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ABSTRACT 

A turbulent boundary layer problem has been studied analytically 

and compared with an available experiment in the literature. Corre

lations of the experimental data were made to investigate the validity 

of the commonly used empirical relations on turbulent shear stresses. 

It was found that the model which related the local turbulent shear 

stress linearly with the local turbulent kinetic energy, as used by 

Bradshaw et. al., appeared to be most reasonable. Combining this model 

with the expression of turbulent viscosity given by Boussinesq, it was 

then possible to introduce the turbulence-energy equation in addition 

to the governing equations of continuity and momentum. Consequently, 

the turbulent viscosity was able to be considered as one of the depen

dent variables to be solved for simultaneously with all other related 

flow parameters. Using the main-flow direction and the stream function 

as the two independent variables, the governing equations were reduced 

to two simultaneous parabolic-type partial differential equations 

through the von Mises transformation. The finite difference technique 

of Partankar was applied. The numerical solutions were obtained for 

the average velocity and the turbulent kin~tic energy distributions. 

In comparison with the experimental results of Klebanoff in the fully 

developed region along a flat plate, very good agreement was reached 

on average velocity distribution. However, the turbulent kinetic 

energy distribution was not completely satisfactory, since the energy 

dissipation term of the turbulence-energy equation was not able to be 

expressed adequately due to the lack of sufficient experimental infor

mation. It is then concluded that the use of the turbulence-energy 



equation in boundary layer study is possible to eliminate the uncer

tainty resulting with empirical models of the turbulent viscosity. 

However~ further experimental investigations are needed to improve 

the understanding of the structure of turbulence. 
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CHAPTER I 

INTRODUCTION 

The concept of the boundary layer was introduced by Prandtl 

1 

in 1904 to consider the viscous effect between a solid surface and 

its surrounding flow field. This concept made it possible for ex

perimentally observed phenomena such as skin friction drag and aero

dynamic heating to be evaluated by using the knowledge established 

in hydrodynamic theory. 

The development of boundary layer theory can be found in the books 

of Schlichting (1)* and Pai (2). The available analytical methods 

generally predict the detailed flow field with reasonable success if 

the boundary layer is laminar. However, most of the problems encountered 

in engineering find that the boundary layer is generally turbulent. 

The momentary value of a turbulent velocity may be expressed as 

u =tr+u' 

v = v + v' 

w = w + w' 

(1-1) 

where u, v and w are the velocity components in the flow field in the 

x, y and z directions, respectively. The bar denotes the time average 

quantity and the prime denotes the fluctuating quantity. The existence 

of the fluctuating quantities adds some additional terms to the equa

tion of motion. These terms are known as the Reynolds stresses with 

the stress tensors as: 

* Numbers in parentheses refer to listings under REFERENCES. 
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cr T T p~ pu'v' Pu'w' X xy xz 

T (J T = p~ pv'w' 
(1-2) 

xy y yz p"il"V'"" 

T T (J 
pu'w' pv'w' pWtt xz yz z 

where p is the density of the fluid: 0, ~and w'2 are the turbu-

lence intensities in the x, y, and z directions, respectively;pu'v', 

pu'w',etc. are the turbulent shear stresses. The equation of motion 

in turbulent flow has six additional unknowns in comparison with the 

same equation for laminar flow. The major task in turbulent flow then 

is to establish the required relations for the additional unknowns so 

that a mathematical solution may be theoretically possible. 

Experimental investigations to measure the Reynolds stresses were 

conducted by Kleb~off (3) in a fully developed turbulent flow along 

a f~at plate. It was found that all the normal stresses are of the 

same order of magnitude, and that the shear stresses are of the order 

of the square of the magnitude of the normal stresses. Applying the 

order of magnitude analysis in the boundary layer to examine the equa-

tion of motion, the most significant term of the Reynolds stresses 

appears to be the shear stress term 

T = - pu'v' xy (1-3) 

In order to make the turbulent boundary layer equation identical 

with the laminar boundary layer equation, J. Boussinesq (4) introduced 

a turbulent viscosity to define the turbulent shear stress as 

T 
t 

au 
=T =e:-• xy ay , 

au 
where E is the turbulent viscosity, ay is the gradient of the time 

(1-4) 
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average velocity. Since Equation (1-4) is analogous to the Newton's 

law of viscosity, it is then possible to solve the turbulent boundary 

layer problems by applying the analytical method available for laminar 

boundary layer solutions, provided that the turbulent viscosity is 

mo~. 

Detailed discussion of the turbulent viscosity models is given 

in Chapter II. Knowing that turbulence is a phenomenon which results 

from the history of the development of the entire flow field, it is 

necessary that the turbulent viscosity model considers the turbulence 

development. Examining the experimental result of Klebanoff (3) in 

comparison with the available turbulent viscosity models, the linear 

relation between the local turbulent shear stress and the local kinetic 

energy of turbulence, as suggested by Bradshow (5), appears to satisfy 

the requirement. Since the energy is conserved in a turbulent flow 

field, the historical effect of turbulence may then be taken into con

sideration by introducing the turbulence energy equation. 

The current method of analyzing turbulent boundary layer problems 

is to select an empirical formula for the turbulent viscosity. How

ever, a formula established from one engineering problem generally 

failed to provide meaningful solutions for different problems. Conse

quently, the engineers are not able to find an adequate turbulent vis

cosity model whenever a new situation arises. The approach of using the 

equation of conservation of turbulence energy made it possible that 

the turbulent viscosity may be solved for simultaneously with the 

other flow parameters. This study applies this new approach to investi-



4 

gate the development of turbulent boundary layer and compare the 

analytical solutions with the experimental results available in the 

literature. 
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CHAPTER II 

THE TURBULENT VISCOSITY MODELS 

The development of an appropriate turbulent viscosity model 

is essential in obtaining a meaningful solution for the turbulent 

boundary layer problems. Several models have been suggested in the 

last three decades. A comparison of the suggested models with the 

experimental data appears to be necessary in order to investigate the 

validity of each model in applying to engineering problems. The Rey-

nolds stresses measured by Klebanoff (3) in a fully developed turbu-

lent flow along a flat plate, provided the necessary information for 

comparison with the following three commonly used turbulent viscosity 

models. 

A. Prandtlts Mixing Length Model 

Prandtl (6) introduced the mixing length hypothesis in 1925 to 

relate the turbulent shear stress with the velocity gradient. 

2 jou jou 
-rt = ptP ot oy ; (2-1) 

where t is the Prandtl mixing length which has the dimension of length 
p 

and is to be determined experimentally. The experimental data of Kle-

banoff is shown in Figure 1 with PuT
2 

as the ordinate and (a(rr/U)) 2 as 
a(y/a) 

the abscissa on a 3x3 cycle logarithmic plot, where U is the free 

stream velocity and a is the boundary layer thickness. In order to 

satisfy Equation (2-1), a 45 degree straight line needs to be drawn 

in Figure 1 to pass as many data points as pos.sible. For the best 

representation of Klebanoff's experimental data, the Prandtl mixing 

length can be written as: 



r·---··-- ------ --- --·-··· ---

j 
! 
! 

! 

• 
rllz I au

1 
au 

T = (.114 0' p - -ay ay 
experiment (ref. 3) 

/0 
o/ 

/ 
/0 

6 

oo 

3 X 10-5 ~~~~~------~--~--~~~.~~~------~--~--._~~ 
5 X 10-3 

I a (u/U) I a (u/U) 
a(y/o) a(y/o) 

Figure 1. Prandtl Mixing Length Model 



t = 0.1140 
p 

It can be seen that Equation (2-1) represents the data of Kle-

7 

banoff reasonably well except at large values of the velocity gradient. 

B. Kolmogorov's Model 

Kolmogorov (7) made the suggestion in 1942 that the turbulent 

shear stress may be related with the turbulent kinetic energy as 

follows 

(2-2) 

where k is the turbulent kinetic energy and is defined as 

k = f[u' 2 + v•2 + w'2] (2-3) 

~ is analogous to the Prandtl mixing length since it also has the 

dimension of length. The experimental data of Klebanoff is shown in 
I 

F;gure 2 as ~/pU2 k2 8(u/U) 
• L versus ur a(y/o) • For the best representation of 

Klebanoff's data, Equation (2-2) requires 

~ = 0.066 

It can be seen that Equation (2-2), like Equation (2-1), repre-

sents the Klebanoff's data well only in the region of small values of 

I 
k2'd(u/U) 
u a (y/o) • 

c. Bradshow's Model · 

Bradshow, Ferris and Atwell (5) in 1967 used a linear relation 

between the local turbulent shear stress and the local kinetic energy 

of turbulence as 
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-2------------------~---------------------------------------, 10 

---r 

experiment (ref. 3) 

/ 

-4 
10 . L-~--~~~~~~_.~----~~----._~~--~~~~--~~ 

1.5 X 10-3 1.5 X 10-2 1.5 X 10-1 

I 

k 2 o(u/U) 
u a(y/o) 

Figure 2. Ko1mogorov's Model 



where a
1 

is a constant which, unlike ~p and ~, does not have the 

dimension of length. The experimental data of Klebanoff is shown 

in Figure 3 as T/pU2 versus k/U
2

• For the best representation of 

Klebanoff's experimental data, Equation (2-4) requires 

a1 = 0.3. 
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(2-4) 

It is noted that Equation (2-4) represents a comparatively wider 

range of the measured data then both Equation (2-1) and Equation (2-2). 

Moreover, Lee and Harsha (8) found that this model is also valid in 

the region where flow similarity is reached. 

The investigation of the turbulent viscosity models, leads into 

the following conclusions: 

1. The turbulent viscosity, as defined by Boussi~esq (4), is a 

very convenient way in expressing the equation of motion in a 

turbulent boundary layer. However, physically the turbulent 

and laminar viscosities have entirely different meanings be

cause the laminar viscosity is a property of the fluid while 

the turbulent viscosity is a local phenomenon. Therefore, it 

seems impractical to expect that a simple expression of tur

bulent viscosity can be derived to represent all turbulent 

boundary layer problems. 

2. The linear relation between the local turbulent shear stress 

and the local kinetic energy of turbu!ence appears to hold 

true in the flow field with or without flow similarities. 

With the linear relation, th~ Boussinesq's concept may then be 

used to relate the turbulent viscosity with the turbulent kinetic 

energy. 



