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ABSTRACT

Model uncertainty quantification is mainly concerned with the problem of de-

termining whether the observed data is consistent with the model prediction. In real

world, there is always a disagreement between a simulation model prediction and

the reality that the model intends to represent. Our increased dependence on com-

puter models emphasizes on model uncertainty which is present due to uncertainties

in model parameters, lack of appropriate knowledge, assumptions and simplification

of processes. In addition, when models predict multi-variate data, the experimental

observation and model predictions are highly correlated. Thus, quantifying the un-

certainty has a basic requirement of comparison between observation and prediction.

The comparison is costly on the observation side and computationally intensive on

the other. The alternative approach presented in this thesis for model uncertainty

quatification addresses the aforementioned problems. With the new methodology, the

experiments performed according to measurement uncertainty standards will provide

the experimental results in terms of expanded uncertainty. Thus, the experimental

results for both model input and output will be expressed as intervals. Furthermore,

interval predictions are procured from the simulation model by using the experimen-

tal results of input intervals only. The model uncertainty will then be quantified by

the difference between experimental result for output interval and model prediction

interval. The new methodology is easy to implement as the standards of measure-

ment uncertainty are used which serve as a common framework for model builders

and experimenters.
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ỹ System average response variable

εe Experimental error

ye Experimental output

ym Model prediction

εm Model error

Um Model uncertainty

~x Input random variable vector
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1. INTRODUCTION

1.1. IMPORTANCE OF MODEL UNCERTAINTY QUANTIFICATION

Simulation models have become a vital part of many complex real world prob-

lems due to the fact that they allow for quick and inexpensive predictions. However,

there is always a question regarding the accuarcy of the prediction model as to how

close it gets to its intended application. Hemez et al. [4] were of the view that the ac-

curacy must be verified due to the assumptions involved in the steps of idealization,

discretization and modeling. In a broad sense, if there exists a difference between

the model prediction and observations, the model is termed as uncertain. These ob-

servations are motivated by Popper’s analysis of scientific theories [5]. Most of the

methodologies used to determine the accuracy of the model or quantify model un-

certainty are either expensive or computationally intense. The focus of the present

work is to simplify the model uncertainty quantification (UQ) process and overcome

its hindrances.

Recently, there has been a great deal of research activity in the field of model

uncertainty where a model is considered to be an abstraction and interpretation of

reality [6]. It can arise due to several reasons like lack of proper knowledge, assumtions

during modeling, uncertainty in the input parametrs or the uncertainty in the model

itself. Analysts have focused on model input parameters as the principal source

of uncertainty, as seen in traditional reliability based design [7, 8, 9] and robust

design [10, 11, 12].

Model uncertainty can be related to model validation [13, 14] which is a broad

term and hence it should be defined for every application as it can have different

meanings. For example, aerospace engineers consider a model valid only if it correctly

and fully represents the process being modeled. While for some model builders it is

fine if the model is “good enough” for its application. If the validity of the model is
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questionable, it cannot be used for analysis with sufficient confidence. Hence, there is

a need to detect the uncertainty present in the model and refine it [15]. As mentioned

earlier, the uncertainty can be obtained by comparing the model prediction from

simulation and experimentation. If they agree to a certain extent, then one should

not worry about the rejection of the model. In some cases, even after the model is

validated, its accuracy is desired as it helps the designers or model builders to make

critical decisions [16].

1.2. OBJECTIVE

The objective of this research is to devise an alternative approach so as to

quantify model uncertainty using ASME measurement uncertainty standards. The

quantification of model uncertainty involves the similar procedure and information as

the model validation because both need the comparison between the model prediction

and observation. In many model validation literatures, it is not clear if a model builder

has the capability of performing lab experiments and then producing experimental

results that are needed. In reality, the model builder may not be able to control the

lab work due to various reasons.

One alternative is to outsource the experimental work to professional laborato-

ries which have the facility and infrastructure to perform these experiments. During

this time, there would be many communications between the model builder and exper-

imenter. Following the experimental standards is a common practice in professional

laboratories.

As a result, the experiments would be conducted and the experimental results

would be reported in accordance with certain experimental standards. Then it is up to

the model builder to use the experimental results to quantify the model uncertainty.

Model users can then use the model predictions, along with the quantified uncertainty,

to make more reliable decisions. In this work, a situation is addressed where the
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experiments are outsourced and the results are reported with ASME standards of

measurement uncertainty.

1.3. LITERATURE REVIEW ON MODEL UQ

The following literature review is regarding model validation strategies and dif-

ferent methods used to quantify uncertainty in a particular model which can thereby

be used to validate the model.

Several researchers have strived hard in order to devise a methodology to vali-

date a model [17]. Sandia National Laboratories is trying to evolve uncertainty quan-

tification technologies through development activities in computational engineering

and its experience in model validation [18]. There have been many revelations in this

field of study as they have constantly tried to reduce the complexity of the problem.

Dowding et al. [1], provided a good platform in order to exercise different model vali-

dation procedures by formulating a thermal challenge problem. The thermal problem

is based on one dimensional linear heat conduction in a solid slab with heat flux

boundary conditions. They presented a series of experimental data to be compared

to the model prediction relative to a regulatory requirement.

The regulatory requirement is in terms of probability that the surface tempera-

ture at a specific location does not exceed a specified temperature. In order to validate

the model, three experimental activities are required namely, material characteriza-

tion (thermal properties are characterized), ensemble validation (experiments on a

range of values for deterministic variables), and accredition validation (limited num-

ber of experiments on conditions that are more representative of the original model).

Regulatory compliance is then assessed based on the results of the experimental ac-

tivities. Thus, the proposed method relies a lot on experimentation which sometimes

creates a problem if we do not have the required facilities.
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Chen et al. [19] extended the study of model validation towards the propagation

of uncertainty in model predictions. According to them, as deterministic simulations

for model validation do not consider uncertainty at all, there was a need to include

relevant sources of uncertainties in the validation process. Many statistical inference

techniques such as chi-square test on residuals were considered cumbersome due to

numerous evaluations of the model and experiments. They proposed response sur-

face methodology to create a metamodel for the original model thereby reducing the

computational effort. Their example problems consisted of two finite element models

for simulating sheet metal forming. Roy et al. [20] contributed to model validation

by introducing statistical methods like interval based hypothesis testing explained

through the example of natural frequency of a cantilever beam.

Hills and Dowding [21] presented a multivariate approach to the thermal chal-

lenge problem that accounted for model parameter uncertainty and correlation be-

tween multiple measurement differences. They proposed a method for accounting

for model parameter uncertainty through first order sensitivity analysis for valida-

tion tests. Furthermore, they implemented first order sensitivity analysis and Monte

Carlo analysis for the regulatory prediction. Monte Carlo analysis was found to be

more accurate but computationally expensive at the same time. Experimental and

predicted CDF’s from the correlation structure of the model were used to validate

the model and they indicated that the regulatory criterion was not met.

Brandyberry [22] proposed a surrogate model clustering technique for the ther-

mal challenge problem that allows propagation of uncertainties in the model param-

eters using less number of model evaluations. Different statistical methods like t-test

and hypothesis testing were applied to the experimental data to arrive at conclusions.

The author assumed distributions for the random variables based on the normal prob-

ability plots and the scatter plots. In addition to this, Latin hypercube sampling was

used to propagate uncertainty through the model with less number of simulations.
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Ferson et al. [23] has adressed the concept of model validation in a different

way. They proposed a risk analytic approach for the thermal challenge problem by

assuming normal distributions for the random variables based on experimental values.

Monte Carlo simulation was implemented to find the probabilty of the regulatory

requirement. In further analysis, they investigated the temperature dependence of

random variables which is basically the system response. A regression model using the

least squares was developed for the variable found dependent on the system response.

This was mainly to reduce the overall uncertainty in the model. An ad hoc model was

also created based on the temperature dependence of the random variable and monte

carlo simulation was revisited. In the end, authors have performed the validation

assessment by comparing the prediction and empirical distributions.

Model validation technologies have also been applied to variety of uncertainty

models that employ time-domain experimental data [24]. Different statistical methods

such as Bayesian parameter estimation coupled with non-linear model validation and

verification toolbox in Matlab have also been implemented [25]. Variuos techniques

have been presented that differ from our approach, e.g. non-parametric methods (e.g.

Lehmann (1975) and Friedman (1991)), robustness methods based on solving a min-

imax problem (e.g. Huber (1981)) etc. However, little is known about comparative

merits of these strategies empirically. Rice et al. [26] presented an extensive study

on uncertainty quantification in model validation by considering the hardware of a

complex aerospace structure and the finite element model as uncertainty sources. He

concluded that the level of uncertainty in the model affects how easily the model is

validated and even the future predictions for the model.

The uncertain parameters in all the above studies have been assigned a probabil-

ity distribution. However, it is not always a case where one has sufficient knowledge

about the uncertain parameter. These uncertain parameters can be considered as

epistemic which can be better represented as intervals. Implementation of interval
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analysis for model uncertainty will simplify decision making for model builders. More-

over, our focus also lies in reducing the reliability on experimentation and thereby

quantifying the uncertainty by using different probabilistic, optimization and approx-

imation methods.

1.4. CONTRIBUTION OF THE CURRENT STUDY

As implied from the literature review, experimentation plays an important role

in quantifying model uncertainty as the results need to be compared with model

prediction. However, it seems unlikely that all the model builder’s will be equipped

with the ability of experimentation. In some cases, it may not be feasible to perform

experiments due to the high cost involved, for example to quantify model uncertainty

in drag prediction in airfoils. Model builder will have to rely solely on simulation

models to provide accurate results. Also, in most studies on model validation, the

model uncertainty is expressed in terms of probabilitic values. Probability density

functions (pdf’s) and cumulative density functions (cdf’s) are used to convey the

results based on uncertainty quantification. Interpretation of these results can be a

bit difficult for the model builders.

It is important for any research project to contribute to the ”state of the art”

in science and engineering from a broad perspective. The current study makes three

significant contributions to the topic of engineering design.

• The first contribution involves usage of measurement uncertainty standards in

order to communicate the results from the experimenter to the model builder.

The standardized output is easy to understand and the cost is drastically re-

duced as the model builder is no longer responsible for experimentation.

• Secondly, the proposed methodology provides the model uncertainty in terms

of an interval which is easier to interpret or visualize. Moreover, the model
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uncertainty interval has a particular confidence level which makes the decision

making easier. The model builder no longer deals with probabilistic values.

• The third contribution of this study comes from the fact that the methodology

is used to propagate the uncertainties through a ”black-box” simulation code.

Approximation methods like taylor series, second order reliability method and

golden search algorithm are used to approximate the original function in case of

non-linearity. A response surface is generated to estimate the true value of the

model. This response surface is then utilized in place of the original function in

order to quantify uncertainty.

1.5. THESIS OUTLINE

Five main sections constitute this manuscript. The first section is an introduc-

tion and literature review describing relevant work that has been accomplished in

model validation and uncertainty quantification.

Furthermore, the second section will discuss the proposed methodology that can

be used to appoximate highly non-linear functions consequently serving as an aide

to quantify the model uncertainty. The methodology will be explained taking ASME

measurement uncertainty standards into consideration which are used to bridge the

gap between the model builder and the experimenter.

The third section of this manuscript consists of a detailed numerical example of

a roller coaster design showcasing the application of the methodology in Section 2.

Experimentation along with model prediction will be carried out in order to represent

the model output in terms of an interval in both the cases. These intervals will be

compared to quantify model uncertainty and model shall be updated accordingly.

In the fourth section, thermal challenge problem formulated by Sandia National

Laboratory shall be analyzed using the proposed methodology. The uncertainty in the

model output will be presented in the form of an interval. The results will be compared
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to Monte Carlo simulation (MCS) output which will assess the confidence level of

the interval derived using proposed uncertainty quantification approach. Finally, all

relevant conclusions along with the future work in model uncertainty quantification

will be discussed in the fifth and final section.
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2. PROPOSED METHODOLOGY FOR MODEL UQ

The focus of this thesis lies in quantifying model uncertainty using ASME stan-

dards of measurement uncertainty. Efforts have been made to integrate measurement

uncertainty [27] with the experiment standards, such as those from International

Organization for Standardization (ISO), National Institute of Standards and Tech-

nology (NIST), and American Society of Mechanical Engineers (ASME). The ASME

guidelines for measurement uncertainty are reviewed along with the methodology for

uncertainty quantification in this chapter.

2.1. OVERVIEW OF PROPOSED METHODOLOGY

Overview for the process of quantification of model uncertainty can be expressed

using the Figure 2.1 below. It resembles a chain of processes of which the integral

components are the simulation model, experiments, results with uncertainty, simula-

tion and comparison of simulation and experimental data.

Figure 2.1. Representation of proposed methodology
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Figure 2.2. Flowchart of proposed methodology

As you can see from the flow chart in Figure 2.2, the proposed methodology is

split in three main parts, namely experimentation, simulation and model uncertainty

quantification. The first part consists of determining the design points at which the

experiments shall be carried out by the professional laboratory for a particular model.

For example, suppose the model uncertainty of y = g(~x) is to be quantified where y

is the model output and ~x is a vector of all the random input variables. The model

builder needs to provide the experimenter with the critical points for ~x at which he

thinks that the design might not be safe. Furthermore, the experimenter performs
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the experiment using ASME standards of measurement uncertainty as explained in

the next section. Experimental results are reported to the model builder in terms of

95% confidence interval for both input and output variables.

In the next part of simulation, the interval input variables from the experiment

are used to produce model predictions. Various approximation and optimization

techniques are used to simulate the model. The result is again in terms of an interval

as shown in the flow chart.

The third and the last part of model uncertainty quantification consists of com-

paring the experimental and simulation outputs using interval analysis. Moreover,

to validate the results, a check for the confidence level in the derived uncertainty

interval is performed. This procedure will be explained in detail in this chapter with

numerical implementation on two different examples in the coming discussions.

2.2. EXPERIMENTATION USING ASME GUIDELINES

In 2007, ASME published its guidelines for evaluating dimensional measurement

uncertainty [28]. Its purpose is to provide the guidelines that are less complex than

the Guide to the Expression of Uncertainty in Measurement (GUM) by ISO. The

ASME guidelines adopt the terminology from the ISO International Vocabulary of

Basic and General Terms in Metrology [29] as follows: Uncertainty of measurement

is a “parameter, associated with the result of a measurement that characterizes the

dispersion of the values that could reasonably be attributed to the measurand”. Ac-

cording to the interpretation of the ASME guidelines, “measurement uncertainty is

a number that describes an interval centered about the measurement result where

there is reasonable confidence that it includes the true value of the quantity being

measured”. This number is called expanded uncertainty, denoted by U , with a cov-

erage factor of 2 denoted by k in this dissertation, or roughly a confidence level of

95%. The confidence level indicates the probability of including the true value of the
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quantity that is being measured within a given interval. The expanded uncertainty

is the end product of an uncertainty evaluation during experimentation. In other

words, the measurement result is reported by

ỹe ± Uy (1)

where ỹe is the measurement result, and Uy is the associated expanded uncertainty.

