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CONVERGENCE OF ITERATIVE SOLVERS
FOR NON-LINEAR STEP-AND-FLASH IMPRINT
LITHOGRAPHY SIMULATIONS

The paper presents the analysis of the iterative solvers utilized to solve the non-linear problem
of Step-and-Flash Imprint Lithography (SFIL) a modern patterning process. The simulations
consists in solving molecular statics problem for the polymer network, with quadratic poten-
tials. The model distinguishes the strong interparticle interactions between particles forming
a polymer network, and weak interactions between remaining particles. It also allows for large
deformations, which all together implies the non-linear model. To illustrate the convergence
of the iterative solvers, we present snapshots of the deformation of the sample being subject
to the iterative solution. We claim that the animation is an interesting way of illustrating
the convergence of the iterative solvers.
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ZBIEŻNOŚĆ SOLWERÓW ITERACYJNYCH
DLA NIELINIOWYCH SYMULACJI PROCESU NANOLITOGRAFII
PRZEZ NAŚWIETLANIE I WYCISKANIE
Artykuł analizuje zbieżność solwerów iteracyjnych dla nieliniowych symulacji procesu nano-
litografii przez naświetlanie i wyciskanie. Symulacje polegają na rozwiązaniu zadania staty-
ki cząsteczkowej dla sieci polimerów, w którym przyjęto kwadratowe potencjały między-
cząsteczkowe, rozróżniono silniejsze oddziaływania pomiędzy cząstkami tworzącymi łańcuchy
polimerów oraz słabsze oddziaływania pomiędzy pozostałymi cząstkami, a także dopuszczono
występowanie dużych odkształceń, co implikuje model nieliniowy. W celu ilustracji zbieżnoś-
ci solwerów przedstawiono wizualizacje odksztalceń sieci polimerów w kolejnych iteracjach.
Taka animacja jest interesującą metodą ilustracji zbieżności solwerów iteracyjnych.
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1. Introduction

The paper presents the analysis of the convergence of iterative solver utilized to
solve the non-linear molecular statics problem resulting from Step-and-Flash Imprint
Lithography (SFIL) simulations. The SFIL is a modern patterning process utilizing
the photopoymerization to replicate the topography of a template onto a substrate
[1, 3, 4]. The liquid polymer is placed on the substrate, pressed by the template with
previosly prepared shape, and the photopolymerization process is forced by the UV
expose. The simulation of the SFIL process focuses on the modeling of the densification
step, where the polymer network is formed and the interparticle forces arise and result
in a shrinkage of the sample. The average distance between the molecules decreases
and causes volumetric contraction. Exemplary shrinkage of the sample is presented in
Figure 1. Densification of the SFIL photopolymer may affect both the cross sectional
shape of the sample and the placement of relief patterns.

Fig. 1. Shrinkage of the sample after removal of the template (picture obtained
from Prof. G. C. Willson from the University of Texas in Austin)

The densification process resulting in the shrinkage of the sample is modeled by
the non-linear molecular statics. The input of the algorithm is the polymer network
obtained from the Monte-Carlo simulation [2], describing the chemical reactions that
take place during the photopolymerization. The resulting molecular structure consists
of a lattice of point mass particles with dual, nearest-neighbor, force interactions
governed by force potential functions. In the molecular statics model, large particle
displacements are allowed and all inter-molecular bonds are governed by quadratic
force potential functions.

The resulting model is non-linear and must be solved using the iterative lin-
earization method. The Newton-Raphson method is used for the linearization, and
the GMRES iterative solver is used to solve the linearized problems in consequtive
iterations. The convergence of the iterative solver is tested on the 50×50×50 nm rep-
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resentative sample, and the snapshots of the deformations during particular iterations
are presented. The non-linear model is also compared with linear one, assuming small
deformations, and the linear model is solved by using PCG solver.