4 X 10-5 

--- T = .3pk 

• experiment (ref. 3) 

/ y 
/ 

10 

L---~--_.~~~~~~--------~--~--~--~~~~~--------J 

2 X 10-3 

Figure 3. Bradshow's Model 
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3. Using the ~quation of conservation of turbulence energy, it is, 

thus possible to investigate the turbulent boundary layer prob

lems by considering the turbulent viscosity as one of the depen

dent variables to be determined in a turbulent flow field. 
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CHAPTER III 

• THE GOVERNING EQUATIONS 

For "steady", two-dimensional or axisymmetric flow, in a turbulent 

boundary layer, the governing partial differential equations may be 

expressed as follow: 

A. Continuity 

':\-- a "'--a 
opuy + opyy = O 

ax ()y 

where u and v are the time average velocities in the x and y 

(3-1) 

directions, respectively. p is the time average density. The index 

a is equal to zero for two-dimensional flow and unity for axisymmetric 

flow. For the investigated two-dimensional incompressible flow, 

a = 0, p = constant 

B. Momentum 

-- orr - ou -a a [ Ya C' au1 _ a p . pu-+pv-==y - <;.. ox oy ay ay ax ' 
(3-i) 

where p is the time average static pressure. For the investigated 

th fl t t · · 1· ·bl ~xp 1· s zero for flow cases, e uc ua 1ng pressure 1s neg 1g1 e. 
0 

along a flat plate. e is the turbulent viscosity which can be expressed 

through Boussinesq's definition of Equation (1-4) and Bradshaw's rela-

tion of Equation (2-4), as 

e = 

C. Turbulence Energy 

-- ok + i"WT ok = -a L [ a. .f._ ak] + e(au:\2 - D • 
pu ax ~v ay y oy· y crk ay oyJ k ' 

(3-3) 

(3-4) 
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e; 
where crk is the exchange coefficient of the turbulent kinetic energy 

flux and is defined as 

e; 
crk = 

(py) 'k 
ak 
ay 

(3-5) 

with Jk as the turbulent kinetic energy flux. The parameter crk is 

analogous to the turbulent Prandtl number defined in the total energy 

equation when conductive heat transfer is being considered. Therefore~ 

crk may be considered as the ratio of the frictional energy to the tur

bulent kinetic energy. The numerical value of crk and its effect on the 

flow field are being discussed in Appendix A. For·the investigated 

cases crk = 0.7. The term Dk represents the dissipation of the turbulence 

energy. For isotropic turbulence, the expression of Dk is given in 

Townsend (9) and Hinze (10). However, for nonisotropic turbulence, as 

observed in all engineering problems, Dk is not yet being evaluated. 

Patankar and Spalding (11) expressed Dk by using dimensional analysis 

as 

3/2 
~ = apk /R- ; (3-6) 

where "a" is a constant and R- is equivalent to the Prandtl mixing 

length. For the studied problems, R, is considered as proportional 

to the boundary layer thickness. The constant of proportionality and 

"a" are being combined to give a new constant, say a 2 . The influence 

of a 2 on the solution of the flow field is also discussed in Appendix A. 

For the investigated cases, a 2 is assumed to be a function of y as 

= 3 o au I I au I . . ay ay max , 

a-
where l~ul is the maximum velocity gradient at each x location. 

oy max 
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In order to analyze boundary layer problems in an incompressible 

turbulent flow field with known pressure gradient, there are four 

unknowns: u, v, E and k to be determined through four simultaneous 

equations: (3-1), (3-2), (3-3) and (3-4). Theoretically, the solu

tions are obtainable, if the required boundary conditions are pre

scribed. 

The boundary conditions for the average velocities are: 

u = v = 0 at y = 0 

u = uo 
at y = 0 

v = vo 

The boundary conditions for the turbulent kinetic energy are: 

k = 0 

k = k 0 

at y = 0 

at y = o 

(3-8) 

(3-9) 
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CHAPTER IV 

~lliTHOD OF SOLUTIONS 

The major difficulty in solving the governing equations of 

Chapter III lies in the non-linearity of the parabolic differential 

equations of (3-2) and (3-4). A numerical method on solving simul-

taneous parabolic equations was developed by Patankar (11). It is, 

therefore, possible to use Patankar's method in this study, if the 

governing equations may be transformed into a general form of parabolic 

differential equations. 

A. The von Mises Transformation 

von Mises transformed the physical coordinate system (x,y) to a 

streamline coordinate system (x,~) with the stream function defined to 

satisfy the continuity equation (3-1) as: 

p u a = a~. y 
ay (4-1) 

pv a -~ y = ax 

The partial differential in the x and y directions may be written 

as: 

a a a a 
dX)y = dX)VJ - pvy oVJ)X 

a -)x 
ay 

a a = puy oljJ)x 

(4-2) 

Substituting Equation (4-2) into the momentum Equation (3-2) and 

the turbulent kinetic energy Equation (3-4), the momentum equation 

becomes 

(4-3) 



The Turbulence Energy Equation becomes 

ak a <s __ 2a ak) -- 2~ au Dk 
ax = dtP Ok. puy dljJ + puy aw - pu 

B. The Dimensionless Stream Function 

In order to solve the parabolic equations of (4-3) and (4-4), 

two boundary conditions are required in the lJJ direction, namely: 

~ = tPI at the internal boundary, and 

~ = tPE at the external boundary. 

16 

(4-4) 

For the flat plate case, WI is the stream line along the plate and ¢E 

is the stream line intersecting the edge of the boundary layer at each 

x location. Since the interested flow field in boundary layer problems 

is between WI and lJJE, Patankar introduced a dimensionless stream function 

(4-5) 

Thus, the numerical solutions will be needed only in the range of 

O<w<l. In terms of the dimensionless stream function, the momentum 

equation can be written as 

(4-6) 

The turbulent kinetic energy equation becomes 

(4-7) 
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where MI and ME are the mass flux at the internal and external boundaries, 

respectively, with 

=-

(4-8) 

~--

C. The Generalized Parabolic Equation 

The generalized parabolic differential equation was given by 

Patankar (11) as 

it + (A+Bw) ..21 = .L ( c H) + D ax aw aw aw (4-9) 

In order to use Patankar's numerical method, the coefficients A, B, C, 

and D for the momentum equation (4-6) and the turbulent kinetic energy 

equation (4-7) are tabulated in Table I. 

D. The Finite Difference Solution 

In solving partial differential equations by finite difference 

method, it is necessary to consider the stability and convergence cri-

teria. The solution of a finite difference equation is said to be stable, 

if any small error (such as a round-off error) introduced at some point 

in the computing process becomes smaller and smaller as the computation 

advances. It is said to be convergent if the solution of the finite 

difference equation approaches the exact solution of the differential 

equation. For parabolic type differential equation, WU (13) showed 

that the convergence criterion is automatically satisfied if the stability 

criterion is satisfied. Crank and Nickolson (14) showed that an implicit 

' 
finite difference equation is always stable if the parabolic differential 

equation is linear. Since the generalized parabolic equation (4-9) is 



t 
A 

B 

c 

D 

Table 1. The Coefficient of the 
Generalized Parabolic Equation 

u k 

a 
Yr mr 

tPE - tPI 

Ct Ct 

YE ~ - y I mi 

1/JE - 1/J I 

2a pue: 
Y.. 

(tjl -
E 

1/J ) 2 
I 

- L .£.£. c Cau-)2 Dk - --
pu ax crk d(l.) pu 

18 
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non-linear only with respect to the independent variable w, it may 

then be quasi-linearized by evaluating the coefficients of (A+Bw), C 

and D at the upstream location. The partial differentials in the im-

plicit form become: 

(4-10) 

where the subscripts j and j+1 designate the upstream and downstream 

locations in the x-direction, respectively. The subscripts k-1, k, and 

k+l designate the successive locations in the y-direction from the in-

ternal to the external boundaries. Figure 4 shows the nomenclature 

used in the numerical solutions. The detailed programming technique 

was given in Patankar's Ph.D. dissertation (12) from the Imperial College, 

London, England, and is briefly outlined in Appendix B. The FORTRAN IV 

statement of the modified Patankar's program is given in Appendix C. 
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CHAPTER V 

- RESULTS AND DISCUSSION 

The analytical solutions from the momentum and the turbulence 

energy equations were obtained by using the computer program of 

Appendix C. In order to verify the validity of this approach, an 

experiment conducted by Klebanoff (3) for fully developed turbulent 

flow along a flat plate was used for comparison. A schematic diagram 

of the velocity development is shown in Figure 5. The initial con

ditions_ for both average velocity and turbulent kinetic distributions 

were assumed to be linear between the values at the wall and the 

values at the free stream. The numerical solutions in the entire 

flow field were obtained through the step-by-step marching technique 

described in Appendix B. As the marching distance advances, the di

mensionless profiles of the considered flow param~ters should approach 

a unique distribution function; since the region where the dimension

less profiles remain unchanged is called a fully developed region. 

The experimental results of Klebanoff were comparable with the analy

tical solutions only in the fully developed region. 

Klebanoff's experiment was conducted at the National Bureau of 

Standards in a 4f foot wind tunnel. The turbulent level of the tun

nel was 0.02 percent when local velocity was 30 feet per second, and 

0.04 percent at 100 feet per second. The boundary layer was developed 

along a smooth, flat, aluminum plate 12 feet long, 41 feet wide and 

~ inch thick with a symmetrical and pointed leading edge. The free 

stream velocity in this experiment was 50 feet per second. In order 

to obtain a condition of zero pressure gradient along the plate, the 



Figure 5. A Schematic Diagram of the Average Velocity 
Development along a Fla~ Plate 
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passage between the tunnel wall and the plate was made sufficiently 

divergent to offset the natural fall in pressure due to boundary layer 

growth. The average velocity was obtained by using pitot probes to 

measure the difference between the total and static pressures. The 

fluctuating quantities were obtained by using a constant current hot

wire anemometer to measure the various fluctuating components and 

their correlations. 

Comparisons of the analytical solutions with Klebanoff's experi

mental results were made for average velocity, turbulent kinetic energy 

and turbulent shear stress. 

A. Average Velocity Distribution 

The development of the average velocity profile is shown in Figure 6. 

It is noted that the average velocities near the wall accelerate faster 

than those farther away from the wall. The dimensionless velocity dis

tributions approach a unique profile as x increases. Comparison with 

Klebanoff's experimental results indicated that the computed velocity 

profiles agreed well with the measured profile in the fully developed 

region. 

B. Turbulent Kinetic Energy Distribution 

The development of the dimensionless turbulent kinetic energy 

distribution is shown in Figure 7. The analytical results indicated 

that turbulent kinetic energy increased first for smaller values of 

x then decreased slowly as x further increased. However, the analytical 

results in the fully developed region were somewhat less than the 

measure quantities. The disagreement in turbulent kinetic energy dis

tributions may be the result of the uncertainty of either the effective 
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Prandtl number, crk' or the constant related to the dissipation, a
2

. 

Further discussion of these two terms is given in Appendix A. 

