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ABSTRACT 

This research is a mathematical investigation of the 

propagation of a Love wave in a Voigt viscoelastic medium. 

A solution to the partial differential equation of motion 

is assumed and is shown to satisfy the three necessary 

boundary conditions. Velocity restrictions on the wave and 

the media are developed and are shown to be of the same 

form as those governing the elastic Love wave. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

1 

Although most wave equations assume propagation in an 

elastic medium, it is well known that many solids do not 

exactly obey the laws of the theory of elasticity. The pur

pose of this research, therefore, is to assume a non-elastic 

medium, that represented by a Voigt viscoelastic element, and 

investigate the conditions necessary for the propagation 

of a Love wave. 

To the earthquake seismologist and to those concerned 

with predicting the effects of explosives in solids, the 

Love wave is one of the most important types of waves that 

have been observed. With accurate earthquake seismograms 

of Love waves, the thickness of the superficial layer of 

the earth (the crust) may be determined. On a smaller scale, 

in seismic exploration, knowledge of the thickness of the 

weathered surface layer is of primary importance. 

A surface wave whose particle motion is horizontal 

and transverse to the direction of propagation is called 

a Love wave after A.E.H. Love, who proved its existence 

in an elastic medium (1), and demonstrated that it is 

propagated by multiple internal reflections within the 

low velocity superficial layer. See Figure 1. Love found 

that the wave could only exist if its phase velocity, V~ 

was related to the velocities of normal shear waves, Vsl 

and vs 2 ' in the first and second medium, respectively, by 



Figu~e l. Love Wave Geometry 

(after DOBRIN, 1960: Geophysical Prospecting, 

McGraw-Hill, p. 20.) 

2 

direction of 
propagation 
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the inequality vsl < v~ vs2" The study of Love waves in an 

elastic double surface layer was undertaken by Stoneley 

and Tillotson (2), who assumed that the velocities of nor-

mal shear waves in the first, second, and third media were 

governed by Vsl < V82 < v83 , and then showed that there are 

two main cases which yield a solution. They are Vsl < V~ V82 

and Vs 2 < V~ Vs 3 . Stoneley (3) has also treated the problem 

of the existence of a Love wave in the presence of three 

elastic surface layers, with the necessary conditions that 

Vsl < Vs 2 < Vs 3 < Vs 4 . He found three velocity conditions 

which yield solutions, namely vsl < v~ vs2' vs2< v~ vs3' 

and V < V~ V . Elastic Love waves exhibit what is com-s3 s4 

monly referred to as dispersion, a continual spreading out 

of the disturbance into trains of waves, each train pro-

pagating with its own group velocity. Numerous findings on 

dispersion curves, velocities measured from earthquake 

seismograms, and other characteristics of Love waves are 

to be found in textbooks and throughout seismic literature. 

Among the leading investigators are Jeffreys, Stoneley, 

Sezawa, Gutenberg, Byerly, and Wilson. 

The investigation of viscoelastic wave propagation 

was initiated by Sezawa (4), who was concerned primarily 

with purely dilatational plane waves, and obtained his 

solution using Fourier integrals. An important contri-

bution was made by Thompson (5), who developed a general 

theory of viscoelasticity by the complete application of 



the principle of virtual work to a strained and straining 

imperfectly elastic solid. He showed that any solution of 

the equations of motion which hold for forced or free vi-

brations, subject to given initial conditions of displace-

ment and velocity, and subject to the boundary conditions, 

is a unique solution. Hardtwig (6)'assumed the period of 

his plane shear waves to be complex, and the wave length 

to be imaginary. Resler (7) let his complex shear modulus 

, a 
be ~ + ~at in operator form, calling ~ his elastic constant 

and~~ his viscoelastic constant. This is in general dis-

agreement with other work on the subject. The constants 

are obviously reversed since otherwise, the modulus does not 

degenerate to the elastic case for~~ = 0. Sentis (8) 

employed a response time, T, in his study of distortional 

viscoelastic waves, obtaining v2 = ~(1 + ;) as an expression 

for the velocity, where ~ and p follow the usual notation 

for elastic shear modulus and density, respectively, and 

T is an arbitrary coefficient. 

The physical reasons most often discussed for the de-

viations from Hooke's law are creep along grain boundaries, 

diffusion of atoms, and thermoelastic heat flow. LUcke (9) 

studied in detail the effects of thermoelastic heat flow 

between neighboring grains in polycrystalline material and 

between the regions of successive rarefaction and compres-

sion in a compressional wave. He stated that pure shear 

waves exhibit no thermoelastic attenuation. Bland (10) 
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presented an excellent treatise on viscoelasticity current 

to 1960, employing the operational calculus of Heaviside 

to obtain many of his solutions. 

