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ABSTRACT

A turbulent boundary layer problem has been studied analytically
and compared with an available experiment in the literature. Corre-
lations of the experimental data were made to investigate the validity
of the commonly used empirical relations on turbulent shear stresses.
It was found that the model which related the local turbulent shear
stress linearly with the local turbulent kinetic energy, as used by
Bradshow et. al., appeared to be most reasonable. Combining this model
with the expression of turbulent viscosity given by Boussinesq, it was
then possible to introduce the turbulence-energy equation in addition
to the governing equations of continuity and momentum. Consequently,
the turbulent viscosity was able to be considered as one of the depen-
dent variables to be solved for simultaneously with all other related
flow parameters. Using the main-flow direction and the stream function
as the two independent variables, the governing equations were reduced
to two simultaneous parabolic-type partial differential equations
through the von Mises transformation. The finite difference technique
of Partankar was applied. The numerical solutions were obtained for
the average velocity and the turbulent kinetic energy distributiomns.
In comparison with the experimental results of Klebanoff in the fully
developed region along a flat plate, very good agreement was reached
on average velocity distribution. However, the turbulent kinetic
energy distribution was not completely satisfactory, since the energy
dissipation term of the turbulence-energy equation was not able to be
expressed adequately due to the lack of sufficient experimental infor-

mation. It is then concluded that the use of the turbulence-energy



ii

equation in boundary layer study is possible to eliminate the uncer-
tainty resulting with émpirical models of the turbulent viscosity.
However, further experimental investigations are needed to improve

the understanding of the structure of turbulence.
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CHAPTER 1

INTRODUCTION

The concept of the boundary layer was introduced by Prandtl
in 1904 to consider the viscous effect between a solid surface and
its surrounding flow field. This concept made it possible for ex-
perimentally observed phenomena such as skin frictiom drag and aero-
dynamic heating to be evaluated by using the knowledge established

in hydrodynamic theory.

The development of boundary layer theory can Qe found in the books
of Schlichting (1)* and Pai (2). The available analytical methods
generally predict the detailed flow field with reasonable success if
the boundary layer is laminar. However, most of the problems encountered
in engineering find that the boundary layer is generally turbulent.

The momentary value of a turbulent wvelocity may be expressed as
u=1u+u'
v=v+v' (1-1)

w=w+w'

where u, v and w are the velocity components in the flow field in the
X, v and z directions, respectively. The bar denotes the time average
quantity and the prime denotes the fluctuating quantity. The existence
of the fluctuating quantities adds some additional terms to the equa-

tion of motion. These terms are known as the Reynolds stresses with

the stress tensors as:

= ‘
Numbers in parentheses refer to listings under REFERENCES.



Ox Txy Tz pu'zi pu'v' pu'w'
Txy 0y Tyz - - puvT  pvTZ pviw" (1-2)
sz Tyz 0z pu'w' pv'w' pw'z

where p is the density of the fluid: u'z, v'2 and w'2 are the turbu-

lence intensities in the x, y, and z directions, respectively;pu'v',

pu'w',etc. are the turbulent shear stresses. The equation of motion
in turbulent flow has six additional unknowns in comparison with the
same equation for laminar flow. The major task in turbulent flow then
is to establish the required relations for the additional unknowns so

that a mathematical solution may be theoretically possible.

Experimental investigations to measure the Reynolds stresses were
conducted by Klebanoff (3) in a fully developed turbulent flow along
a flat plate. It was found that all the normal stresses are of the
same order of magnitude, and that the shear stresses are of the order
of the square of the magnitude of the normal stresses. Applying the
order of magnitude analysis in the boundary layer to examine the equa-
tion of motion, the most significant term of the Reynolds stresses

appears to be the shear stress term
= - pu'v' (1-3)

In order to make the turbulent boundary layer equation identical
with the laminar boundary layer equation, J. Boussinesq (4) introduced

a turbulent viscosity to define the turbulent shear stress as

T =1 =&

e Txy - F oy} (1-4)

where € is the turbulent viscosity, %%—is the gradient of the time



average velocity. Since Equation (1-4) is analogous to the Newton's
law of viscosity, it is then possible to solve the turbulent boundary
layer problems by applying the analytical method available for laminar

boundary layer solutions, provided that the turbulent viscosity is

known.

