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ABSTRACT

Path Verification is a problem where a verifier would like to determine how

closely a vehicle actually traversed a path that it claims to have traversed. This

problem has critical significances in terms of vehicle mobility. Mobile nodes can be

patrols officers or cab drivers, while respective verifiers can be police dispatchers or

cab operators. In this paper, we design a sensor network assisted technique for vehicle

path verification. In our design, a number of static wireless sensors placed in road

segments will serve as witnesses and certify vehicles as they move. Post movement,

these witness certificates will be utilized by the verifier to derive the actual path of

a suspect vehicle. The challenge now is how to compare a Claimed Path as reported

by the vehicle and the Actual Path derived from witness certificates. In this paper,

we design a simple, yet effective technique for comparing similarity between two

vehicle paths. Our technique extends from Continuous Dynamic Time Warping,

which involves constructing a universal manifold from the two paths and then finding

the geodesic on the resulting polygonal surface (shortest path along the surface) which

is a diagonal from the origin of the surface to the terminal point. This distance is

analogous to the Fréchet distance and yields a good measure of the similarity between

two paths. Using simulations and real experiments, we demonstrate the performance

of our technique from the perspective of detecting false paths claims from correct ones.

We also design light-weight cryptographic techniques to prevent vehicle masquerading

and certificate forging attacks.

A proof of concept experiment was conducted on the streets of Rolla, Missouri.

A sensor grid was established on a small section of Rolla and a vehicle with a

transmitter was driven through the grid many times. The analysis of the data yielded

results consistent with the expected ones.
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4.2 Following the Path in Reverse And Fréchet Distance. . . . . . . . . . . . . . . . . . . . . . . . 23
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1. INTRODUCTION

Vehicular Networking is a topic that is receiving significant attention in the

government, industry and academia. A number of organizations today are investing

in Vehicular Ad Hoc Networks (VANETs) to leverage wireless networking support to

improve state-of-the-art in road transportation. The US Federal Communications

Commission (FCC) has allocated 75MHz of spectrum in the 5.9GHz band for

Dedicated Short Range Communications, a set of protocols and standards for

short to medium-range wireless communication for automotive use. Some recent

VANET efforts are the USDOT’s Vehicle Infrastructure Integration (VII), which is

a cooperative initiative between USDOT and automobile manufacturers, focusing

on feasibility of deploying communications systems for safety and efficiency of road

transportation systems [28]. The ERTICO partnership is a multi-sector partnership

pursuing development and deployment of Intelligent Transport Systems across Europe

[26]. Apart from these efforts, a variety of VANET test-beds have been set up

in academia like DRIVE-IN at Carnegie Mellon [24], CarTel at MIT [25], C-VET

and CarTorrent at UCLA [7, 19], DOME testbed at UMASS-Amherst [27] among

others. With the advent of vehicular networking today, a number of applications

previously not possible are now becoming realities. Instances include content sharing

among vehicles, real-time congestion detection, traffic re-routing to improve efficiency,

emergency vehicle preemption etc.

1.1. PROBLEM ADDRESSED AND SIGNIFICANCE

In this thesis, we address a new problem in the realm of vehicular networking:

Given a path claimed to have been taken by a Vehicle V , how can a Verifier S

determine whether or not Vehicle V actually took the path it claims to have taken.

The problem addressed is practical and significant. According to Sergeant Letha

Young at the Missouri S&T Police Department, a central problem for police vehicle

dispatchers is to verify movements of patrol cars between the time they leave the

precinct and when they return. Critical police services like quick response, patrolling

high crime zones and operational efficiency are all related to path verification of patrol
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cars. Path verification could prove useful as unbiased evidence of the exact location

and path of an officer or a police vehicle. Apart from law enforcement, a variety of

other commercial businesses like delivery companies, cab companies, trucking service

operators also face the problem of verifying the paths of vehicles on roads mainly for

operational efficiency reasons.

The most straightforward approach to detect false path claims is to have a

mechanism to track each vehicle as it moves. For instance, a GPS receiver can

be placed in each vehicle and it can report in real time the location of every

vehicle. Unfortunately, this technique incurs significant extra cost per vehicle, and

also significant communication overhead when location updates are sent frequently.

Secondly, and more significantly, we are only interested in verifying whether or not a

claimed path was actually taken. In other words, we would like to simply get a Yes/

No answer to whether or not a claimed path and an actual path are similar. Blindly

tracking and reporting each and every location of the vehicle is clearly an overkill in

such a scenario. Even if a number of actual location updates are provided, manually

comparing them point by point is too time consuming and impractical. Also, a host

of hardware attacks are possible with GPS receivers that can induce false location

claims and are quite hard to detect [29, 31, 30].

Another technique that is commonly used in some police precincts is to perform

image processing on cameras located in patrol cars, and use the time and date

on these cameras to verify mobility claims. Naturally, this technique is also very

time consuming, incurs significant overhead and also can be easily circumvented by

modifying camera settings. Fundamentally the basic limitation in such techniques is

that the mechanism to retrieve the actual path in fact comes from the suspect itself

(i.e., the GPS Receiver or the Police Camera is always physically with the suspect).

There is hence no independent authority that can validate claims. To the best of

our knowledge, a practical, effective and efficient solution to the problem of verifying

path claims of a vehicle is not yet there.

1.2. PROPOSED TECHNIQUE

In this thesis, we design a wireless sensor network assisted technique for vehicle

path verification. In our technique, a number of static wireless sensor motes will
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be deployed at selected positions in roads like traffic lights, road intersections and

highway ramps. In fact, cameras deployed at many urban intersections today are

themselves instances of static sensors. Vehicles moving in roads will periodically

issue broadcast messages. Sensors within the communicating range of a vehicle will

serve as witnesses for the vehicle, and provide it with a certificate authenticating

the vehicle’s time and location. Consider a Vehicle V that has traversed a path

and reports a Claimed Path (CP) to the verifier. A Claimed Path is a set of

〈location, time〉 pairs, denoted as 〈{cl1, cl2, cl3, . . . , cln}, {ct1, ct2, ct3, . . . , ctn}〉, where

cli is the location claimed to have been visited by the vehicle at time cti. From the

certificates provided by the witness sensors, the Verifier will determine an Actual

Path (AP) for Vehicle V . An Actual Path is a set of 〈location, time〉 pairs, denoted

as 〈{al1, al2, al3, . . . , alm}, {at1, at2, at3, . . . , atm}〉, where ali is the location actually

visited by the vehicle at time ati.