Another concept is the measurement error εe. It is defined as the difference between

the measured value ỹe and the true value y. The measurement error is never exactly

known, but with the expanded uncertainty in Equation (1), it can be stated that the

measurement error is ±Uy with a 95% level of confidence. The expanded uncertainty

Uy can be obtained from the combined standard uncertainty ucy with the following

equation

Uy = kucy (2)

where the coverage factor is k, which indicates a 95% level of confidence as men-

tioned previously. The combined standard uncertainty ucy is a quantitative value

that describes the magnitude of all the uncertainty sources. It can be obtained from

individual standard uncertainties. A standard uncertainty, denoted by uy from a sin-

gle uncertainty source, is also a quantitative value that describes the magnitude of

the uncertainty source. The standard uncertainty can be considered as one standard

deviation of the potential variation associated with the uncertainty source. Each

uncertainty source must be evaluated to produce its standard uncertainty.

Suppose there are M sources of uncertainty during the experimentation and the

standard uncertainties are uyi with i = 1, 2, . . . ,M . Also assume that the sources of

uncertainty are independent. The combined standard uncertainty ucy is given by
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ucy =

√√√√ M∑
i=1

u2yi (3)

In some cases multiple sets of observations are available, but these sets of data may

not have the same sizes and even same means. These sets cannot be directly combined

to calculate a standard uncertainty. For these cases, to pool the data, the following

equation is used to calculate the standard uncertainty for an uncertainty source

uyi =

√√√√√√√√
N∑
j=1

(hj − 1)sj2

N∑
j=1

(hj −N)

(4)

where hj is the number of observations in the j-th data set, and sj is the sam-

ple standard deviation of the j-th data set, and N is the number of data sets. A

rough procedure can be summarized as follows: At first, indentify all the uncertainty

sources; then calculate the standard uncertainty for each uncertainty source using

Equation (4). After combining the standard uncertainties from all the uncertainty

sources, the combined standard uncertainty can be obtained using Equation (3). The

end product of the process is then expressed by an interval given in Equation (1).

In summary, when the ASME guidelines are followed, the experimental results will

be reported with the expanded uncertainty in the form of intervals under certain

confidence level as shown in Equation (1).

2.3. EXPERIMENTATION ON MODEL

In recent years, there has been a great deal of work in developing methods for

validating a model. A general methodology can be explained as simply comparing the

prediction from the modeler to the new observation from the experiment. However, it

is difficult to run an experiment for every single case and simulation comes up as the

best option. The simulation itself will use the same model for providing an output and
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if in case there is uncertainty in the model, then the output is destined to be erroneous.

This becomes important for many real world complex cases. Thus, there is a need

to device a method to quantify uncertainty when experimentation is not possible at

the modeler’s end. In such cases, the experimentation part can be outsourced to a

professional laboratories which have the required facilities and infrastructure to do so.

Our goal is to create a common platform for the experimenter and the model builder.

This can be achieved by using the ASME standards of measurement uncertainty

mentioned in the previous section.

Consider a model with system response ym which is a function of q model param-

eters ~w = (w1, w2, ..., wq) and n input variables ~x = (x1, x2, ..., xn). Input variables

are under the control of the experimenters and can be changed during experimenta-

tion whereas model parameters are deterministic and hence constant. Uncertainty in

the input variables can be quantified through experimentation but it would be a good

point to think about the uncertainty present in the model parameters. For example,

in different hypersonic re-entry problems, recombination efficiency [30] is modeled

as an epistemic uncertainty due to the fact that it arises due to lack of knowledge

in a physical model [31]. Sometimes in complex cases, mixed uncertainty (aleatory

and epistemic) are prevalent in the model parameters and methods like Second Or-

der Probability Theory [32, 33] are used. The uncertainty in model parameter ~w is

considerd as a source of uncertainty in the proposed methodology. Suppose,

ym = g(~x, ~w) (5)

and the experiments are carried out by the particular lab as the model builder is

considered to be incapable of carrying out experiments in this work due to the in-

availability of right facility or it is time consuming to do so. According to the stan-

dards of ASME measurement uncertainty, the lab experimental results are reported
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to the model builder in terms of expanded uncertainty for each input variable and

the system response. If the confidence level is 95%, then there is 95% chance that

the interval for ye will cover the true value of y. The measured output for system

response is reported as

ye = ỹe ± Uy (6)

where ye is the experimental measurement.

Experimental bias and random error [34] are two components of experimental

uncertainty. These two components are included in the expanded uncertainty concept

Uy. From Equation (6), 95% confidence interval can be constructed for the output

response ye which is given by

y = ye = ỹe ± Uy = [ye, ye] (7)

where the lower bound is

ye = ỹe − Uy (8)

and the upper bound is

ye = ỹe + Uy (9)

According to previous model validation literatures [13], ỹe is considered as a point

measurement which introduces the probability of experimental error εe to be present.

ye = ỹe ± εe (10)

Along with the system response, the model builder will also need the input

variables to be measured. The measurement of ~x will serve as the input to the

model during model uncertainty quantification process, commonly known as model

prediction process. The result of an input variable will be presented to the model



16

builder using the same procedure as for system output response

xei = x̃ei ± Uxi = [xei , x
e
i ] (11)

where i = 1, 2, ..., n and Uxi is the expanded uncertainty of the ith input variable. The

lower bound is

xi = x̃ei − Uxi (12)

and the upper bound is

xi = x̃ei + Uxi (13)

In vector form, the above equations can be represented as

~xe = ~̃xe ± ~U~x = [~x, ~x] (14)

where the lower bound is

~x = ~̃xe − ~U~x (15)

and the upper bound is

~x = ~̃xe + ~U~x (16)

where

~̃x = (x̃1, x̃2, ..., x̃n)

~x = (x1, x2, ..., xn)

~x = (x1, x2, ..., xn)

and

~U~x = (Ux1 , Ux2 , ..., Uxn)
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2.4. SIMULATION ON MODEL

ASME standards of measurement uncertainty serve as a bridge to connect both

of them in a way that the data transmitted can be understood universally. Once

the required data has reached the model builder, he has both, the system response

interval along with the individual input variable interval. The model builder chooses

the interval variable information as the input for the model prediction. Clearly, as

the input variables are in the form of an interval, the end result for model output will

be an interval. Mathematically it can be shown as follows

ym = g(~xe, ~w) = g(~̃xe ± ~U~x, ~w) = g([~xe, ~x
e
], ~w) = [ym, ym] (17)

where the lower bound for the model prediction is

ym = min g(~xe, ~w), ~xe ∈ [~xe, ~x
e
] (18)

and the upper bound for the model prediction is

ym = max g(~xe, ~w), ~xe ∈ [~xe, ~x
e
] (19)

Equations (18) and (19) represent the upper and lower bounds of the system

response variable. In order to determine the same for highly non-linear problems,

different mathematical techniques and approximation methods have been used which

are listed as follows:

• Optimization

• First Order Taylor series

• Worst Case Analysis

• Second Order Reliability Method (SORM)
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• Golden Search Algorithm

• Monte Carlo Analysis on SORM model

• Monte Carlo Analysis on original model

Furthermore, application of interval analysis on the results obtained quantified the

model uncertainty which shall be explained in the next section.

2.4.1. Optimization. In cases where a best element is to be selected from

a number of alternatives, optimization is the best method to opt for. It will find the

“best available”point for an objective function given a defined domain. Optimization

can be of two types, constrained and unconstrained. The former solves the objective

function for the best estimate within a fixed domain subject to certain constraints.

Thus, the solver maximizes or minimizes the objective function with the best possible

estimate. Mathematically, it can be represented as

The model output interval is

ym = [ym, ym] (20)

where the optimization model for ym is given by

ym = min g(x)

subject to

x ∈ [~xe, ~x
e
]


(21)

Similarly, the optimization model for ym is given by

ym = max g(x)

subject to

x ∈ [~xe, ~x
e
]


(22)
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The same function is used to maximize the model with the change that the objective

function is negative.

2.4.2. First Order Taylor Series. There are several appoximation meth-

ods which are used to simplify computer evaluations in order to make them com-

putationally inexpensive. These methods are devised to reduce the non-linearity of

the objective functions and arrive at the best possible estimate without sacrifying

much on accuracy. One of the examples is first order Taylor series [35, 36] which uses

Taylor series expansion to approximate the objective function. The basic idea is to

linearize the complex model problem by using first order derivatives. Furthermore,

after linearizing the model, find the mean and standard deviation of the objective

function. As per ASME, using a coverage factor of 2, the upper and lower bounds for

the objective function are calculated. Mathematically, If y is the model output and

~x is the vector of input variables,

ỹ(~x) = y(~̃x) (23)

where ỹ is the mean of the objective function and ~̃x represents the vector of mean

values of input variables.

σy =

√(
∂y

∂~x
σ~x

)2

(24)

where

σy = standard deviation of the objective function

σ~x = standard deviation of input variables

The subsequent step after this is to calculate lower and upper bounds as per Equa-

tion (25) using ASME standards of measurement uncertainty.
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ỹ ± 2σy (25)

With the linear function obtained, a worst case analysis is performed in the next

section which considers extreme conditions into consideration in order to evaluate

the function bounds.

2.4.3. Worst Case Analysis. Worst case analysis is basically used to deter-

mine the design margin for a system response. The design margin is the measure of

the margin between worst case performance of a system and the performance required

by specification. Positive design margin indicates that the system will perform with

margin to spare. On the other hand, negative design margin indicates that the system

will not meet its specification. Hence, not performing worst case analysis can can be

risky as the system will not be tested for its unidentified quantity of input variable.

At first, the system response is linearized by using first order taylor series ex-

pansion at average values of input variables ~x = (x1, x2, . . . , xn). First order series is

given by

f(~x) ≈ f(~x) +
n∑
i=1

(xi − xi) (26)

The performance function for the above model is given by

4f = f(~x)− f(~x) =
n∑
i=1

∂f(~x)

∂xi
(xi − xi) (27)

The worst case interval is then represented by [f −4f, f +4f ]

As the worst case analysis linearizes the model, the solution will contain some

error especially when the system response is non-linear. Also it is too conservative.

The search for lower and upper bounds is continued for accuracy by increasing the

order of approximation in the next section.
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2.4.4. Second Order Taylor Series. Higher order approximations are

more reliable for non linear problems as they account for the complex nature of the

objective function. Second order taylor series [37] estimates the original function at

the mean values of the input variables ~̃x using second order taylor expansion. The

approximation is given by

y(~x) ≈ y(~̃x) +5(~̃x)(~x− ~̃x)T +
1

2
(~x− ~̃x)H(~̃x)(~x− ~̃x)T (28)

where H(~̃x) is the Hessian matrix at mean values of ~x. It is given by



∂2y
∂x12

∂2y
∂x1x2

. . . ∂2y
∂x1xn

∂2y
∂x2x1

∂2y
∂x22

. . . ∂2y
∂x2xn

. . . . . . . . . . . . . . . . . . . . . . . .

∂2y
∂xnx1

∂2y
∂xnx2

. . . ∂2y
∂xn2


(29)

Equation (28) is utilized to obtain a response surface which was further utilized for

the prediction of lower and upper bounds of the model for uncertainty interval.

2.4.5. Golden Search Algorithm (GSA). Numerical methods [38] are

more than useful for approximating complex functions. As a matter of fact that

while dealing with intervals, golden section algorithm being one of the most accurate

methods can be used to determine the maxima or minima of the response variable

within the intervals. The primary objective of golden algorithm is to reduce the

interval size at each iteration of function evaluation. The reduced interval size in a

particular iteration is chosen at a fixed ratio commonly known as golden section ratio

relative to the interval size in that iteration.
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Suppose for a function F (~x), there lies a point z in the interval [a, b] such that

F (~x) decreasing on [a, z]

F (~x) increasing on [z, b]

 F(z) is minimum

OR

F (~x) increasing on [a, z]

F (~x) decreasing on [z, b]

 F(z) is maximum

Consider a case of minimizing a function. The next step is to choose points c

and d suct that c < d and the intervals [a, c] and [d, b] are symmetric. If F (d) ≥ F (c),

then z ∈ [a, d] becomes the new interval or else z ∈ [c, b]. The golden section ratio

which is used to select the new points is given by

d− a
b− d

= 1.61803

The derivation of the golden section ratio is shown in Gerald et al. [39]. Apart from

the golden ration, the iteration process is also controlled by a convergence criteria δ

which is known as the relative tolerance. Mathematically,

bn − an
b− a

= δ

where [an, bn] is the interval at the nth iteration. The iterative procedure can be

summarized as follows:

• Let [a, b] be the initial interval.

• First step (i = 0), determine two independent points c and d using the golden

section ratio.

• At the ith step, if F (ci−1) ≤ F (di−1) then
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– ai = ai−1

– bi = di−1

– di = ci−1

– Recalculate ci using the new interval point d.

OR

• if F (ci−1) ≥ F (di−1) then

– ai = ci−1

– bi = bi−1

– ci = di−1

– Recalculate di using the new interval point c.

On the contrary, for maximization of the objective function, the logic is reversed. By

this method, if there are N steps to be performed, there has to be N + 1 function

evaluations. Consider a cubic polynomial fit in the last iteration to determine the

function value, thus giving a better accuracy than the second order approximation.

2.4.6. Monte Carlo Simulation (MCS) on Second Order Approxima-

tion and the Original Model. Monte Carlo analysis which relies on repeated

random sampling is considered to be one of the accurate methods to estimate the

true value of a function. As the number of samples increase, the estimate is more

and more closer to the true mean value and thus the accuracy is improved. The basic

steps followed for MCS are

• Assume a particular distribution for the input variables ~x as the experimental

information is in terms of interval which is lower and upper bounds.

• Generate N samples for the input random variables using the means and stan-

dard deviations from the experimental results. As the results are provided in
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terms of expanded uncertainty with a coverage factor of 2, calculate the stan-

dard deviation for each variable by dividing the uncertainty by 2. The samples

are denoted by ~xi where (i = 1, 2, . . . , N).

• Using these samples as input to the model, generate N output samples for model

prediction ym.

Thus, the lower and the upper bounds can now be calculated from these model

predictions and re-write ym as [ym, ym].

2.5. INTERVAL ANALYSIS AND UQ

Since this study is mainly focussed on efficient methodology for quantification

of model uncertainty, interval analysis [40, 41, 42] will be used to create a model

uncertainty interval with the help of experimentation and model prediction outputs.

