
K. Korcyl, T. Szymocha∗ W. Funika, J. Kitowski, R. Slota∗∗

K. Balos, L. Dutka, K. Guzy, T. Kryza, J. Pieczykolan∗∗∗

THE ATLAS EXPERIMENT ON-LINE
MONITORING AND FILTERING AS AN EXAMPLE
OF REAL-TIME APPLICATION

The ATLAS detector, recording LHC particles’ interactions, produces events with rate of
40 MHz and size of 1.6 MB. The processes with new and interesting physics phenomena are
very rare, thus an efficient on-line filtering system (trigger) is necessary. The asynchronous
part of that system relays on few thousands of computing nodes running the filtering software.
Applying refined filtering criteria results in increase of processing times what may lead to
lack of processing resources installed on CERN site. We propose extension to this part of
the system based on submission of the real-time filtering tasks into the Grid.

Keywords: high energy physics, real-time procesing, trigger system, remote farms

SYSTEM MONITORINGU I FILTRACJI EKSPERYMENTU ATLAS
JAKO PRZYKŁAD APLIKACJI CZASU RZECZYWISTEGO

Detektor ATLAS, rejestrujący zderzenia protonów rozpędzanych w zderzaczu LHC,
będzie generował przypadki o rozmiarze 1.6MB z częstotliwością 40MHz. Aby wyse-
lekcjonować bardzo rzadko występujące przypadki z interesującymi oddziaływaniami fizy-
cznymi, konieczne będzie zastosowanie wydajnego systemu filtracji (trigger). Część asyn-
chroniczna takiego systemu wykorzystuje kilka tysięcy komputerów, na których wykony-
wane jest oprogramowanie filtrujące. Zwiększenie selektywności systemu wymaga zwięk-
szenia czasu procesowania, co może doprowadzić do wyczerpania zasobów komputerowych
zainstalowanych w CERN-ie. Proponujemy rozszerzenie tej części systemu poprzez umożli-
wienie wykonywania oprogramowania filtrującego w czasie rzeczywistym na komputerach
w środowisku gridowym.

Słowa kluczowe: fizyka wysokich energii, przetwarzanie w czasie rzeczywistym, system fil-
tracji, zdalne farmy

∗ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland,
Krzysztof.Korcyl@ifj.edu.pl

∗∗ Institute of Computer Science, AGH University of Science and Technology, Krakow, Poland
∗∗∗ ACC CYFRONET AGH, Krakow, Poland,

Computer Science • Vol. 9 • 2008

77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AGH (Akademia Górniczo-Hutnicza) University of Science and...

https://core.ac.uk/display/229288564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The ATLAS detector [1], will be recording interactions of protons beams with particles
grouped in bunches and accelerated by the LHC accelerator [2] to energy 7TeV. The
bunch crossing rate of 40MHz together with an average 25 interactions per crossing
yields 1GHz interaction rate. The interactions with interesting physics phenomena
are very rare in range of tens fraction of Hz, thus an efficient on-line filtering system
(trigger), capable to reduce the rate by 10 orders of magnitude is necessary. Such
system would guide the data acquisition system to pull out from the data stream
only interesting interactions and send them to the permanent storage for further
physics analysis. The average size of ATLAS event is 1.6MB and expected final rate
of 200Hz (interesting interactions and samples of background processes). The ATLAS
trigger system is composed of two parts. The synchronous part, using coarse channels
granularity, is based on processing implemented in the programmable logic devices
FPGAs hence it is characterized by a fixed latency and is tightly coupled with the
LHC timing. The asynchronous part of the system uses fine channel granularity and
is distributed over a few thousands of computing cores running the filtering software.
This part is further subdivided into two stages. At the earlier stage, the algorithms,
running for events accepted by the synchronous part, fetch data from a subset of
detector’s buffers where interesting phenomena has been registered. However, their
extended processing time may lead to buffer blockade and introduction of dead time.
The last stage of the trigger system uses full event images, assembled during the
Event Buiding process from the all detector buffers and stored on local disk drives.
The selectivity of the trigger depends on a number and quality of filtering criteria
and the more refined criterion the more processing power it needs. Thus making the
trigger more selective may result in increasing demand for processing power what may
lead to lack of processing resources installed on CERN site. We propose extension to
the system based on submission of the real-time filtering tasks into the Grid.

