,...,NB .

As shown in the algorithm description below, in a general case when the graph
G is not planar, the total number of bipartite graphs NB is no greater than h − 1,
with

∆(BK) ≤ h−K + 1,K = 1, . . . , h− 2; ∆(Bh−1) ≤ 2 (6)

Also, for a planar graph G representing a partitioned 2D area, the resulting
number of bipartite graphs is not greater than 3, with

∆(B1) ≤ h; ∆(B2) ≤ h− 1; ∆(B3) ≤ 2 (7)

An example of a planar graph that partitions into 2 bipartite graphs is illustrated in
Figure 1. A planar graph with more complex partitioning, requiring sub-layering, is
illustrated in Figure 2.

Through the layer-connection algorithm, the task of message scheduling over the
entire graph G is reduced to scheduling over independent bipartite graphs, which are
simple and can be solved in polynomial time.

7 października 2010 str. 6/18

86 Maciej Paszyński

The graph partitioning algorithm steps are:

• Step (1): Execute the layer-connection algorithm over entire graph G. The
algorithm delivers a set of connections {Ii}i=1,...,LN−1 and disjoint layers
{Li}i=1,...,LN sub-graphs.
• Step (2): Create the first bipartite graph as the union of all connection subgraphs
B1 =

⋃
k=0,...,LN−1 Ik.

• Step (3): Let iteration index K = 0.
• Step (4): If the maximum vertex valency in layer subgraphs {Li}i=1,...,LN is

less than or equal to 2, Then Go To Step (9)
• Step (5): Let iteration index K = K + 1.
• Step (6): Execute recursively the layer-connection algorithm over each lay-

er subgraph {Li}i=1,...,LN . The algorithm delivers a set of K sub-connection

{Im,Ki }m=1,...,LNK
i −1

i=1,...,LN and disjoint K sub-layers {Lm,Ki }m=1,...,LNK
i

i=1,...,LN subgraphs.
LNK

i is the number of the K-th sub-layer resulting from execution of the algo-
rithm over the Li-th layer.
• Step (7): The K + 1 bipartite graph is defined as the union of all K-th sub-

connection subgraphs BK+1 =
⋃m=0,...,LNK

i −1
i=1,...,LN Im,Ki resulting from recursive ex-

ecution of the layer-connection algorithm.
• Step (8): Denote by Li all K-th sub-layer subgraphs, and by Ii all K-th sub-

connection subgraphs. Denote LN as the total number of K-th sub-layer sub-
graphs. Go To Step (4).
• Step (9): The K+2 bipartite graph is defined as the union of all layer subgraphs
BK+2 =

⋃
i=1,...,LN Li.

Stop

The correctness and efficiency analysis of the above algorithm are described in the
Correctness of graph partition algorithm and Efficiency of graph partition algorithm
sections.

3. Scheduling over bipartite graphs

We assume that

• Each processor can only send or receive one message at one time.
• Each processor sends different messages to different neighbors.
• The communication cost between each discrete pair of communicating processors

is not the same.

The cost of each communication can be bounded as tcomm = τ + Lσ where τ is the
message initialization time, L is the number of words in the message, and σ is the
time per byte at which processor can send or receive data through the network. In
reality, σ may depend on the number of processor pairs trying to send a message at
the same time, and the available routes within the interconnection.

7 października 2010 str. 7/18

h-Relation personalized communication strategy 87

If we assume the size of each message is the same, the scheduling problem
is equivalent to the problem of coloring of edges of a graph representation of the
computational domain, where each vertex denotes a processor and each edge denotes
a message to be sent.

A k-edge-coloring of graph G is an assignment of k colors to the edges of G in
such a way that any two edges meeting at a common vertex are assigned different
colors. If G can be k-edge colored, then G is said to be k-edge colorable. The chromatic
index of G, denoted by X‘(G), is the smallest k for which G is k-edge-colorable. From
Konig’s Theorem [15] it follows that if G is a bipartite graph whose maximum vertex
valency is d, then X‘(G) = d. The idea of the proof is mathematical induction on the
number of edge of G. All trees are bipartite graphs [15].