Quantifying the model uncertainty can be done by using interval analysis meth-

ods like interval arithmetic [43, 44, 45]. Two intervals for model uncertainty quan-

tification are, (1) the experimental result [ye, ye] and (2) simulation result [ym, ym]

respectively. To explain the methodology, let them be represented by [a, b] and [c, d]

denoting lower and upper bounds for each interval respectively. Simple arithmetic

interval operations are

[a, b] + [c, d] = [a+ c, b+ d] (30)

[a, b]− [c, d] = [a− d, b− c] (31)

[a, b] ∗ [c, d] = [min (ac, ad, bc, bd) ,max (ac, ad, bc, bd)] (32)

[a, b]

[c, d]
=

[
min

(
a

c
,
a

d
,
b

c
,
b

d

)
,max

(
a

c
,
a

d
,
b

c
,
b

d

)]
(33)

Suppose the model error is denoted as εm and hence the true quantity is given by

y = ym + εm (34)
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Using Equations (7),(10) and (34),

εm = ye − ym = ỹe ± εe − ym (35)

As the experimental error εe cannot be estimated exactly, quantifying model error

εm becomes difficult. Expanded uncertainty concept Uy is useful in this situation as

it can replace experimental error εe thereby giving us an estimate of model error εm

with a certain level of confidence.

Let the estimate of model error be defined as model uncertainty and denoted

by Um. Now to quantify the model uncertainty Um, use interval arithmetic provided

that model prediction ym and the experimental observation ye are independent. In

this case, assume them to be independent and the model uncertainty is given by

Um = [Um, U
m

] (36)

with

Um = ye − ym and U
m

= ye − ym (37)

or

Um = [Um, U
m

] = [ye − ym, ye − ym] (38)

Now that the result for model uncertainty [46, 47] is in the form of an interval, it

is upon the model builder whether to accept the model with uncertainty or reject it.

The criteria can be decided depending upon the intended application. In aerospace

applications, quantifying model uncertainty becomes extremely important due to the

huge cost involved. In order to quantify uncertainty for the model, various techniques

were used to find the lower and upper bounds. Next important step is to check

whether the derived model uncertainty interval is of the same confidence level as the

experimental readings? There might be cases when the confidence level is even higher
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than 95%. Verification of the confidence level in the estimated uncertainty interval is

carried out in the next section.

2.6. VERIFICATION OF CONFIDENCE LEVEL IN INTERVAL

As mentioned above, the experimental results are presented to the model builder

with a 95% confidence interval. However, the confidence related to the derived model

uncertainty interval in Equation (38) is still not proved. In order to validate the same,

it needs to be proved that the confidence level in the derived uncertainty interval is

at least 95% or more. The data in hand is as follows:

• Variables of the input vector ~x = (v, r) are independent.

• Experimental results for input vector ~x and system response ye are reported

to the model builder in terms of intervals using expanded uncertainty concept

with confidence level of (1− α).

Pr{xei ≤ xei ≤ xei} = 1− α

Pr{ye ≤ ye ≤ ye} = 1− α

 (i = 1, 2, . . . , n) (39)

Given this information, assume that the input variables are normally and indepen-

dently distributed with xi ∼ N(µxi , σxi) where µxi is the mean and σxi is the stan-

dard deviation of the ith variable with (i = 1, 2, . . . , n). Since the confidence level of

xi ∈ [xi, xi] is (1− α),

Pr{xi < xi} = 0.5α (40)

∴ Pr{xi < xi} = Φ

(
xi − µxi
σxi

)
= 0.5α (41)

where Φ is the cumulative distribution function (CDF) of the standard normal vari-

able. Now, from Equation (41) it can be shown that

xi − µxi
σxi

= Φ−1(0.5α) = −k (42)
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where k = −Φ−1(0.5α) > 0. Using the symmetry of a normal distribution and

Equation (42),

xi − µxi = −kσxi (43)

and

xi − µxi = kσxi (44)

Assume a linear approximation for the model if the uncertainty in xi measurement is

small. Suppose,

ym = z0 +
n∑
i=1

zixi = z0 +
n∑
i=1

pi (45)

where z0 and zi are constant coefficients with (i = 1, 2, . . . , n). Also, pi = zixi is

a linear relationship from the above equation . Thus, pi is normally distributed with

pi ∼ N(µpi , σpi) where

µpi = ziµxi and σpi = ziσxi (46)

Similarly, find the mean and standard deviation for the model prediction,

µym = z0 +
n∑
i=1

µpi and σym =

√√√√ n∑
i=1

σ2
pi

(47)

Knowing the distribution of the model output with its mean and standard deviation,

the bounds can be determined as follows:

ym = z0 +
n∑
i=1

p
i

and ym = z0 +
n∑
i=1

pi (48)

Also assume that the output measurement y is normally distributed with its mean

µye and standard deviation σye . Referring to Equations (43) and (44),

ye − µye = −kσye (49)
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and

pi − µpi = kσpi (50)

Now, move on to finding the bounds for model uncertainty Um using the Equa-

tions (38).

Um = ye − ym = ye −

[
z0 +

n∑
i=1

pi

]
(51)

and

U
m

= ye − ym = ye −

[
z0 +

n∑
i=1

p
i

]
(52)

As a result, model uncertainty represented by ye − ym is normally distributed with

mean and standard deviation as follows

µUm = µye − µym = µye −

(
z0 +

n∑
i=1

µpi

)
(53)

and

σUm =

√√√√σ2
ye +

n∑
i=1

σ2
pi

(54)

Thus, one sided probability for model uncertainty can be represented as

Pr{Um < Um} = Φ (Um − µUm) (55)

= Φ

y
e −

(
z0 +

n∑
i=1

pi

)
− µye +

(
z0 +

n∑
i=1

µpi

)
σUm

 (56)

∴ Pr{Um < Um} = Φ

y
e − µye −

∑
i=1

n(pi − µpi)√
σ2
ye +

n∑
i=1

σ2
pi

 (57)
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Resusbstitute the values in the numerator using Equations (49) and (50),

Pr{Um ≤ Um} = Φ

−kσye −
n∑
i=1

kσpi√
σ2
ye +

n∑
i=1

σ2
pi

 = Φ

−k σye +
n∑
i=1

kσpi√
σ2
ye +

n∑
i=1

σ2
pi

 (58)

Mathematically,

(σye +
n∑
i=1

kσpi) ≥

√√√√σ2
ye +

n∑
i=1

σ2
pi

(59)

∴ Pr{Um < Um} < Φ(−k) < 0.5α (60)

Equation (60) proves the fact that for a linear model, the confidence level of uncer-

tainty bounds derived through the proposed methodology in Section 2, is greater than

or equal to (1 − α) which in turn is the confidence level of the exprimental results.

In mathematical terms, it can be expressed as,

Pr{Um ≤ Um ≤ um} ≥ 1− 2Pr{Um < Um} = (1− α) (61)

Thus, if the linearization of the model approximates the original model with accuracy

and ASME guidelines are followed in determining the uncertainty interval, then the

confidence level for the uncertainty bounds is greater than or equal to 95%. How-

ever, if the original model is highly non-linear, the confidence level achieved with the

uncertainty interval cannot be guaranteed. This situation will be dealt with in the

next chapter in which sampling methods are used to gauge the confidence level for a

non-linear function.
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3. ROLLER COASTER MODEL PROBLEM

The numerical implementation of the proposed methodology will be the main

focus in this section of the thesis. Basically, the examples used here will help under-

stand the importance of the uncertainty interval model. At first, a simple example of

a roller coaster is used to demostrate the procedure to be followed for model valida-

tion. Detailed description of the model problem is given in the sections below along

with the energy and work principle used to derive the model.

3.1. DESCRIPTION OF THE MODEL PROBLEM

One of the most basic requirements for a roller coaster design is that the car

should always keep in touch with the track. This will ensure that the car travels

around the inside loop without leaving the track. The roller coaster works on an

energy conversion concept. At first, the coaster is given an initial ascent to build

up the potential energy which is often referred to as energy of position. Higher the

coaster goes in the air, faster is the pull from the gravity force. The built up potential

energy is converted to kinetic energy as the coaster descents. This energy of motion

gives the momentum to the coaster which in turn helps the coaster to traverse the

loop at the end as shown in Figure 3.1.

One of the design tasks for roller coaster design includes the determination of

minimal height h to give the coaster enough momentum to cross the loop without

going off-track. The expression for minimal height is given by

h =
5

2
r − 1

2

v2

g
(62)
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Figure 3.1. Roller coaster design

The main task is to validate this model and test its accuracy. Model validation

is correctly defined as checking how accurate a model can predict the real world

phenomena. However, the expression for the minimum height needs to be derived, as

shown in Equation (62). The energy and work principle shall be used for the same.

3.2. MODEL PROBLEM DERIVATION

As shown in Figure 3.1, the coaster starts descenting from a height h (at point

A) and gains required momentum. When the coaster is located at a height h, it has

a reservoir of stored energy due to its position. This is mainly known as the potential

energy and denoted as

Potential Energy at A = mgh (63)



32

Let the initial speed of the coaster be vA. Due to the velocity, stored potential

energy gets converted into kinetic energy and can be denoted as

Kinetic Energy at A =
1

2
mv2A (64)

At height h, potential energy is at the maximum and kinetic energy at the minimum.

Similarly, when the coaster is about to start with the loop trajectory, potential energy

is at the minimum while kinetic energy is at its maximum. At point B, the height is

equal to twice the loop radius r and the potential and kinetic energies is given by

Potential energy at B = mg2r (65)

and

Kinetic energy at B =
1

2
mv2B (66)

The total energy at a point will be the summation of both potential and kinetic

energies at that particualr location. For a system, total energy is always conserved.

Thus, by the energy conversion principle, total energy at point A is equal to total

energy at point B. Mathematically, it can be shown from the Equations (63), (64),

(65) and (66) that

mgh+
1

2
mv2A = mg2r +

1

2
mv2B (67)

At point B, the coaster will remain in contact with the track only if the normal

reaction in the upward direction is equal to its weight due to the gravitational force

g. Using Newton’s second law of motion, the net force on a particle is equal to the

time rate of change of its linear momentum. Mathematically it can be written as

F = ma (68)
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where F is the net force applied on a body, m is the mass of the body and a is

the body’s acceleration. The force F on the coaster at point B is only due to the

gravitational pull and is given by Equation (65).

Acceleration at point B = m
v2B
r

(69)

∴ mg = m
v2B
r

(70)

Hence, two unknowns vB and h can be obtained from two equations. Solve them

simultaneously to get the model for minimum height h as denoted in Equation (62).

Relativity of terms in the Equation (62) can be explained as follows

• The required minimal height h is the model output y, ym = h.

• As per the definition in Section 2, the model parameter ~w is the gravitational

force g which cannot be changed during the experiment, ~w = g.

• The model input variables ~x are the velocity v and the radius of the loop track

r, ~x = (v, r).

The assumptions made while deriving the model are as follows

• Total energy in the system is conserved.

• The track is smooth and friction between the track and car is negligible.

• The car is actually treated as a particle and hence its motion is translational.

The data in hand with the model builder is that the highest velocity of the car is

v = 3 m/s and the largest loop radius is r = 10 m. The model validation and

the uncertainty quanitfication is necessary due to the reasons based on the above

assumptions.
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• Energy is lost to the surroundings due to friction and some intangible factors

such as environmental conditions.

• The friction between the car and track exists.

• Along with translational motion, the car may have rotational motion.

Thus, the derived model is not perfectly accurate and uncertainty in the model pre-

vails. Now start the validation process first step of which is experimentation in lab.

3.3. EXPERIMENTATION ON ROLLER MODEL PROBLEM

Basic design principle is to consider the worst case in design analysis so as to

render it as a safe design. Similarly, the model builder would want to quantify model

uncertainty at the worst case point and therby requests an external laboratory to

perform experiments at ~x = (v, r) = (3, 10). In order to simulate the experiment,

assume that the random input variables (v, r) are normally distributed with their

means (3 m/s, 10 m) and expanded uncertainties (0.02 m/s, 0.002 m) uncer confidence

level of 95%. Thus, 95% confidence interval for ~x = (v, r) can be expressed as follows

xe1 = ve = 3± 0.02 m/s

∴ [xe1, x
e
1] = [ve, ve] = [2.98, 3.02] m/s (71)

xe2 = re = 10± 0.002 m

∴ [xe2, x
e
2] = [re, re] = [9.998, 10.002] m (72)

Generate 30 samples from the assumed distributions for input variables. Also, as-

sume that actual energy loss for the system is between 95% and 99% with a uniform

distribution. Along with the input variables, the experimenter also tests the system

response which is the required height h in this case. The output will be presented to
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the model builder in terms of expanded uncertainty as shown in Equation (1).

ye = he = 25.2794± 0.5864 m

∴ [ye, ye] = [he, h
e
] = [24.6930, 25.8658] m (73)

This provides us with a 95% confidence interval for the output variable.

3.4. SIMULATION WITH UNCERTAINTY QUANTIFICATION

Once the model builder has the experimenatl results in terms of standards of

measurement uncertainty, it is not difficult to construct a confidence interval as in

Equations (71) and (72). He then plugs [xe1, x
e
1] and [xe2, x

e
2] into the model Equation

(62). As discussed earlier, the interval inputs provide us with an interval output for

system response as shown below

h = [ym, ym] =
5

2
[9.998, 10.002]− 1

2

[2.98, 3.02]2

9.81
= [24.5301, 24.5524] m (74)

The model for this problem is simple and hence, directly plug the experimental

results for input variables and procure the system response interval. However, if the

function is highly non-linear, approximation methods like Taylor expansion series,

Optimization, Second order probability method, Worst case analysis etc. may be

used before implementing the interval analysis. These methods will be explained

in the next example which has a non-linear model. Equation (31) quantifies model

uncertainty for our model problem by using the experimental and model prediction

results. Thus, model uncertainty using Equation (38) is given by

Um = ye − ym

= [ye, ye]− [ym, ym]

= [24.6930, 25.8658]− [24.5301, 24.5524] = [0.1406, 1.3357] m

(75)
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Equation (75) shows that the interval for model uncertainty is not too wide and

the uncertainty is relatively small. Also, the sign of model uncertainty interval is

positive which concludes that the model slightly underestimates the true minimal

height required for the roller coaster’s ascent. This might result in a risky design

if the coaster does not attain the required momentum in order to traverse the loop

trajectory causing the design to fail. With this uncertainty interval, model builder is

in a better position to decide whether to accept or reject the model depending on the

uncertainty bounds and the intended application. The model uncertainty could also

be used to predict the true minimal height interval as

h = ym = f(~x, ~w) + εm

=
5

2
(10)− 1

2
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9.81
+ [0.1406, 1.3357]

= 24.5413 + [0.1406, 1.3357] = [24.6819, 25.877] m

(76)

Considering model uncertainty in the original function shows that the actual

minimum height falls within the above interval. In order to create a safe design, the

model builder can choose the worst case value which is h = 25.877m. Depending upon

the intended application, the choice of value will differ as aerospace applications can

use mean value in order to reduce cost.

3.5. VERIFICATION OF CONFIDENCE LEVEL

This section shall implement MCS on the roller coaster model in order to verify

the confidence level of the uncertainty interval obtained. The process is summarized

as follows:

• Generate Ns samples for input variables ~x = (v, r) using their means (3 m/s, 10

m) and standard deviations (0.02 m/s, 0.002 m) from the experimental results.

The samples are denoted by ~xi = (vi, ri) where (i = 1, 2, ..., Ns).



37

• Generate Ns samples for output variable ye = he using its mean 25.2794 and

standard deviation 0.5864
2

. The division factor 2 is derived from the coverage

factor k which is according to ASME standards for 95% confidence. The samples

are denoted by hei where (i = 1, 2, ..., Ns).