Detailed discussion of the turbulent viscosity models is given
in Chapter I1. Knowing that turbulence is a phenomenon which results
from the history of the development of the entire flow field, it is
necessary that the turbulent viscosity model considers the turbulence
development. Examining the experimental result of Klebanoff (3) im
comparison with the available turbulent viscosity models, the linear
relation between the local turbulent shear stress and the local kinetic
energy of turbulence, as suggested by Bradshow (5), appears to satisfy
the requirement. Since the energy is conserved in a turbulent flow
field, the historical effect of turbulence may then be taken into con-

sideration by introducing the turbulence energy equation.

The current method of analyzing turbulent boundary layer problems
is to select an empirical formula for the turbulent viscosity. How-—-
ever, a formula established from one engineering problem generally
failed to provide meaningful solutions for different problems. Conse-
quently, the engineers are not able to find an adequate turbulent vis-—-
cosity model whenever a new situation arises; The approach of using the
equation of conservation of turbulence energy made it possible that
the turbulent viscosity may be solved for simultaneously with the

other flow parameters. This study applies this new approach to investi-



gate the development of turbulent boundary layer and compare the
analytical solutions with the experimental results available in the

literature.



CHAPTER II

THE TURBULENT VISCOSITY MODELS

The development of an appropriate turbulent viscosity model
is essential in obtaining a meaningful solution for the turbulent
boundary layer problems. Several models have been suggested in the
last three decades. A comparison of the suggested models with the
experimental data appears to be necessary in order to investigate the
validity of each model in applying to engineering problems. The Rey-
nolds stresses measured by Klebanoff (3) in a fully developed turbu-
lent flow along a flat plate, provided the necessary information for
comparison with the following three commonly used turbulent wviscosity

models.

A. Prandtl's Mixing Length Model
~ Prandtl (6) introduced the mixing length hypothesis in 1925 to

relate the turbulent shear stress with the velocity gradient.

= o9 2 [2u |3W : -
T—pﬁ.p[ l : (2-1)

where Zp is the Prandtl mixing length which has the dimension of length
and is to be determined experimentally. The experimental data of Kle-
banoff is shown in Figure 1 with Bﬁi-as the ordinate and (%%3%%%92 as
the abscissa on a 3x3 cycle logarithmic plot, where U is the free
stream velocity and § is the boundary layer thickness. In order to
satisfy Equation (2-1), a 45 degree straight line needs to be drawn

in Figure 1 to pass as many data points as possible. For the best

representation of Klebanoff's experimental data, the Prandtl mixing

length can be written as:
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Figure 1. Prandtl Mixing Length Model

N



L= 0.1146
P

It can be seen that Equation (2-1) represents the data of Kle-

banoff reasonably well except at large values of the velocity gradient.

B. Kolmogorov's Model
Kolmogorov (7) made the suggestion in 1942 that the turbulent
shear stress may be related with the turbulent kinetic energy as

follows

_ T ou -
Ty = Kk oy (2-2)

where k is the turbulent kinetic energy and is defined as

k = -{-[u'2 + v'2 + w'2] (2-3)

lk is analogous to the Prandtl mixing length since it also has the

dimension of length. The experimental data of Klebanoff is shown in
L

k?z 3(T@/u)

U 3(y/8) °

Klebanoff's data, Equation (2-2) requires

Figure 2 as T/pU2 versus For the best representation of

zk = 0.066

It can be seen that Equation (2-2), like Equation (2-1), repre-

sents the Klebanoff's data well only in the region of small values of

k%3 (T/U)
U 3(y/8)
C. Bradshow's Model -
Bradshow, Ferris and Atwell (5) in 1967 used a linear relation
between the local turbulent shear stress and the local kinetic energy

of turbulence as
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Figure 2. Kolmogorov's Model .



where a; is a counstant which, unlike zp and zk, does not have the
dimension of length. The experimental data of Klebanoff is shown
in Figure 3 as ’E/pU2 versus k/UZ. For the best representation of

Klebanoff's experimental data, Equation (2-4) requires

a; = 0.3.

It is noted that Equation (2-4) represents a comparatively wider
range of the measured data then both Equation (2-1) and Equation (2-2).
Moreover, Lee and Harsha (8) found that this model is also valid in

the region where flow similarity is reached.

The invgstigation of the turbulent viscosity models, leads into
the following conclusions:

1. The turbulent Qiscosity, as defined by Boussinesq (4), is a
very convenient way in expressing the equation of motion in a
turbulent boundary layer. However, physically the turbulent
and laminar viscosities have entirely different meanings be-
cause the laminar viscosity is a property of the fluid while
the turbulent viscosity is a local phenomenon. Therefore, it
seems impractical to expect that a simple expression of tur-
bulent viscosity can be derived to represent all turbulent
boundary layer problems.