When a graph to be partitioned is a representation of a 2D mesh, there are
not more than three bipartite subgraphs and equation (7) implies that the chromatic
index (number of colors required to color the entire graph G) is no greater than
h+ h− 1 + 2 = 2h+ 1 = O (h). The total communication cost is then bounded by

tcomm = (τ + Lσ) (2h+ 1)2 = O (τh+ Lσh) (8)

This corresponds to the formulae (1).
More generally, when a graph is not a representation of 2D mesh, then (6) implies

that the entire graph G can be colored by using not more than
∑
K=1,h−2{h −K +

1}+2 = 1
2h

2 + 1
2h−3 = O

(
h2
)

colors, in a pessimistic case. The total communication
cost is then bounded by

tcomm = (τ + Lσ) (
1
2
h2 +

1
2
h− 3)2 = O

(
τh2 + Lσh2) (9)

The presented upper bound estimates consider a pessimistic case, and usually
the algorithm deals better with the input graph. For example, on a regular 2D mesh
with maximum vertex valency 6, as the one presented in Figure 1, there are only two
sets of messages to be sent within 6 time units, and this result does not depend on
the number of processors represented by the graph vertices.

In the best known bipartite graph edge coloring algorithms, the complexity is
O (n log n log h+ e log h); where n is number of vertices, e is number of edges, and h
is the maximum vertex valency in the graph [14].

If we assume that the size of each message is not the same, the scheduling
problem can also be solved by the same strategy above. It is only necessary to select
a minimum size message, divide all large messages into a sequence of minimal-sized
messages, and replicate the edges in the bipartite graphs representing the largest
messages. In the new graph, a single edge between a pair of processors is a minimum
size message, and multiple edges constitute a large-sized message.

4. h-Relation personalized communication strategy

In the case when the communication pattern arises from partition of computational
mesh and different messages with different sizes must be exchanged between processors

7 października 2010 str. 8/18

88 Maciej Paszyński

representing sub-domains adjacent in a geometrical sense, the proposed communica-
tion strategy over a heterogeneous interconnection network can be summarized in the
following steps:

1. Create a graph G describing the partitioned mesh as presented in (2). The max-
imum vertex valency in the graph is denoted by ∆(G) = h.

2. Execute the graph partitioning algorithm described in section Graph partition
algorithm. The algorithm results in a set of bipartite graphs {Bi}i=1,...,NB .

3. Schedule messages over each bipartite graph, as described in a section Scheduling
over bipartite graphs:

(a) Find the minimum and maximum size of messages represented by edges in
the Bi graphs. Split each message larger than the minimum into a sequence
of messages with a length equal to the minimum size message (not that the
last one will usually contain a shorter message). Replicate each edge by the
number of messages in the sequence.

(b) Color the bipartite graph with multiple edges using an efficient algorithm
as the one presented in [14].

(c) Schedule messages according to the edge coloring.

In the case of a partitioned 2D mesh, the graph partition algorithm produces no more
than three bipartite graphs, and in the general 3D case there are no more than h− 1
bipartite graphs, as shown in in the next section.

5. Correctness of the graph partition algorithm

Algorithm Correctness: general case. The analysis in this section applies to
a simple geometrical consideration over any graph representation of a 3D partitioned
domain, where vertices denote sub-domains, and edges denote adjacency (neighbors
that share a common border — a non-empty 2D area). A planar graph is a graph rep-
resentation of a partitioned 2D domain. This section deals with graph representation
of partitioned 3D meshes, which are not planar graphs.

Lemma 1. The execution of the layer-connection algorithm over graph G with ∆(G) ≤
h produces a connection subgraph I with ∆(I) ≤ h, and a layer sub-graph L with
∆(L) ≤ h− 1.

Proof. Execution of the algorithm results in {Li =
(
V Li , E

L
i

)
}i=1,...,LN and {Ii =(

V Ii , E
I
i

)
}i=1,...,LN−1 subgraphs. Connection subgraph I and layer subgraph L are

defined as unions I =
⋃
k=0,...,LN−1 Ik and L =

⋃
i=1,...,LN Li.