• Calculate the simulation model at each of the input variable sample which can

be represented as hmi = f(~xi) = f(vi, ri), (i = 1, 2, ..., Ns).

• The difference between experimental results and simulation model predictions

are calculated with Um
i = hei − hmi , (i = 1, 2, ..., Ns).

• Evalaute the probability of Um
i lying within the calculated uncertainty interval

model [Um, U
m

] = [0.1406, 1.3357]. Let the number be denoted by Nc.

• Now calculate the confidence by Nc
Ns

. Using a sample size of Ns = 105, a confi-

dence of 95.5% is obtained which proves the fact that the proposed methodology

calculates the uncertainty interval with a confidence level of at least 95%, same

as achieved during the experiments.
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4. THERMAL CHALLENGE PROBLEM

The new model uncertainty quantification method was applied to the roller

coaster problem in the previous chapter. The problem was selected due to its sim-

plicity and ease of understanding. This section primarily focuses on applying the

methodology to the thermal challenge problem devised by the Sandia National Lab-

oratory. It involves validating a model for one-dimensional, linear heat conduction in

a solid slab with heat flux boundary conditions. The thermal problem posed at the

Sandia Validation Challenge workshop was purposefully designed with some model

weakness in order to depict the real world problems. The uncertainty quantification

was performed on the model for a selected set of experimental data from the work of

Dowding et al. [1].

4.1. DESCRIPTION OF THERMAL PROBLEM

The thermal problem consists of a mathematical model of the temperature re-

sponse for one-dimensional heat conduction through a slab with three sets of exper-

imental data which differ in size (“low”,“medium”,“high”) to asses the model and

predict regulatory performance relative to a regulatory requirement which is in terms

of probability that a surface temperature should not exceed a specified temperature

at regulatory conditions.

A slab of thickness L is exposed to environment with boundary conditions flux

q on x = 0 face and adiabatic on x = L face as shown in Figure 4.1. The analytical

solution for the temperature in the body (for t > 0) can be written as

T (x, t) = Ti+
qL

k

[
(k/ρCp)t

L2
+

1

3
− x

L
+

1

2

(x
L

)2
− 2

π2

6∑
n=1

1

n2
e−n

2π2 (k/ρCp)t

L2 cos
(
nπ

x

L

)]
(77)

where T is the temperature, x is the location within the slab, t is the time elapsed,
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Figure 4.1. Heat conduction problem [1]

Ti is the initial temperature, q is the heat flux, L is the thickness of the material, k

and ρCp are the thermal properties. The regulatory requirement is given by

Pr{Tx=0 cm,t=1000 s,Ti=25◦C,q=3500W/m2,L=1.90 cm > 900◦C} < 0.01 (78)

Relativity of the terms in Equation (77) can be expressed as follows

• The temperature T at a particular location x at a given time t is the model

output y, ym = T .

• As per the definition in Section 2, the model parameter ~w is the location within

the slab x, time elapsed t, thickness of slab L and the heat flux q which were

not changed during the experiment, ~w = (x, t, L, q).

• The model input variables ~x are the thermal conductivity k and the volumetric

heat capacity ρCp, ~x = (k, ρCp).
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4.2. EXPERIMENTATION FOR THERMAL PROBLEM

In order to simulate an experiment and assess the model, a series of experiments

(“Material characterization”,“Ensemble validation”and “Accreditation”) were carried

out by Dowding et al. [1] with different conditions and different sample sizes.

Material characterization is subjecting the specimens, which are produced with

nominal dimensions representative of the intended application, over the temperature

range to study the behaviour of material properties like thermal conductivity k and

volumetric heat capacity ρCp. It provides an estimate of k and ρCp for a randomly

selected specimen at a given temperature. As these experiments were carried out at

different levels (“low”,“medium”and “high”), choose the one which provides with a

good estimate of these properties. The number of readings for “low”,“medium”and

“high”levels were 6, 20 and 30 respectively. Consequently, larger sample size pro-

vides with the best estimate and, hence select the data pertaining to “high”level of

experiments.

Experimental configuration for the model parameters, ~w = (x, L, q, t) is ex-

plained in Table 4.1 as follows:

Table 4.1. Configuration of model parameter for experiments

Model Parameter Value

x 0 cm
L 2.54 cm
q 2000W/m2

t 1000 sec

Using the experimental data in Table 4.2, calculate the mean k̃ and standard

deviation uk for thermal conductivity k. Choosing a coverage factor of 2 for 95%

confidence, construct an interval for the random input variable k by following the
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Table 4.2. Thermal Conductivity, k(W/m◦C)

k(20◦C) k(250◦C) k(500◦C) k(750◦C) k(1000◦C)

0.0496 0.0628 0.0602 0.0657 0.0631
0.0530 0.0620 0.0546 0.0713 0.0796
0.0493 0.0537 0.0638 0.0694 0.0692
0.0455 0.0561 0.0614 0.0732 0.0739
0.0483 0.0563 0.0643 0.0684 0.0806
0.0490 0.0622 0.0714 0.0662 0.0811

measurement uncertainty guidelines. The experimental output will be in the form of

ke = k̃ ± 2uk (79)

This serves as the experimental data to simulate an experiment for random

variable k. Similarly, the experimental results for volumetric heat capacity are shown

in Table 4.3 which in turn gives the interval for ρCp as shown in Equation (80) below.

Table 4.3. Volumetric Heat Capacity, ρCp(J/m
3◦C)× 105

k(20◦C) k(250◦C) k(500◦C) k(750◦C) k(1000◦C)

3.76 3.87 4.52 4.68 4.19
3.38 4.69 4.10 4.24 4.38
3.50 4.19 4.02 3.72 3.45
4.13 4.28 3.94 3.46 3.95
4.02 3.37 3.73 4.07 3.78
3.53 3.77 3.69 3.99 3.77

ρCp
e = ˜ρCp ± 2uρCp (80)

The calculated intervals for both the input variables along with their means and

standard deviations are shown in Table 4.4.
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Table 4.4. Experimental results for input variables k and ρCp

Input Variable Mean Standard deviation 95% CI

k 0.0628 0.0099 [0.043, 0.0827]
ρCp 393900 36251 [321400, 466400]

Along with the input variable experimentation, the model builder also requests

to perform experiments on the output variable. The temperature model is tested

for the same experimental configuration as mentioned in Table 4.1. The confidence

interval for the system response T is given in Table 4.5.

Table 4.5. Experimental results for the output variable T (◦C)

Output Variable Interval Bound

T [475.6, 517.6]

Based on these experimental results, the methodoloy to quantify the uncertainty

in temperature model to better assist the model builders has been put forward. De-

tailed information about the experiments and the procedure followed is explained by

Dowding et al. [1]. Re-iterating the same here will be beyond the scope of this thesis.

4.3. SIMULATION ON THERMAL PROBLEM

Before checking whether the model in Equation (77) satisfies the regulatory

requirement of Equation (78), it is necessary to quantify the model uncertainty so

that the accuracy of temperature model can be gauged and a true value of temperature

in the body can be estimated.

The model builder is provided with the 95% confidence interval by the experi-

menter as shown in Tables 4.4 and 4.5. As the function is highly non-linear, simply
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plugging the lower and upper bounds into the model will result in erroneous conclu-

sions. This was not the case for the roller coaster problem in Section 3 because the

model was simple and linear in nature. The confidence level achieved in that case was

more than or equal to the confidence level in experimentation. In order to quantify

uncertainty for the thermal problem, the methods described in Section 2.4 are being

used.

4.3.1. Optimization on Thermal Problem. The basic requirement is

to find the lower and upper bounds (global maxima or minima) for the tempera-

ture model given that the input variables ~x = (k, ρCp) lie within a certain domain.

Mathematically, it can be represented as

The model output interval is

Tm = [Tm, T
m

] (81)

where the optimization model for Tm is given by

Tm = min f(~x)

subject to

~x ∈ [~xe, ~x
e
]


(82)

Similarly, the optimization model for T
m

is given by

T
m

= max f(~x)

subject to

~x ∈ [~xe, ~x
e
]


(83)

where Tm represents the simulation output and f(~x) is the function in terms of input

variables. A matlab code is furnished in order to solve the optimization problem. The
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built-in function fmincon [48] is used to find the minima of the objective function.

Furthermore, the same function is used to maximize the model with the change

that the objective function is negative. The starting point for the input variables in

minimization and maximization codes was fed as the mean values from the Table 4.4.

The code is attached in Appendix B. The lower and upper bounds for the objective

function through optimization are tabulated in Table 4.6.

Table 4.6. Interval bounds for temperature through Optimization

Output Variable Interval Bound

T [424.71341, 573.47430]

4.3.2. First Order Taylor Series on Thermal Problem. There are

several appoximation methods which are used to simplify computer evaluations in

order to make them computationally inexpensive. These methods are devised to

reduce the non-linearity of the objective functions and arrive at the best possible

estimate without sacrifying much on accuracy. One of the examples is first order

Taylor series [35] which uses Taylor series expansion to approximate the objective

function. The basic idea is to linearize the model by using first order derivatives.

Furthermore, after linearizing the model, find the mean and standard deviation of

the objective function. As per ASME, using a coverage factor of 2, find the upper

and lower bounds for the objective function. Mathematically, if y is the model output

and ~x = (k, ρCp) is the vector of input variables,

T̃ (~x) = T (~̃x) (84)

where T̃ is the mean of the objective function and ~̃x represents the vector of mean
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values of input variables.

σT =

√(
∂T

∂k
σk

)2

+

(
∂T

∂ρCp
σρCp

)2

(85)

where

σT = standard deviation of the objective functionT

σk = standard deviation of input variable k

σρCp = standard deviation of input variable ρCp

Once the mean and standard deviation of the objective function are obtained, lower

and upper bounds can be calculated as per Equation (86) using ASME standards of

measurement uncertainty. Refer code in Appendix B.

T̃ ± 2σT (86)

The results obtained as per the first order method are shown in Table 4.7.

Table 4.7. Interval bounds for temperature through First Order Taylor Series

Output Variable Interval Bound

T [398.23716, 561.94877]

4.3.3. Worst Case Analysis (WCA). WCA method uses the first order

approximation as mentioned above in order to create a response surface for the non-

linear function. The analysis results for the thermal challenge problem are shown in

the Table 4.8.
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Table 4.8. Interval bounds for temperature through Worst Case Analysis

Output Variable Interval Bound

T [367.36160, 592.82433]

However, due to the non-linearity of the objective function, linearization would

not be an accurate estimate of the true value. Hence, approxiamte the function using

higher order series as explained in the next section.

4.3.4. Second Order Taylor Series on Thermal Problem. The approx-

imation for thermal challenge problem is given by

T (~x) ≈ T (~̃x) +5(~̃x)(~x− ~̃x)T +
1

2
(~x− ~̃x)H(~̃x)(~x− ~̃x)T (87)

where H(~̃x) is the Hessian matrix at mean values of ~x. It is given by

 ∂2T
∂k2

∂2y
∂kρCp

∂2T
∂ρCpk

∂2T
∂ρCp2

 (88)

Equation (87) is utilized to obtain a response surface which was further utilized for

the prediction of lower and upper bounds of the model for uncertainty interval. The

Hessian matrix is of (2 × 2) size as there are two input variables. If there are more

variables, the generalized hessian matirx can be used as shown in Equation (29). The

results procured from the second order approximation model calculated in Matlab

(code attached in Appendix B) are as shown in Table 4.9 below

Table 4.9. Interval bounds for temperature through Second Order Taylor Series
Method

Output Variable Interval Bound

T [431.01541, 543.74677]
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4.3.5. GSA on Thermal Problem. The algorithm explained in section 2

has been coded in Matlab and the code is attached in Appendix A. Results obtained

are as shown in Table 4.10.

Table 4.10. Interval bounds for temperature through Golden Search Algorithm

Output Variable Interval Bound

T [390.31981, 632.85195]

4.3.6. MCS on Second Order Approximation for Temperature Model.

In thermal example, 107 samples were generated to find the global maxima or min-

ima for the objective function using the Matlab code attached in Appendix B. By

predicting temperature at each of the input values, upper and lower bounds for the

temperature in the slab at a particular location Tm as [Tm, T
m

] can be tabulated as

shown in Table 4.11.

Table 4.11. MCS on Second Order Approximation Model

Output Variable Interval Bound

T [396.74466, 621.56256]

As can be seen from Figure 4.2, uniform distributions have been assumed for

both the random variables k (left) and ρCp (right). No matter what the distribution

of the random variables is, the output variable (T ) will closely represent normal

distribution due to the large sample database. This can be clearly seen from the

histogram for the output variable T in Figure 4.3. A comparison of cumulative

distribution functions (cdf ) of output variable for uniform and normal distributions

of random variables is shown in the Figure 4.4 below. For both the cases, the output

variable T resembles a normal cumulative distribution function (CDF).
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Figure 4.2. Uniform distribution of random variables for second order approximation

Figure 4.3. Distribution of the system response variable - Temperature T (◦C)

4.3.7. MCS on the Original Temperature Model. MCS is carried

out on the original model in the same procedure as explained above. This will give

the most accurate prediction for the system output response y as the original non-

linear function is used for evaluation purpose. However, it will be computationaaly

expensive due to the complexity of the problem. This exercise was basically done

to evaluate the accuracy of the different methods applied to solve the problem and
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Figure 4.4. Cumulative distribution function (cdf) for Temperature T (◦C)

moreover, MCS covers the maximum range thereby increasing the probability of true

model uncertainty lying between the lower and upper bounds of the model uncertainty

confidence interval. A Matlab code was generated to perform the simulation on

the original model and is attached in Appendix B. The results are shown below in

Table 4.12

Table 4.12. Monte Carlo simulation on Original Model

Output Variable Interval Bound

T [390.40231, 632.70970]

A similar trend for the output variable T is observed on implementation of

MCS on the original non-linear model. The data for temperature T is approxiamtely

normally distributed even though the input variables are assumed to have uniform

distribution as shown in Figures 4.5 and 4.6 respectively. Graphical representation

of these intervals in Figure 4.7 will give a clear idea about the accuracy and the
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Figure 4.5. Uniform distribution of random variables k and ρCp for original model

Figure 4.6. Distribution of the system response variable - Temperature T (◦C)

worst case scenario that can be considered for the model. The decision lies with the

model builder whether to optimize or take the worst case into consideration. This

will mainly depend on the intended application.
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In order to summarize the prediction results by different methods and to com-

pare them with each other, the following Table 4.13 will give a good idea.