2. The linear relation between the local turbulent shear stress
and the local kinetic energy of turbulence appears to hold
true in the flow field with or without flow similarities.

With the linear relation, the Boussinesq's concept may then be
used to relate the turbulent viscosity with the turbulent kinetic

energy.
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Using the equation of conservation of turbulence energy, it is,
thus possible to investigate the turbulent boundary layer prob-
lems by considering the turbulent viscosity as one of the depen-

dent wvariables to be determined in a turbulent flow field.
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CHAPTER II1

-

THE GOVERNING EQUATIONS

For ''steady", two-dimensional or axisymmetric flow, in a turbulent
boundary layer, the governing partial differential equations may be
expressed as follow:

A. Continuity

spay” |, ¥y _

ox 3y 3 (3-1)

where u and v are the time average velocities in the x and y
directions, respectively. p is the time average density. The index
o is equal to zero for two—-dimensional flow and unity for axisymmetric

flow. For the investigated two-dimensional incompressible flow,
o = 0, p = constant

B. Momentum

Sq, _ 9, (3-2)

where p is the time average static pressure. For the investigated

—

cases, the fluctuating pressure is negligible. %ﬁ-is zero for flow
along a flat plate. € is the turbulent viscosity which can be expressed
through Boussinesq's definition of Equation (1-4) and Bradshow's rela-

tion of Equation (2-4), as

T a, pk
_ t "1 _
€= "%8 T 8@ (3-3)
oy oy

C. Turbulence Energy

== Ok 9k _ a3 . o€ 0Jk 94,2
p"ax+Way y Iy 1 + ez

oy ck 3y (By =Dy s (3-4)
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where %E-is the exchange coefficient of the turbulent kinetic energy

flux and is defined as

J ———————
€ _ _ "k _(owv'k _
ok © T Bk T ok 3-5)
oy oy

with Jk as the turbulent kinetic energy flux. The parameter Gk is
analogous to the turbulent Prandtl number defined in the total energy
equation when conductive heat transfer is being considered. Therefore,

(o

k may be considered as the ratio of the frictional emnergy to the tur-

bulent kinetic energy. The numerical value of Oy and its effect on the
flow field are being discussed in Appendix A. For-the investigated
cases Ogx = 0.7. The term Dk represents the dissipation of the turbulence
energy. For isotropic turbulence, the expression of Dk is given in
Townsend (9) and Hinze (10). However, for nonisotropic turbulence, as
observed in all engineering problems, Dk is not yet being evaluated.

Patankar and Spalding (11) expressed Dk by using dimensional analysis

as
3/2/2

Dk = apk

where "a" is a constant and £ 1is equivalent to the Prandtl mixing

H (3-6)

length, For the studied problems, £ is considered as proportional

to the boundary layer thickness. The constant of proportionality and

"a'" are being combined to give a new constant, say a,. The influence
of a, on the solution of the flow field is also discussed in Appendix A.

For the investigated cases, a, is assumed to be a function of y as

- su , j3u ]
= 3.0 55/ | :

22 oy ' max

where ]%%- max is the maximum velocity gradient at each x location.
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In order to analyze boundary layer problems in an incompressible

turbulent flow field with known pressure gradient, there are four

unknowns: u, v, € and k to be determined through four simultaneous

equations: (3-1), (3-2), (3-3) and (3-4). Theoretically, the solu-

tions are obtainable, if the

scribed.

The boundary conditions

=1
]
<
]
o
)
rt
v

=]
]
eI
o

The boundary conditions

k=20 at y =

k = kG at y =

required boundary conditions are pre-

for the average velocities are:

=0

(3-8)
=4
for the turbulent kinetic energy are:
0

(3-9)
é
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CHAPTER IV

METHOD OF SOLUTIONS

The major difficulty in solving the governing equations of
Chapter III lies in the non~linearity of the parabolic differential
equations of (3-2) and (3-4). A numerical method on solving simul-
taneous parabolic equations was developed by Patankar (11). It is,
therefore, possible to use Patankar's method in this study, if the |
governing equations may be transformed into a general form of parabolic
differential equations.
A. The von Mises Transformation

von Mises transformed the physical coordinate system (x,y) to a
streamline coordinate system (x,)) with the stream function defined to

satisfy the continuity equation (3-1) as:

= = O _ 9P
Pu vy =+
J (4-1)
o O W
pvy x

The partial differential in the x and y directions may be written

as:

S vo — S N - o 3,
o’ = eV TP P
(4-2)
3 _ a9
30X T euy Fpx

Substituting Equation (4-2) into the momentum Equation (3-2) and
the turbulent kinetic energy Equation (3-4), the momentum equation

becomes
ou - 20,00 L gﬁ

_ 8 3y _ L_ _
% - oy P ) T 5T ok (4-3)
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The Turbulence Energy Equation becomes

N - R Dk

B. The Dimensionless Stream Function
In order to solve the parabolic equations of (4-3) and (4-4),

two boundary conditions are required in the Y direction, namely:

Y = wl at the internal boundary, and

Y = ¢E at the external boundary.