Kanai (11) treated the problem of Love wave propagation 

in a Voigt solid under the condition that there is a tan-

gential resistance at the surface of discontinuity that is 

proportional to the relative tangential velocity. He pre-

sented a solution for the particle displacement of the first 

medium as 

u1 = (Acos s 1 z + Bsin s 1 z)exp[i(p0 t- fx)J. 

This research has shown that either or both of the constants 

A and B must be complex. Kanai has made no such statement. 

Furthermore, he assumed that p 0 is complex and that f is 

purely real. In the undertaking of this problem, it is as-

sumed that f should be complex and p should be purely 
0 

real, following the arguments of Kolsky (12), Hunter (13), 

and Rupert (14), each of whom employed these conditions to 

obtain solutions for viscoelastic waves other than Love 

waves. 

To the author's knowledge, no research has been done 

on the specific problem of Love wave propagation in a 

Voigt viscoelastic medium, other than the one paper men-

tioned above by Kanai, which appears to be in error. 
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CHAPTER II 

~ATHEMATICAL ANALYSIS OF VISCOELASTIC LOVE WAVES 

In order to eliminate the necessity of using rather 

intricate mathematics, the following simplifying assumptions 

are made concerning the media: 

l. Both strata are homogeneous isotropic solids, 

which extend to infinity in the positive and 

negative x andy directions (See figure 2). 

2. The mass densities of both media are real, positive, 

finite parameters, and are not equal to zero. 

3. All elastic and viscoelastic constants are real, 

positive, finite parameters, and are not equal to 

zero. 

4. All initial effects of the disturbance have vanished. 

5. No plastic deformation can occur. 

6. All body forces are negligible. 

A. DEVELOPMENT OF EQUATIONS OF MOTION 

The general partial d~fferential equation governing 

total wave displacement in a Voigt viscoelastic medium as 

given by Kolsky (12) is 

Pa2(U;~twl = [o + "l + CA' + "'l;t] G~,;~,;i) 
+ (~ + ~r~t)V 2 (U,V,W). (1) 

Since it is presupposed for this problem that there is no 

dilatational wave motion, upon elimination of the terms in-

volving the dilatation, ~, this general equation immediately 

reduces to 



z 
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Figure 2. Love Wave Coordinate System. 
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( 2 ) 

where U, V, and W represent the particle displacements ln 

the x, y, and z directions, respectively. Because the par-

ticle motion is horizontal and transverse to the direction 

of propagation, 

u = w = o, ( 3 ) 

which reduces equation (2) to 

(4) 

If V is independent of y, 

( 5 ) 

which leads to 

( 6 ) 

Equation (6) is the partial differential equation of 

motion for an SH wave, i.e., a transverse wave whose par-

ticle motion is horizontal. This agrees with the general 

equation of Kanai (ll). 

In the preceding equations the quantity 

(7) 

may be considered as the operator form of the complex 

shear modulus. It is seen that when~' = 0, for the case of 

no solid viscosity, equation (6) reduces to the classic 

equation for elastic shear wave propagation. 
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B. ASSUMED SOLUTION 

In general, equation (6) will not be satisfied by 

solutions of the form V = G(x - ct) or V = G(x + ct) because 

a3 v a3 v 
of the presence of axZat and azZat· Therefore, assuming 

an harmonic solution for the displacement 

V = (Acos mz + iBsin mz)ei(pt - fx) ( 8 ) 

substituting into equation (6), and simplifying, one obtains 

m2 = PP 2 _ f2 
11 + ill 1p 

(9) 

In equation (8), the quantity 

(]..! + iJ..l'p) (10) 

is the complex shear modulus for an isotropic Voigt medium. 

For harmonic oscillations, where p is the coefficient oft, 

the use of the operator form of the modulus and the use of 

the complex form of the modulus both lead to the same result. 

Hence 

(11) 

Collecting real and imaginary terms in equation (9), 

one obtains 

(12) 

By De Moivre's Theorem, there are exactly two distinct 

square roots of m. Letting 



and 

-1 E 
tan F = 8 , 

the expressions for the roots are 

4 8 
m1 = IE 2 + F 2 (cos 2 

8 + l sin 2 ), 

and 
4 m2 = ;=E..,..z -+-=r..,..z 8 J + n) + l sin c2 +n) , 

or, by trigonometric reduction, 

and 

so that 

Hereafter, 

+ i sin 8 ) 
2 

f 1' m1 ' V l' lll ' J.l]_ ' P 1 ' p 1 

are assumed to be associated with the first medium, and 

with the second medium. 