2. Molecular Statics Model

This chapter presents the derivation of the equation governing the equilibrium config-
urations of the interacting particles forming the polymerized network. The interpartice
force parameters were generated by the Monte Carlo simulation of the photo-curing
process [2]. The derivation presented here is based on the detailed derivations for
linear and non-linear models for the Molecular Statics and Finite Element Method
[5] summarized in technical report [6].

We consider an arbitrary pair of molecules in the mesh with indices α and β and
given initial position vectors pα = (x̂α, ŷα, ẑα) and pβ . The unknown equilibrium po-
sition vectors of particles α and β are denoted xα = (xα, yα, zα) and xβ , respectively.
The displacements from the initial position in the lattice to the equilibrium position
are represented by the vectors uα = xα − pα and uβ = xβ − pβ . Let ‖ · ‖ denote the
Eucledean norm in R3, let rαβ = ‖xβ − xα‖ be the distance between particles α and
β in equillibrium configuration.

In this paper we consider two formulations of the problem. First formulation
assumes small deformations, and thus we formulate the equillibrium equations in the
initial configuration of particles. In other words, the interparticle forces Fαβ act along
the vector pβ − pα. The interparticle force is defined as

Fαβ = − ∂V (rαβ)
∂rαβ︸ ︷︷ ︸

magnitude

pβ − pα
‖pβ − pα‖︸ ︷︷ ︸

direction

(1)

where V (rαβ) is the potential function due to the bond between particles α and β. The
small deformation assumption, in particular the fact the we formulate the problem in
the initial position of particles, implies the linear model.

In the second formulation the large deformations are allowed and that is why
we formulate the equillibrium equations in the unknown destination configuration of
particles. In other words, the interparticle forces Fαβ act along the vector xβ − xα.
The interparticle force is defined as

Fαβ = − ∂V (rαβ)
∂rαβ︸ ︷︷ ︸

magnitude

xβ − xα
‖xβ − xα‖︸ ︷︷ ︸

direction

(2)

All the force potential functions V (rαβ) are assumed to be quadratic and therefore
the magnitude of the intermolecular forces Fαβ is linearly dependent on rαβ

Fαβ = kαβ
(
rαβ + ∆rαβ − r0

αβ

)
(3)
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where kαβ is the stiffness coefficient of the spring force (provided by the Monte Carlo
simulation) rαβ +∆rαβ is length of the spring in equillibrium configuration of the lat-
tice structure and where r0

αβ is the unstretched length of the spring (when F αβ = 0).
The equillibrium equations are obtained by summing up all interparticle forces

for all particles neighboring the particle α, collected in the set Nα. For the linear
formulation assuming small deformations we get

∑

β∈Nα
Fαβ = −

∑

β∈Nα

∂V (rαβ)
∂rαβ

pβ − pα
‖pβ − pα‖

= 0. (4)

and for the non-linear formulation allowing for large deformations we have

∑

β∈Nα
Fαβ = −

∑

β∈Nα

∂V (rαβ)
∂rαβ

xβ − xα
‖xβ − xα‖

= 0. (5)

The parameters of the potential functions {V (rαβ)}β∈Nα are provided by the Monte
Carlo simulation algorithm discussed in [2].

In the non-linear model, the intermolecular forces F αβ are linear and we allow
for large deformations. It implies that directions of the spring forces are aligned along
xβ −xα. Thus, the non-linearity of the model is a consequence of large deformations.

In this paper we simulate the shrinkage of the sample after removing of the
template. The shrinkage is a result of internal forces resulting from the photopoly-
merization of the sample. That is why there are no external forces included in the
equillibrium equations. Moreover, the position of the bottom layer of particles is as-
sumed to be fixed.

3. Linear formulation assuming small deformations

The linear Molecular Statics model is based on two basic assumptions:
1. All the force potential functions V (rαβ) are quadratic and therefore the magni-

tude of the intermolecular forces Fαβ is linearly dependent on rαβ .
2. Small deformations are observed. We will show now that this implies the direction

of the spring forces along the initial spring alignments pβ − pα.
In the following formulae we will write rαβ as l for simplicity.