C. Shear Stress Distribution 

The development of dimensionless turbulent shear stress is shown 

in Figure 8. The analytical results of the turbulent shear stress be

have similarly as the turbulent kinetic energy with respect to the 

change in the x direction. The agreement with Klebanoff's data appears 

to be reasonably well except in the region near the wall. The effect 

of laminar shear along the wall was considered and is discussed in 

Appendix D. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The use of turbulence energy equation in analyzing boundary 

layer problems was conducted. By comparing with available experi

mental results in fully developed turbulent flow along flat plate, 

the following conclusions are reached: 

1. The linear relation between local turbulent shear stress and 

local turbulent kinetic energy appears to be valid in the 

boundary layer region. 

2. The turbulent viscosity may be treated as a dependent variable 

28 

to be solved for simultaneously with the other related flow 

parameters, if the turbulence energy equation can be appropriately 

expressed. 

3. The analytical solutions on average velocity distribution con

verge to that of the fully developed turbulent boundary layer. 

The apparent success of using the turbulence energy approach in 

analyzing momentum transfer problems leads into the following sug

gestions: 

1. Turbulent flow problems with heat and mass transfer in addition to 

momentum transfer may also be analyzed by the presented scheme 

as long as the governing equations can be expressed as the 

g~neralized parabolic differential equations. 

2. The use of the turbulence energy equation, however, brings the 

necessity of further understanding of the turbulence structure 

in order to adequately express the terms such as turbulence 
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energy dissipation~ effective transport coefficient of turbulence 

energy flux, etc. Detailed measurements of turbulence structure 

are needed especially in non-homogeneous and non-isotropic flow 

fields. 
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APPENDIX A 

THE EFFECT OF a 2 AND crk IN A TURBULENT FLOW FIELD 

The dissipation term Dk in the turbulence energy equation was 

expressed by Patankar and Spalding (11) and Bradshow~ et. al., (5) as 

3/2 
Dk = apk I -\ ; (A-1) 

where a is a constant. Since this model was originally recommended 

for a full developed turbulent flow field, certain modification is 

needed in order to apply it in the developing region. The presence of 

a wall is known to generate turbulence; it is, thus, reasonable to ex-

pect that the dissipation to be larger near the wall; i.e., the constant 

"a" may be considered as a function normal to the flow direction. The 

model 

(A-2) 

is to introduce the ratio of the local velocity gradient to the maximum 

gradient at that location as a control factor for the dissipation energy. 

The dissipation function then becomes 

(A-3) 

where a
2 

is a constant. The effect of a
2 

on the average velocity dis-
2._ 

tribution in the fully developed region is shown in Figure A-1. It 

can be seen that the value of a
2 

= 3.0 appeared to be a reasonable 

assumption. 

The parameter crk appears in the turbulence energy equation, 

together with the turbulent viscosity £ in the diffusion term as E/crk. 
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The quantity E/crk is called the exchange coefficient for the turbulent 

kinetic energy flux in the y-direction~ and is defined as 

((pv) 'k) 
3k 
ay 

(A-4) 

Comparing equation (A-4) with the definition of total energy flux 

or composition flux, as discussed by Dorrance (14), ok appears to have 

the same physical significance as Prandtl Number or Schmidt Number, 

respectively. In this study, due to lack of experimental evidence, crk 

is considered as constant. 

The effect of crk on the average velocity distribution is shown in 

Figure A-J . It is noted that the average velocity distributions appear 

to be affected very insignificantly for a large range of crk. The value 

crk = .7 was selected because the Prandtl Number of air is known to be 

in this range. 
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APPENDIX B 

OUTLINE OF THE PROCEDURE IN PATANKAR 1S METHOD 

Patankar (12) solved the generalized parabolic differential 

equation (4-9) by step-by-step numerical integration. The partial 

derivatives with respect to were evaluated in terms of the ¢ values at 

Xu, ~ or t (~ ~) s where the subscript U and D designate upstream and 

downstream, respectively. Using the procedure of Crank and Nicholson (15), 

the stability criterion was satisfied without imposing limitations on 

step length in the x-direction. 

For convenience, it is desired to have the resultant difference 

equations linear in ¢. Therefore, the coefficients such as A, B, C 

in equation (4-9) will always be evaluated from the upstream values of 

~ to linearize the differential equation. 

To obtain a finite-difference equation from equation (4-9):. a 

miniature integral equation over the control volume can be formulated. 

The control volume is shown in Figure B-1. It is assumed that, in the 

w direction, ~ varies linearly with w between the grid points. The 

variation in the x-direction will be considered to be stepwise. The 

values of ~ for the interval from Xu to XU' except at x0 , being uniform 

and equal to those at x 0 • 

The terms on the left-hand side of equation (4-9) can be expressed 

in the integration form. 

(B-1) 
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where 

where 

where 

a lt ~G(<f> -m ) aw D+ "l>-

a G = _...;;..._ 
Wo-r~-

R ,. 
1 

b 
H =- --2 4 

The comp1ete convection term can be expressed as 

where 

1
3 

• F3 - G + B3 

14 • -Fl<f>U+- F2<f>U - F3$U-
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(B-lA) 

(B-lB) 

(B-lC) 

(B-2) 

(B-2A) 

(B-3) 

(B-3A) 

(B-3B) 

(B-3C) 

(B-4) 

(B-4A) 

(B-4B) 

(B-4C) 

(B-4D) 
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The flux term of the right side of equation (4-9) can be expressed 

as 

(B-5) 

where 

(~ - ClJ>_) (~ - ~) 
(B-SA) 

r6 = <~- ~-><~- un-> (B-SB) 

The coefficient D will be considered as uniform over the control 

volume and equal to that at downstream. Since D may not be linear in 

~' DD should be obtained from the following linearized formula 

(B-6) 

The coefficient D in the equation of conservation of momentum was 

assumed to vary linearly with w between grid points. Knowing D = 

- (dp/dx)/pU in the equation of conservation of momentum, it can be 

expressed as 

where 

Fl dP 
sl = P 2 (x_ - ~-> 

U+~+ dx lJ u 

(B-7) 

(B-7A) 

(B-7B) 

(B-7C) 

(B-7D) 



Substituting equations (B-4), (B-5) and (B-7) into equation 

(4-9), yields 

where ¢ represents u and 

I6-I3+S3 

I2+I5-I6-S2 

Substituting equations (B-4), (B-5) and (B-6) into equation (4-9), 

yields 

where ¢ represents any flow parameter other than u, and 

A.r = 
I5-I1 

I 2+I5-r6-(oD/o¢)U 
-I -I 

BT = 6 3 
I 2+r5-I6-(oD/o¢)u 

CT 
nu-<an/o¢)u~-r4 = I 2+I5-I6-(oD/o¢)u 
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(B-8) 

(B-8A) 

(B-8B) 

(B-8C) 

(B-9) 

(B-9A) 

(B-9B) 

(B-9C) 

In forming the finite-difference equation, the variation of ¢, 

bewteen the grid points, is assumed to be linear in w. But, near the 

wall, a straigHt line in u-w plot, which passing through the true u 

value at the wall, would be poor representation of the reality in which 

the variations are much steeper. Patanker introduced a "slip" value 

of ¢ at the boundary such that the ¢-w line passing through the slip 

value rather than the true one . 
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The definition of slip value should be in conformity with the 

above requirement. In-Figure B-2~ the grid lines divide the interval 

from w = 0 to w = 1 into N strips. The subscripts 1 and 2 at the in-

ternal boundary and the subscripts N+3~ N+2 at the external boundary 

denote the true and slip values at internal and external boundary 

boundary respectively. The subscript 2.5 refers to a line midway be-

tween the internal boundary and the grid line 3. Similarly, N+l.5 

refers to a line midway between N=l and the external boundary. The 

slip value ~2 is defined as the one which enables us to obtain the cor

rect slope and the value of ~ at the point 2.5. Similar remarks apply 

to the slip value ·~N+2 • 

The correct values of the slope and value of ~ at the point 2.5 

and N+l.5 depends upon the nature of the boundary and on the flow prop-

erties. 

Near a wall, we shall assume that the velocity profile is of the 

power-law type 

(B-10) 

Since by definition 

(B-11) 

Thus 

(B-12) 

By matching the slope and the value of u at point 2.5~ it yields 

(B-13) 

For ~ represent a value different from u, Patankar assumed a power-

law profile for ~ with power y different than e 
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Substituting equations (B-10) and (B-12) into equation (B-14), 

yields 

(¢ - <P ) al (w - w )jy/l+S 
1 1 

Use of the slip-value definition then yields 

Replacing <P with y and y with unity yields 

In the region near a free boundary~ a velocity profile can be 

shown parabolic in distance for turbulent flow. Therefore 

Application of the slip-value definition leads to 

where 

R= 
u2+u3-8ul 

5u2+5u
3

+su1 
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(B-14) 

(B-15) 

(B-16) 

(B-17) 

(B-19) 

(B-19A) 

Since R is a ratio of u's, it will very slowly, and hence its value 

calculated by using the upstream values of u can be conveniently used. 

The profile for <P other than u will be taken as power-law type. 

(B-20) 

Use of the definition of slip value and of equation (B-20) yields 

(B-21) 
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where 

_ R+(2-n) I (2+n) 
R~ - l+R(2-nJ/(2+n) (B-21A) 

The slip value of y may then be obtained by setting n = 1, thus 

y2 = y3 (3R+l) + yl (2(R-1)) (B-22) 
3+R 3+R 

The values of t3 and y were found by using the "Couette flow" con-

cept and the van Driest's hypothesis (16), as 

J.l(L +y 4E_ + uM ) 
s s dx s = e:u 

(B-23) 

Pr(T + Mu)y 
s y = e:u 

(B-24) 

The value of n was found as twice of the Prandtl Number. 
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APPENDIX C 

THE MODIFIED COMPUTER PROGRAM 

The computer program of using the finite difference method 

described in Appendix B is presented in this Appendix. It is intended 

to provide the necessary guide lines for the user of this program. 

A list of subroutines and their explanations is presented in the 

following: 

MAIN 

COEFF 

SLIP 

SHEAR 

SOLVE 

READY 

The Main programs starts the computation and controls the 

sequence of operations. The choice of fo~ard step is also 

made here. 

This subroutine is used to obtain the coefficients Au, BU, CU 

in equation (B-8) and Ar, BT, CT in equation (B-9). 

The relations connecting the slip values to the neighboring 

true values have been expressed in the form of the corresponding 

coefficients in the subroutine SLIP. 

The shear stress is calculated in this subroutine by using the 

turbulent kinetic energy model. 

The subroutine SOLVE performs the mathematical operation of 

solving simultaneous equations of the type of equation (B-8) 

and equation (B-9). 

After each integration, we obtain the values of u and other 

~·s for known values of w. In the subroutine READY, the cal

culation of the corresponding normal distance y for every grid 

point is undertaken. This makes the stage ready for the per

formance of the next integration. 