For the flat plate case, wI is the stream line along the plate and wE
is the stream line intersecting the edge of the boundary layer at each
X location. Since the interested flow field in boundary layer problems

is between wI and wE’ Patankar introduced a dimensionless stream function

'™
W = — (4-5)
Vg—¥r

Thus, the numerical solutions will be needed only in the range of
O<w<l. 1In terms of the dimensionless stream function, the momentum

equation can be written as

O"MI + w(ylf'.fME-y ?.u'_
ow

WE - \pI
2 -
_ 9o ,y ‘pae ou, 1 9p _
20 (@92 ) T ox (4-6)

The turbulent kinetic energy equation becomes

Bk Yy + 00ty - ) Bk

ox Vg - Vg 3w
_2 2% 3k, y%mae w2 Dk %7
ow (U)E_IDI) 20’k ow (IPE_.I,UI)ZO'k oW Pa
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where MI and ME are the mass flux at the internal and external boundaries,
respectively, with
M [ - -a iip.I_
I 1

-a—_g‘
ME =TI ox

C. The Generalized Parabolic Equation

The generalized parabolic differential equation was given by

Patankar (11) as
3¢ 9 _ 3 . 3¢ -
% + (A+Bw) o o (c Sw) + D | (4-9)
In order to use Patankar's numerical method, the coefficients A, B, C,

and D for the momentum equation (4-6) and the turbulent kinetic energy

equation (4-7) are tabulated in Table I.

D. The Finite Difference Solution

In solving partial differential equations by finite difference
method, it is necessary to consider the stability and convergence cri-
teria. The solution of a finite difference equation is said to be stable,
if any small error (such as a round-off error) introduced at some point
in the computing process becomes smaller and smaller as the computation
;dvances. It is said to be convergent if the solution of the finite
difference equation approaches the exact solution of the differential
equation. For parabolic type differential equation, Wu (13) showed
that the convergence criterion is automatically satisfied if the stability
criterion is satisfied. Crank and Nickolson (14) showed that an implicit
finite difference equation is always stable if the pérabolic differential

equation is linear. Since the generalized parabolic equation (4-9) is



Table 1. The Coefficient of the
Generalized Parabolic Equation

18
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non-linear only with respect to the independent variable w, it may
then be quasi-linearized by evaluating the coefficients of (A+Bw), C
and D at the upstream location. The partial differentials in the im-
plicit form become:

op _ _1 - -
5%‘" YRR S Z YL IR R FUR D R C T A FI

@01 T %,k

9 _ __1 - -
RS IR TE R e R S TR R D g CH T R PR Y
2% L1y - 2¢ TS gt

2 2eanl | itk gk ¥ %540 k-1’ T

@ e = 295,0 + 04,11
(4-10)

where the subscripts j and j+l1 designate the upstream and downstream
locations in the x~-direction, respectively. The subscripts k-1, k, and
k+l designate the successive locations in the y-direction from the in-
ternal to the external boundaries. Figure 4 shows the nomenclature
used in the numerical solutions. The detailed programming technique
was given in Patankar's Ph.D. dissertation (12) from the Imperial College,
London, England, and is briefly outlined in Appendix B. The FORTRAN IV

statement of the modified Patankar's program is given in Appendix C.
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CHAPTER V

- RESULTS AND DISCUSSION

The analytical solutions from the momentum and the turbulence
energy equations were obtained by using the computer program of
Appendix C. 1In order to verify the wvalidity of this approach, an
experiment conducted by Klebanoff (3) for fully developed turbulent
flow along a flat plate was used for comparison. A schematic diagram
of the velocity development is shown in Figure 5. The initial con-
ditions for both average velocity and turbulent kinetic distributions
were assumed to be linear between the values at the wall and the
values at the free stream. The numerical solutions in the entire
flow field were obtained through the step-by-step marching technique
described in Appendix B. As the marching distance advances, the di-
mensionless profiles of the considered flow parameters should approach
a unique distribution function; since the region wheré the dimension-
less profiles remain unchanged is called a fully developed region.
The experimental results of Klebanoff were comparable with the analy-

tical solutions only in the fully developed region.