Table 4.13. Summary of interval bounds for Temperature T (◦C)

Method Interval Bound Number of
adopted for Temperature function evaluations

Optimization [424.71341, 573.47430] 6
First Order Taylor Series [398.23716, 561.94877] 1

Worst Case Analysis [367.36160, 592.82433] 1
Second Order Taylor Series [431.01541, 543.74677] 1

MCS on second order approximation [396.74466, 621.56256] 107

Golden Search Algorithm [390.31981, 632.85195] 13
MCS on original model [390.40231, 632.70970] 107

Figure 4.7. Comparison of different model prediction methods for Temperature T (◦C)

It is clear Figure 4.7 that second order approximates the model better than the

first order series expansion but do take note of the fact that it might not give us

the global minima or maxima for the obejective function. Monte Carlo simulation

on original model gives the best estimate of lower and upper bounds for temperature

provided that the input random variables are uncertain. To reduce the computational
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effort, the MCS on second order approximation model has been carried out and its

accuracy is acceptable. Also, higher order cubic polynomial used in the Golden Search

Algorithm for approximating the objective function gives almost similar results to

MCS on original model. Considering function evaluation as a criteria, GSA provides

with the best estimate of global minimum and maximum in 13 iterations whereas

MCS is computationally expensive.

4.4. MODEL UNCERTAINTY QUANTIFICATION

After going through a series of methods to find the lower and upper bounds of

the model problem provided with the uncertainty in the input variables, quantify the

model uncertainty using Equation (38). Interval analysis, as explained in Section 2,

is implemented between the experimental and prediction results so that an interval

for the uncertainty known as model uncertainty interval can be derived. The results

obtained on interval analysis are shown in Table 4.14 below

Table 4.14. Uncertainty interval results of temperature through different methods

Method Interval Bound for Model Uncertainty

Optimization [-97.87430, 92.88659]
First Order Taylor Series [-86.34877, 119.36284]

Second Order Taylor Series [-68.14677, 86.58460]
Worst Case Analysis [-117.22433, 150.23840]

MCS on second order approximation [-145.96256, 120.85534]
Golden Search Algorithm [-157.25195, 127.28019]
MCS on original model [-157.10969, 127.19768]

4.5. VERIFICATION OF CONFIDENCE LEVEL

In the previous section, the confidence level for the evaluated model uncertainty

interval for a simpler model is more than or equal to the confidence level achieved

during experimentation. However, for the thermal challenge problem, sampling meth-

ods like Monte Carlo Simulation are implemented to check or validate the confidence
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level achieved in the interval mainly due to the non-linear nature of the model. The

concept of truncated distribution is useful which can be termed as a conditional distri-

bution due to the fact that it results from restricting other probability distributions

either above or below their threshold values. A pictorial representation in Figure 4.8

shows the interval bounds for different confidence levels.

Figure 4.8. Confidence intervals for a normal distribution [2]

As the original distribution is modified, the mean µ for the new distribution

will remain the same but standard deviation σ is modified. Dr. David Olive [3]

from Southern Illinois University studied this concept. His work mentioned about a

corollary pertaining to truncated normal distribution.

Let Y be TN(µ, σ2, a = µ− kσ, b = µ+ kσ). Then,

E(Y ) = µ and V AR(Y ) = σ2

[
1− 2kφ(k)

2Φ(k)− 1

]
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where TN denotes truncated normal distribution and a & b are the lower and up-

per bounds of the truncated distribution respectively and k is the coverage factor as

defined in Section 2. Using the above relation, variances for different truncated distri-

butions and confidence levels can be computed according to the k values as tabulated

in Table 4.15.

Table 4.15. Variances for different truncated normal distriutions [3]

k V AR(Y )

2.0 0.774σ2

2.5 0.911σ2

3.0 0.973σ2

3.5 0.994σ2

4.0 0.999σ2

Now, validate the confidence level and the results achieved in Table 4.14 for the

model uncertainty interval Um. A three stage Monte Carlo Simulation [49] has been

used and the steps are displayed on the flow chart Figure 4.9.

In the first stage of monte carlo simulation, simulate the model in order to

compute model predictions from the input variable reported by the experimenter.

Next, apply the concept of truncated distribution to choose 95% confidence interval

from the entire distribution. At the end of step 1, N samples of temperature in the

slab denoted as ym = Tm are procured. A sample size of N = 105 is used.

In the subsequent MCS, generate N = 105 samples from the original sample

database of the input variables as reported by the experimenter. Let us denote the

temperature samples by ye = T e. Furthermmore, evaluate the difference between the

two samples to represent the uncertainty, Um = ye − ym. Count the number of un-

certainty values lying within the uncertainty interval derived using different methods,

denote it by Ncon. Evaluate the confidence from Ncon
N
. The confidence level achieved

in different mehtods is shown in Table 4.16 below A Matlab code has been generated
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Figure 4.9. Flow chart for confidence level in uncertainty interval

Table 4.16. Confidence level achieved in uncertainty intervals

Method adopted Confidence level (%)

Golden search algorithm 99.889
MCS 99.889

SORM (MCS) 99.762
Optimization 97.568

SORM approximation 93.975

in order to perform the monte carlo simulations and also evaluate the probability as

attached in Appendix C. From Table 4.16, it is clear that Golden search algorithm

and Monte Carlo simulation achieve equivalent confidence in the uncertainty interval,

as high as 99.89%. Gradually, the confidence decreases through the methods of MCS

on SORM, Optimization and SORM approximation as 99.76%, 97.57% and 93.98% re-
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spectively. This is mainly due to the fact that the uncertainty interval range reduces

for the methods in the same sequence.

Moreover, the third Monte Carlo simulation can be explained as follows

Given:

95% [~xl, ~xu]

g(~x)

By the experimenter

where

~x = Model input variable vector

g(~x) = System response

Analysis:

gl = min g([~xl, ~xu])

gu = max g([~xl, ~xu])

By the model builder

Question:

Is confidence level in [gl, gu] ≥ 95%?

∴ IsPr{g ∈ [gl, gu]} ≥ 95%? (89)

On implementation of the third MCS, the probability in Equation (89) was found

to be 99.88%. Thus, the proposed methodology has sufficient level of confidence

as proved by the justification in Equation (89). The next section will conclude the

dissertation with the salient features of the model uncertainty quantification process.
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5. CONCLUSIONS AND FUTURE WORK

In the introduction section, we discussed about the importance of quantifying

model uncertainty in order to estimate its accuracy and agreement with its real world

application. Keeping this in mind, a different methodology was devised which was

easy to implement to quantify the model error for simulation models. In this final

section, the thesis shall be concluded by describing the progress made towards this

goal in terms of uncertainty quantification and its application on complex problems.

Along with the advantages, drawbacks shall also be discussed which helped to put

forward some future research directions in order to overcome them.

5.1. CONCLUSIONS

The focus of this research was to develop an efficient approach for model uncer-

tainty quantification when the model builders are incapable of performing experiments

for validation. As a result, the experimentation part is outsourced to professional

laboratories. There was a need to bridge this gap between the model builders and

experimenters. Also, one of the objectives of this study was to simplify decision mak-

ing for the model builder by altering the uncertainty result representation from the

traditional methods to a more interpretable form. For highly non-linear problems,

approximation methods can be used to create a response surface so as to represent

the original model.

The salient features of the proposed methodology are as follows:

• ASME measurement uncertainty standards proved to be a useful tool wherein

the experiments are carried out according to the standards and the results are

reported to the model builder in terms of expanded uncertainty as mentioned

in Section 2. The experimenter carries out experiment not only on the output
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variable but also on the input random variables at the worst case points re-

quested by the model builder. Overall, this has resulted in reduced cost for the

model builders as the experimental part is relatively expensive.

• Implementation of interval analysis in order to compare the observation results

and model prediction.

• Other main feature of the proposed methodology is that model uncertainty is

quantified in terms of interval range with at least 95% confidence level. This

makes interpretation of results far more easier than the traditional probabilistic

distributions.

• The proposed method is also applicable in conditions where the model builder is

even not able to perform the simulation. In this case, he can decide to outsource

the simulation part along with the experimental work and henceforth use the

methodology.

Major findings from the study can be enumerated as follows:

1. In Section 3, the proposed methodology is implemented on a roller coaster design

problem with two input random variables, velocity v and loop radius r. Since

the model is simple in nature, the input variable intervals from experimentation

are directly substituted into the model. On comparison of the observation

results with the model prediction, the model uncertainty was found to be within

[0.1406, 1.3357]m. Inference can be made from the positive sign of interval values

that the original model underestimates the minimal height required for the car

to travel the loop trajectory without going off track. The most important thing

to note is that the confidence in model uncertainty interval was at least 95%

according to Section 2.6. The decision of the model being rejected or accepted is

with the model builder. It is easier for him to determine the risk in design if the
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uncertainty is in the form of an interval. Different applications have different

requirements to be met and hence the model builder can choose accordingly.

2. In Section 4, a highly non-linear model like the thermal challenge problem by

the Sandia National Laboratories has been examined for the model uncertainty

interval according to the proposed method. In order to reduce the computa-

tional effort, a response surface has been generated using different approxima-

tion methods like First order taylor Series and Second order Reliability method.

SORM being the higher order approximation was used to run Monte Carlo

Simulation for 107 random samples to evaluate the lower and upper bounds for

temperature. The results were a good match with the MCS on the original

model. However, Golden Search Algorithm which is an interval based method,

provided with exact results so as to match with the MCS.

3. From the results obtained, the temperature model has an uncertainty within the

interval [−157.10969, 127.19768] which clears the point that it does not meet

the regulatory requirement mentioned in Equation (78). The result is confirmed

with the previous work done in this field by Ferson et al. [23] stating that, “the

temperatures will exceed the probability specified by the regulatory require-

ment by a factor of 22”. Most important part of this analysis is to gauge the

confidence level associated with the uncertainty intervals. This is achieved by

using three stage MCS, on truncated distribution of input variables as shown in

Section 4.5. Observe from the result Table 4.16, that different methods provide

varying confidence levels for the uncertainty interval with the GSA and MCS

methods being the highest with 99.89%. The confidence level in other methods

goes on decreasing gradually due to their smaller range of intervals. However,

the decision lies with the model builder to choose the method best suited for

the intended application. Furthermore, the confidence level of the temperature
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value from model prediction lying within the 95% confidence interval for system

response reported by the experimenter is 99.88%.

In overall summary, both of the examples in Section 3 and Section 4, imply that

model uncertainty exists when there is uncertainty in model input variables and the

proposed uncertainty quantification method is effective in determining the same. An

interval output for the system response variable gives a clear picture of the variation

in the model. The process is much more simpler than the traditional methods and

easy to understand which makes the model builder’s goal achievable even due to their

inability to perform the experiment.

5.2. SUGGESTIONS FOR FUTURE WORK

As mentioned earlier, the drawbacks of this method or the concepts that were

not considered during the analysis will provide us with further research directions.

One direction is to consider the correlation between the input random variables.

It would be interesting to see the effect of correlation between input variables and their

dependence on the output. For example, if one considers the temperature dependence

of input variables k and ρCp, model predictions are bound to be different and thereby

different model uncertainty bounds. Will the uncertainty interval method be still valid

for such a case? Will the confidence level achieved with the revised methodology be

as high as the confidence level maintained during experimentation? Further research

is needed to answer all of these questions.

Another possibility would be to integrate uncertainty interval model methodol-

ogy with robust design so that even more accurate predictions can be achieved for

model uncertainty bounds. As per the proposed methodology, the worst case design

points are considered in order to analyze model uncertainty. In aerospace applica-

tions, where the design should be cost efficient and feasible, robust design optimizes

the model uncertainty interval. Use of higher order approximation methods such as
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Non-Intrusive Polynomial Chaos (NIPC) [50, 51] derived from the polynomial chaos

theory based on spectral representation of uncertainty will help to improve accuracy.

One more advantage of implementation of NIPC is that it can even take care of mixed

(aleatory and epistemic) uncertainty present in the model.

Finally, performing the sensitivity analysis [45, 52] (both linear and non-linear)

on each of the input random variables would allow us to rank their relative importance.

This further leads to global sensitivity analysis to determine the correlation between

input and output variables. A particular interest would be to use this methodol-

ogy to study more complex models solving real world problems and improving on it

successively.
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Optimization through Golden Search Algorithm: MATLAB Source Code
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%Program to opt imize Temperature model by Golden search a lgor i thm (GSA)

c l e a r a l l ; c l c ; format long ;

%% Part ( a ) − Def ine v a r i a b l e s and cons tant s
syms rho Cp x

r = (−1+sq r t ( 5 ) ) / 2 ; % Golden search r a t i o
T in i = 25 ; % I n i t i a l temperature (C)
k = 0 . 0 4 3 ; % Thermal conduc t i v i ty (W/mC)
q = 2000 ; % Heat f l u x (W/m2)
L = 0 . 0254 ; % Thickness (m)
t = 1000 ; p = 0 ; % Time and l o c a t i o n

% Temperature model
term = 0 ;
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k/rho Cp )∗ t )/L ˆ 2 ) ) ) . . .

∗ cos (n∗ pi ∗p/L ) ;
end

T = T in i + (q∗L/k )∗ ( ( ( ( k/rho Cp )∗ t )/Lˆ2) + (1/3) − (p/L) + . . .
( 0 . 5∗ ( p/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ;

%% Part (b) − Golden search Algorithm (GSA)
% Sta r t i ng i n t e r va l , s topper and r e l a t i v e t o l e r an c e
a = 321400; b = 466400; f l a g = 0 ; e p s i l o n = 0 .000001 ;

% New i n t e r v a l po in t s chosen by us ing the golden r a t i o
c = a + (1− r )∗ ( b−a ) ; d = a + (b−a )∗ r ;

% Function eva lua t i on s
T a = subs (T, rho Cp , a ) ; T b = subs (T, rho Cp , b ) ;
T c = subs (T, rho Cp , c ) ; T d = subs (T, rho Cp , d ) ;

% To f i nd number o f i t e r a t i o n s needed f o r GSA
N = c e i l (−2.078∗ l og ( e p s i l o n ) ) ;

% Appl i ca t ion o f Golden search a lgor i thm
f o r i = 1 :N

i f ( T c <= T d)
a = c ; T a = T c ;
c = d ; T c = T d ;
d = a + (b−a )∗ r ;
f l a g = 1 ;

e l s e
b = d ; T b = T d ;
d = c ; T d = T c ;
c = a + (1− r )∗ ( b−a ) ;

end
T c = subs (T, rho Cp , c ) ;
T d = subs (T, rho Cp , d ) ;

end
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i f ( f l a g == 1)
T d = subs (T, rho Cp , d ) ;

e l s e
T c = subs (T, rho Cp , c ) ;

end

%% Part ( c ) − Cubic polynomial f i t at l a s t i t e r a t i o n o f GSA
x1 = a ; x2 = c ; x3 = d ; x4 = b ;
f 1 = subs (T, rho Cp , a ) ; f 2 = subs (T, rho Cp , c ) ;
f 3 = subs (T, rho Cp , d ) ; f 4 = subs (T, rho Cp , b ) ;

q1 = x3 ˆ3∗( x2 − x1 ) − x2 ˆ3∗( x3 − x1 ) + x1 ˆ3∗( x3 − x2 ) ;
q2 = x4 ˆ3∗( x2 − x1 ) − x2 ˆ3∗( x4 − x1 ) + x1 ˆ3∗( x4 − x2 ) ;
q3 = ( x3 − x2 )∗ ( x2 − x1 )∗ ( x3 − x1 ) ;
q4 = ( x4 − x2 )∗ ( x2 − x1 )∗ ( x4 − x1 ) ;
q5 = f3 ∗( x2 − x1 ) − f 2 ∗( x3 − x1 ) + f1 ∗( x3 − x2 ) ;
q6 = f4 ∗( x2 − x1 ) − f 2 ∗( x4 − x1 ) + f1 ∗( x4 − x2 ) ;

a3 = ( q3∗q6 − q4∗q5 ) / ( q2∗q3 − q1∗q4 ) ;
a2 = ( q5 − a3∗q1 ) / q3 ;
a1 = ( ( f 2 − f 1 )/ ( x2 − x1 ) ) − ( a3 ∗ ( ( x2ˆ3 − x1 ˆ3)/( x2 − x1 ) ) ) − a2 ∗( x1 + x2 ) ;
a0 = f1 − ( a1∗x1 ) − ( a2∗x1 ˆ2) − ( a3∗x1 ˆ3 ) ;