2. Delegating processing tasks to resources offered by Grid

The ATLAS experiment implemented the trigger and data acquisition systems with
assumption that all computing power (ca. 5000 CPUs) will be available at CERN
site. In case the TDAQ system would have to filter higher event rate or make the
trigger more refined by using more time for the filtering algorithms, some addition-
al CPUs would be needed and these could be allocated from the Grid. The current
organization of the ATLAS TDAQ system together with proposed extension is pre-
sented in Figure 1. Computers running the Sub Farm Interface (SFI) tasks collect
data from all detector’s channels for a given interaction to form an event image (the
Event Building). There are almost one hundred of the SFI computers performing in
parallel these tasks. When an event is completed the space in the detector’s buffers
occupied by the event data can be freed. The event image can then be sent to the
last stage of filtering, the Event Filter, carried out by the nodes running the Event

78 K. Korcyl et al.

Filter Deamon (EFD) process. The EFD communicates with the SFI, stores the event
data in the RAM internal buffer and passes the pointer to the Processing Tasks (PTs)
executed in the same node. A number of PTs can run in parallel on multi-CPU boxes
or multi-core CPUs. The PTs perform the filtering tasks and after completion return
decision and some additional information to the EFD. In case the event is accepted,
the EFD sends the event data with processing results to the Sub Farm Output (SFO)
node which relays it on to the system with permanent storage. As it is likely that the
PT may crash on analysis of the unknown data patterns originated from new physic
phenomena, the RAM space with events is mapped onto a file to avoid loosing events
(the event data will be sent to permanent storage for further analysis).

Fig. 1. Organization of the last stage of the current ATLAS TDAQ system with proposed
extension. The leftmost box represents Event Filter local node with EFD and PT processes.
The part of the figure to the right shows proposed extension where the PT is splitted into
proxyPT running at CERN together with the EFD whereas the other part, the remotePT
is located in Grid farm. The Real Time Dispatcher and IHEP Virtual Organization provide

necessary infrastructure

The configuration of the ATLAS TDAQ system is entirely static as the config-
uration data is picked up from the database. All nodes collaborating in the system,
from detector buffers to the SFO, are configured, initialized, monitored and controlled
by the ATLAS TDAQ software.

To profit from the Grid remote resources with minimal modifications to the ex-
isting ATLAS TDAQ system we propose to break the processing task (PT) into the
ProxyPT and RemotePT. The ProxyPT will be instantiated, monitored and con-
trolled by the standard ATLAS TDAQ software in an ordinary way. When the event
data will be received by the EFD and the pointer to it passed to the ProxyPT, the
latter will communicate with RemotePT, pass on the event data and wait for results

The ATLAS experiment on-line monitoring and filtering (. . .) 79

of filtering work done at the remote site. When the RemotePT will finish processing
the decision together with some additional results will be communicated back to the
ProxyPT. The ProxyPT will pass on the data to the EFD. The EFD will continue
operation as the processing would have been perfomed at the local machine. A large
number of ProxyPT tasks can be instantiated on each of the EFD nodes as they do
not consume local CPU resources for processing. As the ProxyPT will be paired with
RemotePT for each event, the number of RemotePTs can be adjusted dynamically.

The infrastructure needed to support that idea together with schematic view of
operation is presented in the right part of Figure 1. The ProxyPT will communicate
with the Real Time Dispatcher (RTD) to find machine where the data will be sent
to and which will run the RemotePT task. Only machines which have been certified
can be used for that purpose. It is the task of the Interactive High Eenergy Physics
Virtual Organization (IHEP VO) to certify, that the machine has been upgraded with
the latest version of the analysis software together with the latest update to various
databases used in the processing. The IHEP VO is also responsible for launching
pilot jobs to the Grid to allocate machines where the RemotePT will subsequently be
started to be ready to receive event data for processing.

Implementation details on the IHEP VO and the RTD will be presented in the
following chapters.

3. Grid Real-Time Event Environment

3.1. IHEP VO Management

The IHEP VO is dedicated to support demanding HEP application. It is responsible
for providing environment necessary to run the application using resources offered
by the Grid. Available resources are carefully checked during certification procedure
[3]. If all necessary conditions are fulfilled (like performance, stability, data privacy),
SLA [4] with resources provider is signed and resources are certified and included
in the IHEP VO. Application run-time environment is built from certified resources
allocated by standard Grid jobs submitted before or during the experiment.