Klebanoff's experiment was conducted at the National Bureau of
Standards in a 4% foot wind tunmel. The turbulent level of the tun-
nel was 0.02 percent when local velocity was 30 feet per second, and
0.04 percent at 100 feet per second. The boundary layer was developed
along a smooth, flat, aluminum plate 12 fget long, 4% feet wide and
% inch thick with a symmetrical and pointed leading edge. The free
stream velocity in this experiment was 50 feet per second. In order

to obtain a condition of zero pressure gradient along the plate, the
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Figure 5. A Schematic Diagram of the Average Velocity
Development along a Flat Plate
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passage between the tunnel wall and the plate was made sufficiently
divergent to offset the natural fall in pressure due to boundary layer
growth. The average velocity was obtained by using pitot probes to
measure the difference between the total and static pressures. The
flgctuating quantities were obtained by using a constant current hot-
wire anemometer to measure the various fluctuating components and

their correlations.

Comparisons of the analytical solutions with Klebanoff's experi-
mental results were made for average velocity, turbulent kinetic energy

and turbulent shear stress.

A. Average Veiocity Distribution

The development of the average velocity profile is shown in Figure
It is noted that the average velocities near the wall accelerate faster
thag those farther away from the wall. The dimensionless velocity dis-
tributions approach a unique profile as x increases. Comparison with
Klebanoff's experimental results indicated that the computed velocity
profiles agreed well with the measured profile in the fully developed

region.

B. Turbulent Kinetic Energy Distribution

The development of the dimensionless turbulent kinetic energy
distribution is shown in Figure 7. The analytical results indicated
that turbulent kinetic energy increased first for smaller wvalues of
x then decreased slowly as x further increased. However, the analytical
results in the fully developed region were somewhat less than the
measure quantities. The disagreement in turbulent kinetic energy dis-

tributions may be the result of the uncertainty of either the effective



1.0

0.8

0.6

ale

0.4

0.2

Figure 6.

b 4
9

Average Velocity Distribution

24



ol ™

25

150

140

130

120

110

100

90

80

70

60

50

40 §

30

20

10

Mt T T R Sl e LT T e S T = e s ey

X theory exp.
(in —) (ref. 3)
10 e e

20 et

30 e s

\\\\ 34

; \
\\\ \
. SN
i i o) \\\\
b RN
0 o.Lz 014 0.6 0.8 1.0

Figure 7.

ol

Turbulent Kinetic Energy Distribution



26

Prandtl number, Ok, or the constant related to the dissipation, a

9
Further discussion of these two terms is given in Appendix A.
C. ©Shear Stress Distribution

The development of dimensionless turbulent shear stress is shown
in Figure 8. The analytical results of the turbulent shear stress be-
have similarly as the turbulent kinetic energy with respect to the
change in the x direction. The agreement with Klebanoff's data appears
to be reasonably well except in the region near the wall. The effect
of laminar shear along the wall was considered and is discussed in

Appendix D.



27

x 10

X exp.
(in.) (ref. 3)

pA
Y

Figure 8. Turbulent Shear Stress Distribution



28

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The use of turbulence energy equation in analyzing boundary

layer problems was conducted. By comparing with available experi-

mental results in fully developed turbulent flow along flat plate,

the following conclusions are reached:

1.

The linear relation between local turbulent shear stress and

local turbulent kinetic energy appears to be valid in the
boundary layer region.

The turbulent wviscosity may be treated as a dependent wvariable

to be solved for simultaneously with the other related flow
parameters, if the turbulence energy equation can be appropriately
expressed.

The analytical solutions on average velocity distribution con-~

verge to that of the fully developed turbulent boundary layer.

The apparent success of using the turbulence energy approach in

analyzing momentum transfer problems leads into the following sug-

gestions:

1.

Turbulent flow problems with heat and mass transfer in addition to
momentum transfer may also be analyzed by the presented scheme

as long as the governing equations can be expressed as the
ggneralized parabolic differential equatiomns.

