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ABSTRACT 

The thesis is composed of three papers, which investigate the application of 

Model Predictive Controller (MPC) for current control of Switched Reluctance Motor 

(SRM). Since the conventional hysteresis current control method is not suitable for high 

power SRM drive system with low inductance and limited switching frequency, MPC is a 

promising alternative approach for this application. The proposed MPC can cope with the 

measurement noise as well as uncertainties within the machine inductance profile. In the 

first paper, a MPC current control method for Double-Stator Switched Reluctance Motor 

(DSSRM) drives is presented. A direct adaptive estimator is incorporated to follow the 

inductance variations in a DSSRM. In the second paper, the Linear Quadratic (LQ) form 

and dynamic programming recursion for MPC are analyzed, afterwards the unconstrained 

MPC solution for stochastic SRM model is derived. The Kalman filter is employed to 

reduce the variance of measurement noises. Based on Recursive Linear-Square (RLS) 

estimation, the inductance profile is calibrated dynamically. In the third paper, a 

simplified recursive MPC current control algorithm for SRM is applied for embedded 

implementation. A novel auto-calibration method for inductance surface estimation is 

developed to improve current control performance of SRM drive in statistic terms. 

 

 

 



v 

 

ACKNOWLEDGMENTS 

First of all, I would like to express my deep gratitude to my advisor Dr. Pourya 

Shamsi. Without his patience, guidance, and support, my Master program won't move so 

smoothly. In addition, his solid theoretical foundation and rich practical experiences help 

me overcome difficulties in research. My sincere thanks also go to other respectable 

committee members, Dr. Ferdowsi and Dr. Kimball. I benefit a lot from their insightful 

teaching, academic seminars, and colloquiums. Moreover, I want to thank all teachers 

who had taught me in my two year Master program in Missouri University of Science 

and Technology. Their contribution of time, hard working, and advice to my academic 

improvement are highly appreciated.  

I would also like to thank my colleagues in power lab. Their critical discussion 

and suggestions push me to explore more on the research. And their friendship and 

consideration is also a kind of support for me.  

Finally, thanks from my bottom of heart go to my family. They constantly love, 

encourage, and support me without any conditions or reservation. What I had finished 

and achieved would be impossible without my family. 



vi 

TABLE OF CONTENTS 

Page 

PUBLICATION THESIS OPTION ................................................................................... iii 

ABSTRACT ....................................................................................................................... ix 

ACKNOWLEDGMENTS .................................................................................................. v 

LIST OF ILLUSTRATIONS ............................................................................................. ix 

SECTION 

1. INTRODUCTION .............................................................................................. 1 

PAPER 

I. ADAPTIVE MODEL PREDICTIVE CONTROL FOR DSSRM DRIVES ................... 4 

Abstract ................................................................................................................... 4 

I. INTRODUCTION ............................................................................................... 4 

II. MODEL OF THE DSSRM ................................................................................ 5 

III. CONTROLLER DESIGN ................................................................................ 7 

A. Model Predictive Current Control.......................................................... 7 

B. Adaptive Control .................................................................................... 9 

IV. RESULTS .........................................................................................................11 

A. Simulation Results ............................................................................... 12 

B. Experimental Results............................................................................ 14 

V. CONCLUSIONS .............................................................................................. 15 

References ............................................................................................................. 15 

II. MODEL PREDICTIVE CURRENT CONTROL OF SWITCHED RELUCTANCE 

MOTORS WITH INDUCTANCE AUTO-CALIBRATION ............................................ 18 

Abstract ................................................................................................................. 18 

I. INTRODUCTION ............................................................................................. 19 

II. MODEL PREDICTIVE CONTROL OF SRMS .............................................. 22 

A. Dynamic Model of a SRM ................................................................... 22 



vii 

B. The Matrix Form of the Controller....................................................... 24 

C. Recursive Implementation of the Controller and Sub-optimal LQR ... 26 

D. Stochastic MPC and State-Estimation ................................................. 27 

III. INDUCTANCE AUTO-CALIBRATION ....................................................... 29 

IV. SIMULATION RESULTS .............................................................................. 32 

A. Effectiveness of the Kalman Filter ....................................................... 32 

B. Cost Function Analysis......................................................................... 32 

C. Inductance Profile Adaptation .............................................................. 34 

V. EXPERIMENTAL RESULTS .......................................................................... 34 

VI. CONCLUSION............................................................................................... 35 

References ............................................................................................................. 36 