Each connection subgraph Ik, k = 1, . . . , LN − 1 contains all vertices from layers
Lk and Lk+1, but does not contain edges between vertices within the same layer. If
the vertex v = u0 ∈ V L1 has valency h and all neighbors of v are in the next layer,
then ∆(I1) = h. If there are neighbors of the vertex v in graph G within the same
layer Li as v, then ∆(Ii) < h. We conclude that ∆(I) ≤ h.

7 października 2010 str. 9/18

h-Relation personalized communication strategy 89

Any vertex v ∈ V Li has valency no greater then h− 1 in Li, since:

• If i = 1, v ∈ L1, v is the initial vertex v = u0 then v has no edge in L1, because
all of its edges are assigned to the connection subgraph I1. It simply implies that
the valency of v = u0 is 0 in L1.
• If i > 1, then each vertex within Li has an edge to some vertex from the previ-

ous layer Li−1, from definition of layers-connections algorithm. If v ∈ Li has h
neighbors in G, then at least one of its neighbors belongs to the previous layer
Li−1. This implies that v may have a maximum of h−1 neighbors in Li; in other
words, the maximum valency of v in Li is h− 1.

We conclude that ∆(L) ≤ h− 1.

Lemma 2. Each connection subgraph Ii is a bipartite graph.

Proof. There are two disjoint sets of vertices in each Ii graph, the first one contains all
vertices from layer Li and the second one contains vertices from layer Li+1. From the
definition of the connection subgraph construction there are no edges between vertices
inside each set; hence the union of the two layer graphs is a bipartite graph.

Lemma 3. The union of all connection subgraphs I =
⋃
k=0,...,LN−1 Ik is a bipartite

graph.

Proof. Each connection subgraph Ii contains all vertices from layers Li and Li+1.
Vertices from the union graph I = (V I , EI) can be split into two disjoint sets
V I = V I1 ∪ V I2 , where V I1 is the union of all vertices from all odd layers V I1 =⋃
k=0,...,bLN−1

2 c V
L
2k+1 and V I2 is a union of all vertices from all even layers V I2 =⋃

k=1,...,bLN−1
2 c V

L
2k.

There are no edges between vertices from the same layer. There are also no edges
between vertices from layer Li and Li+2 and beyond. This implies that the union
graph I is a bipartite graph.

Theorem 1. Any graph G is a union of h − 1 bipartite graphs {Bi}i=1,...,h−1, where
∆(Bi) ≤ h− i+ 1, i = 1, . . . , h− 2 and ∆(Bh−1) ≤ 2.

Proof. By executing the layer-connection algorithm over G we obtain a connection
sub-graph I1 with ∆(I1) ≤ h and layer sub-graphs L with ∆(L) ≤ h − 1, according
to 1. By executing the algorithm recursively h − 2 times over layer sub-graphs, we
obtain a set of connection subgraphs Bk = Ik, k = 1, . . . , h−2 and the layer subgraph
Bh−1 = Lh−1 with ∆(Lh−1) ≤ 2. Each connection sub-graph Ik, k = 1, . . . , h − 2 is
a bipartite graph by 3. The terminal layer subgraph, Bh−1, has a maximum vertex
valency 2, which implies that it is also a bipartite graph. The procedure is illustrated
in Figure 3.

Theorem 1 establishes the correctness of the layer-connection algorithm in the
general case.

Algorithm correctness: graph representations of 2D meshes. The analysis
in this section applies to a simple geometrical consideration over planar graphs. Graph
representations of partitioned 2D meshes are planar graphs.

7 października 2010 str. 10/18

90 Maciej Paszyński

Fig. 3. Partition of any graph G with maximum vertex valency h into h− 1 bipartite graphs

For clarity, we assume that the domain is convex without holes. However, the
analysis can be easily extended to the case of non-convex domains with holes. We
make the following observations:

• All layers are created by passing of a wave from an initial sub-domain vertex u0,
selected randomly, located on the boundary of the domain.
• Each layer represents a sequence of connected sub-domains. The first and the

last sub-domains are located on the boundary of the domain.
• Within a layer, there exists paths between each pair of vertices. Each edge rep-

resents adjacency between sub-domains.
• We define an internal path as one that passes through the entire layer Li, and

we denote edges within this path as internal edges. An internal path contains all
vertices in the layer. We order all vertices representing sub-domains in Li from
“top” to “bottom”, where by the “upper” sub-domain we mean the one located
on the upper boundary of the domain. Figure 4 illustrates the ordering.