In this thesis, we design an algorithm which when given a Claimed Path and an

Actual Path, outputs the Fréchet distance between them, which in effect measures

the similarity between the two paths. A high Fréchet distance indicates significant

deviation between the paths, while a low distance indicates significant similarity.

Our algorithm design is partly inspired by recent results in the domain of curve

matching. In particular, our algorithm extends the Continuous Dynamic Time

Warping (CDTW) technique in [13] for matching two curves. The CTDW technique

works by constructing a universal manifold from two given curves and then finding the

geodesic on the resulting polygonal surface (shortest path along the surface) which

is a diagonal from the origin of the surface to the terminal point. While the basic

CDTW technique compares two continuous curves, we propose extensions to the basic

technique in order to compare two vehicular paths to determine an estimate of the

Fréchet distance between them. We also design simple and light-weight cryptographic

techniques that can defend against attacks that spoof vehicles and the forgery of

witness certificates.

The proposed scheme is evaluated using extensive simulations, and using real

experiments conducted with a network of TelosB sensor motes (see Figure 4.6)

deployed within a small segment in the city of Rolla. Our data demonstrates

that the proposed technique is practical, deployable in urban traffic networks, and
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the Fréchet distance computed from our technique is highly sensitive to deviations

between claimed and actual paths. We point out that the techniques proposed in

this thesis are not restricted to vehicular applications. They also have applicability in

environments like battlefields that are deployed with static wireless sensor networks

where actors in the network are mobile and assist static sensors while performing the

mission. In such cases, verifying the mobility of actors may be important, and our

techniques can directly apply to verification of actor mobility in such wireless sensor

and actor networks also.
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2. RELATED WORK

Clearly one of the main difficulties when deciding how closely an agent followed

a given path, or how well the agent reported the actual path is defining what is meant

by “close”. Many different metrics were considered, many of which were useful to a

certain degree. An additional difficulty was the computational complexity of any

algorithm that determines the similarity between two paths composed of polygonal

chains.

From a mobility perspective, much of the current work in Wireless Sensor

Networks (WSN) is focused on the detection of intruders [1, 4, 14]. If the mobile

node is a vehicle, verification of the location and path of the node becomes of interest

in our communities. Consider a police officer driving a patrol car on a beat. In this

situation we propose a very simple question: how can the police dispatcher or police

captain know if the officer actually patrolled where he or she claims to have patrolled

and how can this be verified? More generally, how can we know if a vehicle has closely

followed the assigned path?

In tracking, the goal of the sensor network is to pro-actively detect where the

intruder is likely to be in space and time. The problem we are addressing is reactive

in the sense that we are interested in whether or not a claimed path was taken by the

suspect vehicle by examining the data post movement. To the best of our knowledge,

such a problem is unique and not yet addressed. Within the realm of WSNs, there

have been a number of recent efforts arguing for their deployment to assist in the

solution of transportation engineering problems. In [22], wireless sensor networks

have been used for vehicle theft detection. The core idea is to allow the sensors in

the vehicles that are parked within the same parking area first form a sensor network,

then monitor and identify possible vehicle thefts by detecting unauthorized vehicle

movement. In [21], the feasibility of WSNs being used for a number of transportation

applications like road safety, traffic control, intelligent traffic management systems are

discussed along with the ensuing challenges from the perspective of data aggregation

and information processing. In [11], wireless sensor networks of multiple modalities

have been used to address the vehicle classification problem, which has a number of
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applications in civilian and military scenarios.

Our research in this thesis is partly inspired by the documented successes of

the research discussed above in using wireless sensor network to address problems in

transportation engineering. With the rich advances in wireless sensing, processing

and communication technologies, coupled with advanced protocols to optimize their

performance and low cost, we envisage WSNs to be widely deployed in emerging traffic

infrastructures. As pointed out earlier, with the ubiquitous deployment of cameras

on roads and traffic lights that can communicate, such a vision is not too far off.

We propose a scheme to use an existing sensor network to verify the claimed path

of a moving node. The core ideas of deploying a wireless sensor network are widely

accepted. They are easy to deploy, well understood, quickly form ad hoc networks,

perform robust routing, and are adaptable to a number of tasks including tracking,

monitoring, surveillance, and other related tasks. Using WSNs for multiple tasks is

already well understood. Our solution does not present a significant additional load

on a WSN deployed for other tasks.

In the presence of an existing WSN, there is one straight forward solution. We

allow the WSN to track the vehicle as it traverses the network. The WSN then

reports back to a Base Station (BS) which sensors detected the vehicle. This solution

presents challenges. First, we do not need to suspect and track all vehicles as typically

only a few are untrusted. Tracking multiple trusted vehicles and reporting back to

the BS consumes large amounts of energy and exposes the location of the sensors

unnecessarily. Second, predicting the movements of the vehicle and triangulation in

a sparse WSN is difficult and unnecessary when we are mainly interested in verifying

a previous movement. Our chief interest is in completed movements, not current

locations. Third, it is unlikely that any vehicle will visit the desired points exactly or

leave the established roadway.

Many different measurements have been defined for ’closeness’ [13, 5] such as

the Hausdorff distance [2, 6, 16]. For our purposes, the most useful measure is the

Fréchet distance.

2.1. FRÉCHET DISTANCE

The Fréchet distance comes from the classical problem of walking a dog through
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a park(see Figure 2.1). The man visits the same points in the park but the dog will

typically range from side to side closely following the man’s path but not exactly.

Does the dog follow the man’s path closely each day or does it range further on some

days than on others? How can we measure that ’closeness’? An intuitive way to

understand the meaning of the Fréchet distance is to consider two sets of linked line

segments, α and β. If the man walks on curve α and the dog walks on curve β, we

can define the Fréchet distance as the maximum length of a leash between the man

and dog. Formally, let d(p, q) denote the Euclidean distance between two points p

and q on a plane. The Fréchet distance between α and β at points p and q is given

by [12]:

F (α, β) = minf :[0,1]→α,g:[0,1]→β [max [d(f(t), g(t))]] . (2.1)

where f and g are continuous non-decreasing functions defining the positions of the

man and the dog on the curves α and β at every instant t. If the dog is on an

elastic leash, the length of the leash relates very closely to how similar the two paths

are at any given point. This length, the Fréchet distance, is a way to measure the

matching between two curves or even two surfaces [5]. Matching curves can be done

in polynomial time with reasonable results. If one curve has n samples and the other

has m samples, the match can be done in O(mn log mn) time [13].