% Cubic polynomial der ived
f = a0 + a1∗x + a2∗xˆ2 + a3∗x ˆ3 ;
%% Part (d) − Determine l o c a t i o n o f minimum or maximum
de l t a = a2ˆ2 − 3∗a1∗a3 ;

i f d e l t a < 0
f p r i n t f ( ’ There are no roo t s to the g iven equat ion ’ ) ;

e l s e
i f d e l t a == 0

f p r i n t f ( ’The func t i on has n e i t h e r a minima or maxima ’ ) ;
end

end

% Determination o f opt imized r e s u l t
Y1 = (−a2+sq r t ( d e l t a ) )/ (3∗ a3 ) ;
Y2 = (−a2−s q r t ( d e l t a ) )/ (3∗ a3 ) ;
f minY1 = (Y1ˆ4) − (Y1ˆ3) − ( s i n (Y1))ˆ2 + ( cos (Y1))ˆ2 + 2 ;
f minY2 = (Y2ˆ4) − (Y2ˆ3) − ( s i n (Y2))ˆ2 + ( cos (Y2))ˆ2 + 2 ;

temp = [ f1 , f2 , f3 , f4 , f minY1 , f minY2 ] ;
F min = max( temp ) ;

% Value o f k to be changed and re−run the program
k = 0 . 0827 ;

% Temperature model
term = 0 ;
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k/rho Cp )∗ t )/L ˆ 2 ) ) ) . . .

∗ cos (n∗ pi ∗p/L ) ;
end
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T = T in i + (q∗L/k )∗ ( ( ( ( k/rho Cp )∗ t )/Lˆ2) + (1/3) − (p/L) + . . .
( 0 . 5∗ ( p/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ; % Temperature Model

%% Part (b) − Golden search Algorithm (GSA)
% Sta r t i ng i n t e r va l , s topper and r e l a t i v e t o l e r an c e
a = 321400; b = 466400; f l a g = 0 ; e p s i l o n = 0 .000001 ;

% Choosing two po in t s by us ing golden r a t i o
c = a + (1− r )∗ ( b−a ) ; d = a + (b−a )∗ r ;

% Function eva lua t i on s
T a = subs (T, rho Cp , a ) ; T b = subs (T, rho Cp , b ) ;
T c = subs (T, rho Cp , c ) ; T d = subs (T, rho Cp , d ) ;

% Number o f i t e r a t i o n s r equ i r ed f o r GSA
N = c e i l (−2.078∗ l og ( e p s i l o n ) ) ;

% Appl i ca t ion o f golden search a lgor i thm
f o r i = 1 :N

i f ( T c <= T d)
b = d ; T b = T d ;
d = c ; T d = T c ;
c = a + (1− r )∗ ( b−a ) ;
f l a g = 1 ;

e l s e
a = c ; T a = T c ;
c = d ; T c = T d ;
d = a + (b−a )∗ r ;

end
T c = subs (T, rho Cp , c ) ;
T d = subs (T, rho Cp , d ) ;

end

i f ( f l a g == 1)
T c = subs (T, rho Cp , c ) ;

e l s e
T d = subs (T, rho Cp , d ) ;

end

%% Part ( c ) − Cubic polynomial f i t at l a s t i t e r a t i o n o f GSA
x1 = a ; x2 = c ; x3 = d ; x4 = b ;
f 5 = subs (T, rho Cp , a ) ; f 6 = subs (T, rho Cp , c ) ;
f 7 = subs (T, rho Cp , d ) ; f 8 = subs (T, rho Cp , b ) ;

q1 = x3 ˆ3∗( x2 − x1 ) − x2 ˆ3∗( x3 − x1 ) + x1 ˆ3∗( x3 − x2 ) ;
q2 = x4 ˆ3∗( x2 − x1 ) − x2 ˆ3∗( x4 − x1 ) + x1 ˆ3∗( x4 − x2 ) ;
q3 = ( x3 − x2 )∗ ( x2 − x1 )∗ ( x3 − x1 ) ;
q4 = ( x4 − x2 )∗ ( x2 − x1 )∗ ( x4 − x1 ) ;
q5 = f7 ∗( x2 − x1 ) − f 6 ∗( x3 − x1 ) + f5 ∗( x3 − x2 ) ;
q6 = f8 ∗( x2 − x1 ) − f 6 ∗( x4 − x1 ) + f5 ∗( x4 − x2 ) ;

a3 = ( q3∗q6 − q4∗q5 ) / ( q2∗q3 − q1∗q4 ) ;
a2 = ( q5 − a3∗q1 ) / q3 ;
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a1 = ( ( f 6 − f 5 )/ ( x2 − x1 ) ) − ( a3 ∗ ( ( x2ˆ3 − x1 ˆ3)/( x2 − x1 ) ) ) . . .
− a2 ∗( x1 + x2 ) ;

a0 = f5 − ( a1∗x1 ) − ( a2∗x1 ˆ2) − ( a3∗x1 ˆ3 ) ;

f = a0 + a1∗x + a2∗xˆ2 + a3∗x ˆ3 ;
%% Part (d) − Determine minima / maxima f o r obj func t i on
de l t a = a2ˆ2 − 3∗a1∗a3 ;

Y3 = (−a2+sq r t ( d e l t a ) )/ (3∗ a3 ) ;
Y4 = (−a2−s q r t ( d e l t a ) )/ (3∗ a3 ) ;
f minY3 = (Y3ˆ4) − (Y3ˆ3) − ( s i n (Y3))ˆ2 + ( cos (Y3))ˆ2 + 2 ;
f minY4 = (Y4ˆ4) − (Y4ˆ3) − ( s i n (Y4))ˆ2 + ( cos (Y4))ˆ2 + 2 ;

temp = [ f5 , f6 , f7 , f8 , f minY3 , f minY4 ] ;
F min1 = min( temp ) ;

[ F min1 F min ]
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Thermal Challenge Problem: MATLAB Source Code
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%% Program to f i nd Error bounds f o r Thermal problem

% OUTLINE OF THE PROGRAM
% Part (A) : Uncerta inty c a l c u l a t i o n s from Experimental va lue s
% Part (B) : Minimum value f o r temperature
% Part (C) : Maximum value f o r temperature
% Part (D) : Program to f i nd bounds f o r Thermal model us ing FORM
% Part (E) : Worst case Ana lys i s
% Part (F ) : Assuming normal d i s t r i b u t i o n f o r k & rho Cp
% Part (G) : Approx non l i n e a r func us ing Second order Taylor exp (SORM)
% Part (H) : Monte Carlo Method on o r i g i n a l f unc t i on ( uniform d i s t r i b u t i o n )
% Part ( I ) : Monte Carlo Method on SORM func t i on ( uniform d i s t r i b u t i o n )
% Part ( J ) : Error bounds
% Part (K) : P l o t t i ng the i n t e r v a l s

c l e a r a l l ; c l c ; c l o s e a l l ;
format shor t

%% Part (A) : Uncerta inty c a l c u l a t i o n s from Experimental va lue s
% Experimental va lue s f o r thermal conduc t i v i ty
k de l t a = [ 0 . 0 4 9 6 ; 0 . 0 530 ; 0 . 0 493 ; 0 . 0 455 ; 0 . 0 483 ; 0 . 0 490 ; 0 . 0 6 2 8 ; . . .

0 . 0 620 ; 0 . 0 537 ; 0 . 0 561 ; 0 . 0 563 ; 0 . 0 622 ; 0 . 0 602 ; 0 . 0 5 4 6 ; . . .
0 . 0 638 ; 0 . 0 614 ; 0 . 0 643 ; 0 . 0 714 ; 0 . 0 657 ; 0 . 0 713 ; 0 . 0 6 9 4 ; . . .
0 . 0 732 ; 0 . 0 684 ; 0 . 0 662 ; 0 . 0 631 ; 0 . 0 796 ; 0 . 0 692 ; 0 . 0 7 3 9 ; . . .
0 . 0 806 ; 0 . 0 8 1 1 ] ;

% Experimental va lue s f o r Volumetric heat capac i ty
rho Cp de l ta = 1e5 ∗ [ 3 . 7 6 ; 3 . 3 8 ; 3 . 5 0 ; 4 . 1 3 ; 4 . 0 2 ; 3 . 5 3 ; 3 . 8 7 ; 4 . 6 9 ; . . .

4 . 1 9 ; 4 . 2 8 ; 3 . 3 7 ; 3 . 7 7 ; 4 . 5 2 ; 4 . 1 0 ; 4 . 0 2 ; 3 . 9 4 ; . . .
3 . 7 3 ; 3 . 6 9 ; 4 . 6 8 ; 4 . 2 4 ; 3 . 7 2 ; 3 . 4 6 ; 4 . 0 7 ; 3 . 9 9 ; . . .
4 . 1 9 ; 4 . 3 8 ; 3 . 4 5 ; 3 . 9 5 ; 3 . 7 8 ; 3 . 7 7 ] ;

% Mean and Standard dev i a t i on o f random va r i a b l e s
k mean = mean( k de l t a ) ; k s td = std ( k de l t a ) ;
rho Cp mean = mean( rho Cp de l ta ) ; rho Cp std = std ( rho Cp de l ta ) ;

% I n t e r v a l s accord ing to ASME std
k i n t = [ ( k mean−2∗k s td ) ( k mean+2∗k s td ) ] ;
rho Cp int = [ ( rho Cp mean−2∗rho Cp std ) ( rho Cp mean+2∗rho Cp std ) ] ;

% Experimental data f o r output ( temperature )
T exp = [ 4 7 5 . 6 5 1 7 . 6 ] ;

%% Part (B) : Minimum value f o r Temperature
% Input average va lue s o f k and rho Cp
a0 = [ 0 . 0 6 2 8 , 3 9 3 9 0 0 ] ;

% I n i t i a l i z e v a r i a b l e s with the average va lue s
k min = a0 ( 1 ) ; rho Cp min = a0 ( 2 ) ;

% I n i t i a l i z e upper & lower bounds f o r k and rho Cp
lw = [min ( k i n t ) , min ( rho Cp int ) ] ;
up = [max( k i n t ) , max( rho Cp int ) ] ;
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% Use the in−bu i l t f unc t i on fmincon to opt imize
opt ion = opt imset ( ’ d i sp l ay ’ , ’ i t e r ’ ) ;
a min = fmincon ( ’ obj fn thermal min mod ’ , a0 , [ ] , [ ] , [ ] , [ ] , lw , up , [ ] , opt ion ) ;

% I n i t i a l i z e the model parameters as per the thermal problem d e f i n i t i o n
q = 2000 ; L = 0 . 0254 ; T in i = 25 ; x = 0 ; term = 0 ; t min = 1000 ;

% Re−s ub s t i t u t e the v a r i a b l e s with c a l c u l a t ed opt imized va lues
k min = a min ( 1 ) ; rho Cp min = a min ( 2 ) ;

% Function eva lua t i on
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k min/rho Cp min )∗ t min ) / . . .

Lˆ2 ) ) )∗ cos (n∗ pi ∗x/L ) ;
end

% Temperature model ( Object ive func t i on )
ob j e c t i v e min = ( T in i + (q∗L/k min ) ∗ ( ( ( ( k min/rho Cp min )∗ t min ) . . .

/Lˆ2) +(1/3)−(x/L)+(0 .5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ) ;

% Display output (min value o f temperature )
d i sp ( [ ’ the Optimal va lue s o f Var iab l e s (k , rho Cp ) f o r T min =’ . . .

, num2str ( a min ) ] ) ;
f p r i n t f ( ’ \n\n\n ’ ) ;
d i sp ( [ ’ the Minimum value o f func =’ , num2str ( ob j e c t i v e min ) ] ) ;

%% Part (B) : Maximum value f o r temperature
% Use in−bu i l t f unc t i on fmincon to opt imize
opt ion = opt imset ( ’ d i sp l ay ’ , ’ i t e r ’ ) ;
a max = fmincon ( ’ objfn thermal max mod ’ , a0 , [ ] , [ ] , [ ] , [ ] , lw , up , [ ] , opt ion ) ;

% Re−s ub s t i t u t e the v a r i a b l e s with c a l c u l a t ed opt imized va lues
k max = a max ( 1 ) ; rho Cp max = a max ( 2 ) ; term = 0 ; t max = 1000 ;

% Function eva lua t i on
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k max/rho Cp max )∗ t max ) / . . .

Lˆ2 ) ) )∗ cos (n∗ pi ∗x/L ) ;
end

% Temperature model
object ive max = ( T in i + (q∗L/k max ) ∗ ( ( ( ( k max/rho Cp max )∗ t max ) . . .

/Lˆ2) +(1/3) −(x/L)+(0 .5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ) ;

% Display output (max value o f temperature )
d i sp ( [ ’ the Optimal va lue s o f Var iab l e s (k , rho Cp ) f o r T max =’ . . .

, num2str ( a max ) ] ) ;
d i sp ( [ ’ the Maximum value o f func =’ , num2str ( object ive max ) ] ) ;

f p r i n t f ( ’ \n\ n In t e rva l f o r T exp = [% f %f ]\n ’ ,min (T exp ) , max(T exp ) ) ;

% In t e r v a l f o r Temperature from Optimizat ion
f p r i n t f ( ’ \ n In t e rva l f o r T opt = [% f %f ]\n ’ , ob jec t ive min , ob ject ive max ) ;
T model = [ ob j e c t i v e min object ive max ] ;
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%% Part (D) : Program to f i nd bounds f o r Thermal model us ing Taylor s e r i e s
% Def ine and i n i t i a l i z e v a r i a b l e s to be used
syms k rho Cp ; term = 0 ; t = 1000 ;

% Model in terms o f random va r i a b l e s
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k/rho Cp )∗ t )/L ˆ 2 ) ) ) . . .