VEFF 

LENGTH 

ENTRN 

WALL 
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The subroutine VEFF is used to calculate the viscosity by 

taking use of the suggested model. 

The boundary layer thickness is calcul.ated in this subroutine . 

The subroutine ENTRN supplies the mass flow rate. 

The purpose of the subroutine WALL is to evaluate the ex

ponents e and Y for the region near a wall boundary. This 

subroutine derives its main information from two other sub

routines, WFl and WF2~ which incorporate the wall flux re

lationships . 

WFl Subroutine WFl provide the wall-flux relationship concerning 

WF2 

SOURCE 

CONST 

DEN STY 

the momentum transfer. 

Similar to WFl~ subroutine WF2 is relevant when 

a variable other than u. 

represents 

Source term in equation (4-9) i s presented in this subroutine. 

The values of different constants including some fluid proper

ties, mixing-length constants etc. are to be given by the 

user in the subroutine CONST. 

The purpose of the subroutine DENSTY is to evaluate the den

sity at all the grid points as a function of the dependent 

variables. 

RAD The subroutine RAD supplies the geometrical information re

garding the problem. 

PRE The specification of the pressure gradi ent is through the 

subroutine PRE. 

MASS This subroutine . is called only when a wall boundary is pre

sented. Through this subroutine, the mass-transfer rate 

through the wall is supplied. 
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FBC When a wall boundary is presented, the boundary conditions 

for the fluid-parameter other than average velocity are 

supplied in subroutine FBC. 

BEGIN 

OUTPUT 

The initial profiles and other auxiliary quantities are to 

be specified in the subroutine BEGIN. A large portion of 

this subroutine is used to set up the slip values and calcu

late w's. 

The instructions for printing out the results are to be con

tained in the OUTPUT subroutine. 

Several variable names in the input list are explained below. 

KRAD KRAD = 1 means axisymmetrical flow 

KRAD = 0 means plane flow 

KIN specifies the type of internal boundary 

KIN = 1 wall boundary 

KIN = 2 free stream boundary 

KIN = 3 symmetry-line boundary 

KEX specifies the type of external boundary 

KEX = 1 wall boundary 

KEX = 2 free stream. boundary 

KEX = 3 symmetry-line boundary 

NEQ number of partial differential equations to be solved 

N number of grid points 

KPRAN KPRAN = 0 use turbulence energy equation 

KPRAN = 1 use Prandtl's mixing length hypothesis 

XL values of x at which computation is to be terminated (in feet). 
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ASDl al 

ASD2 a2 

PREF(l) (jk 

PREF(2) effective Prandtl number 

PREF(3) effective Schmidt number 



c 

c 
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COM~ON /GFN/PEI,AMI,AME,OPOX,PREF(3),PR(3),P(3),0fN, 
1 XL, D X, I NTG, C $/>L FA, XPC G, AMIJ, XU, X 0, XP 
l/T/~,NPl,~P?,NP3,NEC,NPH,KfX,KIN,KASE,KRAO,KPRAN 
1/ B/ f3 ETA, GAM A ( 3 t , T J\ U l , TAU E., AJ I C 3) , AJ E ( 3) , I ~0 I ( 3) , I NOE { 3) 
l/V/U(43),F(3,43),R(43),RHOC43),0M(43),Y(4l) 
1/ r: IS C ( .-. 3 ) , AU ( 4 3 ) , ~ U ( 4 3 ) , C U ( 4 3 ) , A ( 3, 4 3 ) , B ( 3 , 4 3 ) , C ( 3 , 4 3 ) 

COMMON/PR/UGU,UGD 
CO~~ON /l/AK,ALMG 
C~MMON/AUXP/TF~PF(43),TEMP(43),P0(43J,AMACH(43) 
COMMON/~AR/GARAR(43),RBAR(43) . 
r.rMMON/AUXY/YY(43),XXU,RR1 
COMMON /SHFAR/ SHEAR(43),$CSH(43) 
COMMON /ASD/ AS01,hS02 
COMVON/XPLOT/NPLOT 
COMMON /JOIN/ TNOTC 
COMMCN/DUO/OUOOM(43J, DUOY(43), AOUDY(43), AOUDYM 
COMMON/OCON /OXC 
I"'OIC=O 
READ (5,8000) NCASE 

8000 FORMAT ( 15) 
16 CfJNTINUE 

I NOIC= INOIC+ 1 
X = 0.0 
INTG=O 
CALL CONST 
CALL BEGIN 
AMJ=O. -
AME=O. 
GO TO 25 

15 CALL READY 25 CONTINUE --- . -- - .. 

~i=t~ij(J~t)NU(I-1))/(0M(l+lJ-OM(I-lJ)-(U(J)-U(l-lJJ/ 
l(OMC!)-0M(f-1J)1/f0M(I+1)-0M(I)l 

A l =- (OM ( I } +OM { I- 1 ) J *A 2 + ( U ( I J -U ( I -1) ) I ( OM ( I J -O~·H 1-1) t· - ., 
102 OUOOM( I J=Al+2.*A2*0Mf I) 

DUDOM( 3)=(U( 1)-U( 4JJ/COM( 1)-0M( 4)) 
OUDOMf 2)=(U( 1)-U( 3))/{0M( 1)-0M( 3)) 
DUOOMC1l=OUOOM(2, · 
DUOOM{NPlJ={U(N )-U(NP3))/(0M(N )-0M(NP3)) 
OUOOMlNP2)={U(NPlJ-U(NP3))/(0M(NP1)-0M(NP3)) 
OUOOM("'P3J=O. 
I t-JTG= INTG+t·· . 
CALL LENGTH 
CAll SHEARS 
CAll ENTRN 

CHOICE OF FORWARD STEP 
FRA=.C\5 
OXCN=.2+0XC 
DX=A8S(FRA *PEI/(R(l)*AMt-R(NP3l*AM~)) 
IF (OX.GT.OXCN*YfNP3)) OX=OXCN*YfNP3) ----
IF fOX.LT.O.J GO TO 85 
XO=XU+OX 

77 CONTINUE 
CALCULATES CHANGE IN FREE STREAM VELOCITY 
UGO=U(NP3J 
UGU = UGO 
CAll PREfXU,XO,OPOXJ 
IF(KASE.EQ.2J GO TO 76 
lF(KIN.EQ.lJCAtL ~ASSCXU,XO,AMII 
IFCKEX.EQ.l)CALl MASS(XU,XO,AME) 
CONTINUE 
CAll WALL 

26 XXU=l2.0*XU 
RRl=l?..O*R(l) 
DO C)Q I= I, NP3 

90 YY(J)=l2.0*Y(I) 
CALL COEFF 
CAll OUTPUT 

C SFTTING UP VELOCITIES AT A FREE BOUNDARY 
IF(KEX.E0.2JU(NP3J=SQRT(UlNP3)*U(NP3)-2.*CXO-XU)*OPOX/ 

1RHO(NP3)t 
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IF(KIN.E0.2)U(1J=SORT(Ufll*U(ll-2.*IXO-XUl*DPDX/RHO(lJ) 
CALL SOLVE ( AlJ, RU, CU, U, NPJ) 

SETTTNG UP VELPCITIFS AT A SYM~ETRY LINE 
tF(KEX.EQ.3)U(NP3)=.?5*U(NP2)+.25*U(NPll 

72 CONTINUE 
IF(NFQ.EQ.l) GO TO 30 
Ofl 45 J=l,NPH 
OQ 46 1=2,NP2 
All ( I ) =A C J , I l 
AU(l)=fHJ,I) 

46 CU ( I ) =C ( J, I ) 
01') 4 7 I= 1 , N P 3 

47 SC(J)=F(J,It 
CALL SOLVECAU,BU,CU,$C,NP3) 
on 48 I=l,NP3 

48 F(J, I )=SCC I) 
IFCKASE.fQ.2) GO TO 81 

SETTING UP WALL VALUES OF F 
IFCKIN.EO.l.ANO.INOICJl.E0.2lF(J,ll=l(l.+BETA+GAMA(J)) 

l*F(J,2)-tl.+~ETA-GAMA(J))*F(J,3))*.5/GAMA(J) 
IF(KEX.EQ.l.ANO.INDE(JJ.E0.2JF(J,NP3l=((l.+BETA+GAMA(J 

ll)*F{J,NP2)-(l.+BETA-GAMA(J))*F(J,NP1Jl*.5/GAMA(J) 
SETTING UP SYM~ETRY-LINE VALUES OF F 
82 IF(KEX.EQ.3)F(J,NP3)=.75*F(J,N?2J+.25*F(J,NP1) 
45 CONTINUE 
30 XP=XU 

XU=XO 
TF CXU.GT.XPCGl NPlOT=S 
CALCULATION OF AUXILLARY PARAMETERS 
CAll OENSTY 
OQ 60 I = 2, NP2 · 
AMACH(l)=U(ll/SORTfGA8~R(IJ*RBAR(I)*32.2*TEMP{IJJ 

60 CONTINUE . 
PEI=Pft+OX*(R(lJ*AMI-RCNP3J*AME) 

THE TFRMINATION CONDITION ···· ···- ·-
IFCINTG.EQ.l51JGO TO 85 
IF(XU.LT.XLJGO TO 15 
IFCXU.GE.XLJGO TO 85 
GO TO 16 · · ------ -·-·· -- · ··-· ··- · · 

85 CONTINUE 
IF (INOIC.NE.NCASE) GO TO 16 
STOP 
ENO · · -· · ·· 
SUBROUTINE COEFF 
COMMON /GEN/PFI.AMI,AME.OPD~tPR£FC3J,PR(3),P(3J.DEN• 

lXL,OX,JNTG,CSALFA,XPCG,AMU,XU,XO,XP 
.l/l/N,NPl,NP2~NP3,NEQ,NPH 1 KEX,KIN,KASE,KRAO,KPRAN -
1/B/8ETAlGAMAt3llT'UI~TAUE.AJil3J,AJf(3)(INOl(3J,INOE(3J 
l/V/U(43 F(3,43 ~R(4~),RH0(43),0M(43),V 43) 
l/C/SC(43J,AU(43J,BUC43J,CUt43),A(3,43),B(3,43),C(3,43) 

COMMON·/L/AK,AlHG - ·-. . . 
COM~ON/MXMN/RHUMX,RHU~N,RHU(43l,AL 
COMMON /SHEA~/ SHEAR(43),SCSHC43) ~ 
COMMON/OUO/OU00~(43l~ OUOY(43J, AOUOY(43), AOUOYM 
COMMON /RUH/ RAAUH( 4_j} 
DIMENSION Gl(43),G2{43),G3(43J,D(3,43),Slf43),S2(43), 

1S3(43) 
CALCULATION OF SMALL C 'S 

00 99 1=2,NP1 
C~ll VEFF(I,I+l,EMUJ 
SCCI)=RAAUH(I) *EMU/(PEI*PEIJ 

99 CIJNTINUE 
THE CONVECTION TERM 

SA= R ( 1 , *A~ I I P E I 
SB=(R(NP3)*AME-Rlll*AMIJIPEI 
OX=XO-XU 
00 71 I= 3,NP 1 
OMO=OMCI+l)-OM(l-1) 
P2=.2510X 
P3=P2/0MO 
.Pl=(OMII+l)-0~(1J)*P3 

- ---:..--. - . 