The difficulties lie mainly in two areas; defining good measures for the results,

like many sensor problems, is application dependent. Acceptably close on a battlefield

may not be the same as acceptably close for a police car patrolling a highway.

The other area of difficulty is more problematic. Matching two curves

and finding the distance between them is sensitive to the sampling technique

employed. The techniques developed depend upon translational invariance and

temporal invariance. However, two paths are not the same if one is translated a

distance from the other. We must also determine if the untrusted agent followed the

path in the correct sequence of points. These are two things which traditional curve

matching usually ignores. We must solve the difficult problem of forcing translational
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Frechet Distance

Figure 2.1. The Fréchet distance

variance, ordering, and time sequencing upon curve matching.

2.2. CDTW

This thesis will use the Continuous Dynamic Time Warping(CDTW) technique

of Efrat et al [13]. The strengths and weaknesses of this technique will be used

to compute measures which will show how closely the untrusted agent follows the

directed path. The concept of forcing the agent path to start and end at the

appropriate way points, what we call a ’force’, is introduced to use the translational

invariance of CDTW to reveal the underlying nature of the agent’s deviations from the

assigned path. Two typical types of variance from the path of way points are studied.

A shift where the agent shadows the way points exactly but at a safe distance and a

spike where the agent follows the way points but quickly leaves and returns to visit

an unauthorized point for other purposes.
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3. METHODOLOGY

In this section we present our method to produce secure witness location

certificates. We show a method to use these certificates to generate the actual path

for comparision to the claimed path. We then present an algorithm to generate the

CDTW version of the Fréchet distance.

3.1. SYSTEM FRAMEWORK

We now present our sensor network based framework for vehicle path verifica-

tion. In our system, a number of wireless sensor motes will be placed on selected

locations in roads. Likely locations can include road intersections, traffic signals,

highway ramps etc. Such sensors can include commercial off the shelf motes like

MicaZ and TelosB motes that have demonstrated communication ranges in excess

of 100 ft, are cheap, tiny and lend themselves for quick deployment. The locations

of sensors are fixed, and energy issues are not considered since they can easily be

powered when deployed statically in roads. All sensors are assumed to be trusted,

and there is some loose time synchronization mechanism in place among all sensors

in the network.

In our system, each vehicle to be verified will be equipped with a wireless

transmitter, that will broadcast a message periodically as it moves. The transmitter in

each vehicle will communicate with sensors deployed on roads using an authentication

protocol. Sensors receiving the broadcast will validate locations of the vehicle as its

moves, and giving each vehicle an unforgeable witness certificate. Post completion of

the path, each vehicle will forward its claimed path and witness certificates from all

sensors to the verifier, from which the actual path is derived. The verifier will then

compute the Fréchet Distance between the paths. If the computed Fréchet Distance

is small, the vehicle’s claims are accepted, or rejected otherwise. In the following,

we illustrate our technique via two protocols: Authentication Protocol to Generate

Witness Certificates and Actual Path; and Protocol to Compute the Fréchet Distance

between two paths.
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3.2. AUTHENTICATION PROTOCOL TO GENERATE WITNESS

CERTIFICATES AND ACTUAL PATH

Protocol 1 presents our authentication protocol. Just before a Vehicle V starts

its path, the Verifier S will assign a unique random seed RV which is secret to V . As

it moves, V will periodically broadcast Message M = {V, tV ,H(V,RV , tV )}, where H

is a Hash Function known to all parties. Denoting tV and tu are the current times in

Vehicle V and Sensor u respectively, every Sensor u that receives M will first check

if the difference between tV in M and tu in u is less than a system configured ε. If

not, Sensor u will simply discard M . Otherwise, sensor u will reply back with an

authenticated witness certificate Nu = {u, tV , tu,H(u, tu,H(V,RV , tV ), Eu)}, where

Eu is a key secret to Sensor u. The witness certificate is stored by V , and the process

repeats for every sensor in the path of V . At the conclusion of the path, V will

forward its Claimed Path and all witness certificates to the verifier upon request.

The Verifier S will receive the Claimed Path, CP, and witness certificates from

V , where:

CP = 〈{cl1, cl2, cl3, . . . , cln}, {ct1, ct2, ct3, . . . , ctn}〉.

Consider a certificate from Sensor u, which is

Nu = {u, tV , tu,H(u, tu,H(V,RV , tV ), Eu)}.

The verifier will extract the tV and tu from Nu, and using, RV and Eu (known

to the verifier), it will independently compute H(u, tu,H(V,RV , tV ), Eu). If this does

not match what was found in Nu, the verifier rejects the certificate and reports V as

“Failing Path Verification”. Otherwise, the location of sensor u and tu are added to

the Actual Path of V . The process repeats for all certificates and the Actual Path is

generated. The Claimed Path and Actual Paths are now ready for comparison.

Discussions: The protocol prevents masquerading of Vehicle V . When a

Vehicle V̄ attempts to masquerade as V , it will not have the correct Seed of V . When

the Verifier gets the Witness Certificate from V̄ , Step 24 of Protocol 1 will Fail, and
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Protocol 1 Protocol to Authenticate Certificates and Actual Path
1: Verifier: S; Vehicle: V ; Unique Seed: RV ; Hash Function: H
2: tV = current time in Vehicle V

3: tu = current time in Sensor u
4: Pre-configured acceptable time difference: ε

5: for Every Location in Path of V do

6: V → ∗: M
7: M = {V, tV ,H(V,RV , tV )}
8: for Every Sensor u Receiving M do

9: if |tV − tu| < ε then

10: u → V : Nu

11: Nu = {u, tV , tu,H(u, tu,H(V,RV , tV ), Eu)}
12: else

13: Discard M

14: end if

15: end for

16: Store Nu for all sensors
17: end for

18: V → S : Set of Witness Certificates for all Sensors
19: V → S : CP 〈{cl1, cl2, cl3, . . . , cln}, {ct1, ct2, ct3, . . . , ctn}〉
20: Following Steps Executed by S