Fig. 4. Example of internal path and next layer edges

7 października 2010 str. 11/18

h-Relation personalized communication strategy 91

We enumerate vertices according to the order and denote them by <

vLi1 , . . . , vLip >, where p is the length of the path.
• In general, all non-internal path edges may be the result of adjacency on the

side of the previous layer, or on the side of the next layer, since edges represent
geometrical 2D connections between sub-domains.
• We distinguish two sides of a layer for assigning a “side” to connections between

sub-domains (that are not in the internal path defined above): the previous layer
side and the next layer side.
• Within a layer, there are three kinds of edges: internal edges, previous side edges

and next side edges, according to their geometrical location, as illustrated in
Figs. 4, 5.

Fig. 5. Covering of the sub-domain vLik+1 by the previous side edge connections

Lemma 4. There are no previous side edges.

Proof. Let us suppose there is a previous side edge {vLik , vLik+l} with l ≥ 2, see
Figure 5. From the definition of the layer construction, each vertex vLik must be
connected with some vertex from the previous layer. Existence of a previous side
edge {vLik , vLik+l} means that the sub-domain represented by vertex vLik is adjacent to
the sub-domain represented by vertex vLik+l through a common vertex in the previous
layer side. But previous-side adjacency of sub-domain vLik to sub-domain vLik+l for l ≥ 2
means that sub-domains vLik+1, . . . , v

Li
k+l−1 are “covered” from any possible connection

to the previous layer. Hence, the existence of previous-side edges is a contradiction
with the fact that the covered vertices are adjacent to some vertex v

Li−1
m in the

previous layer.

Lemma 5. Next side edges do not intersect themselves.

Proof. Let us suppose there is a next side edge {vLik , vLik+m} intersecting with a next
side edge {vLik+l, vLik+n} where m > 2, n− l > 2 and 1 < l < m < n. Adjacency of sub-
domain vLik to sub-domain vk+m means that sub-domains vLik+1, ...v

Li
k+l, . . . , v

Li
k+m−1 are

covered on the next layer side by the {vLik , vLik+l} connection. Hence, this contradicts

7 października 2010 str. 12/18

92 Maciej Paszyński

the fact that sub-domain vLik+l can also be connected to sub-domain vLik+n on the next
side.

Lemma 6. The second execution of the layer-connection algorithm over all layers Li
with ∆(Li) = h − 1 results in one bipartite graph SI with ∆(SI) ≤ h − 1 and one
graph SL with ∆(SL) ≤ 2.

Proof. By executing the layer-connection algorithm over each layer Li, we obtain
a set of bipartite sub-layers subgraphs {Lmi }m=1,...,LNi−1

i=1,...,LN−1 and a set of sub-connection

subgraphs {Imi }m=1,...,LNi−1
i=1,...,LN−1 , where LNi denotes the number of sub-layers resulting

from execution of the algorithm over the layer Li.
The union of all sub-connection subgraphs is a bipartite subgraph, SI =⋃m=1,...,LNi−1

i=1,...,LN−1 Lmi , by 3. Also, ∆(SI) ≤ h − 1, since ∆(Lmi) ≤ h − 1, i = 1, . . . , LN ,
for each layer according to 1.

It is necessary to show that ∆(SL) ≤ 2, where SL is the union of sub-layers
Lmi resulting from the execution of the algorithm over all layers Li. We can do this
by proving the same property for each sub-layer, ∆(Lmi) ≤ 2, i = 1, . . . , LN , m =
1, . . . , LNi, since all sub-layers are disjoint. In other words, it is only necessary to
show that each vertex v

Lmi
k in any sub-layer Lmi has a valency no greater then 2 in

Lmi .

We proceed with the proof by considering all adjacency cases of the vertex vL
m
i

k ,
and observations about the cases (each sub-layer has all the properties of a layer):
• The internal path in the sub-layer is an ordered set of vertices along the path
< v

Lmi
1 , . . . , v

Lmi
p >.