∆l = (l + ∆l)− l =
(l + ∆l)2 − l2
l + ∆l + l

=
‖xβ − xα‖2 − l2

2l + ∆l
=

=
‖(pβ − pα) + (uβ − uα)‖2 − l2

2l + ∆l

where

l2 =

(
‖pβ − pα‖2

)2
+ (pβ − pα) · (uβ − uα) + ‖uβ − uα‖2 − l2

2l + ∆l
=
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=
2(pβ − pα) · (uβ − uα) + ‖uβ − uα‖2

2l + ∆l

From the assumption of small deformations it follows that ‖uβ−uα‖2 is a higher
order term that can be neglected, and ∆l

l � 1. Thus now

∆l ≈ 1
l
(pβ − pα) · (uβ − uα)

which we can rewrite in terms of our unknowns xα, xβ :

∆l ≈ 1
l
(pβ − pα) · (xβ − xα + pβ − pα) =

= −1
l
‖pβ − pα‖2 +

1
l
(pβ − pα) · (xβ − xα) =

= −l +
1
l
(pβ − pα) · (xβ − xα)

so
l + ∆l ≈ 1

l
(pβ − pα) · (xβ − xα)

The magnitude of the force in the spring between particles α and β becomes now

F αβ = kαβ
(
l + ∆l − r0

αβ

)
=
kαβ
rαβ

(pβ − pα) · (xβ − xα)− kαβr0
αβ

In the initial configuration, the spring is aligned along pα−pβ . In the equilibrium
configuration it is aligned along xβ − xα. The angle between these two alignments is
governed by

cos θ =
(pβ − pα) · (xβ − xα)

‖pβ − pα‖‖xβ − xα‖
=

(pβ − pα) · (pβ − pα + uβ − uα)

l · (l + ∆l)
=

=
l2 + (pβ − pα) · (uβ − uα)

l · (l + ∆l)

Since we assumed small deformations, we get

(pβ − pα) · (uβ − uα)

l2
≤ ‖pβ − pα‖‖uβ − uα‖

l2
=
‖pβ − pα‖

l
� 1

and ∆l
l � 1. Hence cos θ ≈ 1 which implies that θ ≈ 0 and F αβ is approximately

aligned along pβ − pα, i.e.

F αβ =
[
kαβ
rαβ

(pβ − pα) · (xβ − xα)− kαβr0
αβ

]
(pβ − pα)

rαβ

where
[
kαβ
rαβ

(pβ − pα) · (xβ − xα)− kαβr0
αβ

]
is a magnitude and

(pβ−pα)
rαβ

is a direc-
tion.
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At this point we are ready to introduce the equillibrium equations for a linear
model. At each particle, force equilibrium has to hold. Thus

∑

β

F αβ = 0, α = 1, 2, . . . , N

which can be rewritten as

∑

β

(
kαβ
rαβ

(pβ − pα) · (xβ − xα)
)
pβ − pα
rαβ

=
∑

β

kαβr
0
αβ

rαβ
(pβ − pα) = 0

Note that rαβ =
√

(x̂β − x̂α)2 + (ŷβ − ŷα)2 + (ẑβ − ẑα)2. So at each particle we have
3 equations (corresponding to each component of the vector equation).