III. INDUCTANCE SURFACE LEARNING FOR MODEL PREDICTIVE CURRENT 

CONTROL OF SWITCHED RELUCTANCE MOTORS ............................................... 40 

Abstract ................................................................................................................. 40 

I. INTRODUCTION ............................................................................................. 41 

II. MODEL PREDICTIVE CURRENT CONTROL OF SRMS .......................... 44 

A. Model Formulation and Control .......................................................... 44 

B. Delay Compensation ............................................................................ 46 

III. INDUCTANCE TABLE LEARNING ............................................................ 47 

A. Inductance Estimation .......................................................................... 49 

B. Table Usage Protocol ............................................................................ 50 

C. Recursive Least-Square Estimation ..................................................... 51 

IV. SIMULATION RESULTS .............................................................................. 52 

A. Delay Compensation ............................................................................ 52 

B. Inductance Surface Learning ................................................................ 53 

C. Inductance Learning and Improved MPC ............................................ 55 

V. EXPERIMENTAL RESULTS .......................................................................... 56 

VI. CONCLUSION............................................................................................... 58 



viii 

References ............................................................................................................. 59 

SECTION 

2. CONCLUSIONS............................................................................................... 63 

VITA ................................................................................................................................. 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

LIST OF ILLUSTRATIONS 

Figure                                                              Page 

PAPER I 

1 Cross section of a 8/12 DSSRM ................................................................................. 6 

2 Variations of the inductance coefficients as a function of the phase current .............. 7 

3 Converter circuit topology for each phase .................................................................. 8 

4 The proposed control strategy ..................................................................................... 9 

5 Simulation results using a hysteresis current control ................................................ 12 

6 Simulation results using the proposed MPC ............................................................. 12 

7 Simulation results for estimation of a(t) ................................................................... 13 

8 Simulation results for estimation of b(t) ................................................................... 13 

9 The experimental test setup ...................................................................................... 14 

10 Measured signals from a 3-phase SRM .................................................................... 15 

PAPER II 

1 The topology of an asymmetric bridge inverter ........................................................ 22 

2 Variations of the base inductance parameters as the function of phase current ........ 24 

3 Inductance profile of a 12/8 SRM as a function of rotor position and phase     

current ....................................................................................................................... 30 

4 Control block diagram of the overall system ............................................................ 32 

5 Comparison between the distribution of two scenarios ............................................ 33 

6 Distributions of MPC objective function values ....................................................... 33 

7 Convergence of the RLSE ........................................................................................ 34 

8 Current ripples under a 20kHz sample time delta modulation ................................. 35 

9 Current ripples for the simplified LQR controller without inductance profile 

adaptation .................................................................................................................. 35 

10 Current ripples for the simplified LQR controller with inductance profile   

adaptation .................................................................................................................. 36 

PAPER III 



x 

1 Flux linkage within a SRM ....................................................................................... 46 

2 Inductance surface of SRM ....................................................................................... 48 

3 Flow of the desired current-position point on the quantized inductance table ......... 50 

4 Control diagrams ....................................................................................................... 52 

5 Effectiveness of the delay compensator .................................................................... 53 

6 Inductance learning simulation ................................................................................. 54 

7 Learning the inductance profile over four cycles ..................................................... 54 

8 Distributions of MPC objective function values ....................................................... 55 

9 Delta modulation at a fixed sampling rate of 20kHz ................................................ 56 

10 Recursive LQR current control at a sampling rate of 10kHz without inductance   

table interpolation ..................................................................................................... 57 

11 Recursive LQR current control with inductance table interpolation ........................ 57 

12 LQR with no inductance surface learning or delay compensation ........................... 58 

13 LQR with inductance surface learning and delay compensation .............................. 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. INTRODUCTION 

Duo to the ever-developing transportation electrification and climate control 

technologies in past decade, concerns have been continuously expressed over finding a 

reliable and economic motor with satisfactory performance. Switched Reluctance Motor 

(SRM) exhibits many advantages over other type of motors in variable speed system such 

as the rugged structure due to the magnet free rotor, fault tolerant for lock rotor and 

stalling, low back Electromotive Force (EMF) for wide speed range. In addition, SRM's 

relative low material and manufacture cost are considered as attractive characteristic for 

mess production.  