10 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Upon substitution of the subscripted parameters, the 

solution for the first medium is 
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(21) 

With the proper changes ~n constants, the trigonometric 

terms of the general solution may be written as 

A . . imz -imz cos mz + ~Bsln mz = Ce + De (22) 

Substituting the subscripted parameters, one obtains 

(23) 

or 

(24-) 

Because m1 is some complex number, equation (24-) may 

be written as 

i(o + iy)2z + D-eiCe + iy) 2z)eiCp 2t - f 2x) V 2 = ( Ce 

or more simply, 

where 

m1 = 8 + iy . 

If oy is negative, v2 must be restricted by saying 

28 + i(o2 - y 2 )z V - Ce- yz 
2 -

since z <0 in the second medium, and the wave must be 

,(25) 

(27) 

(28) 

attenuated with depth. (If oy is positive, one may simply 

choose 

as the solution.) 
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Following the arguments of Kolsky (12), it is assumed 

that 

(29) 

so that, substituting ~n equation (21), the expression for 

the displacement becomes 

2 ) ~x+i(p 1t - f'x) V1 = (Acos mfz + iBsin m1 z e 1 

Similarly, let 

f 2 = f:2 + ia 2 

ln equation (28) to obtain 

v -ce~ + iCmfz + p 2t - f2x) 
2 -

C. BOUNDARY CONDITIONS 

(30) 

(31) 

(32) 

The presence of three undetermined constants in the 

solutions necessitates the existence of three boundary con-

ditions. The first of these is 

v - v2 1 - z = 0 (33) 

which states that the tangential displacements must be con-

tinuous at z = 0. To permit the media to behave otherwise 

would allow separation 

requires that 

Cl.l 

pl 

f' l 

and 

A 

at the 

= Cl.2 ' 

= p2 

= f' 2 

= c 

interface. This condition 

(34) 

(35) 

(36) 

(37) 
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The second boundary condition is 

( , a ) a V1 _ c , a ) ~ 
~1 + ~la·t az- - ~2 + ~2at az z = 0. (38) 

This equation implies that the tangential stress must be 

continuous at z = 0, for the same reasons as those govern-

ing equation (33). Equation (38) follows the same format 

as the elastic boundary condition originally set forth by 

Love (1), and reiterated by Macelwane (15) and others. 

However, Kanai (11) employed 

and 

<~2 + ~' ~) av2 = -K _a_ cv - V2) ' 
2 at az at 1 

(39) 

(40) 

giving as an explanation of these equations the statement 

that "there is a tangential resistance that 1.s proportional 

to the relative tangential velocity." He also states that 

"the transversal components of stress are not <Continuous)." 

From his statements, Kanai would allow separation of the 

media at the interface, and corresponding slippage of one 

layer upon the other. However, since the right hand sides of 

equations (39) and (40) are identical, the left hand sides 

may be equated to obtain equation (38), which appears to 

contradict the above quotations. 

Substituting equations (30) and (32) into equation 

(38), performing the indicated operations, and simplifying, 

the result is 
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(41) 

In general, this equation states that the relative ampli-

tudes of the waves in the two media are a function of the 

parameters p 1 = p 2 , which have units of reciprocal time. 

In order for equation (41) to be satisfied, either B or C, 

or both B and C must be complex except when ~l = ~ 2 and 

~ r = ~ r 
l 2 Kanai made no such statement regarding the 

amplitudes. 

The third boundary condition, which conforms to that 

of Kanai, is 

(~1 ~ 1 
d ~l 0 s (42) + IT) = z = 1 az 

This condition requires that there be no stress on the 

free surface, z = s, for all values of X and t. Equation 

(30), under this condition yields 

C~ 1 + i~ip 1 )mfC~Asin mfS + iBcos mfS) = 0 (43) 

Since 

(44) 

and 

(45) 

(otherwise the entire problem is trivial), equatior. (43) 

can only be satisfied if 

(-Asin m2 S l + iBcos m2 S) 
l = 0 (46) 

Therefore 

tan m2 S iB = A l 
(47) 
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(48) 

The important result of this boundary condition is that 

for every real value of p 1 = p 2 , there is a complex value 

of m1 such that equation (48) is satisfied. 