For example, equations in x direction

∑

β

kαβ [(x̂β − x̂α)(xβ − xα) + (ŷβ − ŷα)(yβ − yα) + (ẑβ − ẑα)(zβ − zα)](x̂β − x̂α)
(x̂β − x̂α)2 + (ŷβ − ŷα)2 + (ẑβ − ẑα)2 =

=
∑

β

kαβr
0
αβ(x̂β − x̂α)

√
(x̂β − x̂α)2 + (ŷβ − ŷα)2 + (ẑβ − ẑα)2

= 0

equations in y direction

∑

β

kαβr
0
αβ(ŷβ − ŷα)

√
(x̂β − x̂α)2 + (ŷβ − ŷα)2 + (ẑβ − ẑα)2

= 0

and in z direction

∑

β

kαβr
0
αβ(ẑβ − ẑα)

√
(x̂β − x̂α)2 + (ŷβ − ŷα)2 + (ẑβ − ẑα)2

= 0

4. Netwon-Raphson method for non-linear model allowing
large deformations

We start with formulating the equillibrium equations for non-linear model. At each
particle α, force equilibrium has to hold. Thus

∑

β

F α
αβ = 0, α = 1, 2, . . . , N

which can be rewritten as
F (x) = 0

where F is a composition of F α for all α = 1, 2, . . . , N , and x is a composition of
x1, x2, . . . , xN .
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From Taylor expansion of F around guess xi we have

F (x) = F (xi) + ∂F (xi,∆xi) +H.O.T.

where x = xi + ∆xi. Since

F (x) ≈ F (xi) + ∂F (xi,∆xi)

then ∆xi can be approximated from

∂F (xi,∆xi) = −F (xi)

The Newton-Raphson algorithm can be summarized in the following way:
1 Select the initial configuration of particles x0

2 Compute the right hand side of ∂F (xi,∆xi) = −F (xi)
3 Compute the Jacobian for the left hand side of ∂F (xi,∆xi) = −F (xi)
4 Solve the equation ∂F (xi,∆xi) = −F (xi) for ∆xi

5 Update xi+1 = xi + ∆xi

6 if ‖∆xi‖ is not small enough, then i = i+ 1, go to 2.

It should be emphesized that line 4 of the above algorithm involves the iterations
of the GMRES iterative solver. In this version of the Newton-Raphson algorithm we
compute directly the Jacobian matrix in line 3. There are some other versions of the
Newton-Raphson algorithm where the Jacobian matrix is not computed directly but
approximated, however in our case we allow for large deformations and the Jacobian
matrix may be very different from one iteration to another, so we decided the compute
the Jacobian matrix directly, using the analytical formulae.

Now, we need to specify how to compute the right hand side in line 2 and the
Jacobian matrix in line 3.

The right hand side is just equal to

F (xi) =
∑

β

F αβ(xiα,x
i
β) =

∑

β

kαβ(‖xiβ − xiα‖ − r0
αβ) ·

xiβ − xiα
‖xiβ − xiα‖

Here xiα = (xiα, y
i
α, z

i
α) and ‖xiα‖ =

√
xiα

2 + yiα + ziα
2.

Now we will derive the formula for the Jacobian

∂F (xi,∆xi) =
∑

β

∂F αβ(xiα,x
i
β ; ∆xiα,∆x

i
β)

We need to compute

∂F αβ(xiα,x
i
β ; ∆xiα,∆x

i
β) =

= lim
θ→0

1
θ

[
F αβ(xiα + θ∆xiα,x

i
β + θ∆xiβ)− F αβ(xiα,x

i
β)
]

=
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= lim
θ→0

1
θ

[
kαβ(‖xiβ + θ∆xiβ − xiα − θ∆xiα‖ − r0

αβ)
xiβ + θ∆xiβ − xiα − θ∆xiα
‖xiβ + θ∆xiβ − xiα − θ∆xiα‖

−

kαβ(‖xiβ − xiα‖ − r0
αβ)

xiβ − xiα
‖xiβ − xiα‖

]
=

= lim
θ→0

[
kαβ(‖xiβ − xiα + θ(∆xiβ −∆xiα)‖ − r0

αβ)
] ∆xiβ −∆xiα
‖xiβ − xiα + θ(∆xiβ −∆xiα)‖+

+ lim
θ→0

1
θ

[
kαβ‖xiβ − xiα + θ(∆xiβ −∆xiα)‖

] xiβ − xiα
‖xiβ − xiα + θ(∆xiβ −∆xiα)‖

− lim
θ→0

1
θ
kαβ [‖xiβ − xiα‖]