SRMs operate based on complete switching of the phase current within each phase 

of the motor. Thus, the drive of SRM must cope with nonlinear inductance of windings. 

Recently, many scholars have explored the current control strategies of SRM. The foci 

can be categorized to three trends: controller with Pulse Width Modulation (PWM), 

hysteresis type controller, and non-conventional methods such as neural networks. 

Among the latest current control technologies in practical terms, Model Predictive 

Control (MPC) is a promising approach and attracts attention. MPC used to be developed 

for industrial processing control and successfully applied to power electronics recently. 

Particularly, MPC can handle the non-linear magnetic characteristic of SRMs, provide 

fast response, and maintain a fixed switching frequency.  

The Finite Control Set MPC (FCS-MPC or Direct MPC) and the general MPC with 



2 

PWM are two of main options within scope of research for SRM drive. Although 

FCS-MPC has been well studied in literatures, it is based on voltage vectors theory and 

thus can be considered as hysteresis control. In consequence, it is not a appropriate 

current controller for high power SRM with low inductance and limited switching 

frequency. The general MPC calculates PWM duty cycle from current feedback, thus it 

can maintain low current ripple without requirement of high switching frequency. Since 

the calculation is based on SRM model, having accurate inductances can significantly 

reduce the current ripples and provide the desired behavior. Another challenge of MPC is 

the requirement of computation capability. The matrix inverse computation is very time 

consuming in real-time processing. Hence, effective and precise MPC solving is of 

interest. 

In addition, due to electromagnetic interferences or zero drift the current feedback 

from sensors contains a significant amount of noise and disturbances. Therefore it is 

imperative to calibrate MPC inner model and filter current sampling noises under 

stochastic system. 

In order to address above issues, the concept of MPC current control of SRM with 

auto-calibration is presented. Specifically, three different employment methods are 

developed and proposed in below three papers, respectively. 

In the first paper, a MPC current controller for Double-Stator Switched Reluctance 

Motor (DSSRM) drives is presented. The inductance variation is estimated and tracked 

by a direct adaptive estimator which is combined into MPC algorithm. By assuming noise 
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absence, the proposed adaptive estimator convergence is proved by Lyapunov stability. 

In the second paper, the Linear Quadratic (LQ) form and dynamic programming 

recursion for MPC are analyzed, afterwards the unconstrained MPC solution for 

stochastic SRM model is derived. The Kalman filter is employed to reduce the variance 

of current measurement noises. A simplified recursive MPC current control algorithm for 

SRM is applied for embedded implementation. Based on Recursive Linear-Square (RLS) 

estimation, the inductance profile in manner of analytic expression is calibrated 

dynamically.  

In the third paper, the MPC current control of SRM is implemented for practical 

deployments in hybrid vehicle applications. The inductance surface is established by 3-D 

lookup table, which is quantized for nonlinearity of SRM. The Kalman filter is integrated 

into MPC. The delay compensation is considered due to the zero-order-hold delay during 

current sampling. Additionally, a learning mechanism is developed to improve current 

control performance of SRM drive in statistic terms. 
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I. ADAPTIVE MODEL PREDICTIVE CONTROL FOR DSSRM DRIVES

Xin Li†, Student Member, IEEE, Pourya Shamsi††, Member, IEEE

Abstract

This paper presents a new current control method for Double-Stator Switched Re-

luctance Motor (DSSRM) Drives. The proposed current controller is based on Model

Predictive Control (MPC) strategy. Moreover, an adaptive estimator is incorporated to

follow the inductance variations in a DSSRM. After the introduction of the control

method, the proposed controller is validated using simulations. Experimental results will

be provided to evaluate the performance improvement.

Index Terms

SRM, MPC, adaptive, predictive control, motor drive, current control.

I. INTRODUCTION

Due to a radical transportation electrification in the past decade, low cost and highly

efficient electric motors are of interest. Switched Reluctance Machines (SRM) are good

candidates for the future of transportation electrification. SRMs demonstrate high effi-

ciencies and high torque performances while benefitting from low cost of manufacturing.