21: for Each Entry in Witness Certificate do

22: Extract X = H(u, tu,H(V,RV , tV ), Eu) from Nu

23: Compute Y = H(u, tu,H(V,RV , tV ), Eu)
24: if X = Y then

25: Add Location of u and tu in Nu to Actual Path of V
26: else

27: Report V as “Failing Path Verification”
28: end if

29: end for

the masquerading is detected. A Vehicle V̄ also cannot create or forge certificates

for a Sensor u. If V̄ attempts to modify the time or the id of the sensor generating

a witness message, again Step 24 will detect this and hence reject V̄ . Note that if

Vehicle V̄ incorrectly reports its time during its broadcast to the sensor network,

the check in Step 9 will fail and V̄ will not get any valid certificate. Note that it

may happen that Vehicle V̄ simply does not broadcast its location for a long time.

The verifier can easily detect this behavior by seeing significant time gaps in witness

certificates and can hence reject such claims easily, provided the density of sensors in
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the network is sufficient.

At the conclusion of Protocol 1, the verifier will either have a valid Actual Path

for Vehicle V for similarity comparison with the Claimed Path, or it will reject the

Claim of V . Since authentication of the temporal (i.e., time) aspect of a Vehicle’s path

is already accomplished in Protocol 1 (via Steps 9 and 24), we ignore the temporal

aspect of Claimed and Actual Paths for following discussions. In other words, the

Claimed Path and Actual Path for similarity comparison from here will only be

denoted by 〈{cl1, cl2, cl3, . . . , cln}〉, 〈{al1, al2, al3, . . . , alm}〉 respectively

3.3. PROTOCOL TO COMPUTE FRÉCHET DISTANCE BETWEEN

TWO PATHS

We now discuss our technique to compare two vehicular paths and determine

the Fréchet distance between them. First, we present some challenges in the problem,

followed by a technique based on Continuous Dynamic Time Warping to resolve the

challenges. The detailed protocol and modifications to the Continuous Dynamic Time

Warping technique are presented subsequently.

(a) 

A 

B C 
(b) 

(c) 

(d) 

(e) 

Figure 3.1. Two path segments (a). Samplings in (b) and (d) are bad. Samplings in
(c) and (d) are good.

Fréchet distance and Sampling Issues: One of the classical problems of

mathematics is that of defining how closely two curves match. Clearly, our problem

of determining how closely a claimed path is truly followed can be analyzed in this

way. However, the challenge here is how to compare two curves, and measure the

distance between them? A metric for this is called the Fréchet distance, and is the
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maximum distance between two curves. However, measuring the distance between

two points is trivial, but the same is not true for two curves [2] [3]. Note that in

our problem, the two curves (or rather vehicular paths) we are comparing are not

continuous, and the sampling rate between the Claimed and Actual Paths are clearly

not the same. Very likely, the sampling rate of the Claimed Paths (say from a GPS

device in the vehicle) is much more that the sampling rate of Actual Paths (which

are derived from witness sensors).

Unfortunately, the maximum distance between two curves is wildly sensitive to

the sampling method used. Figure 3.1 illustrates the problem where there are two

curves in Figure 3.1 (a) that we would like to compare, and various samplings of the

two curves are shown in Figure 3.1 (b) to Figure 3.1 (d). As we can see, there are

any number of ways to match the sampled points on two curves. Even if the known

number of points is the same for both curves, there is no guarantee that matching a

point p(i) on one curve with a point q(i) on the other curve (for the same i) will give

correct results. Furthermore, even after such comparisons verifying the result in the

presence of sampling errors is difficult. Taking the mean of all the distances between

matching points looks promising. However, if the same number of points are placed

on both curves, but at different distances along the curve, the results will still be

wrong. In our problem we have no control over the data points on the claimed or the

actual path in either number or placement. If the sampling is done wrong, virtually

any large value is possible for the Fréchet distance, and the resulting verification check

will be rendered useless. Controlling the sampling rate is hence critical to derive right

measures of the distance between two curves.

Continuous Dynamic Time Warping: Continuous Dynamic Time Warping

(CDTW) is a technique that resolves the sampling challenge [13]. The basic CDTW

consists of constructing a universal manifold from the two paths and then finding the

geodesic on the resulting polygonal surface (shortest path along the surface) which

is a diagonal from the origin of the surface to the terminal point. This distance is

analogous to the Fréchet distance and is a very good measure of the similarity between

the two curves.

If we construct a virtual manifold, we can use this manifold to control the

sampling of the two paths. Once we have used the segments of the two paths to form
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polygonal patches to make up the manifold, we can place additional points, called

Steiner points, along the edges to control the curve sampling for us. The accuracy of

CDTW can be controlled by the placement of these Steiner points. The more Steiner

points the more accurately we can calculate the geodesic and the closer that value will

be to the Fréchet distance. Steiner points are placed to provide more granularity to

the geodesic and to force it to more closely approach the exact geodesic. This allows

us to sample the curves as finely as required and match the two samples intelligently

as in Figure 3.1, (c) and (e). Without this method, we could sample the curves as in

Figure 3.1 (b) or (d). In the case of Figure 3.1 (b) or (d), it is easy to see that we could

get a very large and erroneous distance such as distance of segment AB rather than

a more reasonable one such as distance of segment AC. Construction of the manifold

is possible in linear time but finding the geodesic along a set of polygonal patches or

plates is computationally difficult. Note here that since, we are extracting positions

from witness sensors in proximity of a vehicle, there is clearly an inherent error in

position estimation. In our technique we aim to compute approximate values for

the Fréchet Distance hence significantly saving computational complexity. So in our

technique, while a Fréchet Distance of zero is unlikely when two paths are practically

the same, a reasonable small value is accepted as both two paths being actually the

same.