xiβ − xiα
‖xiβ − xiα‖

− lim
θ→0

1
θ
kαβr

0
αβ

[
1

‖xiβ − xiα + θ(∆xiβ −∆xiα)‖ −
1

‖xiβ − xiα‖

]
(xiβ − xiα) =

= kαβ
[
‖xiβ − xiα‖ − r0

αβ

] ∆xiβ −∆xiα
‖xiβ − xiα‖

− lim
θ→0

1
θ
kαβr

0
αβ

[
‖xiβ − xiα‖2 − ‖xiβ − xiα + θ(∆xiβ −∆xiα)‖2
‖xiβ − xiα‖+ ‖xiβ − xiα + θ(∆xiβ −∆xiα)‖

]
·

·
xiβ − xiα

‖xiβ − xiα‖ · ‖xiβ − xiα + θ(∆xiβ −∆xiα)‖ =

= kαβ
[
‖xiβ − xiα‖ − r0

αβ

] ∆xiβ −∆xiα
‖xiβ − xiα‖

− lim
θ→0

1
θ
kαβr

0
αβ



−2θ

(
xiβ − xiα

)
·
(

∆xiβ −∆xiα
)
− θ2‖∆xiβ −∆xiα‖2

‖xiβ − xiα‖+ ‖xiβ − xiα + θ(∆xiβ −∆xiα)‖




·
xiβ − xiα

‖xiβ − xiα‖ · ‖xiβ − xiα + θ(∆xiβ −∆xiα)‖ =

= kαβ
[
‖xiβ − xiα‖ − r0

αβ

] ∆xiβ −∆xiα
‖xiβ − xiα‖

+

+ kαβr
0
αβ

[
(xiβ − xiα) · (∆xiβ −∆xiα)

‖xiβ − xiα‖2

]
·
xiβ − xiα
‖xiβ − xiα‖

(6)

We can reformulate the equations in matrix-vector notation, i.e.

∂F αβ(xi; ∆xi) =
(
Kαα Kαβ

)(∆xiα
∆xiβ

)

In the following, we use Einstein’s notation aibi = a1b1 + a2b2 + a3b3. We define
Cartesian base vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Hence b = biei
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and a · b = (aiei) · (bjej) = aibj(ei · ej) = aibjδij = aii. Now we can write

∆xiα = ∆ξiα,jej xiα = ξiα,jej
∆xiβ = ∆ξiβ,jej︸ ︷︷ ︸

xiβ = ξiβ,jej︸ ︷︷ ︸
unknown known

Furthermore, we define

Φiαβ = kαβ
[‖xiβ − xiα‖ − r0

αβ ]

‖xiβ − xiα‖

and

ϕiαβ =
kαβr

0
αβ

‖xiβ − xiα‖3

Now, we can rewrite equation (6)

∂F αβ

(
xiα,x

i
β ; ∆xiα,∆x

i
β

)
=

= Φiαβ(∆ξiβ,j −∆ξiα,j)ej + ϕiαβ
[
(ξiβ,k − ξiα,k)ek · (ξiβ,l − ξiα,l)el

]
(ξiβ,j − ξiα,j)ej =

=
(

Φiαβ(∆ξiβ,j −∆ξiα,j)+

+ ϕiαβ
[
ξiβ,l∆ξ

i
β,l − ξiβ,l∆ξiα,l − ξiα,l∆ξiβ,l + ∆ξiα,lξ

i
α,l

]
× (ξiβ,j − ξiα,j)

)
ej =

=


−

[
Φiαβ + ϕiαβ(ξiβ,j −∆ξiα,j)