Moreover, due to the inherent simplicity in the magnetic circuit, SRMs are highly re-

liable. Torque generation in a SRM is based on variations of the magnetic reluctances.

Double Stator Switched Reluctance Machines (DSSRM) have demonstrated higher torque

densities compared to the conventional SRMs [1]–[3]. This improvement is a result of

† Xin Li is currently a graduate student at Missouri University of Science and

Technology, Rolla, Missouri 65409 USA (email: xlg66@mst.edu).
†† Pourya Shamsi is currently with Missouri University of Science and Technology,

Rolla, Missouri 65409 USA (email: shamsip@mst.edu).
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a superior magnetic structure that increases the aligned to non-aligned reluctance ratio.

However, the increased nonlinearities render the conventional current control methods

ineffective. On the other hand, in order to achieve higher speed ratio, the average values of

inductances in a DSSRM are orders of magnitude lower compared to induction machines.

This is to ensure fast rise times at the firing angles as well as low tail currents. Therefore,

current regulation in a SRM represent technical challenges. Hence, highly dynamic control

methods are required to ensure fast tracking of the reference currents.

Conventionally, hysteresis current control methods have been incorporated to guaran-

tee fast tracking of the reference current in SRM applications. However, in the case of a

high power, high speed ratio DSSRM for automotive applications, the phase inductances

are small. Therefore, fast switching frequencies are required to maintain an acceptable

current ripple in each phase [4]–[6]. On the other hand, in a high power motor drive, the

switching frequency is limited by the commercially available semiconductor switches.

Various advanced control approaches have been researched for current control of a

SRM. Predictive control methods have been widely used in power electronics applications

[7]. MPC has been utilized for control of a SRM [8], [9]. Moreover, adaptive control

methods have been utilized to cope with nonlinearities in SRM drives [10]. Adaptive

predictive controller has been utilized for high performance control of nonlinear systems

[11]–[13].

An adaptive model predictive current control method for DSSRM current control is

proposed in this paper. In the first section, a MPC is developed using the model of a

DSSRM. This receding horizon control method is designed to eliminate the current error

in one switching cycle. Furthermore, in order to cope with the time varying inductances

of a DSSRM, Lyapunov adaptive estimator is adopted to follow motor parameters using

real-time calculations. Afterwards, simulation and experimental results are provided to

demonstrate the effectiveness of the proposed controller.

II. MODEL OF THE DSSRM

This paper studies a 3-phase 8/12 DSSRM. The cross section of this motor is il-

lustrated in Figure 1. The model of a DSSRM is similar to the model of conventional

SRMs. Hence, the dynamic equations for one phase of a DSSRM can be expressed as
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Fig. 1. Cross section of a 8/12 DSSRM.

v (t) = Ri (t) +
∂Ψ (i (t) , L (θ, i))

∂t
= Ri (t) + L (θ, i)

di (t)

dt
+ i (t)

∂L (θ, i)

∂t
(1)

where R represents phase resistance which is known and considered as a constant. Ψ(t),

v(t), and i(t) are the flux linkage, phase voltage, and phase current, respectively. L(θ, i)

is the inductance of the motor which is nonlinear with respect to the amplitude of the

current and the phase angle of the rotor (i.e. θ). Defining the rotor speed as ω, (1) is

simplified as

v (t) = i (t)

[
R + ω

∂L (θ, i)

∂θ

]
+ L (θ, i)

di (t)

dt
(2)

Moreover, the inductance profile of a SRM can be estimated using Fourier series as [14]

L (θ, i) = c0 (i) + c1 (i) cos (8θ) + c2 (i) cos (16θ) (3)

where

4c0(i) = La(i) + 2Lm(i) + Lu(i) (4)

4c1(i) = −2La(i) + 2Lu(i) (5)

4c2(i) = La(i)− 2Lm(i) + Lu(i) (6)
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Fig. 2. Variations of the inductance coefficients as a function of the phase current.

and La, Lm, and Lu are aligned, mid-point, and unaligned inductances of the motor

as shown in Figure 2. In order to optimize the MPC for digital implementation, using

z-transform, the model in the discrete-time domain can be derived as

I (k) =
V (k)Tm + V (k − 1)Tm

G(k)
+
I(k − 1) (4L(θ, I(k))−G(k))

G(k)
(7)

where

G(k) = 2L(θ, I(k)) + TmR + ω(k)Tm
∂

∂θ
L(θ, I(k)) (8)

and I(k) and V (k) are current and voltage at the k-th sample time. Tm is the sampling

interval (i.e. reciprocal of control frequency). L(θ, I(k)) is the inductance at the I(k).