• We can assume that the initial vertex vL
1
i

1 is the first vertex in the internal path,
and is located on the boundary of the domain.
• Each vertex v

Lmi
k from sub-layer Lmi can only have two kind of edges: internal

edges and next side edges, since previous side edges are not possible, according
to 4.
• Each vertex v

Lmi
k in sub-layer Lmi for m > 1 must have an edge to some vertex

v
Lm−1
i

l from the previous sub-layer Lm−1
i .

• Each vertex v
Lmi
k in sub-layer Lmi can have neighbors in the layer Li only from

layers Lm−1
i or Lmi or Lm+1

i , from the properties of the layer-connection algo-
rithm.
• We distinguish forward and backward directions along the internal path according

to the order of vertices on the internal path.
First, we consider the following observations for the possible adjacency cases

in the backward direction:
1. Each vertex v

Lmi
k from sub-layer Lmi can only have one internal edge associated

with the vertex vL
m
i

k−1 and many next side edges.

2. If there is a next side edge {vL
m
i

l , v
Lmi
k } between two vertices in sub-layer Lmi ,

then between those vertices there can only be vertices from further sub-layers

7 października 2010 str. 13/18

h-Relation personalized communication strategy 93

Lm+n
i , n ≥ 1. Assume between them there is a vertex v

Lmi
k+n, n ∈ {1, . . . , l − 1}

from the same sub-layer, see Figure 6(a). The vertex v
Lmi
k+n must be connected

with some vertex from the previous sub-layer vL
m−1
i , by the definition of sub-

layer. There is no possibility of connecting internal vertices vk+1, . . . , vl−1 with
any external vertex, because all the vertices are covered by the next side edge,
and edges do not intersect.

Fig. 6. Adjacency cases for vertex from sub-layer: (a) Vertices covered by the edge
{vL

m
i

k , v
Lmi
l }. (b) Internal edges are from the next sub-layer. (c) Only one edge from the

same sub-layer through the next sub-layer edge. (d) Only one neighbor from the same sub-
-layer through the internal edge

3. If the vertex vL
m
i

k from sub-layer Lmi is connected by a next side edge with another

vertex v
Lmi
l from the same layer in the backward direction, then the neighbor

v
Lm+1
i

j of the vertex v
Lmi
k through the internal edge in the backward direction

is from the next layer Lm+1
i , see Figure 6(b). Let us consider the execution of

of the layer-connection algorithm over the layer Li. The m-step assigns vertices
v
Lmi
k and v

Lmi
l to sub-layer Lmi . In the next step, vj will be assigned into a next

sub-layer Lm+1
i .

4. Each vertex vL
m
i

k from sub-layer Lmi can only have one neighbor vL
m
i

l through the
next side edge from the same sub-layer in the backward direction. Suppose it has
two such neighbors vL

m
i

l and vL
m
i

l+1, see Figure 6(c). Then, the neighbor vL
m
i

l+1 from

sub-layer Lmi is covered by the edge {vL
m
i

k , v
Lmi
l }, which is a contradiction with

observation 2.

7 października 2010 str. 14/18

94 Maciej Paszyński

5. Each vertex vL
m
i

k from sub-layer Lmi can only have one neighbor within the same
sub-layer in the backward direction. The reason is the following: The vertex
v
Lmi
k cannot have two neighbors from the same sub-layer through the next side

edges in the backward direction, according to observation 4, see Figure 6(c).
If the vertex has only one neighbor from the same sub-layer through next side
edge in the backward direction, then its internal edge neighbor is not from the
same sub-layer, from observation 3, see Figure 6(b). If the vertex v

Lmi
k has an

internal path neighbor from the same sub-layer in the backward direction, then
the vertex v

Lmi
k cannot have another neighbor through a next sub-layer edge,

compare Figure 6(d).

We conclude that the vertex v
Lmi
k may only have one neighbor vL

m
i

k−1 from the same
sub-layer when traversing the internal path in the backward direction. The same
observations apply in the forward direction, since the vertex vL

m
i

k from sub-layer Lmi
can only have two neighbors vL

m
i

k−1 and vL
m
i

k+1 in the same sub-layer as determined from
a scan in both directions, ∆Lmi ≤ 2.