The use of the turbulence energy equation, however, brings the
necessity of further understanding df the turbulence structure

in order to adequately express the terms such as turbulence
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energy dissipation, effective transport coefficient of turbulence
energy flux, etc. Detailed measurements of turbulence structure

are needed especially in non-homogeneous and non-isotropic flow

fields.
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APPENDIX A

THE EFFECT OF a, AND o, IN A TURBULENT FLOW FIELD

2 k

The dissipation term Dk in the turbulence energy equation was

expressed by Patankar and Spalding (11) and Bradshow, et. al., (5) as

Dk = apk

/% s (A-1)
where a is a constant. Since this model was originally recommended

for a full developed turbulent flow field, certain modification is
needed in order to apply it in the developing region. The presence of

a wall is known to generate turbulence; it is, thus, reasonable to ex-—
pect that the dissipation to be larger near the wall; i.e., the constant
"a" may be considered as a function normal to the flow direction. The
model

=

_ 9
a = a, lg;'

Ju
/ lay]max (A-2)
is to introduce the ratio of the local velocity gradient to the maximum
gfadient at that location as a control factor for the dissipation eﬁergy.

' The dissipation function then becomes

3/2 94 ou
D =a, pk ]-531 / |-5-};|max (A-3)

where a, is a constant. The effect of a, on the average velocity dis-
el

£
tribution in the fully developed region is shown in Figure A-1. It
can be seen that the wvalue of a, = 3.0 appeared to be a reasonable

assumption.

The parameter Gk appears in the turbulence energy equation,

together with the turbulent viscosity € in the diffusion term as E/ck.
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The quantity E/Uk is called the exchange coefficient for the turbulent

kinetic energy flux in the y-direction, and is defined as

J e ————————

€ ___"k _ ((pv)'K)

o, T T Tk T ok (a-4)
dy oy

Comparing equation (A-4) with the definition of total energy flux
or composition flux, as discussed by Dorrance (14), O, appears to have
the same physical significance as Prandtl Number or Schmidt Number,
respectively. In this study, due to lack of experimental evidence, O

is considered as constant.

The effect of Gk

Figure AQé. It is noted that the éverage velocity distributions appear

on the average velocity distribution is shown in

to be affected very insignificantly for a large range of O+ The wvalue
Uk = ,7 was selected because the Prandtl Number of air is known to be

in this range.
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APPENDIX B

OUTLINE OF THE PROCEDURE IN PATANKAR'S METHOD

Patankar (12) solved the generalized parabolic differential
equation (4-9) by step-by-step numerical integration. The pértial
derivatives with respect to were evaluated in terms of the ¢ values at
Xyys Xp OT %(xU+xD), where the subscript U and D designate upstream and
downstream, respectively. Using the procedure of Crank and Nicholson (15),
the stability criterion was satisfied without imposing limitations on

step length in the x-direction.

For convenience, it is desired to have the resultant difference
equations linear in ¢. Therefore, the coefficients such as A, B, C
in equatiomn (4—9) will always be evaluated from the upstream values of

¢ to linearize the differential equation.

To obtain a finite-difference equation from equation (4~9), a
miniature integral equation over the control volume can be formulated.-
The control volume is shown in Figure B-1l. It is assumed that, in the
®w direction, ¢ varies linearly with w between the grid points. The
variation in the x-direction will be considered to be stepwise. The
values of ¢ for the interval from Xy to x, except at xy, being uniform

and equal to those at Xp .

The terms on the left-hand side of equation (4-9) can be expressed

in the integration form.

d
2o G, - 0y *+ Fy(0p = ¢ + Fuoy - 0 (8-1)
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The complete convection term can be expressed as
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The flux term of the right side of equation (4-9) can be expressed

as
8 -9y ” - .
where
2C
§, - 2 o (B-54)
> oy = dp ), = @)
2
I “u- (B-5B)

6 " Capy — up I (apy — )
The coefficient D will be considered as uniform over the control

volume and equal to that at downstream. Since D may not be linear in

¢, DD should be obtained from the following linearized formula
D 22D, + (D) b - &) (8-6)
D™~ U 3¢U¢D 1

The coefficient D in the equation of conservation of momentum was
assumed to vary linearly with w between grid points. Knowing D =
- (dﬁ/di)/aﬁ in the equation of conservation of momentum, it can be

expressed as

Da2s, U, + S,Uy + S;U0y +5S, (3-7)

where

" dp - "
5, "5 87 dx "% (B34
S, = —----2-pUE %xﬁ G = %) (B-70)

375 5.2 ax %o - X (B0

Fy F) Fy

B, meo Sl B o g Y e fiome s seierd] (B-7D)
* dx D T N Py Gy, Ay Py
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Substituting equations (B-4), (B-5) and (B-7) into equation