∗ cos (n∗ pi ∗x/L ) ;
end

g = ( T in i + (q∗L/k )∗ ( ( ( ( k/rho Cp )∗ t )/Lˆ2) + (1/3) − ( x/L) + . . .
( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ) ;

% Mean o f ob e j e c t i v e func t i on con s i d e r i ng i t to be l i n e a r
g mean = subs (g , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) ;

% D i f f e r e n t i a t i n g the model with r e sp e c t to random va r i a b l e s
% Der i va t i v e s are commonly known as s e n s i t i v i t i e s .
dk = d i f f ( g , k ) ; dr = d i f f ( g , rho Cp ) ;
dgdk = subs (dk , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) ;
dgdr = subs ( dr , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) ;

% Standard dev i a t i on o f the ob j e c t i v e func t i on
g s td = sq r t ( ( dgdk∗ k s td )ˆ2 + ( dgdr∗ rho Cp std )ˆ2 ) ;

% Display output
f p r i n t f ( ’ I n t e r v a l f o r T Taylor = [% f %f ]\n ’ , ( g mean−2∗g s td ) , . . .

( g mean+2∗g s td ) ) ;
T Taylor = [ ( g mean−2∗g s td ) ( g mean+2∗g s td ) ] ;

%% Part (E) : Worst case Ana lys i s
% Determining the co−e f f i c i e n t s o f the l i n e a r model
C0 = g mean − dgdk∗k mean − dgdr∗ rho Cp mean ;

% Maximum value o f the func t i on
T worstmax = C0 + dgdk∗min( k i n t ) + dgdr∗min( rho Cp int ) ;

% Minimum value o f the func t i on
T worstmin = C0 + dgdk∗max( k i n t ) + dgdr∗max( rho Cp int ) ;

% Display output
f p r i n t f ( ’ I n t e r v a l f o r T WorstCase = [% f %f ]\n ’ , T worstmin , T worstmax ) ;
T WorstCase = [ T worstmin T worstmax ] ;

%% Part (F ) : Assuming normal d i s t r i b u t i o n f o r k and rho Cp
% Determining the number o f samples N
N = 1e5 ; T sample = ze ro s (N, 1 ) ;

% Generation o f random samples f o r random va r i a b l e s
k sample = normrnd ( k mean , k std ,N, 1 ) ;
rho Cp sample = normrnd ( rho Cp mean , rho Cp std ,N, 1 ) ;

% Function eva lua t i on at each o f the sample po in t s
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f o r i = 1 :N
term = 0 ;
f o r n = 1 :6

term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k sample ( i ) / . . .
rho Cp sample ( i ) )∗ t )/Lˆ2)) )∗ cos (n∗ pi ∗x/L ) ;

end
T sample ( i ) = ( T in i + (q∗L/k sample ( i ) ) ∗ ( ( ( ( k sample ( i ) / . . .

rho Cp sample ( i ) )∗ t )/Lˆ2) + (1/3) − ( x/L) + . . .
( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ) ;

end

% Plo t t i ng histograms to d i sp l ay d i s t r i b u t i o n
h i s t ( k sample ) ; x l ab e l ( ’ Thermal conduc t i v i ty ’ ) ;
t i t l e ( ’ Histogram f o r samples o f k−Norm ’ ) ; f i g u r e
h i s t ( rho Cp sample ) ; x l ab e l ( ’ Volumetric heat capac i ty ’ ) ;
t i t l e ( ’ Histogram f o r samples o f rho−Norm ’ ) ; f i g u r e
h i s t ( T sample ) ; x l ab e l ( ’ Temperature ’ ) ;
t i t l e ( ’ Histogram f o r samples o f T−Norm ’ ) ; f i g u r e

%% Part (G) : Approx non l i n e a r func us ing Second order Taylor exp (SORM)
% Determining func t i on in terms o f random va r i a b l e s
term = 0 ;
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k/rho Cp )∗ t )/L ˆ 2 ) ) ) . . .

∗ cos (n∗ pi ∗x/L ) ;
end

T = T in i + (q∗L/k )∗ ( ( ( ( k/rho Cp )∗ t )/Lˆ2) + (1/3) − ( x/L) + . . .
( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ;

% Function eva lua t i on at the mean point
T mean = subs (T , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) ;

% F i r s t & second order d e r i v a t i v e s
dtdk = d i f f (T, k ) ; dtdr = d i f f (T, rho Cp ) ;
d2tdkdr = d i f f ( dtdk , rho Cp ) ; d2tdrdk = d i f f ( dtdr , k ) ;
d2tdk2 = d i f f ( dtdk , k ) ; d2tdr2 = d i f f ( dtdr , rho Cp ) ;

% Construct ion o f the Hess ian matrix
de l = [ subs ( dtdk , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) subs ( dtdr , . . .

[ k , rho Cp ] , [ k mean , rho Cp mean ] ) ] ;
H = [ subs ( d2tdk2 , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) subs ( d2tdrdk , . . .

[ k , rho Cp ] , [ k mean , rho Cp mean ] ) ; . . .
subs ( d2tdkdr , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) subs ( d2tdr2 , . . .
[ k , rho Cp ] , [ k mean , rho Cp mean ] ) ] ;

% SORM model
V = [ k−k mean rho Cp−rho Cp mean ] ;
func = T mean + de l ∗V’ + (1/2)∗ (V∗H∗V’ ) ;

% Maximum & minimum va lues f o r the func t i on
T min = double ( subs ( func , [ k , rho Cp ] , [ ( k mean+k std ) , . . .

( rho Cp mean+rho Cp std ) ] ) ) ;
T max = double ( subs ( func , [ k , rho Cp ] , [ ( k mean−k s td ) , . . .
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( rho Cp mean−rho Cp std ) ] ) ) ;

% Display output
f p r i n t f ( ’ I n t e r v a l f o r T SORM = [% f %f ]\n ’ ,T min , T max ) ;
T SORM = [ T min , T max ] ;

%% Part (H) : MCS on o r i g i n a l f unc t i on ( Uniform d i s t r i b u t i o n )
f o r i = 1:100
% Generating samples f o r Monte c a r l o S imulat ion

k sample = uni f rnd (min ( k i n t ) ,max( k i n t ) ,N, 1 ) ;
rho Cp sample = uni f rnd (min ( rho Cp int ) ,max( rho Cp int ) ,N, 1 ) ;

% Function eva lua t i on at the se samples
f o r j = 1 :N
term = 0 ;
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k sample ( j ) . / . . .

rho Cp sample ( j ) ) . ∗ t ) . /Lˆ2)) )∗ cos (n∗ pi ∗x/L ) ;
end

T calc1 ( j ) = T in i + (q∗L./ k sample ( j ) ) . ∗ ( ( ( ( k sample ( j ) . / . . .
rho Cp sample ( j ) ) . ∗ t ) . /Lˆ2) + (1/3) − ( x/L) + . . .

( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ;
end
Min T( i ) = min ( T ca lc1 ) ; Max T( i ) = max( T ca lc1 ) ;
end

% Display output
f p r i n t f ( ’ I n t e r v a l f o r T MCS = [% f %f ]\n ’ ,min (Min T ) , max(Max T ) ) ;
T MCS = [min (Min T ) , max(Max T ) ] ;

% Generaing po in t s f o r p l o t t i n g cd f and pdf f o r uniform d i s t r i b u t i o n
n po int =50;
f o r i =1: n po int ; s tep=(max( T ca lc1)−min( T ca lc1 ) )/ n po int ;

T point ( i )=min ( T ca lc1 )+( i −1)∗ s tep ;
end
m=h i s t ( T calc1 , T point ) ; cd f (1)=m( 1 ) ;
f o r i =2: n po int ; cd f ( i )=m( i )+cdf ( i −1); end
cdf=cdf /N; pdf=m/N;

% Generaing po in t s f o r p l o t t i n g cd f and pdf f o r normal d i s t r i b u t i o n
f o r i =1: n po int ; s tep1=(max( T sample)−min( T sample ) )/ n po int ;

T point1 ( i )=min ( T sample )+( i −1)∗ s tep1 ;
end
m1=h i s t ( T sample , T point1 ) ; cd f1 (1)=m1( 1 ) ;
f o r i =2: n po int ; cd f1 ( i )=m1( i )+cdf1 ( i −1); end
cdf1=cdf1 /N; pdf1=m/N;

% Plo t t i ng cd f and pdf us ing the above po in t s
p l o t ( T point , cd f ) ; hold on ; p l o t ( T point1 , cdf1 , ’−−r ’ ) ;
x l ab e l ( ’T ’ ) ; y l ab e l ( ’ cd f ’ ) ; t i t l e ( ’ cd f f o r samples o f T−MCS’ ) ;
l egend ( ’ Uniformly d i s t r i b u t e d v a r i a b l e s ’ , . . .

’ Normally d i s t r i b u t e d v a r i a b l e s ’ , 4 ) ; f i g u r e
p l o t ( T point , pdf ) ; hold on ; p l o t ( T point1 , pdf1 , ’−−r ’ ) ;
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x l ab e l ( ’T ’ ) ; y l ab e l ( ’ pdf ’ ) ; t i t l e ( ’ pdf f o r samples o f T−MCS’ ) ;
l egend ( ’ Uniformly d i s t r i b u t e d v a r i a b l e s ’ , . . .

’ Normally d i s t r i b u t e d v a r i a b l e s ’ ) ; f i g u r e

% Plo t t i ng histograms f o r random and output v a r i a b l e s
h i s t ( k sample ) ; x l ab e l ( ’ Thermal conduc t i v i ty ’ ) ;
t i t l e ( ’ Histogram f o r samples o f k−MCS’ ) ; f i g u r e
h i s t ( rho Cp sample ) ; x l ab e l ( ’ Volumetric heat capac i ty ’ ) ;
t i t l e ( ’ Histogram f o r samples o f rho−MCS’ ) ; f i g u r e
h i s t ( T ca lc1 ) ; x l ab e l ( ’ Temperature ’ ) ;
t i t l e ( ’ Histogram f o r samples o f T−MCS’ ) ; f i g u r e

%% Part ( I ) : MCS on SORM func t i on ( Uniform d i s t r i b u t i o n )
% Generating samples f o r Monte Carlo Simulat ion
k sample = uni f rnd (min ( k i n t ) ,max( k i n t ) ,N, 1 ) ;
rho Cp sample = uni f rnd (min ( rho Cp int ) ,max( rho Cp int ) ,N, 1 ) ;

% Function eva lua t i on at the se samples
term = 0 ;
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k/rho Cp )∗ t )/Lˆ2)) ) . . .

∗ cos (n∗ pi ∗x/L ) ;
end

T = T in i + (q∗L/k )∗ ( ( ( ( k/rho Cp )∗ t )/Lˆ2) + (1/3) − ( x/L) + . . .
( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ;

% Mean and Standard dev i a t i on
k mean = mean( k de l t a ) ; k s td = std ( k de l t a ) ;
rho Cp mean = mean( rho Cp de l ta ) ; rho Cp std = std ( rho Cp de l ta ) ;

% Function eva lua t i on at mean point
T mean = subs (T , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) ;

% F i r s t and second order d e r i v a t i v e s
dtdk = d i f f (T, k ) ; dtdr = d i f f (T, rho Cp ) ;
d2tdkdr = d i f f ( dtdk , rho Cp ) ; d2tdrdk = d i f f ( dtdr , k ) ;
d2tdk2 = d i f f ( dtdk , k ) ; d2tdr2 = d i f f ( dtdr , rho Cp ) ;

% Construct ion o f Hess ian matrix
de l = [ subs ( dtdk , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) subs ( dtdr , . . .

[ k , rho Cp ] , [ k mean , rho Cp mean ] ) ] ;
H = [ subs ( d2tdk2 , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) subs ( d2tdrdk , . . .

[ k , rho Cp ] , [ k mean , rho Cp mean ] ) ; . . .
subs ( d2tdkdr , [ k , rho Cp ] , [ k mean , rho Cp mean ] ) subs ( d2tdr2 , . . .
[ k , rho Cp ] , [ k mean , rho Cp mean ] ) ] ;

% Derived SORM model and func t i on eva lua t i on at sample po in t s
V = [ k−k mean rho Cp−rho Cp mean ] ;
func = T mean + de l ∗V’ + (1/2)∗ (V∗H∗V’ ) ;
T ca lc = 1/2∗ ( ( rho Cp sample ) − 393900) .∗ (3969562796162817/ . . .

1152921504606846976∗ k sample + 2994134114987257/ . . .
1208925819614629174706176∗ rho Cp sample − . . .
1125745240091807533352751/944473296573929042739200000) − . . .



74

5496802930135779/9223372036854775808∗( rho Cp sample ) − . . .
3855333645375677/1099511627776∗( k sample ) + 1/2∗ ( ( k sample ) . . .
− 1571/25000).∗(3092920434760619/34359738368∗ k sample + . . .
3969562796162817/1152921504606846976∗ rho Cp sample − . . .
6316578644583511239376999/900719925474099200000) + . . .
6738724829706847330610773/7205759403792793600000;

% Display output
f p r i n t f ( ’ I n t e r v a l f o r T SORMMCS = [% f %f ]\n ’ ,min ( T ca lc ) , max( T ca lc ) )
T SORMMCS = [min ( T ca lc ) , max( T ca lc ) ] ;

% Generating po in t s f o r p l o t t i n g cd f & pdf
f o r i =1: n po int ; s tep2=(max( T ca lc )−min( T ca lc ) )/ n po int ;

T point2 ( i )=min ( T ca lc )+( i −1)∗ s tep2 ;
end
m2=h i s t ( T calc , T point2 ) ; cd f2 (1)=m2( 1 ) ;
f o r i =2: n po int ; cd f2 ( i )=m2( i )+cdf2 ( i −1); end
cdf2=cdf2 /N; pdf2=m/N;

% Plo t t i ng cd f and pdf us ing above po in t s
p l o t ( T point2 , cd f2 ) ; hold on ; p l o t ( T point1 , cdf1 , ’−−r ’ ) ;
x l ab e l ( ’T ’ ) ; y l ab e l ( ’ cd f ’ ) ; t i t l e ( ’ cd f f o r samples o f T−SORM−MCS’ ) ;
l egend ( ’ Uniformly d i s t r i b u t e d v a r i a b l e s ’ , . . .

’ Normally d i s t r i b u t e d v a r i a b l e s ’ , 4 ) ; f i g u r e
p l o t ( T point2 , pdf2 ) ; hold on ; p l o t ( T point1 , pdf1 , ’−−r ’ ) ;
x l ab e l ( ’T ’ ) ; y l ab e l ( ’ pdf ’ ) ; t i t l e ( ’ pdf f o r samples o f T−SORM−MCS’ ) ;
l egend ( ’ Uniformly d i s t r i b u t e d v a r i a b l e s ’ , . . .