P3=f0M(I)-0~(l-1JJ*P3 
P2=3.*P2 
Q=SA/OMD 
R2=-S~*.25 
R1=~ 2/0MO 
Rl=-(0~(J+l)+3.*0MCIJl*R3 
R. 3= {OM C I -1) +3. *OM C I J J *R 3 
Gl( I )=Pl+Q+R1 
G2(I)=P2+R2 
G 3 {I )=P3-Q+R3 
CU( 1)=-Pl*U( I+ll-P2*UC l)-P3*U( I-lJ 

THE DIFFUSION TEPM 
AU ( I ) = 2. I OM 0 
BU{I)=SCfi-ll*AU(IJ/(OMCil-OM(I-11) 
AU( I J=SC{ I l*.AU( I l/ (OM( 1+1 )-OM( I) J 
IF(NEQ.EQ.l) GO TO 33 
D!J 34 J= l.,NPH 
C(J.,IJ=-Pl*F(J.,I+lJ-P2*F(J,J)-P1*F(J.,I-ll 
C~Ll SOURCE(J.,I.,CS,O(J l)J 
CCJ.,II=-C(JJil+C$-F(J,\)*O(J,l) 
A(J,Il=AU(I /PREFCJ) 
B(J.,I)=BU(I)/PRE~fJ) 

34 CONTINUE 
SOURCE TfRM FOR VELOCITY EQUATION 
33 PHI = 0.0 

Sl(IJ = COPDX + PHll*OX 
S 2 ( I ) = P 2 * S 1 ( I ) / ( Rl-'0 C I ) *U ( I J J · .. . · 
S3(J)=P3*Sl(IJ/(RHO(!-l)*UCI-1JJ 
SlCIJ=Pl*Sl(IJ/(R~O(l+ll*lJ(I+l)) 
CU(IJ=-CU(IJ-2.*fSl(I)+$2Cil+S3fiJJ 
Sl(I)=Sllil/Ufi+l) 
S 2 ( I ) =52 (I J /U ( I J 
S3li)=$3(1J/U(I-1J 

71 CONTINUE 
COEFFICIENTS IN _THE FINAL FORM·--·--

00 c;1 I=3tNPl . . 
RL=l./(G2 IJ+AU(Il+BU(I)-$2(1)) 
AIH I ) = ( AlH I ) +S 1 ( I) -G 1 ( I ) l *Rl 
BU(Il=CBU(I)+S3( Il-G3(l))*RL 

91 CUCIJ=CU(I)*RL 
IFINEQ.EQ.l) GO TO 76 
00 q2 J=l,NPI-i 
00 92 I=3,NP1 
RL=I./CG2(1J+A(J.,IJ+R(J,IJ-O(J,IJJ 
A(J,I)=(A(J,IJ-Gl(I)J*RL 
R(J 9 1J=(B(J.,IJ-G3Cill*RL 

q7 C(J,IJ=C(J,l)*RL .. 
76 CALL SLIP · 

RETURN 
END 
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SUAPOUTINE SHEARS . 
CO~MON /GEN/PEI.,AMI,AME,OPOX.,P~EFC3J,PRC31 9 P(3J,OEN 9 
lXL,OX.,INTG.,CSALFA.,XPCG,A~U,XU,XO,XP 
l/I/N,NPl,NP2,NP3 7 NEQ,NPH,KEX,KIN,KASE,KRAO,KPRAN 
1/V/U{43J,F(3,43t,Rf43J,RH0(43J,OM(43),Y(431 
1/Ll/Yl,UMAX,UMIN,FR,YIP,YEM 

COMMON /SHEAR/ SHEAR(43l.,SCSHC43) 
COMMON /ASD/ ASDl,AS02 
COM~ON/OUO/OUOOM(43)., OUOYC43), ADUOY(43), AOUOYM 
COMMON /RUH/ RAAUH(43) · 
COMMON/KJU/KMU 
ADUOY~=. 0001 
00 98 I=2,NP1 
~A=.5*(R(I+l)+R(llJ 
RH=.5*(RHO(I+lJ+RHO(IJJ 
U M = • ':i * ( U ( I + 1 ) +U f I ) ) 
RAAlJHt I )=RA*RA*RH*UM 
SCSH( I J=RA*RH*UM/PE I . 
OUOY( I J=DUOOM (I )*SCSH( I) 

98 CONTINUE 
SCSH(l)=R(l)*RHOI1t*U(2J/PEI 

.. SCSH(NP2J=RCNP2J*RHO(NP2J*U(NP2J/PEJ 



SCSH(NP3J=R(NP3)*R~O(NP3l*UlNP3)/PEI 
OlHlY( ll=OUOOM( l)*SCSH( 1) 
OUOYCNP2J:OUOOM(NP2t*SCSH(NP2) 
OUOY(NP3)=0UDCM(NP3l*SCSH(NP3) 
00 97 I: 1, N P 3 
AOUOY(I)=AAS(DUOY(J)) 

q7 CONTINUE 
DQ 96 1=5,NP1 
IF CAOUDY(J).GT.AOUOYM) AOUOYM=AOUOY(I) 

q6 CONTINUE · . 
OIJ 101 T=2,NP2 
IF (KPRAN.NE.0.0R.NEQ.LT.2) GO TO 35 

33 S~EARCil=ASOl*RHO( ll*F(l,Il*DUOY(IJ/ABS(OUOY(J)) 
1+0.C000036*0UOY( I) 

GO TO 101 
35 Ff1,IJ=O. 

101 CONTINUE 
CAll WALL 
SHEAR CNP3J=O.O 
RETUPN 
ENO 
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SUffROUTfNE SLIP · . 
COMMON /GEN/PEI,AMt,AMf~OPOX,PREF(3),PR(3),P(3J,OEN. 

l'~i2:N~~!~~~;~~~~N~~?~P~~~E~~K~2!~~SE,KRAO KPRAN L 
l/B/BETA,GA~A(3J.TAUT,TAUE,AJI(3),AJE(3J,IN01(3J,IN0t(3J 
l/V/U(43) ,F(3,43) t.RC43J,RH0(43l ,OM(43) ,Y(43) · . 
COM~ON /l/AK,ALMli 

11 C I S C { 4 3 l , AU ( 4? ) , B tH 4 3 ) , C tH 4 3 l , A ( 3 , 4 3 ) , B ( 3 , 4 3 J , C ( 3 , 4 3 ) 
SLIP COEFFICIENTS NEAR THE I BOUNDARY FOR VELOCITY EQUATION 

CtJ(2)=0. ·· · 
CU(NP2)=0. 
!3U(2)=0. 
AU(2)=1./(1.+2.*BfTA) 
SQ=A4.*UCNP3l*U(NP3 l-12.*UtNP3l*UCNPl l+9.*UCNP1) *UCNPtJ ··-
AU(NP2)=8.*(2.*UfNP3)+U(NPl))/(2.*U(NP3J+7.*UCNPl)+ 

lSQRT(SQJ) 
BUCNP2l=l.-AUCNP2J 

· IF ( NEQ. E Q. l) RETURN 
SLIP COEFFICIENTS NEAR THE I BOUNDARY FOR OTHER EQUATIONS · 

00 54 J= 1 ,NPH 
C(J,2J=O. 
C ( J, NP 2 J =0. · - · · · · · - - - · --------·--·--·· - -· ·-· ·· --·-·--· 
CALL FBCCXO,J,INOICJJ~OJ) 
IFCINOI(JJ.EQ.lJ GO Tu 61 
AJtlJJ=QI 
A(J,2J=l. 
8(J,2J=O. 
C(J,2)=8.*(1.+2.*BETAJ*PREF(J)*~JI(J)/(AK*AK*BETA*lle+ 

1BETAl*tl.+BFTAJ*(3.*RH0(2J+RH0(3J)*U(3)) 
SLIP COEFFICIENTS NEAR THEE BOUNDARY FOR OTHER EQU4TIONs ·· -· 

8(J,NP2J=(U(NP2)+U(NPlJ-8.*U(NP3))/(5.*(U(NP2)+UCNPl)) 
1+8.*U(NP3)) 

GF=(l.-PREF(J))/(l.+PREF(JJ) 
8(J,NP2)=(8(J!NP2l+GF)/(l.+B(J,NP2J*GFJ 

54 A(J,NP2)=l.-BlJ,NP2J · 
RETURN 
FNO 
SUBROUTINE SOLVECA,8,C,F,NP3) ··-· 
THIS SOLVES EQUATIONS OF THE FORM . 
F(l) = A(I)*F(I+l) + B(l)*fll-1) + C(t) 
DIMENSION ACNP3J,BCNP3),CCNP3l .,FCNP3) 
NP2=NP3-l 
BC2) = BC2l*FC1J + CC2J . 
DfJ 4~ I=3,NP2 
T = 1./(1.-BCII*A(l-lJ) 
A ( T ) = A ( I ) *T 

48 0(1) = CBCIJ*Bll-lJ + ClllJ*T 
DO 50 1=2,NP2 
J=NP2-I+2 

50 F(J)=A(J)*f(J+l)+S(J) 
RETURN 
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END 
SUP.POUTINE R[AOY 
\.OMW.ON /GEN/Pfi~AMT,AME,OPOX,PREF(3),PR(3J,P(3),0EN, 

1XL,DX,INTG,CSALFA,XPCG,AMU,XU 1 XO,XP 
l/V/U(43),F(~,43),P(41),RH0(43J,O~f43),Y(43) 
1/I/N,NPl,NP2,NP3.NEQ,NPH,KFX,KIN,KA5E,KRAO,KPRAN 
1/ A I P.. ETA, GA"'1 A ( 3) , TAU I , TAU E, fiJI ( 3) , AJ E ( 3 l , I "10 I C 3 ) , IN DE ( 3) 

C -\LL f)[N STY 
CALL RAOCXU,R(l),CSALFAJ 

Y NfAq THE I SOUNDARY 
I F ( R ( 1 ) • EQ • 0 • ) K I N= 3 
Yl2l=(l.+BETAl*OM(3)*4./((3.*RH0{2)+RH0(3))~(U(2J+U(3) 