D. VELOCITY CONSIDERATIONS 

By normal convention, the complex shear wave velocities 

of the two media are 

and 

v = 2 ( 1 + i p 2) 12 [
IJ. IJ. I ll 

s2 p 2 21J. 2 

Letting 

in equation (9), and rearranging, one 

Therefore, 

k2 = l 

and 
k2 = 2 

However, from equation ( 3 5) ) 

= k2 
l 

p2 
l 

-2 
vsl 

p~ 
-2 
vs2 

pl 

v 2 
sl 

v-z s2 

IJ. f 

. l) lp-
liJ.l 

= p2' 

(49) 

(50) 

(51) 

obtains 

(52) 

(53) 

(54) 

so that 

(55) 



From equations (54) and (9) the relationship 

2 
-k~ + f22 = f22 - ~2 = -m2 

vs2 

is found. Since 

m2 = m 2 

equation (56) may be written as 

v 2 
k2 sl 

1 v-z s2 

after substitution of equation (55). By simultaneously 

adding and subtracting the quantity f~ Vsf , and since 
v-z s2 

16 

(56) 

(57) 

(58) 

equations (34) and (36) imply that tf = f~ , equation (58) 

may be written as 

fi~ v 2) v 2 
m4 = - ~ - (k2 - f2) sl 

2 vs2 1 1 v-z s2 

which becomes 

fi~ v 2) v 2 
m4 - ~ - m4 sl 

= v--z 2 vs2 1 s2 

because kf - ff = mi · 
The fact that 1m2 ! > 0 directly implies that 

~ 
v 2\ v 2 I j~2 sl) - m4 sl 

> 0 J..l - n-7 v-z-vs2 1 s2 

since 1m 2 I = lm~l. A development is given below which 

shows that condition (61) is satisfied if 1Vs1 1 < 1Vs 2 1 

(59) 

(60) 

(61) 
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Beginning with equation (60), it follows immediately 

that 

1
m2 I Iff ( ffi7 = ffi7 1 

v 2) sl 
- u--:2" 

vs2 
(62) 

Hence the right hand side of equation (62) lies within the 

unit circle in the complex plane. Using a familiar triangle 

inequality, this condition is given by 

Ill > I~ (l -~)1 - 1~1 
which leads to 

Ill + lvs~~ > !J:I Ill 
v 2 f2 ( 

s2 

Assuming that 

v 2 
sl 

g 
is positive, (see Appendix B.), inequality (64) may be 

written as 

< 

( 6 3 ) 

(64) 

(65) 

(66) 

Since this assumption does not lead to a contradiction or 

an absurdity, it is regarded as justifiable. Condition (66) 

is entirely logical because velocity is generally observed 

to increase with depth. 

Restating equation (48) in the form 

tan mfS = 
i(l-12 + i!l2P2) 

(loll + ijllpl) 
(67) 



and substituting from equation (62), it follows that 

i(J.l2 + iJ.l2P2) [fi ( Vsf) Vsf] 1~ tan m12 s = ( + • 1 ) ~ 1 - w-7 - w-7 
].ll l].llpl ml vs2 vs2 

which, because of inequality (61), implies that 

!tan mfsl > 0 

Expressing the Love wave phase velocity as 

using equation (53) and the fact that m4 = k 2 
1 1 

relationship 

is obtained. Upon substitution of this expression into 

equation (68), the result is 

tan [p1 S (~sf ~,,9 !] ~ i(].l2 + i].l2p2) 

Cll 1 + illlpl) 

[ 

n2/V 2 ( l-'1 sl 
2 2 1 -

pl pl 
v 2 - vz 
sl 

[~ :~ ~~~ 
Equation (68) may also be 

v 2) sl 
v-z s2 

- Vi: 2) 1;2] 
v '- . 

- sl 

vJritten as 

18 

( 6 8) 

( 6 9) 

( 7 0 ) 

(71) 

( 7 2) 

(73) 



which implies that there is a value of f 1 corresponding to 

any value of mf. Thus as lmiSJ ranges from 0 to TI/2, jf1 SI 
2 

ranges from 0 to oo, Therefore ~;~~ decreases as jf1 j in-

creases. But the wave length is 

19 

IAI =\~~\ ( 7 5) 

m2 
so that ~f~~ decreases as IAI decreases. Furthermore, 

equation (71) may be rearranged to yield 

v ··~ 2 v 2 (Pi -
p2 ) (76) = 1 sl m4 V 2 

1 sl 

which, after simplification utilizing equation (53), re-

duces to 

v·~ 2 = v 2 (l 
sl ( 

+ m~) 
F 

1 

(77) 

As the real and imaginary parts of f 1 approach infinity, 

m4 
IAI approaches zero, and the quantity 1 may be neglected, 

If 
so that the magnitude of the Love wave velocity approaches 

the magnitude of the shear wave velocity in the first 

medium as a limit. 