Constructing the Manifold: A manifold is constructed deriving from the

technique as in [13] using the set of way points as one polygonal chain and the agent

locations as determined from the sensor network for the other chain. Consider two

points, cpi and apj , from which we construct a patch, Pij , by the Minkowski negative

sum of CP 	 AP , as in Figure 3.2. We define the standard Minkowski Sum, ⊕, and

negative Minkowski Sum, 	, as

CP ⊕ AP = {cpi + apj |cpi ∈ CP, apj ∈ AP} (3.1)

CP 	 AP = CP ⊕ (−AP ). (3.2)

The distance between points (i, j) and (i+ 1, j + 1) is minimized when the two

segments are isometric and parallel. Furthermore, the patch may degenerate to a line

or even a single point. If we construct a full set of patches from CP and AP , the
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Figure 3.2. Two path segments and the patch formed from them

resulting diagonal distance from (0, 0) → (n,m) is the DTW version of the Fréchet

distance.

Figure 3.3. Two path segments and a manifold formed from them

Once the manifold is constructed, Steiner points are placed at equal intervals

on all the edges of each patch. This is done to force the calculated geodesic to more

closely approximate the actual geodesic. The construction of the manifold and the

placement of the Steiner points can be done in linear time, O(mn).

While there are algorithms to exactly find the geodesic on a closed polygonal

surface [20], a wireless sensor network cannot achieve exact accuracy and using CDTW

can provide the desired level of accuracy much quicker than the exact algorithms.

Dijkstra’s method [10] is used to find the shortest path on the manifold from the
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origin to the furthest diagonal endpoint in approximately O(mn lgmn) [10, 9, 32].

This distance is the Fréchet distance. The Fréchet distance as determined by CDTW

is then normalized by dividing by the total number of samples on the two curves.

This is done to remove any variance caused by the number of Steiner points used.

This also has the side effect of reducing the Fréchet distance to a more manageable

number for the user without losing any of its usefulness. For most applications, the

normalized Fréchet Distance will be much more useful in determining if the vehicle

has indeed followed the path.

Actual Path 

Claimed Path 

Actual Path 

with Force 

          (a)           (b) 

Figure 3.4. Claimed and Actual Paths (a), and Resulting Actual Path with Force
Option (b)

Force Option to address Translational Invariance: Note that a feature

of the CTDW technique is that two curves that are translationally invariant (like in

Figures 3.1 (a) and (c)) will yield a Fréchet distance of zero in the basic technique

[13]. However, two vehicle paths that are translationally invariant are still not be

the same, and must hence yield a high value for the Fréchet Distance for them to

be considered dissimilar. The issue of translational invariance is resolved using a

simple refinement. Prior to computing the Fréchet Distance between the Claimed

and Actual Paths, we introduce an option called “Force” wherein the end points of

the Actual Path (i.e., origin and destination) are forced to be the end points of the

Claimed Path (i.e., origin and destination). Figure 3.4 shows a simple illustration.

As we see despite both paths being translationally invariant, the “Force” option when

implemented changes the shape of the Actual Path and hence the computed Fréchet

Distance will realistically capture the scenario of both paths being dissimilar, which

cannot be accomplished with existing CDTW technique.
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The entire sequence of steps is illustrated in Protocol 2.

Protocol 2 Curve Match Protocol to Compute Fréchet Distance

Curve Match

1: procedure Input both paths
2: Read m locations in Claimed Path
3: Read n locations in Actual Path
4: Force start and end points of Actual Path to be Claimed Paths
5: Force end point apn = cpm
6: end procedure

7: procedure Construct manifold (m,n)
8: Construct empty 2 PL manifold as an m by n array
9: while more claimed points do
10: while more agent points do
11: Construct patch Pi,j

12: end while

13: end while

14: end procedure

15: procedure Expand array
16: Place Steiner points along “horizontal” segments
17: Place Steiner points along “vertical” segments
18: Place Steiner points in the interior of each patch
19: end procedure

20: procedure Fréchet distance across the manifold
21: while unprocessed patches do
22: Patch-wise Dijkstra to corner closest to origin
23: for each point, including Steiner points do
24: run Dijkstra Shortest Path Algorithm
25: Add to point.distance
26: end for

27: end while

28: end procedure

29: procedure Output
30: Compute path difference
31: Fréchet distance from Patch-wise Dijkstra . This is point.distance(m,n)
32: Compute mean Fréchet Distance per sample
33: end procedure
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4. SIMULATION AND EXPERIMENTAL DESIGN

Our study was divided into two parts: simulation and experimental ”proof of

concept.” Before we could design actual experiments, simulation was required to prove

the algorithms could detect the expected spoofing actions of a vehicle.

4.1. SIMULATION BASED STUDY

A simulator was developed and a number of possible path deviations were

simulated and studied. The simulator was designed to be open-ended to allow for

future capabilities.

4.1.1. Simulation of a Wireless Sensor Network. The simulator was

developed to generate reasonable sample data(see Protocol 3). To be useful, the

simulator had to be simple, quick, and generate random accurate data. The difficulties

in generating the data by hand were too daunting.

Condition 4.1.1. The sensors are deployed at random over a planar field F0, with

a sensing area of A0
1.

Condition 4.1.2. It is desirable to be able to generate sensors with a common sensing

range as well as sensors with varying ranges. A user option was designed into the

simulator to allow sensors to be generated with constant ranges or with sensing ranges

that varied at random over a predefined set of sensing ranges.

Condition 4.1.3. Each sensor must be placed at random within the sensor field.

Condition 4.1.4. No two sensors can be at the exact same location.

4.1.2. Overview. The problem of creating sensor data by hand to test

the algorithms proved to be very difficult. The solution was to create a very simple

simulator to produce a set of sensor reports based upon user selected parameters, the

dimension of the sensor field F0, the number of sensors to be placed at random, the

minimum sensing range of the sensors, an optional amount by which the sensing range

may be increased for random varying ranges, and a set of points the agent visits.