1) , 
Y(3)=Y(2l+.25*0M(3l*(l./(RH0(3)*U(3))+2./(RH0(3)*U(3)+ 

1RH0(2l*U(2))) . . . 
Y •s FOP INTERMEDIATF GRID POINTS 

Of) 50 J=4,NP1 
50 Y(ll=Y{I-ll+.5*{0M(I)-0M(l-l))*{l./CRHO(IJ*U(l))+l.l 

l(RHO(I-ll*U(I-1))) 
Y NEAR THE E AOUNOARY 

Y(NP2l=Y(NPll+.25*(0M(NP2l-OM(~Plll*(l./(RHO(NPl)* 
1UlNP1))+2./(RHOtNPl)*U(NPl)+RHOCNP2l*UCNP2JJ) 

Y(NP3)=Y(NP2)+12.*COM(NP2J-OMlNPlJ)/((RHO(NP1)+3.* 
lRHOfNP2J)*(U(NP2t+U(NPlJ+4.*U(~P3))) 

IF(CSALFA.EQ.O •• OR.KRAD.EO.OJ GO TO 51 
DO 52 I=2,NP3 

52 Y(I)=2.*Ylll*PEI/(R(l)+SQRT(Rlll*R(l)+2.*Y(I)*PEI* 
lCS Al FA J J 

GO TO 56 
51 00 54 I=2,NP3 
54 Y( ll=PEI*Y( I )/R( 11 -· 
56 Y(7.)=2.*Y(2)-Y(3) 

YCNP2J=2.*Y(NP2J-YtNP1J 
CALCULATION Of RADII 

DO 57 I=2,NP3 
IF(KRAO.EQ.C)P(l)=R(l) 
lF(KRAO.NE.OlRCIJ=R(l)+Y(l)*CSALFA 

57 CONTINUE 
RETURN 
ENO 
SUBROUTINE VEFFII,IPl,EMUJ 
COMMON /GENIPEI,AMI,AME,OPOX,PREF(3),?R(3),P(3J,OEN, 

lXL,OX,INTG,CSALFA,XPCG,AMU,XU,XO,XP 
l/V/U(43),F(3 9 43) 9 R(43J,RH0(43J,OM(43),Y(43) 
l/1/N,NPl,NP2,NP3,NEQ,NPH,KEX,KIN,KASE,KRAO,KPRAN 

COMMON /L/AK,ALMG 
1/Ll/YL,UMAX,UMIN,FR,YIP,YEM 

COMMON /SHEAR/ SHEARC43l,SCSH(43J 
CQ~MON/MXMN/RHUMX,RHUMN,RHU(43l,AL 
COM~ON IASDI ASOl,AS02 
CC~MON/OUO/OUOOM(43), DUOY(43), AOUOY(43), .AOUOYM 
l\l= ALMG*Yl 
IF(P(l).EQ.O.) AL=1.28*ALMG*YL 
IFCKASE.EQ.2) GO T0.66 
IF(KlN.EO.l)YM=tYtll+Y(IPllJ*•5. 
IF(KEX.EO.l)YM= Y(NP3J-.5*fY(I)+Y(IPl)l 

Jf(YM.LT.AL/AK)AL=AK*YM 
66 IF IKPRAN.EQ.O) GO TO 67 
THIS SURROtJTlNE USES THE MIXING-LENGTH HYPOTHF.SIS 

E~U=.5*1RHOfl)+RHO{IPll)*Al*AL*A8S(DUOOM(IJ 
1 *SCSHtil 

SHEAR(IJ=EMU*OUOOMCI)*SCSH(JJ 
RETURN - · · • - · 

67 E~U=ABS(SHEAR(I)/OUOY{l)) 
~ETURN 
END 
SURROUTINE LENGTH 
C~MMO~ /GEN/Pfi,AMI,AMf,OPOX,PREF(3),PR{3),P(3),0EN, 

lXL,OX,INTG.CSALFA,XPCG.AMU,XU,XD,XP 
l/V/lJ(43),F(3,41),R(43),RHOl43),0M(43J,Y(43) 
l/IIN,NPl,NP2,NP3.NEQ,NPH,KEX,KIN,KASE,KRAD,KPRAN 



1/ L l/ V l , lH1 A X , lJ M f N • F R , V I P , Y E M 
CQ~MON/~XMN/RHU~X,RHU~N,RHUC43J 9 Al 
CnMMnN/UMUM/U~UZC43),YMU 
COMMO~/KJU/K~U 

SEARCH FOR M4X AND MIN RHU 
RYUMX=RHO(l)*U(1) 
RHU~N=RHOCl)*U(l) 
~HU~N=RHO(l)*U(1J 
00 39 J=3,NP3 
qHU(J)=RHO(Jl*U(J) 
TF CRHU(J).GT.Qf-fUMX) RHUMX-=RHUfJ) 
IF fR.HU(J).LT.RHUMN) RHUMN=RHU(J) 

3q CONTINUE 
SFARCH FOR THE ~AXIMUM AND MINIMU~ VELOCITIES 
40 U"1AX-=U(l) 

UMIN=U(l) 
00 41 J=3,NP3 · 
IF(J.EQ.NP2JGO TO 41 
IF(U(Jl.GT.UMAXJUMAX=U(J) 
IF(lJ(J).LT.UMTNJ GO TO 42 
GIJ TO 41 

4? UMIN=U(JJ 
YMU=Y(J) 
K"'U=J 

41 CONTINUE 
1 F ( U ( 1 J .L T • U ( N P 3 ) ) GO T 0 411 
UlO==.l*UfNP3J 
UTOL==ABSCU~IN-U(NP3)) 
GO TO 412 

411 U 10=. 1 *U ( 1 ) 
UTOL==ABSIUMIN-UflJ) 

412 CONTINUE 
IF CUTOL.GT.UIOJ GO TO 61 
IF flH I ) • EQ • U ( NP 3 J J GO TO 61 
UM==.5*(U(l)+UCNP3)J 
U~UZZ=ABSCU(l)-UM) 
DO 21 K=3,NP1 
U~UZCKl=ABS(U(KJ-UMJ 
IF CUMUZCKJ.LT.UMUZZJ UMU=U(K) 

21 CONTINUE 
00 22 K=3,NP1 
IF (U(KJ.NE.UMUJ GO TO 22 
KKU=K 

54 

IF (U(KKU).EQ.UM) YMU=Y(KKUJ 
IF (U(KKU).GT.UM) YMU=V(KKU)+(UM-U(KKU)l*(YCKKU+1)

lY{KKUl)/(U(KKU+ll-UCKKUll 
IF (U(KKU).LT.UM) YMU=Y(KKU)+(UM-UlKKUl)*(Y(KKU-1)

lY(KKUl)/(U{KKU-lJ-U(KKU)) 
22 CONTINUE 
61 CONTINUE 

OIF=ABSCUMAX-UMlNl*FR 
SEARCH NEAR THE I BOUNDARY 
43 YIP=O. 
SF.ARCH NEAR THE E BOUNDARY 
44 IF{KEX.NE.2J GO TO 45 

00 211 1=1,NP3 
lF(lJ( I J .GE •• q9*UlNP3) J GO TO 222 

211 CONTINUE 
222.YEM=Y(I) 

GO TO 46 
223 U2l=A8Sl.5*(U(NPll+UCNP2JJ-U(NP3)) 

IF(U2l.LT.OIF) GO TO SO 
V~M=SORT ( 01 f-/tJ21 )* (. 5*( Y( NPl )+Y( NP2l )-Y{ NP3)) +Y( NP3) 
GO TO 46 

50 J=NP2 
51 J=J-1 

UJl=U(J)-U(NP3J 
IF(A3S(UJl).GE.OlF) GO TO 52 
G(} TO 51 

52 Al=l. 
JF(UJ1.l T.O.lAl=-1. 
YEM=Y(J+l)+(Y(J)-Y(J+lll*(U(NP3J+J\1*0IF-U(J+l) )/(U(J)-



lU(J+l)) 
GO TO 46 

45 YEM=Y(NP3) 
46 YL=YF.M-YIP 

P'=TURN 
f"JD 
SUAROUTINE FNTRN 
COMMON /GEN/PF.IyAMI,AMF.,OPOX,PREF(3),PR(~),P(3J,OfN, 

lXL,OX,INTG,CSALFA,XPCG,AMUyXlJ,XO,XP 
COMMnN /L/AK,AL~G 

1/ V /ll ( 4 3 l , F ( 3 , 4 3 ) , R ( 4 3 ) , RHO { 4 3) , 0 M ( 4 3 ) , Y ( 4 3 l 
l/T/N,NPl,NP2,NP3,NEQyNP~,KFX,KIN,KASE,KRAO,KPRAN 
1/Ll/YL,UM.I\X,UMIN.,FR,YIP,YEM 

COMMON /SHEAR/ SHEAR(43l,SCSHC43) 
CO~MO~/OUO/eUOOM(43) 
CO~~ON /ASO/ ASOl,A$02 
IF (KPRAN.NE.O.OR.NEQ.EQ.11 GO TO 822 
h~E=-ABS(($HEAR(NP2)+$HEAR(NPl)-2.*SHEARCNP3)J/ 

l(U(NP2J+UlNPlJ-2.*U(NP3))) 
RETURN 

:22 AMf=-8.*RHOtNP3l*((ALMG*Yll/(Y(NPl)+Y(NP2J-2.*Y(NP3J)) 
l**2*ARS(UtNPl)+U(NP21-2.*UCNP3)) 

RETURN 
FND 
SUBROUTINE WALL 
COMMON /GEN/PEI,AMI,AME,OPOX,PREFt3J,PR(3),P(3J,OEN. 

lXL,OX,INTG,CSALFA,XPCG,AMU,XU 1 XO,XP 
l/V/UC43),F(3,43),R(43),RH0(43J,OM(43J,Y(43J 

l~~~~E~~!G~~~l~~;t~fl~:~~r,E~~Ji~~~:~1~13~~:2o~~~t~INDEC3J 
COMMON /SHEAR/ SHEAR(43)~SCSH(43l 
CO~MON/OUO/OUOOMC43), OUDY(43), AOUDY(43) 9 ADUOYM· ---- ·· 
COMMON /L/AK,ALMG 
COMMO~ /ASD/ ASD1 7 AS02 

15 YI=.5*(Y(2l+Y(3)J 
UI=.5*(U(2)+U(3JJ 
RH=.25*{3.*RH0(2l+RH0(3)) 
RE=RH*UI*YI/VISCO( 1 ) 
FP=DPDX*YI/(RH*Ul*Uil 
·AM=AMl/(RH*Ull -·· 

~~fi=~~~~~is~~s!~P;lMll/AK 
TAlJI=S*RH*UI*UI 
IFCNEQ.EQ.l) RETURN 

CALCULATION OF GAMA 1 S FOR THE I BOUNDARY 
00 38 J=l ,NPH 
CALL WF2tRE,FP,AM,PR(Jl,PREF(JJ,PtJJ 1 SFJ 
GAMA ( J J= ( SF+AM l*PREF (J) /( AK*AK*BETA J ·· ··· ... ·~ ··· --·- -
lF(INOl(J).EQ.lJAJI(J)=SF*RH*UI*(2.*F(J,lJ-F(J,2J-

1F(J,3))*.5 
38 CONTINUE . 