(4-9), yields

op = Audpy T Bydp- T Gy (-8)

where ¢ represents u and

Ky = 5™ (B-8A)
I,+I-1.-5,
I, _-I.4S
6 ~3"°3
U T I H LS,
§, <1
474
- — (B-8C)
Cy I+ +I S,

Substituting equations (B-4), (B-5) and (B-6) into equation (4-9),

yields
op = Apbpy + By + Cp (B-9)

where ¢ represents any flow parameter other than u, and

I-1,
- (B-94)
Ar T T -(a0/09),
-I -I
- 6 "3 s
By = I,+I,-1.-(3D/3¢)y o
D, ~(3D/3¢)yby-I
O ~ T —(8D/3¢? (=90
2775776 U

In forming the finite-difference equation, the variation of ¢,
bewteen the grid points, is assumed to be linear in w. But, near the
wall, a straight line in u-w plot, which passing through the true u
value at the wall, would be poor representation of the reality in which
the variations are much steeper. Patanker introduced a "'slip" value
of ¢ at the boundary such that the ¢-w line passing through the slip

value rather than the true one.
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The definition of slip value should be in conformity with the
above requirement. In Figure B-2, the grid lines divide the interval
from w = 0 to w = 1 into N strips. The subscripts 1 and 2 at the in-
ternal boundary and the subscripts N+3, N+2 at the external boundary
denote the true and slip values at internal and external boundary
boundary respectively. The subscript 2.5 refers to a line midway be-
tween the internal boundary and the grid 1ine 3. Similarly, N+1.5
refers to a line midway between N=1 and the external boundary. The
slip value ¢2 is defined as the one which enables us to obtain the cor-
rect slope and the value of ¢ at the point 2.5. Similar remarks apply

to the slip value’¢N+2.

The correct values of the slope and value of ¢ at the point 2.5
and N+1.5 depends upon the nature of the boundary and on the flow prop-

erties.

Near a wall, we shall assume that the wvelocity profile is of the _
power—-law type
B .
u oy -yl (B-10)

Since by definition

(w - wl) o £Z u dy (B-11)

Thus

u al(w -

1

By matching the slope and the value of u at point 2.5, it yields

o =L

2" 248 Y3 (8-13)
For ¢ represent a value different from u, Patankar assumed a power—

law profile for ¢ with power Y different than B
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¢ - ¢ alv - ypI|T (B-14)

Substituting equations (B-10) and (B-12) into equation (B-14),

yields
@ - ) of @ - w2 (8-15)

Use of the slip-~value definition then yields

Replacing ¢ with y and Y with unity yields
- 8 2
Yo = Y3 (g;@ﬁ +y, (E;EO- (B-17)

In the region near a free boundary, a velocity profile can be
shown parabolic in distance for turbulent flow. Therefore

@ - u) aly -y’ (B-18)

Application of the slip-value definition leads to

u, = u3R + ul(l—R) (B-19)
where
u,+u_,—-8u
2 73 1
R = (B-194)
5u2+5u3+8ul

Since R is a ratio of u's, it will very slowly, and hence its value

calculated by using the upstream values of u can be conveniently used.

The profile for ¢ other tham u will be taken as power-law type.
¢ -9 aly - y,1” (B-20)
1 1
Use of the definition of slip value and of equation (B-20) yields

¢2 = ¢3R¢ + ¢l(1_R¢) | (B-21)

-



44

where -

_ R+(2-n) /(2+n)
¢  14+R(2-n)/(2+n)

R (B-21A)

The slip value of y may then be obtained by setting n = 1, thus

_ . 3R+l 2(R-1) _

The values of B and Yy were found by using the "Couette flow'" con-
cept and the van Driest's hypothesis (16), as
dp
u(‘rs-l-y ax + uMS)

Pr(T_ + Mu)y
Y = = (B-24)

€u

The value of n was found as twice of the Prandtl Number.
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APPENDIX C

THE MODIFIED COMPUTER PROGRAM

The computer program of using the finite difference method
described in Appendix B is presented in this Appendix. It is intended

to provide the necessary guide lines for the user of this program.

A list of subroutines and their explanations is presented in the

following:

MAIN The Main programs starts the computation and controls the
sequence of operations. The choice of forward step is also
made here.

COEFF This subroutine is used to obtain the coefficients AU, BU’ CU

in equation (B—-8) and AT, BT’ C.. in equation (B-9).

T

SLIP The relations connecting the slip wvalues to the neighboring
true values have been expressed in the form of the corresponding
coefficients in the subroutine SLIP.

SHEAR The shear stress is calculated in this subroutine by using the
turbulent kinetic energy model.

SOLVE The subroutine SOLVE performs the méthematical operation of
solving simultaneous equations of the type of equation (B-8)
and equation (B-9).