2]∆ξiα,j −
∑

l 6=j
ϕiαβ(ξiβ,l − ξiα,l)(ξiβ,j − ξiα,j)∆ξiα,l+

+
[
Φiαβ + ϕiαβ(ξiβ,j − ξiα,j)2]∆ξiβ,j +

∑

l 6=j
ϕiαβ(ξiβ,l − ξiα,l)(ξiβ,j − ξiα,j)∆ξiβ,l


 ej (7)

Thus

Kαα =




−(Φiαβ + ϕiαβ(xiβ − xiα)2) −ϕiαβ(yiβ − yiα)(xiβ − xiα) −ϕiαβ(ziβ − ziα)(xiβ − xiα)

−ϕiαβ(xiβ − xiα)(yiβ − yiα) −(Φiαβ + ϕiαβ(yiβ − yiα)2) −ϕiαβ(yiβ − yiα)(ziβ − ziα)

−ϕiαβ(xiβ − xiα)(ziβ − ziα) −ϕiαβ(yiβ − yiα)(ziβ − ziα) −(Φiαβ + ϕiαβ(ziβ − ziα)2)




where submatrices are located in α and β rows and columns.

K =
(
Kαα Kαβ

Kβα Kββ

)

and Kαβ = −Kαα, Kββ = Kαα, Kβα = Kαβ .
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5. Numerical experiments

This chapter presents description of the two numerical experiments. The first ex-
periment was performed in order to test the convergence of the Newton-Raphson
algorithm with GMRES iterative solver utilized to solve the non-linear formulation
allowing for large deformations. The second experiment was performed in order to
test the convergence of the PCG iterative solver used to solve the linear formulation
assuming smal deformations. Both experiments are performed over the 3D cube of
50× 50× 50 [nm] grid with particles, with interparticle forces parameters obtained by
using the Monte-Carlo simulation described in [2]. The number of equations is equal
to the total number of particles 503 = 125 000. The interparticle forces between parti-
cles forming a polymer network was assumed to be stronger than interparticle forces
between another particles. Each particle is assumed to interact with 26 neighbors, in
other words the cross-diagonal bounds are also allowed.

5.1. Convergence of the iterative solver for the non-linear formulation

The solution process starts with performing the first linearization – computing the
Jacobian matrix for the first time, and then utilizing the GMRES algorithm to solve
the linearized problem. We utilize the GMRES algorithm from the SLATEC library
[7]. We also tried to utilize the PCG (Preconditioned Concjugate Gradients) solver,
but it doesn’t converge, since the Jacobain matrix is not positive definite. We also
applied the diagonal preconditioner for GMRES. The snapshots of the convergence
of this first iteration after 8, 12, 18, 32 and 48 iterations are presented in Figures 2,
3, 4, 5, 6 and 7, respectively. The blue color of some particles denote the beginnig of
the polymer network (the initial particles). The accuracy of the GMRES algorithm
in these iterations is summarized in Table 1.

Table 1
Convergence of the GMRES alorithm in the first

iteration of the Newton Raphson algorithm

Iteration 8 12 18 32 48
GMRES error 0.05 0.04 0.03 0.02 0.01

The obtained shape of the deformed polymer network conforms our expectations
about the shrinkage of the sample, however the sample is too high in comparison with
the experimental data presented in Figure 1.

The resulting error for the first step of Newton-Raphson algorithm was ‖∆xi‖ =
9607.62 where we consider the Eucledean norm of the displacement vector. This is
just the norm of the displacements of all particles from the initial configuration to
the first iteration configuration summarized in Figure 8. Notice that the problem is
formulated in nm units.
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Table 2
Convergence of the Newton-Raphson algorithm

Iteration 1 2 3 4 5 6 7
‖∆xi‖ 9607.62 12483.78 2496.97 537.48 165.48 37.39 9.22

The following iterations of the Newton-Raphson algorithm adjusts the shape of
the sample, as it is illustrated in Figures 8, 9, 10, 11 and 12. The figures present
the configuration of the mesh after the final iteration of the GMRES algorithm in
corresponding iterations of the Newton-Raphson loop. The corresponding norms of the
displacement vectors for the Newton-Raphson algorithm are summarized in Table 2.