St-4FAR( l)=ASDl*RHO( 1 )*F( 1, l)*OUDY( lJ/ASSfOUOY(l) J··. ··
RETURN 
END 
SURROUTINE WFl(R~F,AM,S) 
CCMMON /l/AK, ALMu 

1/WL/STO,AKS,RT,FT,AMT 
AKS=AK*AK 
RT=R*AKS . 
ST=l./RT-.156l*RT**(-.45l+.08723*RT**f-.3l+.03713*RT** 

1(-.18) 
STO=ST 
IFCF.EO.O.) GO TO 15 
FT=F/AKS 
FM=l.-4.*FT*RT/(585.+RT**2.5)**•4 
IFCF~.LT.O.lFM=O. 
ST=ST*FM**l.6 
GO TO 16 

15 IF(AM.F.Q.O.J GO TO 16 
A~T=AM/AKS 
AMM=l.-AMT/(7.74*RT**(-l.l7J+.956*RT**(-.25)) 
ST=ST*AMM**4 



16 S=ST+AKS 
RETURN 
ENO 
SU~POUTINE WF2tR,F,AM, PR ,PRT,P,S) 
Cr.MMON /l/AK,ALMG 

1/Wl/STO,AKS,RT,FT,AMT 
S Tl=STO/(l.+P~SORTCSTQ)) 
IFCF.EQ. O.) GO TO lS 
S~EP=l.7 25*RT**{-.333~l*CP+6.8)**(-l.l65) 
FQ=.2S*FT*RT/(l.•.0625*RT) 
STl=STl*Cl.-FOJ+FO*SSEP 

15 ST-=STl /PRT 
S=ST*AKS 
RETURN 
ENO 
SU~ROUTINE SOURCE(J,I,CS,OSI 

FOR CONSERVATION OF STAGNATION ENTHALPY 
CAUTION- USE CONSISTFNT UNITS 
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THE OOT PRODUCT OF E WITH J IS NEGLECTED 
COMMON /GEN/PEI,AMI,AME,OPOX,PREF(3),PRl3J,P(3),0EN, 

lXL,OX,JNTG~CSALFA,XPCG,AMU,XU,XO,XP 
1/V/U(43),r(3,43),R(43) RH0(43l,OM(43),Y(43J 
l/l/N,NP1,NP2,NP3,NEQ,NPH,KEX,KIN,KASE,KRAO,KPRAN 
1/ll/YL,UMAX,UMIN,FR YIP,YEM · 
l/C/SC(43) ,AU(43) ,stJ{43) ,CUC43) ,A( 3,43) ,lH3,43) ,C(3,43t 

COMMON/ASD/ASDl,A$02 · 
COMMON /SHEAR/ SHEAR(43),SCSH(43) 
CCM~ON/OUO/OUOOM(43), DUOYC43), AOUOY(~3), AOUOYM 
CCMMON/AVOU/AVOUY 
IF (J.GT.3) GO TO 12 

12 es~~~Na~· 1) GO TO 13 
cs = o.o 
OS -= 0.0 
GO TO 3 

13 CS=SCCI)*OUOOMCil**2 · - · · -· ·· -· ·· · - · · - · - · 
IF .( F ( 1 I J • L E. 0. ) GO TO 30 ... --· - . 
OK=lASDi*Fll,II**l.5/YL)*DUOYCtt/AOUOYM 
GO TO 24 

30 OK=O. 
24 CQNTINUE 

DS=O. 
CS=CS-OK/C.5*CUfi)+UCI+l))) 
CONTINUE 
RETURN 
END 
SUBROUTINE CONST 
CO~MON /GEN/PE1,AMI,AME,OPOX,PREF(3J,PRC3J,P(3),0EH, 

lXL,OX,INTG,CSALFA,XPCG,AHU,XU,XO,XP 
COMMON /L/AK,~LMG 

l/I/N 9 NPl,NP2,NP3,NFQ,NPH,KEX,KIN,KASE,KRAO,KPRAN 
1/ll/YL,U~hX,UMIN,FR,YIP,YEM 

COMMON /ASO/ASOl,AS02 
AK=.435 
F~=.Ol 
DR(3) = 0.35 
P~(lJ=l. 
PR(2)=.7 
AMU = 0.000012 
RETURN 
END 
SU~ROUTINE OENSTY 
CQM~ON /GEN/PEI,AMI,AMF,OPOX,PREFl3),PR(3),P(3),0EN, 

lXL,OX,INTG,CSALFA,XPCG,AMU,XU,XO,XP 
l/V/U(43),F(3,43),R(43),RH0(43),0~(43),Y(43) 
l/I/N 9 NPl,~P2,NP3,NEQ,NPH,KFX,KIN,KASF,KRAO,KPRAN 

COMMON/AtJXP/TFMPE(43),TEMPl43),P0(43),AMACH(43) 
COM~ON/BAR/GABAR(43),RBAR(43) 
COM~ON/TEM/TE~PT(43) · 
PINF=l4.7*144. 
DO 45 l=l,NP3 

J C P F = • 2 4* 2 50 0 0. · 



f(3,Il=l. 
GABAR(I)=l.4 
RRAP(I)=5J.35 
(F(NPH.LT.2l F(2,Tl=CPF*520. 

44 TEMP (I l= (F ( 7., I )-.5*U( I )*U( I)) /CPF 
RHO( I )=P INF/(TEMP( I l*RAAR( I) l 
TEMPT (I) =F ( 2, I )/CPF 

45 CONTINUE 
RETURN 
END 
F~~CTION VISCO(l) 
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COMMON tr,EN/Pfl,AMI,AMF 9 0POX 9 PRf.C(3} 9 PR(3) 9 P(3),0EN, 
lXL,OX,lNTG,CSALFA,XPCG,A~U,XU 1 XO,XP l/V/U(43),f(3,43l,R(43),RH0(43J,OM(43l,Y(43) 
l/t/N,NPl,NP2lNP3,NEQ,NPH,KEX,KlN,KASE,KRAO,KPRAN 

VISCO=AMU*(f 2,1)/F(2,NP3))**•76 
RETURN 
END 
SURROUTINE RAO(X,Rl,CSALFBl 
APPLICABlE TO AXISYMMETRIC MIXING LAYER AND JET 
COMMON /GEN/Pft,AMI,AME,OPOX,PREF(3),PR(3),P(3),0EN, 

lXL,OX,lNTG,CSALFA,XPCG,AU.U,XU,XO,XP 
l/V/U(43),F(3,43),R(43),RH0(43),0M(41),Y(431 
1/l/N, NPl, NP 2, NP3 ,NEQ ,NPH,KEX ,K Uh KASE,KRAO, KPRAN .. 

COMMON/lJMUM/UMUZC43), YMU 
CSALF8= 1 • . 
IF (KRAO.EO.O) GO TO 18 
IFfX.EQ.O.l GO TO 15 
Rl=R(ll*(R(l)-2.*AMI*(X-XP)/(RHOfli*U(l))) 
lFCRl.LT.O.lRl=O. 
Rl=SQRTlRl) 
'tETURN 

15 R0=.25/12. 
Rl=RO-YMU 
RETURN 

18 R 1 = 1 • . -· - . 
RETURN 
ENO 
SUAROUTINE PRE(XU,XO,OPOXl 
£0MMON /PR/UGU,UGO 

l/V/U(43),F(3 1 43),R(43) RH0(43) 0M(43),Y(43) 
1/I/N,NPl,NP2,NP3,NEC,NPH,KEX,K{N,KASE,KRAO,KPRAN 

JGU ANO UGO STANO FOR FREE-STREAM VELOCITIES AT XU AND XO 
OPDX= (UGU+UGO )* ( UGU-UGD l *• 5*RHO( ~P3 J /( XO-XU) 
RETURN 
E~O 
SU'3ROUTINE MASSfXU,XO,AMl 

~PPLICA~LE TO AN IMPERMEABLE-WALL SITUATION 
AM=O. 
RETURN 
E~O SUAROUTINE FBCIX,J,IND,AJFS) .. . ·- .. 
COM~ON /GEN/PET,AMI,AME,OPOX,PREF(3J,PR{3),P(3J,DEN, 

1 XL, OX 9 I NTG, CSAL FA, XPCG,AMU ,xu, XO, XP 
l/V/U(431 9 f(3,43),R{43l,RH0(43l ,0'1(431 ,Y(4J) · 

,RESCRIBES A STEP-RAMP WALL TEMPERATURE 
lF(J.NE.2) GO TO 2 
rNn=t 
H MUST HAVE UNITS FT.FT/SEC.SEC 
AJFS= 0.24*1000.0*25000.0 
GO TO 3 
CONTINUE 
I "40 = 1 
AJFS = F ( 1, l) 
CONTINUE 
RETURN 
ENO 
SU~ROUTINE BEGIN . 
COM~ON /GEN/P(I,AMI,AME,OPOX,PRF.F(3J,PR(~),P(3),0EN, 

lXL,OX,INTG,CSALFA,XPCG,AMU,XU,XO,XP . 
l/T/N,NP1,NP2,NP3,NEQ 1 NPH,KEX,KtN,KASE,KRAO,KPRAN 
l/R/BETA,GAMA(3),TAUl,TAUE.AJJ(3),AJE(3).lNOI(l),tNOE(3) 



1/V/U(43).F(3,43),RC43l,RH0(43),0~(43),V(43) 
COM~ON/AUXP/TEMPE(43l,TFMP(4~),pn{4~),AMACH(43) 
CnM~ON/BAR/GA8AR(43),RRAR(43) 
COMMON /XPLOT/NPLOT 
COMMON /ASO/ ASOl,AS02 
COM~ON /l/~K,ALMG 
(r.M~ON /SHtAP/ SHEARC43J,SCSH(4~) 
COM~ON/OCON/OXC 

PRORLE~ SPECIFICATION 
R~AD {5,42) KRA0 9 KIN,KFX,NEQ,N,NPLOT,KPRAN,KSST 
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42 FORMAT (9[5) 
REAO (5,43) XL,XPCG,ASOl,AS02,ALMG,PREF(l),PREF(2J, 
1PREF(3)l0XC~SHS 

43 FORMAT IOE~.OJ 
44 FORMAT (2ElC.OJ 

KASA= 1 
XU=O. 
NPH=NFQ-1 
NPl=N+l 
~P2=N+2 
NP3=N+3 

INITfAL VELOCITY PROFILE 
45 CONTINUE 

RfAO (5,444) Y(l), (Y(J), 1=3,NP1), V(NP3J · ····· · -·--···· 
READ (5,444) U(l), (U(I), I=3,N°l), U(NP3J 
REAO {5,444) F(l,ll, {F(l,I), 1=3,NP1l, Fll,NP3J 

44 FORMAT (7Fl0.5J 
Y( l)=Y( 1)/12. 
00 111 I=3,NP1 
Y( I l=Y( I )/12. 

11 CONTINUE 
Y(NP3l=Y(NP3J/12. 

46 CONTINUE 
CALCULATION OF SLIP VELOCITIES AND DISTANCES 

BETA=.l43 
U(2l=U(3)/(1.+2.*BETAJ 
Y(2)=Y(3)*8fTA/(2.+BETA) 
Ull=U(NPll*UCNPlt 
Ul3=UfNPl)*UCNP3) 
U33=U(NP3)*UCNP3) ·---- -
SQ=A4.*U33-12.*Ul3+q.*Ull 
U(NP2)=(16.*U33-4.*U13+Ull)/{2.*(U(NP1J+U(NP3)J+SQRT( 

lSQl) . 
Y(NP2)=YtNP3t-(YlNP3)-Y(NPl))*(U(NP2)+U(NPl)-2.*UCNP3)) 

1*.5/(U(NP21+UlNPl)+UlNP3J) 
IF{NEC.EQ.l) GO TO 45 . 