1For future work, we will include an option to allow the sensors to be deployed based on real

road topologies to represent urban traffic networks.
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Protocol 3 Sensor Field Simulator
Simulator

1: Get user selections from global variables in source
2: procedure Generate Sensor Field
3: while more sensors to place do

4: Generate unique random sensor ID
5: Generate random x and y between (0, 0) and max (x, y)
6: if a sensor has already been placed at (x, y) then
7: Reject this location and try again
8: end if

9: if user selected for random ranges then
10: Generate sensing range between 0 and max range
11: else

12: set sensing range to max range
13: end if

14: Add sensor to linked list of sensors
15: end while

16: end procedure

17: procedure Create Agent Path
18: Load agent points from a text file
19: if user selected to add additional points then
20: for each segment of the agent path do

21: Add a random number of points on the segment
22: end for

23: end if

24: timestamp ← 0
25: while there are agent points to process do
26: Add 1 to the timestamp to simulate time passing
27: for each sensor do
28: if agent point within current sensor range then

29: Create event (sensor ID, timestamp, and distance)
30: Add event to list
31: end if

32: end for

33: Move to next agent point
34: end while

35: end procedure

36: procedure Output Data for Curve Match
37: Shuffle the sensor list
38: Shuffle the event list
39: Write the sensor list to a text file
40: Write the event list to a text file
41: Display field statistics
42: end procedure
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4.1.3. User Options. The simulator has a number of options that can be

selected by the user. These options are controlled by global booleans in the source.

This approach was taken to relieve the user from being forced to provide console input

for each run. Only the most important options are given below.

debug Used to control the production of extra console messages that are intended

for debugging the code.

reload Used to suppress the generation of randomly placed sensors with random

maximum ranges. This is intended to allow the same sensor field to be used for

multiple runs of the simulator. This was very useful in examining the operation of

the Curve Matching algorithm.

number of sensors Used to specify how many sensors to generate and place at

random in the sensor field.

range Used to select the range of the sensors. The user can select a common range

or ask for random ranges.

field size Used to specify the maximum x and y size of the sensor field. The details

of how the simulator works can be determined from the algorithm, but an overview

will be given here.

4.1.4. Brief program description. The user selected number of sensors are

placed at random (x, y) coordinates within the sensor field with a random sensor ID. If

a sensor is to be placed on top of another sensor, the random location is discarded and

a new random location generated. To preserve the Poisson distribution properties,

no allowance is made for the sensor location other than that it be within the sensor

field. The range of the sensor is set to the user selected minimum range. If the user

has selected an amount by which the range can vary, a random range from zero to

the varying amount is added to the range. The sensor is then added to the list of

sensors. This process continues until all the sensors have been created and placed.

A simple text file is then read for the (x, y) locations which the agent is to visit.

These may, or may not, be the same as the way points the agent has been assigned

to visit. The simulator has the ability to generate additional points at random on the

line segments connecting the points read from the text file. This is done to simulate

the agent traveling at an inconstant rate as would be expected in a real situation.

Each point is then assigned a time one ’second’ after the previous point.
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The set of agent points generated by the simulator from the user input plus the

randomly generated additional points is then processed in time sequence. For each

point the sensor field is swept for the sensors that should sense the agent at that

point. For each such sensor a report is generated with the sensor ID, time stamp,

and range to the agent. These reports are held in a linked list for future processing.

When all of the agent points have been processed and all of the sensor reports

generated, the simulator generates two text files for the Curve Match program. The

first file contains the sensor information; i.e., the sensor ID, x, y coordinates, and

sensing range. The file is generated in random order to simulate the expected lack of

order in a real situation. The second file is the file of sensor reports generated by the

simulator. This file contains one record for each report. The record consists of sensor

ID, time stamp, and range to target. This file is also produced in random order to

more closely simulate the expected real output of a sensor field.

The simulator is constructed in such a way that data about the k-coverage of

the simulated sensor field could be easily calculated and displayed for the user. In

practice, this turned out to be very useful.

We now analyze the performance of our proposed curve matching technique

using simulations. The idea is to understand the sensitivity (or the trend) of the

Fréchet distance computed to various practical deviations between a Claimed and

Actual Path. Note that sensitivity for more complex path deviations can be analyzed

by integrating sensitivity of simple deviations. For all simulations below, we consider

the Actual Path to be a straight line of length 15 units.

Sensitivity of Fréchet distance to Translationally Invariant Paths: In

Figure 4.1, we study the sensitivity of Fréchet distance to Claimed Paths that are

translationally invariant to the Actual Path. By translationally invariant, we refer

to paths that are exactly similar in shape, length and direction to the Actual Path,

but are offset by a certain length. The X-axis in Figure 4.1 denotes the offset length

the Claimed and Actual Path and the Y-axis is the Fréchet distance between them.

As we can see with increasing offset length, the Fréchet distance computed by our

protocol increases demonstrating increasing dissimilarity between the paths.

Sensitivity of Fréchet distance to Reverse Paths: In Figure 4.2, we study

the sensitivity of Fréchet distance to two paths that all both similar in all respects,
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Figure 4.1. Shifted Path and Fréchet Distance

except for one being the exact reverse of the other in directionality. As we can

see when the path length increases, the Fréchet distance increases, since reverse

directionality with increasing path lengths mean two paths becoming increasingly

dissimilar.

Sensitivity of Fréchet distance to Paths Spikes: Finally, in Figure 4.3, we

study the sensitivity of Fréchet distance to two paths that overlap each other except

there being a spike in one of paths compared to the other (similar to Figure 4.4 (d)).

One of the paths is a straight line length 15 units, and other path is similar to this

one but for the spike. The X-axis in Figure 4.3 denotes the (to and fro) length of

the spike, while the Y-axis is the Fréchet distance. Clearly, increasing spike lengths

means more dissimilar paths and hence increases in Fréchet distance.
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Figure 4.2. Following the Path in Reverse And Fréchet Distance
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Figure 4.3. Spike Path and Fréchet Distance

4.2. EXPERIMENTAL DESIGN
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We now report results from real experiments conducted with a wireless sensor

network and a single car in the city of Rolla (Missouri, USA). A section in Rolla

was chosen for experiments as seen in Figure 4.5, where the circles denote locations

where sensor motes were placed. The motes (20 in number) were TelosB motes whose

details are shown in Figure 4.6. A laptop with a TelosB mote attached to transmitted

and received packets from static motes. The transmitter mote was connected to a

Laptop, and was placed in a Toyota Prius Car and driven around the experimental

site. The average speed of the car was 15mph. For our experiments, we did not

observe any packet drops during two way communication between the static motes

and the mote in the car. The responses (i.e., witness certificates) from static motes

was recorded in the Laptop to derive the Actual Path and compared with the Claimed

Path post completion to compute the Fréchet Distance between them. For simplicity,

a Cartesian Coordinate system was used for locations. However, using a coordinate

system like GPS is straightforward as well.