The IHEP VO is fitted with a portal, which simplifies usage and management of
the VO. The portal [5] is used by three user groups: VO managers, site managers and
experiment operators. The VO manager adjusts VO by selecting sites participating
in the experiment. He also prepares job submission profiles, which describe available
application flavors. The VO manager evaluates site’s operation according to statistics
provided by the portal and confronts them to the signed SLA. The site manager reg-
isters site in the VO and can check site’s statistics. The experiment operator prepares
application’s run-time environment by submitting Grid jobs before the experiment
starts. During the experiment, he can request additional resources or release already
allocated resources by stopping Grid jobs.

80 K. Korcyl et al.

3.2. Monitoring Environment

As a monitoring system for the HEP application we chose JIMS, the JMX-based In-
frastructure Monitoring System. JIMS is a modern monitoring system equipped with
specialized interface following the WS-Management standard (a standard protocol for
managing resources through the web) [6]. Built on top of the Java Management Ex-
tensions (JMX [7, 8], JIMS is a flexible framework that allows deployment of various
modules, like monitoring of Grid infrastructure as well as modules facilitating discov-
ery of monitored nodes within the cluster and the Grid. More, JIMS communication
layer is also composed of modules as for example JSR 262 connector — a Web Services
connector for JMX technology [6] implementing the aforementioned WS-Management
standard.
For our purpose JIMS system was enhanced with P2P capabilities based on

Global Discovery Protocol [9]. The Global Discovery Service (GDS) module allows
JIMS agents to discover all the agents running within the Grid. Having the list of
discovered agents, another module, JIMS Gateway, allows connecting to any other
agents from one, arbitrarily chosen agent. In our case this is the agent that is selected
and configured in RTD, which collects the monitoring information from one point of
attachment with JIMS monitoring system via WS-Management protocol.
For purposes of HEP application, JIMS system was equipped with two types of

monitoring modules. First is the Network Monitoring module, monitoring the avail-
able bandwidth using the algorithm of measuring dispersion between pairs of packets
[10]. The concept of available bandwidth monitoring is used by the senders/receivers
components of JIMS agents, communicating with each other in order to measure the
available possible bandwidth between HEP application at CERN and the computing
resources in clusters all over the Europe (IFCA, CYFRONET, etc.).
The second module allows the RTD to obtain information about computing in-

frastructure utilization. The OCM-G [13, 14] monitoring system is exploited here. The
module, being an OCM-G client, has an access to monitoring information collected by
OCM-G’s monitors which are started on worker nodes together with HEP application
processes. The module interface allows to obtain information about resource usage of
these worker nodes e.i. to get the load average values (i.e. the number of jobs in the
run queue or waiting for disk I/O averaged over 1, 5, and 15 minutes), an amount of
available main memory and an amount of remaining swap space.

3.3. Real-Time Dispatcher

In general, the Grid environment does not support on-line processing. The middleware
allows for batch processing, i.e. the user can submit a task, which typically consists of
an appropriate program and input data. The Grid middleware queues the task, waiting
for available computation resources. Once the Resource Broker assigns a computation
node, the task is started and after completing the processing, results are sent back
to the user. Therefore, the Real-Time Dispatcher enabling online processing has been
developed to support usage of the Grid environment.

The ATLAS experiment on-line monitoring and filtering (. . .) 81

This process consists in starting a given number of RemotePT tasks on the Grid
and registering them in the RTD. Those tasks are waiting for the data stream to
arrive. When the data arrive to the EFD and pointer is passed to ProxyPT, ProxyPT
requests a connection to RemotePT from the RTD. It passes the IP address and
port on which it is listening. The RTD selects an appropriate RemotePT instance,
passes ProxyPT information and a connection between them is established. Thus, it
is possible to process data generated in the experiment on the Grid.