CALCULATION OF CORRESPONDING SLIP VALUES 
DO 88 J":1,NPH ·- ···- · · -·· ···---- --·-·- · 
GAMA ( J J= .143 
F(J,2l=f(J,ll+(F(J,3J-F(J,l))*(l.+BETA-GAMA{J))/(l. 

l+BET A +GAMA( J) J 
G=(U(NP2J+U(NPlt-8.*UlNP3) t/(5.*(U(NP2J+U(NP1JJ+8.* 

1U(NP3)) 
GF=(l.-PREF(J))/(l.+PREF(J)) 
GF=(G+GF)/(l.+G*GF) 

88 F(JtNP2l=F(J,NPlJ*GF+(l.-GFJ*F(J,NP3) 
45 CON INUE 

CALl OENSTY 
CALCULATION OF RADII 

CAll LENGTH 
CALL RAOCXU,Rlll,CSALFA) 
IF(CSALFA.fQ.O •• OR.KRAO.EQ.OJ GO TO 27 
00 28 I=2,NP3 

28 R(t)=R(l)+Y(I)*CSALFA 
GO TO 2q 

27 DO 30 I=2,NP3 
30 R(I)=R{l) 
29 CONTINUE 
CALCULATION OF OMEGA VALUES 

OM(l)=O. 
()f-4(2)=0. 
DO 49 I= 3, NP2 



0 ~ ( J ) = 0~ ( I- 1 ) + • 5 * ( R HO ( I ) * U ( I ) * ~ ( I ) + R H 0 ( I -1) * U ( 1-1 f * 
L R ( 1-1) ) * ( Y ( 1 ) -Y ( I- 1 ) ) 
PFI=OM(NP2) 
r>t"l 59 I=3 9 NP1 
0!--1 (I l =OM ( I) I P E I 
(l "1 (P'J p 7 ) = 1 • 0 
0~ ( NP3 )= 1. 
IFCNEO.~Q.llRFTURN 
Ofl 69 J=l,NPH 
IF~KEX.EO.l)INOE(JJ=l 
IFCKIN.EQ.l) INOI(JJ=l 
C flNT INUE 
RETURN 
ENO 
$1J~ROUT I NE OUTPUT 
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COMMON /GEN/PEI,AMJ,A~E,OPOX,P~EF(3),PR(3J,P(3J,OEN, 
l XL,OX,INTG,CSALFA,XPCG,AMU,XU,XO,XP 
/V/U(43),F(3,43),R(43),RH0(43),0~(43),Y(431 

./C/SC l43l,AU(Lt3) ,RUC 43) ,CU(43) ,A( 3,43) ,8(3,43) ,C(3.,43) 
COMMON /L/AK,ALMG . 

l /Ll/YL,UMAX,UMIN,FR,YIP,YEM 
/T/N,NPl,NP2,NP3,NEQ,NPH,KEX,KTNrKASE,KRAO,KPRAN 

.I B I BET A , GAM A ( 3 ) , T A lJI , TAU E , ~ J I ( 3 ) , A J E ( 3 ) , I N 0 I ( 3 ) , I N 0 E ( 3 J 
COMMON/AUXP/Tf:MPF.f43),TEMP(43),P0f43),AMACH(43J 
CC~MON/AUXY/YY(43)fXXU,RRl 
COMMON /XPLOT/NPLO 
CO~~ON /SHEAR/ SHEAR(43),SCSH(43} 
COMMON /lOIN/ INOIC 
COMMON/MXMN/RHUMX,RHUMN,~HU(43l,Al 
COMMON/OUO/OUOOM(43), OUOY(43), AOUOYC43J, ADUOYM 
CO~~ON /ASD/ ASOl,AS02 
COMMON/TEM/TEMPT(43) 
COMMON/UMUM/UMUZ(43),YMU 
DIMENSION BUFFC2000),XP1(45J,XP2C45),XP3(45J,XP4(45), 

.XP5(45) 9 YYYY(45) 
IF ( I NT G. N E. ll GO TO 15 . · . · . - . -· -. -- ·· - · --·· ... . 
WRITE(6,49)(0M([)~I=l 9 NP3) 
IKONT=NPLOT-1 
FOR~AT(24HlTHc VALUES OF OMEGA ARE/(11Fl0.4)) 
CONTINUE 
UJUO=UC1J/U(NP3) 
RHJO=RHO(l)/RHOfNP3l 
TQJO=TEMPT(ll/TEMPTfNP3) 
DO 60 I=l,NP3 . 
A~ACH(Il=SHEAR(I)/(RHOIIJ*l00.**2l 
IF (KRAO.EO.OJ GO TO 61 
TEMPE(I)=RRl+YY(() 
GO TO 60 
TEMPE(IJ=YY(l)-12.*YMU 
CONTINUE 
WRITE(6,51J XXU,RRl 
FORMAT('l XU= •,2PE11.2,• Rl = •,2PE11.2t 1 IN'J 
IF (KPRAN.NF..O.OR.NEO.LT.2l GO TO 250 
W~ITE (6,55) UJUO,RHJO,TOJO,PREFflJ,PREFC2),PREF(3J, 
ASOl,AS02 
FOR~AT(lHOt6HUJ/UO=F6.3,2X18HRHJ/RHO=F6.3,2Xr7HTOJ/TO= 
F6.3r2X 9 6HPREFl=F5.3,2X,6HPREF2=F5.3,2X,6HPREF3=F5.3, 
2X,5HASOl=F6.3,2X,5HAS02=F6.3) 
GO TO 251 
WRITE (6,50) UJUO,RHJO,TOJO,PREF(2) ,PREF(3) ,AL - · .. ··· ·. 
FORMATflH0,6HUJ/lJO=F6.3,2X,8HRHJ/RHO=F6.3.t2X,7HTOJ/TO= . 
F6.3,2X,6HPREF2=F5.3,2X,6HPREF3=F5.3,2X,~HAL=F7.3) · 

CONTINUE ' 
WRtTEC6 1 54J 
WRITE(6,52) 
FORMAT( lHO,AX,lHY,llXrlHUrllX,lHH,llX,2HCE,lOX,lHT, 
llX,2HRY,7X,5HK. E.,lOX,lHM,lOX,3HRH0,6X,5HOU/OY,9Xf 
r2HIN,7X,6HFT/SEC,3X,12HFT**2/SEC**2rl9X,lHR,lOX,2H N, 
7X,l2HFT*FT/SF.C**?.,l2Xr8HLB/FT**3,4X,9HFT/SEC/FT/) 
FORMAT(lH 1PllF.l2.3 ) 
FORMAT(lHO ) · 
IKONT=IKONT+l 

·' 

i~ 



IF (JKONT~NPLOTllOl,lOO,lOO 
I lKONT=O 

CONTINUE 
on 1 0 Jl=l,NP3 
J 2=NP2-J 1+2 
YYYY (J 2 )=YYCJ2)/YY(NP3l 
WP.lTE(6,5~l YY(J?l,U{J2l,F(2,J2),F(~,J?.l,TEMP(J2) 9 
lYYYY(J 2 ),F(l,J2),AM~CH (J2),RHn(J 2l ,OUOY (J2) 

IF{FLOAT(INTG-l)/5 •• NE.FLOATCCINTG-l)/5llRETURN 
RETURN 
END 

60 
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APPENDIX D 

SOME CONSIDERATIONS ON THE BOUNDARY CONDITION 

The turbulent viscosity model derived from the linear relation 

:ween the local turbulence shear stress and local turbulent kinetic 

!rgy is being further examined here since the relation fails to be 

Lsonable at the wall boundary. It is obvious that the turbulent 

tetic energy is zero at the wall because the fluctuating components 

zero. However, the shear stress always exists between the solid 

fluid surfaces. The use of laminar shear stress in addition to the 

·bulent shear was also considered. The experimental data of K.le-

Lof£ were recalculated by assuming 

~re ~ is the dynamics viscosity of air . A dimensionless plot with 

;ure 

.e. 

k au/ay u aa 
as ordinate and U2 lau/ayl + a

1
PU2 ay as abscissa is shown in 

(D-1). The linear relation remains valid and a
1 

= .3 is still 

Analytical solutions for average velocity profiles were obtained 

using three shear stress models represented by equations (D-1), (2-l), 

. (2-3). Figure D-2 shows the comparison of the three solutions with 

.banoff' s experimental data. It is noted that the difference is not 

·y significant. However, the influence on turbulent kinetic energy 

substantial. The analytical results in Chapter V were obtained by 

ng equation (D-1) to relate the local turbulent shear stress with 

local kinetic energy. The boundary condition at the wall for shear 

·ess is also related to the roughness of the wall which was not able 

be evaluated from Klebanoff's experiment. This may partially resul.t 
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ixl0-2 r-------------------------~--------------------------~ 
[ 

du/ dy + _..1:!.._ du] 
~--r•alpkldu/dyl a

1 
dy 

11 experiment (ref. 3) 

k ·du/ dy }.I du 

U2 ldu/dyj + 2 dy 
~pU 

F:Lgur.e D-1. Plot of Klebanoff's data 
by Using Equation (D-1) 

a 

.~ .. 
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Figure D-2. The average velocity distributions 

Klebanoff's experimental result 
result of Bradshow's model 
result of Equation (D-1) model 
(a1=0.3, ~=3.0, ak=0.7) 
Prandtl's mixing length theory 
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1.0 
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o the deviation of the analyzed shear stress from the measured shear 

tress in the vicinity of the wall. 
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