Note that for proof of concept, only one car was used. As such, the car and sensor

motes did not execute the Authentication Protocol in Protocol 1 for experiments

conducted. We point out that the feasibility of hash functions in sensor networks has

been well studied in works like [8, 18, 23], and as such, we did not emphasize it in our
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Figure 4.5. Google Map of our Experimental Site in Rolla. Sensor locations are
indicated with Circles

TelosB Specs 

Processor  
TI MSP430 16bit 

Microcontroller 

Program flash  48kB 

RAM   10kB 

Clock Speed   8MHz 

Baud Rate   250Kbaud 

Figure 4.6. Specifications of TelosB motes

experiments. In our experiments, as the car moves, the laptop recorded the witness

certificates from sensors in its path that consisted of the sensor’s location and current

time, which became the Actual Path. Implementing and experimenting with the

complete technique (including Authentication) with multiple cars is a part of future

work. Also, due to space limitations, results from only selected (but generalizable)
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test cases are reported here. The conclusions we derive here did hold for many other

cases not reported here. For all the following discussions, a grid layout of the actual

experimental site is used for illustration purposes.
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4.3. RESULTS

Test Case 1: Figure 4.7 shows a test where the car was driven through four

blocks from West to East on 4th Street. When the Claimed Path was correctly

reported the Fréchet Distance was zero. However, for two incorrectly reported

Claimed Paths (dotted paths in Figure 4.7, the Fréchet Distance was large. Thus,

paths reverse of the Actual Path, and Paths offset from the Actual Path are easily

detected as fake.

Freschet Distance for                          :   300.0m 

Freschet Distance for                          :   261.8m 

r                         

r                          :  

(140,0) (0,0) 

(0,105) (140, 105) 

Figure 4.7. Detecting Reverses and Offsets

Test Case 2: The second experiment involved an Actual Path on 2nd Street

four blocks West to East. This time also, the Fréchet Distance between the reverse

path and a path that deviates from the Actual Path with a spike are easily detected
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as fake as seen in Figure 4.8). Note that the path exhibiting the spike is in the same

direction as the Actual Path. If such a path were in reverse direction, the Fréchet

Distance would be even larger

Freschet Distance for                          :   300.0m 

Freschet Distance for                          :   419.9m 

r                         

r                          :  

(140,0) (0,0) 

(0,105) (140, 105) 

Figure 4.8. Detecting Reverses and Spikes

Test Case 3: For this case, the Actual Path consisted of traversing all 19 blocks

in the experimental site in the trajectory shown in Figure 4.9. We consider a Claimed

Path that still traverses 19 blocks, but reports as skipping the intersections of Elm

and 4th Street, and Elm and 3rd Street. The corresponding Fréchet Distance is quite

high, and hence is detected as fake.
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Freschet Distance for                          :   199.8m                         : 

(140,0) (0,0) 

(0,105) 
(140, 105) 

Figure 4.9. Detecting Complex Deviations
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5. DISCUSSION AND FUTURE WORK

We have presented a method to verify the matching of a vehicle’s actual path as

reported by a wireless sensor network with its claimed path as reported by the driver.

The difficulty lies in determining the exact situation if the vehicle actually deviated

from the claimed path. There are a number of intuitive solutions such as GPS, but

GPS is expensive and there are known hardware attacks to allow the positions to

be wrongly reported. On the battlefield, one would expect GPS to be spoofed or

jammed [15] [31] [30]. At the very best, GPS data requires time and expense to

analyze. What is wanted is a “yes/no” answer or a simple to understand metric. The

number of possible metrics is quite large with many metrics examined being found to

be unsuitable for the problem at hand.

5.1. UNSUITABLE METRICS EXAMINED

Euclidean distance from a detection point to the claimed path.

The first metric we examined was to find the Euclidean distance from each detection

point to the claimed path. This presented a number of difficulties. The distance was

sensitive to the choice of claimed path segment, or even worse which claimed point,

to measure the deviation. It became obvious very early on that the only possible

choice was to determine the perpendicular distance from the detection point to the

claimed path segment that yielded the smallest distance. The choice appeared to

involve either a judgment (human intervention) or an exhaustive search of all possible

segments and this search would need to be repeated for each detection point. In a

dense sensor network this would be computationally prohibitive.

The second issue with using the Euclidean distance from each detection point

to the claimed path arises from sampling methods. The simple sum of the distances

was wildly sensitive to the sampling method as was the mean of the distances zx(see

Figure 3.1). It was easy to determine that a clever sampling of the detected points

could yield any desired mean Euclidean distance.

Path length comparison between Actual Path and Claimed Path

Another naive approach would be to simply compare the length of the Actual and
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Claimed paths. The vehicle would clearly trace a longer actual path if it left the

path and then returned; however, in our experiment we clearly showed a number

of possible exploits that the vehicle could use to disguise a path variation. Taken

alone, the difference in path lengths is not a useful measurement. It does give some

additional useful information in specific cases such as when the node retraces a small

portion of the path.

5.2. CONTINUOUS DYNAMIC TIME WARPING

CDTW was developed as an effective way to compare two curves and deter-

mining a matching metric. All of the issues we have dealt with in comparing two

paths arise in curve comparison. The same questions of how closely two paths match,

what kinds of metrics are useful, and what exactly is met by close also arise in curve

matching. The main differences between the two problems arise in how the sampling

is done and how to deal with the problems of invariance.

The two different techniques of Dynamic Time Warping, Continuous and simple

DTW, both approach the problem by first constructing a chain from the sampled

points. This lends itself much better to our problem as we defined the claimed path

in terms of a number of points the vehicle was asked to visit in a specific order. The

actual path the node followed was determined by constructing a chain from a number

of sensor location reports. It turns out that comparing two chains is much simpler

than comparing two smooth curves, indeed the most effective way to compare two

curves using CDTW is to sample the curves and use the samples to construct chains.

This sampling can be made as accurately as desired given sufficient computing power.

The issue of invariance is more problematic but simple to solve. When

comparing two curves, the goal is to recognize the similarities regardless of the

presentation of the curves. CDTW is able to provide good results regardless of the

orientation of the curves (translational invariance). If this same technique were used

in path matching, a path that follows the claimed path at a constant distance (see

Figure 4.1) would return a prefect match. This would defeat our purpose.