’ Normally d i s t r i b u t e d v a r i a b l e s ’ ) ; f i g u r e

% Plo t t i ng histograms f o r the random & output v a r i a b l e s
h i s t ( k sample ) ; x l ab e l ( ’ Thermal conduc t i v i ty ’ ) ;
t i t l e ( ’ Histogram f o r samples o f k−SORM−MCS’ ) ; f i g u r e
h i s t ( rho Cp sample ) ; x l ab e l ( ’ Volumetric heat capac i ty ’ ) ;
t i t l e ( ’ Histogram f o r samples o f rho−SORM−MCS’ ) ; f i g u r e
h i s t ( T ca lc ) ; x l ab e l ( ’ Temperature ’ ) ;
t i t l e ( ’ Histogram f o r samples o f T−SORM−MCS’ ) ; f i g u r e

%% Part ( J ) : Model Error bounds
% Optimized va lues among a l l the methods
Maximum = [max( T Taylor ) max(T WorstCase ) max(T SORM) max(T MCS ) . . .

max(T model ) max(T SORMMCS) ] ;
Minimum = [min ( T Taylor ) min (T WorstCase ) min (T SORM) min (T MCS ) . . .

min (T model ) min (T SORMMCS) ] ;

% Model e r r o r from extreme va lues
Err low = (min (T exp ) − min(Maximum) ) ;
Err h igh = (max(T exp ) − max(Minimum ) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error extreme = [% f %f ]\n ’ , Err low , Err h igh ) ;

% Model e r r o r from Optimizat ion va lue s
Err low = (min (T exp ) − max(T model ) ) ;
Err h igh = (max(T exp ) − min(T model ) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error opt = [% f %f ]\n ’ , Err low , Err h igh ) ;
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% Model e r r o r from Taylor s e r i e s
Err low = (min (T exp ) − max( T Taylor ) ) ;
Err h igh = (max(T exp ) − min( T Taylor ) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error Taylor = [% f %f ]\n ’ , Err low , Err h igh ) ;

% Model e r r o r from SORM values
Err low = (min (T exp ) − max(T SORM) ) ;
Err h igh = (max(T exp ) − min(T SORM) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error SORM = [% f %f ]\n ’ , Err low , Err h igh ) ;

% Model e r r o r from Worst Case
Err low = (min (T exp ) − max(T WorstCase ) ) ;
Err h igh = (max(T exp ) − min(T WorstCase ) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error WorstCase = [% f %f ]\n ’ , Err low , Err h igh ) ;

% Model e r r o r from MCS on SORM model
Err low = (min (T exp ) − max(T SORMMCS) ) ;
Err h igh = (max(T exp ) − min(T SORMMCS) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error SORM MCS = [% f %f ]\n ’ , Err low , Err h igh ) ;

% Model e r r o r from Golden Search Algorithm
T GSA = [390 . 31981 , 6 3 2 . 8 5 195 ] ;
Err low = (min (T exp ) − max(T GSA) ) ;
Err h igh = (max(T exp ) − min(T GSA) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error GSA = [% f %f ]\n ’ , Err low , Err h igh ) ;

% Model e r r o r from MCS on o r i g i n a l f unc t i on
Err low = (min (T exp ) − max(T MCS) ) ;
Err h igh = (max(T exp ) − min(T MCS) ) ;
f p r i n t f ( ’ \ n In t e rva l f o r Error MCS or ig ina l = [% f %f ]\n ’ , . . .

Err low , Err h igh ) ;

%% Part (K) : P l o t t i ng the i n t e r v a l s
p l o t (T exp , ’−+r ’ , ’ LineWidth ’ , 2 ) ; hold on ; p l o t (T model , ’−∗g ’ ) ;
hold on ; p l o t (T WorstCase , ’−xb ’ ) ; hold on ;
p l o t ( T Taylor , ’−sc ’ ) ; hold on ; p l o t (T SORM, ’−dm ’ ) ; hold on ;
p l o t (T SORM MCS, ’−py ’ ) ; p l o t (T MCS, ’−−hk ’ , ’ LineWidth ’ , 1 . 5 ) ; hold on ;
p l o t (T GSA, ’−+r ’ ) ; y l ab e l ( ’ Temperature ’ ) ;
l egend ( ’ Experimental ’ , ’ Optimizat ion ’ , ’Worst Case Ana lys i s ’ , . . .

’ Taylor s e r i e s ’ , ’SORM’ , ’SORM−MCS’ , ’MCS’ , ’GSA ’ , 2 ) ;

f unc t i on object ive max = objfn thermal max mod ( a max )
% Def ine cons tant s or model parameters
q = 2000 ; L = 0 . 0254 ; T in i = 25 ; x = 0 ; term = 0 ; t max = 1000 ;

% I n i t i a l i z e v a r i a b l e s
k max = a max ( 1 ) ; rho Cp max = a max ( 2 ) ;

% Function eva lua t i on
f o r n = 1 :6
term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k max/rho Cp max )∗ t max ) / . . .

Lˆ2)) )∗ cos (n∗ pi ∗x/L ) ;
end
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object ive max = −( T in i + (q∗L/k max ) ∗ ( ( ( ( k max/rho Cp max )∗ t max ) / . . .
Lˆ2) + (1/3) − ( x/L) +(0.5∗( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ) ;

end

func t i on ob j e c t i v e min = objfn thermal min mod ( a min )
% Def ine cons tant s or model parameters
q = 2000 ; L = 0 . 0254 ; T in i = 25 ; x = 0 ; term = 0 ; t min = 1000 ;

% I n i t i a l i z e v a r i a b l e s
k min = a min ( 1 ) ; rho Cp min = a min ( 2 ) ;

% Function to be eva luated
f o r n = 1 :6
term = term +(1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k min/rho Cp min )∗ t min )/L ˆ 2 ) ) ) . . .

∗ cos (n∗ pi ∗x/L ) ;
end

ob j e c t i v e min = ( T in i + (q∗L/k min ) ∗ ( ( ( ( k min/rho Cp min )∗ t min )/L ˆ 2 ) . . .
+ (1/3) − ( x/L) + . . .
( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ) ;

end
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% Program to determine the con f idence l e v e l in model
% unce r ta in ty i n t e r v a l

c l e a r a l l ; c l o s e a l l ; c l c ;
format long ;

% Def ine v a r i a b l e s
q = 2000 ; L = 0 . 0254 ; T in i = 25 ; x = 0 ; t = 1000 ; N = 1e5 ;

% Experimental va lue s f o r thermal conduc t i v i ty
k de l t a = [ 0 . 0 4 9 6 ; 0 . 0 530 ; 0 . 0 493 ; 0 . 0 455 ; 0 . 0 483 ; 0 . 0 490 ; 0 . 0 6 2 8 ; . . .

0 . 0 620 ; 0 . 0 537 ; 0 . 0 561 ; 0 . 0 563 ; 0 . 0 622 ; 0 . 0 602 ; 0 . 0 5 4 6 ; . . .
0 . 0 638 ; 0 . 0 614 ; 0 . 0 643 ; 0 . 0 714 ; 0 . 0 657 ; 0 . 0 713 ; 0 . 0 6 9 4 ; . . .
0 . 0 732 ; 0 . 0 684 ; 0 . 0 662 ; 0 . 0 631 ; 0 . 0 796 ; 0 . 0 692 ; 0 . 0 7 3 9 ; . . .
0 . 0 806 ; 0 . 0 8 1 1 ] ;

% Experimental va lue s f o r Volumetric heat capac i ty
rho Cp de l ta = 1e5 ∗ [ 3 . 7 6 ; 3 . 3 8 ; 3 . 5 0 ; 4 . 1 3 ; 4 . 0 2 ; 3 . 5 3 ; 3 . 8 7 ; 4 . 6 9 ; . . .

4 . 1 9 ; 4 . 2 8 ; 3 . 3 7 ; 3 . 7 7 ; 4 . 5 2 ; 4 . 1 0 ; 4 . 0 2 ; 3 . 9 4 ; . . .
3 . 7 3 ; 3 . 6 9 ; 4 . 6 8 ; 4 . 2 4 ; 3 . 7 2 ; 3 . 4 6 ; 4 . 0 7 ; 3 . 9 9 ; . . .
4 . 1 9 ; 4 . 3 8 ; 3 . 4 5 ; 3 . 9 5 ; 3 . 7 8 ; 3 . 7 7 ] ;

% Mean and Standard dev i a t i on
k mean = mean( k de l t a ) ; k s td = std ( k de l t a ) ;
rho Cp mean = mean( rho Cp de l ta ) ; rho Cp std = std ( rho Cp de l ta ) ;

% Determination o f new mean and standard dev i a t i on acc to Truncated
% d i s t r i b u t i o n s
k new mean = k mean ; k new std = 0.87977∗ ( k s td ) ;
rho Cp new mean = rho Cp mean ; rho Cp new std = 0.87977∗ ( rho Cp std ) ;

% MCS on o r i g i n a l model us ing truncated mean and std dev i a t i on f o r y m
f o r i = 1:100

k sample = normrnd ( k new mean , k new std ,N, 1 ) ;
rho Cp sample = normrnd ( rho Cp new mean , rho Cp new std ,N, 1 ) ;

f o r j = 1 :N
term = 0 ;
f o r n = 1 :6

term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k sample ( j ) . / . . .
rho Cp sample ( j ) ) . ∗ t ) . /Lˆ2)) )∗ cos (n∗ pi ∗x/L ) ;

end
T cal ( j ) = T in i + (q∗L./ k sample ( j ) ) . ∗ ( ( ( ( k sample ( j ) . / . . .

rho Cp sample ( j ) ) . ∗ t ) . /Lˆ2) + (1/3) − ( x/L) + . . .
( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ;

end
Min T( i ) = min ( T cal ) ; Max T( i ) = max( T cal ) ;

end

% Display output
f p r i n t f ( ’ I n t e r v a l f o r T proof MCS1 = [% f %f ]\n ’ , . . .

min (Min T ) , max(Max T ) ) ;
T proof MCS1 = [min (Min T) max(Max T ) ] ;
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% MCS f o r T va lue s us ing exp mean and std dev i a t i on f o r y e
T = [ 4 75 . 6 493 .9 496 .4 5 1 7 . 6 ] ;
mu T = mean(T) ; std T = std (T) ;
T sample = normrnd (mu T, std T , N, 1 ) ;
T sample = T sample ’ ;

% Def in ing the unce r ta in ty i n t e r v a l s from uncer ta in ty ana l y s i s
U GSA = [−157.10969 , 1 2 7 . 1 9 768 ] ;
U SORMmcs = [−145.96256 , 1 2 0 . 8 5 534 ] ;
U opt = [−97.87430 , 9 2 . 8 8 6 5 9 ] ;
U sorm = [−68.14677 , 8 6 . 5 8 4 6 0 ] ;

% I n i t i a l i z i n g counter s f o r d i f f e r e n t methods
c g sa = 0 ; c opt = 0 ; c sormmcs = 0 ; c sorm = 0 ;

% Determining the p r obab i l i t y o f e r r o r l y i ng in o r i g i n a l i n t e r v a l s
D i f f 1 = T sample − T cal ;

% Check f o r Golden Search Algorithm
f o r i =1:N

i f ( D i f f 1 ( i )>min(U GSA) ) && ( D i f f 1 ( i )<max(U GSA) )
c g sa = c gsa +1;

e l s e
end

end
p gsa = c gsa /N

% Check f o r SORMMCS
f o r i =1:N

i f ( D i f f 1 ( i )>min(U SORMmcs) ) && ( D i f f 1 ( i )<max(U SORMmcs) )
c sormmcs = c sormmcs+1;

e l s e
end

end
p sormmcs = c sormmcs/N

% Check f o r Optimizat ion
f o r i =1:N

i f ( D i f f 1 ( i )>min(U opt ) ) && ( D i f f 1 ( i )<max(U opt ) )
c opt = c opt +1;

e l s e
end

end
p opt = c opt /N

% Check f o r SORM
fo r i =1:N

i f ( D i f f 1 ( i )>min(U sorm ) ) && ( D i f f 1 ( i )<max(U sorm ) )
c sorm = c sorm+1;

e l s e
end

end
p sorm = c sorm/N
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MCS on o r i g i n a l model us ing o ld mean and std dev i a t i on
% f o r Temperature
f o r i = 1:100

k sample = normrnd ( k mean , k std ,N, 1 ) ;
rho Cp sample = normrnd ( rho Cp mean , rho Cp std ,N, 1 ) ;

f o r j = 1 :N
term = 0 ;
f o r n = 1 :6

term = term + (1/nˆ2)∗ ( exp(−nˆ2∗ pi ˆ2∗ ( ( ( k sample ( j ) . / . . .
rho Cp sample ( j ) ) . ∗ t ) . /Lˆ2)) )∗ cos (n∗ pi ∗x/L ) ;

end

T calc1 ( j ) = T in i + (q∗L./ k sample ( j ) ) . ∗ ( ( ( ( k sample ( j ) . / . . .
rho Cp sample ( j ) ) . ∗ t ) . /Lˆ2) + (1/3) − ( x/L) + . . .

( 0 . 5∗ ( x/Lˆ2)) − ( (2/ p i ˆ2)∗ term ) ) ;
end
Min T calc1 ( i ) = min ( T ca lc1 ) ;
Max T calc1 ( i ) = max( T ca lc1 ) ;
means ( i ) = mean( T ca lc1 ) ; s td s ( i ) = std ( T ca lc1 ) ;

end

% Display output
f p r i n t f ( ’ I n t e r v a l f o r T proof MCS2 = [% f %f ]\n ’ ,min ( Min T calc1 ) , . . .

max(Max T calc1 ) ) ;
T proof MCS2 = [min ( Min T calc1 ) max(Max T calc1 ) ] ;

% Determining the p r obab i l i t y o f temperature i n t e r v a l
% ly i ng in 95% i n t e r v a l
p = normcdf (T proof MCS1 ,mean(means ) ,mean( s td s ) ) ;
Prob = p(2)−p (1)

% Def in ing the unce r ta in ty i n t e r v a l s from uncer ta in ty ana l y s i s
T GSA = [390 . 31981 , 6 3 2 . 8 5 195 ] ;
T SORMmcs = [396 . 74466 , 6 2 1 . 5 6 256 ] ;
T opt = [424 . 71341 , 5 7 3 . 4 7 430 ] ;
T sorm = [431 . 01541 , 5 4 3 . 7 4 677 ] ;

% I n i t i a l i z i n g counter s f o r d i f f e r e n t methods
t g s a = 0 ; t op t = 0 ; t sormmcs = 0 ; t sorm = 0 ;

% Check f o r Golden Search Algorithm
f o r i =1:N

i f ( T ca lc1 ( i )>min(T GSA) ) && ( T calc1 ( i )<max(T GSA) )
t g s a = t g s a +1;

e l s e
end

end
pt gsa = t g s a /N

% Check f o r SORMMCS
f o r i =1:N

i f ( T ca lc1 ( i )>min(T SORMmcs) ) && ( T calc1 ( i )<max(T SORMmcs) )
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t sormmcs = t sormmcs+1;
e l s e
end

end
pt sormmcs = t sormmcs/N

% Check f o r Optimizat ion
f o r i =1:N

i f ( T ca lc1 ( i )>min( T opt ) ) && ( T calc1 ( i )<max( T opt ) )
t op t = t opt +1;

e l s e
end

end
pt opt = t opt /N

% Check f o r SORM
fo r i =1:N

i f ( T ca lc1 ( i )>min(T sorm ) ) && ( T calc1 ( i )<max(T sorm ) )
t sorm = t sorm+1;

e l s e
end

end
pt sorm = t sorm/N
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