Client

The Grid

Worker

Real-Time Dispatcher

Engine

Frontend Interface

Backend Interface

Resource
Manager

Resource
Registry

Grid Monitoring
System

Monitor

Fig. 2. The Dispatcher architecture

The internal structure of the RTD is shown in Figure 2. It comprises of several
modules, each with well defined functionality:

• Frontend – receives requests from ProxyPT,
• Backend – maintains communication with RemotePT,
• Resource Manager – manages available RemotePTs,
• Monitor – collects monitoring data.

The RTD constantly monitors Grid resources where remotePTs instances have
been launched and maintains list of nodes with history of measurements. It uses the
Grid middleware solutions JIMS and OCM-G to get the data. The metrics currently
used are the average load, free memory and free swap memory. When the proxyPT
request to find a remotePT arrives to the RTD, the latter uses the set of monitoring
data to find the best destination for the request. The RTD replies to the proxyPT
with IP address and port number of selected node. These data are then used by the
proxyPT to communicate directly with remotePT.

82 K. Korcyl et al.

4. Network QoS as feasibility studies on using remote farms
for online processing

In preparation for tests of the proposed architecture we measured QoS parameters
of the computer network between CERN, Geneva, Switzerland and the remote farm
located in Academic Computer Center CYFRONET AGH, Krakow, Poland. These
measurements focused on latency, number of lost packets and possible assymetry in
both directions. We used system ANT — a setup with two computers located at both
ends of the connection equipped with programmable network interfaces and interfaces
to the GPS system [11]. The GPS allowed to synchronize machines located thousands
kilometers apart and measure parameters in either of the directions separately. To
confirm our measurements we also used iperf [12]. The measurements indicated that
the network QoS parameters were satisfactory for using CYFRONET remote farm
for on-line processing. The latency was constant and the fraction of packet loss was
negligible. The latter is very important as even small fraction of lost packets may re-
sults in significant limitation is effective transfers and underusage of installed network
capacity. Results from packet loss measurements are preseted in Figure 3. The higher
loses reported by iperf for the smallest packets have been identified as problems with
buffering at the operating system level.

CERN -> Cyfronet [Cisco, load 50%]

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

time [h]

pa
ck

et
 lo

ss
 [

%
]

1500 B ANT 1500 B iperf
800 B ANT 800 B iperf
500 B ANT 500 B iperf

Fig. 3. Fraction of lost packets as function of day time in 24 h run of sending packets from
CERN to Cyfronet with 50% network load, various packet sizes. Measurements were taken

using two methods: ANT and iperf

The ATLAS experiment on-line monitoring and filtering (. . .) 83

5. Experiment results

To evaluate performance of the proposed extension to the ATLAS TDAQ system we
run set of measurements using the original TDAQ system and refer to them as baseline
performance. We added, to the TDAQ system database, the IP addresses of a number
of machines located at CYFRONET and statically assigned to them the EFD and
PT tasks keeping the SFI and SFO located in CERN. In our measurements we used
1.6 MB event size, and multithreaded TCP transfers (30 was found to be minimal
number of threads for saturated TPC performance). In the Figure 4. we present event
processing rate as function of event processing time. For short processing times the
saturation originates from the network throughput limitation reaching 70% of the
Gigabit nominal value. For longer processing times the event rate enters hyperbole.
For processing times expected in ATLAS the system scales linearly; doubling the
number of PTs allows for two times longer processing time with the same event rate.

event Size: 1.6 MB

0

10

20

30

40

50

60

200 300 400 500 600 700 800 900 1000
processing time [ms]

ra
te

 [H
z]

2 EFD * 8 PT

3 EFD * 8 PT

4 EFD * 8 PT

Fig. 4. Event processing rate as function of processing time for the ATLAS baseline setup.
For short processing times the processing rate is limited by the network capacity; for longer
it is reciprocal to the duration of processing time. For processing times expected in ATLAS,
the system scales linearly for a given processing time, doubling number of PTs doubles event

processing rate

The results of experiment performed on a system extended by the Real-Time
Dispatcher are presented in Figure 5. The RTD is an extension of the ATLAS TDAQ
and the overall system effectiveness, in the sense of the frequency, is lower than for
the baseline ATLAS, because there are additional data transfers. In baseline system

84 K. Korcyl et al.

the data are moved from SFI to EFD where local PTs run analyses software. For the
RTD there are additional transfers between proxyPT and remotePT. These additional
transfers degrade effectiveness of the RTD for short processing times when the network
performance dominates the overall event processing rate. For longer processing times
(for the ATLAS it is expected to be in range 1–4 seconds) the system with RTD
should outperform the baseline as it should be able to dynamically select nodes with
best performance.