Theorem 2. If the graph G is planar and ∆(G) = h, then G is a union of no more
than 3 bipartite graphs; that is, G =

⋃
i=1,...,3Bi, with ∆(B1) ≤ h, ∆(B2) ≤ h − 1

and ∆(B3) ≤ 2.

Proof. The theorem holds as a consequence of Lemma 1 and Lemma 6. The recur-
sive partitioning procedure in Figure 3 is truncated at the second recursion level as
illustrated in Figure 7, because the sub-graph layers have a maximum vertex valency
of 2.

Fig. 7. Partition of planar graph G with maximum vertex valency h into 3 bipartite graphs

The theorem proves the implied correctness of the layer-connection algorithm in
the case of planar graph representing a partition of a 2D mesh.

6. Complexity of the graph partition algorithm

Algorithm complexity for the general case. In the general case the graph par-
tition algorithm produces h − 1 bipartite graphs, where h is the maximum vertex
valency in the graph.

We assume that the graph is stored as a data structure where graph vertices and
edges are kept in a variable-length list. The operation of accessing all edges of all

7 października 2010 str. 15/18

h-Relation personalized communication strategy 95

vertices in the list has a complexity O (nh), where n denotes the number of vertices
in the graph. The complexity of each step (See Graph partition algorithm.) in the
algorithm is described below:

1. Step(1) is O (nh). The layer-connection algorithm visits each vertex, browses all
of its neighbors, and assigns layer-connection indexes to each vertex.

2. Step(2) is O (nh). This step browses all vertices and edges of the graph, to form
a bipartite graph B1 and layer subgraph L1. It is performed by attributing graph
edges and vertices.

3. Step(3) is O (1). Initializes a layer counter.
4. Step(4) is O (nh). This step searches all vertices of the graph, and all edges of

particular layers, to find the maximum valency of the graph vertices. All edges
of all graph vertices are browsed, to determine their assignment to layers. layer.

5. Step(5) is O (1). The layer counter is incremented.
6. Step(6) is O (nh). This step required browsing of all vertices of the graph and

all edges of those vertices assigned to particular layers. All edges of the graph
vertices are checked to determine their layer assignment.

7. Step(7) is O (nh). This step queries all vertices of the graph, and all edges of
particular layers, to group them into a bipartite graph Bk+1 and the sub-layers
of subgraph Lk+1. This is accomplished by attributing graph edges and vertices.
All edges of all graph vertices are searched for assignment to a sub-layer.

8. The Step(8) This is a pseudo-code description for defining a naming convention.
9. Step(9) is O (nh). This step requires browsing all vertices of the graph, and all

edges of particular sub-layers, for attributing them to the last bipartite graph
Bk+2. All graph edges of the graph vertices are searched for assignment to a sub-
layer.

In the general case, Step(4)–Step(8) are repeated h− 2 times. The total computa-
tional complexity contribution from the above list is

O (nh+ nh+ 1 + (h− 2) (nh+ 1 + nh+ nh) + nh) = O(nh2) (10)

Algorithm complexity for a planar graph. The case of planar graph differs
from the general case only in the number of iterations. The Step(4)–Step(7) loop is
performed no more than one time. Hence, the total computational complexity of the
algorithm for a planar graph is

O (nh+ nh+ 1 + nh+ 1 + nh+ nh+ nh) = O(nh) (11)

7. Conclusions

• We have shown that all communication problems arising from a partition of a 2D
computational domain into sub-domains and exchanging data with neighbors can
be solved using a h-relation personalized communication (h-rpc), where h is the
maximum number of neighboring sub-domains.

7 października 2010 str. 16/18

96 Maciej Paszyński

• We propose an alternative h-rpc strategy for communication patterns arising from
partition of the domain into sub-domains. The strategy uses an algorithm that
partitions a graph representation of the domain into a set of bipartite graphs,
edge-colors the bipartite graphs, and schedules communication according to the
assigned color.
• We have shown the correctness of proposed graph partitioning algorithm and

analyzed its computational complexity.
• We have derived the cost for scheduling our bipartite graphs edge-coloring algo-

rithm.
• For planar graphs representing partitioned 2D areas, the number of resulting

bipartite graphs is not more that 3, and the number of colors required for edge-
coloring is not greater than 2h+ 1.
• For the graph representation of partitioned 3D areas, the number of resulting

bipartite graphs is not more that h − 1, and the number of colors required for
edge-coloring is no greater than 1

2 (h2 + h− 6).