Another type of invariance that creates issues is directional invariance. Two

curves can match exactly even if one is drawn in the opposite direction from the

other. In fact, when matching curves it is critical that the curves not have any
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directional sense at all. This would defeat our purposes. When matching paths, it is

critical that we take direction into account. We wish to enforce a directional sense

on the vehicle so that it is known to have visited the claimed points in the claimed

order. A direct consequence of directional sense is the notion of time. Given the times

and locations a node is detected leads directly to the ability to match direction and

time between two paths. However, it should be noted that the sense of time is often

relative (point a before point b) due to problems in synchronizing clocks in sensor

networks.

We resolved these issues by imposing boundary conditions on the actual path. If

the vehicle is not detected within a reasonable distance of the claimed starting point,

the paths are forced to match by pre-pending claimed starting point to the actual

path. If the vehicle is not detected at the claimed path ending point, the claimed

path ending point is appended to the actual path. In simple terms, the two paths are

forced to begin and end at the same location and time. This forces a change to the

shape of the actual path which the protocol easily detects. In addition to removing

translational invariance, the boundary conditions enforce direction and time sense on

the curve matching.

5.3. FUTURE WORK

During the experimental phase of this work, some future extensions became

clear. There are other possible problem behaviors that will be considered in a future

enhancement of the procedures. For example, how can we determine if a gap in

detection is unreasonable? If the agent simply turns off the mobile node for a period

of time we must be able to determine if the agent should have been detected by a

sensor node. To determine the reasonable allowable gaps in sensing, we need to know

the mean free path of a mobile node through a sensor field.

5.3.1. Mean Free Path Through a Sparse Sensor Network. An

important measure of the effectiveness of a sensor network is the distance a mobile

node can move through the network without being detected[17]. This problem is

directly analogous to the problem of the mean free path of a molecule through an

ideal gas.

Condition 5.3.1. The sensors are deployed at random over a planar field F0, with
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a sensing area of A0.

While it is not strictly necessary that the sensors all have a common sensing

range, it makes the calculations much simpler. Therefore, we assume N sensors each

with a sensing range R deployed uniformly at random over the sensing field.

Condition 5.3.2. Each sensor senses in a circular pattern with an area of Ai and a

radius of R.

Problem 1. Calculate the Mean Free Path

Given a sensor field F0 with an area A0 sensed by N sensors (si : i = 1, 2, 3, . . .N) with

sensor si having a sensing area Ai, randomly and independently deployed throughout

F0, compute the probability P (k) that a mobile sensor X randomly crossing A0 is

detected by at least k sensors assuming X is traveling in a straight line.

Definition 1 (Sensing Area). The sensing area Ai of sensor si is the effective target

thickness E (Ti) and defined as a disk of radius ri =
E(Ti)

2
which is identical to the

range of the sensor si.

Theorem 1. Mean Free Path until First Detection

The Mean Free Path[17],E(σ) of a mobile agent node moving in a straight line through

the sensing field F0 is given by: E(σ) = A0

NE(T )
.

Proof. A target X can move a distance σ undetected if the trajectory does not

intercept the sensing area of any sensor. When all sensors have the identical sensing

areas, the target is undetected if, and only if, its trajectory does not come within

a distance of E(T )
2

of any sensor. This is equivalent to considering the target node

to have an effective thickness of E(T) and the sensors to be points with an effective

sensing range of zero. When the mobile node moves a distance of σX , it sweeps

out an area of size, F (σX) = E(T )σX + f where f is some residual area due to the

geometry of the sensor field not having a straight perimeter normal to the trajectory.

Therefore, the probability that the mobile node X travels a distance σ ≥ σX is equal

to the probability that no sensor is located within F (σX). Given that the sensors are

randomly and equally deployed, the number of sensors within F (σX) is given by a

homogeneous Poisson point process of density ρ = N
A0

. Therefore:
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P (k) =
(ρF )k

k!
e
−ρF

. (5.1)

This equation holds true as F0 → ∞ if the density of sensors, ρ, remains constant.

The probability that the free path of the target X is σX is the same as the probability

that no sensors exist within an area of size F (σX):

P (σ ≥ σX) = P (NF (σX) = 0). (5.2)

e−ρF (σ) = e−ρ(E(T )σ+f). (5.3)

The random variable σ is a non-negative continuous variable and has an expected

value given by:

E(σ) =

∫ Q

0

P (σ ≥ σX)dσX . (5.4)

E(σ) =
e−ρf

ρE(T )
(1− e−ρE(T )Q). (5.5)

where Q is the maximum possible path length through the sensor field along the

trajectory of X. If the residual area f is small enough such that e−ρf ≈ 1 and Q is

long enough such that e−ρE(T )Q ≈ 0,

E(σ) ≈
1

ρE(T )
=

A0

NE(T )
. (5.6)

5.3.2. Mean Distance to Detection and Coverage Simulator. The ba-

sic simulator was then modified to produce Mean Distance to Detection information.

This is done by generating a sensor field in the same manner as the first simulator.

In order to simplify the calculations, a single sensing range is chosen for all sensors.

An agent path is then chosen with a random x along the y-axis and sent into the

sensor field along a straight line with a random angle to the y-axis. The distance to

first detection is recorded. Data are recorded for each run and analyzed to determine

how well the simulation agrees with the theoretical values. Additionally, the coverage

data for each run are also recorded and compared to the theoretical values.
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5.3.3. Publication. A condensed version of this work, with extensions in the

field of vehicular tracking, is planned for future publication. This work will include the

experiments discussed in this thesis as well as attempts to detect tampering with the

mobile node such as turning the node on and off to avoid detection of path deviations.

The security certificate exchange presented here will be implemented on the mobile

node and sensor network. Other extensions will surely present themselves during the

completion of the proposed paper.
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6. CONCLUSIONS

In this thesis, we study the issue of path verification of mobile vehicles. The

problem has practical significance to a number of organizations including police

precincts, cab operators, trucking companies etc. Our proposed solution leverages

wireless sensor network support to authenticate vehicle movements. Then we designed

a protocol to compute the Fréchet Distance between a claimed path reported by a

vehicle and an actual path derived from certificates provided by sensors. Extensive

simulations and real experiments conducted in Rolla validate our proposed techniques.
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