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800
processing time [ms]

ra
te

[H
z]

without RTD

with RTD

Fig. 5. Comparison of the event processing rate as function of processing time between system
without (diamonds) and with (squares) RTD. At the early stage of the RTD development
the TCP transmission was using only one thread, hence the comparison measurements were

performed with single thread transmissions

6. Conclusions and future work

The presented solution is an extension of the ATLAS TDAQ software that makes
possible to use the Grid infrastructure for the on-line processing. Our work focused
on identifying the optimal place to break standard ATLAS PT task into the local
proxyPT and the remotePT which can be submitted to remote computing resources.
We also designed and implemented first version of the Real-Time Dispatcher. We
compared the performance against the standard ATLAS TDAQ software with static
configuration. For the expected ATLAS processing times, the performance of the
two systems is the same. The further development of the RTD should be aimed in
improving TCP transmissions and dynamically distribute events based on information
collected from the Grid monitoring infrastructure.

The ATLAS experiment on-line monitoring and filtering (. . .) 85

Acknowledgements

The work described in this paper was supported in part by the European Union through
the IST-2006-031857 project “Interactive European Grid”.

References

[1] ATLAS HOME PAGE: http://atlas.web.cern.ch/Atlas/index.html
[2] LHC HOME PAGE: http://lhc.web.cern.ch/lhc
[3] Skitał Ł., Dutka Ł., Korcyl K., Janusz M., Słota R., Kitowski J.: Virtual Orga-
nization approach for running HEP applications in Grid Environment. Cracow
Grid Workshop, October 15–18, 2006, Cracow, Poland

[4] Skitał Ł., Janusz M., Słota R., Kitowski J.: Service Level Agreement metrics for
real-time application on the Grid. PPAM 2007, September 9–12, 2007, Gdansk,
Poland

[5] Skitał Ł., Słota R., Janusz M., Kitowski J.: Management of Virtual Organisation
for demanding applications in the Grid Environment. CGW 2007, October 15–17,
Kraków, Poland

[6] Denise J-F., Fuchs D.: Java Management Extensions (JMX) Interoperation
With Non Java Technologies. Available at: http://java.sun.com/javase/
technologies/core/mntr-mgmt/javamanagement/JSR262_Interop.pdf, 2007

[7] Sun Microsystems: Java Management Extensions (JMX) Specification, ver-
sion 1.4, JSR 160. Available at: http://jcp.org/en/jsr/detail?id=160jmx1_
4mrel3spec.pdf, Canta Clara, CA, 2006, retrieved: Dec. 2006

[8] Sun Microsystems: Java Management Extensions Instrumentation and Agent
Specification v. 1.2, JSR 003. Available at: http://jcp.org/en/jsr/detail?
id=3jmx_1.2_spec.pdf, Santa Clara, CA, 2002, retrieved: Dec. 2006

[9] Wojtas K., Wasilewski L., Balos K., Zielinski K.: Discovery Service for JMX-
Enabled Monitoring System. JIMS Case Study. CGW’05 Workshop Proceedings,
ACC CYFRONET AGH, Kraków, 2006, pp. 148–157

[10] Dovrolis C. et al.: What Do Packet Dispersion Techniques Measure? Infocom,
2001, pp. 905–914

[11] Korcyl K., Beuran R., Dobinson B., Ivanovici M., Maia L.M., Meirosu C., Slad-
owski G.: Network Performance Measurements as Part of Feasibility Studies on
Moving an ATLAS Event Filter to Off-Site Institutes. LNCS 2970, 2003, pp. 206–
213

[12] IPERF project home page. Available at: http://dast.nlanr.net/projects/
Iperf.

[13] OCM-G project home page. Available at: http://grid.cyfronet.pl/ocmg/
[14] Funika W., Guzy K.: Integration of OCM-G into the JIMS infrastructure for
the monitoring of a HEP application. Proceedings of Cracow Grid Workshop –
CGW’07, October 15–17, 2007, Cracow, Poland

86 K. Korcyl et al.