Conversely, as jAj 1ncreases toward infinity, jf1 j 

approaches zero, and so do the real and imaginary parts of 

mfS. However, under these conditions, the term in equation 

(74) involving tan2myS 

f -1 -

may be ignored 

~ V 2 ) 1;,: 2 sl 2 
ml V z_v 2 

s2 sl 

so that 

( 7 8) 
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as a limit. Upon simplifying equation (78), one obtains 

m4 V 2 
1 _ s2 

f7 - v-z: - 1, 
1 sl 

(79) 

which, when substituted into equation (77), implies that 

IV*I approaches 1Vs 2 1 under these conditions. Therefore, 

the statements following equations (77) and (79) may be 

combined with inequality (66) to obtain 

I v I < I v'~~ I < I v I sl s2 
(80) 



CHAPTER III 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This research has developed the conditions and equa

tions governing the propagation of Love waves in an iso

tropic Voigt viscoelastic medium. To this end, a solution 

to the partial differential equation of motion has been 

assumed and has been shown to satisfy the three boundary 

conditions. Finally, velocity restrictions on the wave 

and the media have been considered and developed. 

21 

Comparing the viscoelastic solution to the known so

lution for elastic Love wave propagation, it is seen that 

both are of the same form, but that m and f must be complex 

in the viscoelastic case. Also, either or both of the am

plitude constants must be complex in order to satisfy the 

second boundary condition, that of continuous tangential 

stress at the interface. The velocity restrictions on the 

viscoelastic Love wave are of the same form as those gov

erning the elastic Love wave. However, in the Voigt solid, 

the restrictions involve the magnitudes of the velocities. 

Therefore, the use of complex velocities is permitted. 

It is recommended that further research be undertaken 

to separate the real and imaginary parts of the relation

ships governing the velocities to determine whether re

strictions on the real and imaginary velocity components 

can be made. It is also recommended that numerical values 

of the various parameters be employed to obtain families 



of dispersion curves such as those readily available for 

elastic conditions. Finally, the relationships should be 

developed which govern Love wave propagation in various 

other viscoelastic media, such as the Maxwell, the gen

eralized Voigt, and the generalized Maxwell media. Ini

tial efforts in this direction have been set forth uslng 

Fourier integrals by Bessonova (16). 

22 
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APPENDIX A 
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TABLE OF NOMENCLATURE 

(Numerical Subscript Denotes Medium) 

A,B,C,D, Arbitrary amplitude constants. 

E Imaginary part of m2. 

F Real part of m2. 

G Arbitrary function. 

K Arbitrary constant. 

S Surface. 

T Arbitrary coefficient. 

U,V,W Displacement in x, y, and z directions. 

V* Love wave phase velocity. 

V Shear wave velocity. s 

c Elastic plane wave velocity. 

e Base of natural logarithms. 

f 2~/wavelength. 

f' Real part of f. 

l 1-l . 

k p/shear wave velocity. 

m Coefficient of z. 

m1 ,m2 Square roots of m. 

p 2~/period. 

t Time. 

x,y,z Coordinate axes. 

a Imaginary part of f. 

y Imaginary part of m1 . 
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0 Real part of ml. 

11 Dilatation. 

0 Phase angle of m. 

A Elastic Lam~ constant. 

A I Viscoelastic Lam~ constant. 

A Wavelength. 

]..1 Elastic Lam~ constant. 

l-l' Viscoelastic Lam~ constant. 

p Density. 

T Relaxation time. 
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APPENDIX B 
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JUSTIFICATION OF THE CONDITION !Vsll < !Vs 2 1 

Equation (62) may be written as 

lvs221 = Iff CV 2 - v 2) - v 2 I mz s2 sl sl 
CB-1) 

Equation (B-1) must be satisfied in all regions of the 

complex plane. Therefore it must be satisfied by values 

along the positive real axis, i.e., positive real numbers. 

Under these conditions, equation (B-1) degenerates to its 

elastic counterpart, which is identical in form. Considering 

all the quantities of equation (B-1) to be real and positive, 

one can now assume 

(B-2) 

However, it is obvious that 

- v 2) - v 21 > v 2 sl sl sl 
(B-3) 

which is an immediate contradiction of assumption (B-2). 

Conversely, if one assumes 

) (B-4) 

a contradiction such as condition (B-3) does not arise. 

Therefore, assumption CB-4) may be regarded as justifiable. 

Since an elastic condition is a specific case of a 

viscoelastic condition, it seems reasonable that a visco-

elastic counterpart of inequality (B-4) should hold in the 

general case under consideration, although this cannot be 

directly shown. 
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