Fig. 2. Grid configuration after 8 iterations of the GMRES algorithm

Fig. 3. Grid configuration after 12 iterations of the GMRES algorithm
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Fig. 4. Grid configuration after 18 iterations of the GMRES algorithm

Fig. 5. Grid configuration after 32 iterations of the GMRES algorithm

Fig. 6. Grid configuration after 48 iterations of the GMRES algorithm, which is also the
configuration after the first Newton-Raphson loop
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Fig. 7. Grid configuration after second iteration of the Newton-Raphson loop

Fig. 8. Grid configuration after third iteration of the Newton-Raphson loop

Fig. 9. Grid configuration after fourth iteration of the Newton-Raphson loop
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Fig. 10. Grid configuration after fifth iteration of the Newton-Raphson loop

Fig. 11. Grid configuration after sixth iteration of the Newton-Raphson loop

Fig. 12. Grid configuration after seventh iteration of the Newton-Raphson loop
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5.2. Convergence of the iterative solver for the linear formulation

In the case of the linear model we just have a single loop perfoming iterations of
Precoditioned Conjugate Gradients (PCG) algorithm. We utilize the PCG algorithm
from the SLATEC library [7]. The snapshots of the convergence after particular num-
bers of iterations listed in Table 4 are presented in Figures 13, 14, 15, 16, 17, 18, 19,
20, 21, 22 and 23, respectively. The blue color of some particles denote the beginnig
of the polymer network (the initial particles). The accuracy of the PCG algorithm in
these iterations is also summarized in Table 4.

Table 3
Convergence of the PCG alorithm

Accuracy 0.5 0.1 0.04 0.03 0.02 0.005 0.01 0.005 0.0025 0.0001
Iterations 4 20 82 134 264 1362 7242 17952 32768 52378

The linear problem solved by means of the PCG algorithm has also provided the
shape of the deformed polymer network that conforms our expectations about the
shrinkage of the sample. However the price we paid is the number of iterations. We
needed 52378 iterations of the PCG algorithm, which took 6063 seconds, while the
Newton-Raphson with GMRES for the non-linear model required 583 seconds only.

Fig. 13. Grid configuration after 4 iterations of the PCG algorithm
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Fig. 14. Grid configuration after 20 iterations of the PCG algorithm

Fig. 15. Grid configuration after 82 iterations of the PCG algorithm
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Fig. 16. Grid configuration after 134 iterations of the PCG algorithm

Fig. 17. Grid configuration after 264 iterations of the PCG algorithm
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Fig. 18. Grid configuration after 626 iterations of the PCG algorithm

Fig. 19. Grid configuration after 1362 iterations of the PCG algorithm
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Fig. 20. Grid configuration after 7424 iterations of the PCG algorithm

Fig. 21. Grid configuration after 17952 iterations of the PCG algorithm
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Fig. 22. Grid configuration after 32768 iterations of the PCG algorithm

Fig. 23. Grid configuration after 52378 iterations of the PCG algorithm
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6. Conclusions

The paper presented the convergence analysis of the Newton-Raphson algorithm in-
terfaced with the iterative GMRES solver used to solve the molecular statics model
for the densification of the polymerized network during the Step-and-Flash Imprint
Lithography simulations. The convergence was ilustrated with snapshots presenting
the deformation of the sample after particular iterations of the GMRES and Newton-
Raphson method. We conclude that the algorithm converged well, and that the snap-
shots are nice way of ilustrating the convergence process for the iterative solvers. We
also compared the non-linear algorithm allowing for large deformations with the linear
one, assuming small deformations. We concluded that the solution of the linear prob-
lem takes one order of magnitude more time than the solution of the non-linear one.
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