Acknowledgements

The work has been partially suported by Polish MNiSW grant no. NN 519 447739.

References

[1] Bader D. A.: High-Performance Algorithms and Applications for SMP Clusters.
NASA High Performance Computing and Communications Aerospace Workshop
CAS 2000, Moffett Field, CA, 2000.

[2] Bader D. A., Helman D. R., JáJá J.: Practical Parallel Algorithms for Personalized
Communication and Integer Sorting. ACM Journal of Experimental Algorithmics,
vol. 1, 1996, pp. 1–42.

[3] Biggs N. L.: Discrete Mathematics. Oxford University Press, 1985.
[4] Cormen T. H., Leiserson C. E., Rivest R. L.: Introduction to Algorithms. MIT

Press, 1999.
[5] Goldman A., Trystram D.: Algorithms for the Message Exchange Problem. Proc.

of the International Conference on Parallel Computing in Electrical Engineering,
Poland, 1998.

[6] Jain R., Werth J., Browne J.C., Sasaki G.: A graph-theoretic model for scheduling
problem and its application to simultaneous resource scheduling. Computer Sci-
ence and Operations Research: New Developments in Their Interfaces, Penguin
Press, 1992.

[7] Johnsson S. L., Ho. C.-T.: Optimal All-to-All Personalized Communication with
Minimum Span on Boolean Cubes. Technical Report 18–91, Harvard University,
1991.

7 października 2010 str. 17/18

h-Relation personalized communication strategy 97

[8] Johnsson S. L., Ho. C.-T.: Optimal Broadcasting and Personalized Communica-
tion in Hypercubes. IEEE Transactions on Computers, vol. 38, 1989, pp. 1249–
1268.

[9] Kapoor A., Rizzi R.: Edge Coloring Bipartite Graphs. Technical Report DIT-02-
040, University of Trento, 1999.

[10] Marathe M. V., Panconesi A., Risinger L. D.: An experimental study of a simple,
distributed edge coloring algorithm. Proc. of the 12th annual ACM symposium on
Parallel Algorithms and Architectures, Bar Harbor, Maine, 2000, pp. 166–175.

[11] Mathur K. K., Johnsson S. L.: All-to-All Communication Algorithms for Dis-
tributed BLAS Technical Report 07-93, Harvard University, 1993.

[12] Mathur K. K., Johnsson S. L.: Communication Primitives for Unstructured Fi-
nite Element Simulations on Data Parallel Architectures. Technical Report 23-92,
Harvard University, 1992.

[13] Risinger L. D., Marathe M. V., Panconesi A.: Edge Coloring Algorithms for
Scheduling in ASCI: Survey and Experimental Results. Technical Report LAUR-
No-97-2341, Los Alamos National Laboratory, 1997.

[14] Rizzi R.: Finding 1-Factors in Bipartite Regular Graphs and Edge-Coloring Bi-
partite Graphs. SIAM J. Discrete Math., vol. 15, 2002, pp. 283–288.

[15] Skiena S.: Coloring Bipartite Graphs. [in:] Implementing Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, Addison-Wesley, 1990.

[16] Sundar N. S., Jayasimha D. N., Panda D. K., Sadayappan P.: Hybrid Algorithms
for Complete Exchange in 2D Meshes. IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 12, 2001, pp. 1201–1218.

[17] Wang J.-C., Lin T.-H., Ranka S.: Distributed Scheduling of Unstructured Collec-
tive Communication on the CM-5. Parallel Processing Letters, special issue on
Partitioning and Scheduling, 1995.

[18] Wenjie H., Xiaoling H., Ko-Wei L., Jiating S., Weifan W., Xuding Z.: Edge-
Partitions of Planar Graphs and Their Game Coloring Numbers. Journal of
Graph Theory, vol. 41, 2002, pp. 307–317.

[19] Zhi-Zhong C., Xin H. Parallel complexity of partitioning a planar graph into
vertex-induced forests. Discrete Applied Mathematics, vol. 69, 1996, pp. 183–198.

7 października 2010 str. 18/18

98 Maciej Paszyński