READY After each integration, we obtain the values of u and other
¢'s for known values of w. In the subroutine READY, the cal-
culation of the corresponding normal distance y for every grid
point is undertaken. This makes the stage ready for the per-—

formance of the next integration.



VEFF
LENGTH

ENTRN

WALL

WF2

SOURCE

CONST

DENSTY

PRE

MASS
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The subroutine VEFF is used to calculate the viscosity by
taking use of the suggested model.

The boundary layer thickness is calculated in this subroutine.
The subroutine ENTRN supplies the mass flow rate.

The purpose of the subroutine WALL is to evaluate the ex-
ponents B and Y for the region near a wall boundary. This
subroutine derives its main information from two other sub-
routines, WF1 and WF2, which incorporate the wall flux re-
lationships.

Subroutine WF1l provide the wall-flux relationship concerning
the momentum transfer.

Similar to WFl, subroutine WF2 is relevant when  represents
a variable other than u.

Source term in equation (4-9) is presented in this subroutine.
The values of different constants including some fluid proper-
ties, mixing-length constants etc. are to be given by the
user in the subroutine CONST.

The purpose of the subroutine DENSTY is to evaluate the den-
sity at all the grid points as a function of the dependent
variables.

The subroutine RAD supplies the geometrical information re-
garding the problem.

The specification of the pressure gra&ient is through the
subroutine PRE.

This subroutine is called only when a wall boundary is pre-
sented. Through this subroutine, the mass-transfer rate

through the wall is supplied.
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FBC When a wall boundary is presented, the boundary conditioms
for the fluid "parameter other than average wvelocity are
supplied in subroutine FBC.

BEGIN The initial profiles and other auxiliary quantities are to
be specified in the subroutine BEGIN. A large portion of
this subroutine is used to set up the slip values and calcu-
late w's.

OUTPUT The instructions for printing out the results are to be con-

tained in the OUTPUT subroutine.
Several variable names in the input list are explained below.

KRAD KRAD = 1 means axisymmetrical flow

KRAD 0 means plane flow

KIN specifies the type of internal boundary

KIN = 1 wall boundary

KIN = 2 free stream boundary

KIN = 3 symmetry-line boundary
KEX specifies the type of external boundary

KEX = 1 wall boundary

KEX = 2 free stream boundary

KEX = 3 symmetry-line boundary
NEQ number of partial differential equations to be solved
N number of grid points

KPRAN KPRAN = O use turbulence energy equation
KPRAN = 1 use Prandtl's mixing length hypothesis

X1, values of x at which computation is to be terminated (in feet).



ASD1
ASD2
PREF (1)
PREF (2)

PREF(3)

3

)

N

effective Prandtl number

effective Schmidt number
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APPENDIX D

SOME CONSIDERATIONS ON THE BOUNDARY CONDITION

The turbulent viscosity model derived from the linear relation
‘'ween the local turbulence shear stress and local turbulent kinetic
:2xgy is being further examined here since the relation fails to be
i1sonable at the wall boundary. It is obwvious that the turbulent
letic energy is zero at the wall because the fluctuating components
: zero. However, the shear stress always exists between the solid
| £fluid surfaces. The use of laminar shear stress in addition to the
‘bulent shear was also considered. The experimental data of Kle-

woff were recalculated by assuming

- °g .
T -.alﬁk + u 3y (D-1)

re U is the dynamics viscosity of air. A dimensionless plot with

1U2 as ordinate and E. du/dy + B E--t[—-as abscissa is shown in
u2 [Bu/ayl alpﬂz 9
ure (D-1). The linear relation remains valid and a, = .3 is still

3
€. Analytical solutions for average velocity profiles were obtained

using three shear stress models represented by equations (D-1), (2-1),

. (2-3). Figure D-2 shows the comparison of the three solutiomns with

banoff's experimental data. It is noted that the difference is not

vy significant. However, the influence on turbulent kinetic energy
substantial. The analytical results in Chapter V were obtained by

ng equation (D-1) to relate the local turbulent shear stress with
local kinetic energy. The boundary condition at the wall for shear

ess is also related to the roughness of the wall which was not able

be evaluated from Klebanoff's experiment. This may partially result
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e n . e T_zl_du/d M du
L T=aq[pk du/dy i a, dy

L ] experiment (ref. 3)

5x103 | | /

k_ T‘d_Lu dr U
UZ du/dy alpUz dy

Figure D-1. Plot of Klebanoff's data
by Using Equation (D-1)
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o the deviation of the analyzed shear stress from the measured shear

tress in the vicinity of the wall.
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