This value is a function of the current and phase angle of the motor. dL(θ, I(k))/dθ is

the rate of the variations in the inductance with respect to variations of the rotor angle.

III. CONTROLLER DESIGN

A. Model Predictive Current Control

The topology considered for the converter of each phase is shown in Figure 3. The

predictive controller gives the switching signals for upper bridge, S2. The lower switch,

S1, is controlled based on the rotor position and operating mode of the machine. In this

case, the winding current is controlled in soft chopping mode by predictive controller
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Phase

D1

S1 D2

S2

Fig. 3. Converter circuit topology for each phase.

during the conduction band to produce torque. The phase is turned off in hard chopping

mode to guarantee a fast negative slope for the current. In general, Model Predictive

Control (MPC) of the current of each phase can be calculated using

arg min
V (k+1)

J :=
N∑
i=1

ci(I
ref − I(k + i))

2
(9)

with no cost for the input and with the constraint of (7). Also, in order to reduce the

processing requirements, an assumption of V (i + 1) = V (i) is added as a constraint.

By increasing the strength of cN , the voltage of each step can be estimated without a

requirement for dynamic optimizations. This can be modeled by reducing the apparent

sampling time for the MPC. By considering a sampling time of NTm, a single step model

predictive control is derived with an optimized input of

V (k + 1) ' Iref
[
R + ω(k)

∂L(θ, Iref )

∂θ

]
+ fm(Iref − I(k))L(θ, I(k)) + V c (10)

Where fm is 1/(TmN) and V c is to compensate for the voltage drop of the converter. A

simplified MPC is applied here to reduce the processing requirements and provide more
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Fig. 4. The proposed control strategy.

immunity to the noise. If a single-step MPC is implemented (i.e. N = 1), the derivative

term will lead to amplification of the noise. However, by reducing the strength of the

derivative with a factor of N , better immunity to the sampling noise is achieved. Hence,

if the control objective is to achieve Iref , which is the reference current given from speed

loop controller, at the N -th switching period, V (k + 1) is the voltage that needs to be

applied to the motor. Therefore, a basis for a model predictive controller is developed.

B. Adaptive Control

The motor inductances are affected by saturation of the magnetic core. Moreover, the

accurate dynamical measurement of the phase inductance represent technical challenges.

Significant portion of the variations of the model is due to aging of the system, high

temperatures, and saturation of the machine. Fortunately, the frequency of these variations

are small. It should be noted that the high frequency variations are modeled using

the Fourier and Taylor series representation of the sinusoidal inductance profiles and

saturation of the coefficients, respectively. However, the actual inductance is different

from the calculated inductance using the Taylor and Fourier series. Inductances can be

measured in real-time using high frequency current injection into phases of the SRM.

However, this method requires high processing power as well as accurate measurements.

In this section, an adaptive observer is integrated with the MPC to track the low frequency

variations of the model.



10

Based on

di (t)

dt
= −i (t)

R + ω∂L(θ, i)/∂θ

L(θ, i)
+

v (t)

L(θ, i)
(11)

the two variables can be defined as

a (t) = −R + ω∂L(θ, i)/∂θ

L(θ, i)

b (t) =
1

L(θ, i)
(12)

and (11) can be simplified as

di (t)

dt
= a (t) i (t) + b (t) v (t) (13)

It is assumed that the settling time of the current is much faster than the frequency of

variations of the inductance. Furthermore, adaptive controller will be selected to operate

much slower than the frequency of variations of the inductance due to the rotor position

(i.e. rotor speed). Also, it is sufficient to develop the adaptive estimator only for one phase

of the motor. To ensure stability of this model, estimation will be limited to periods where

a(t) < 0. Then an observer model for the physical system can be assumed as

d̂i (t)

dt
= ao (t) e (t) + â (t) i (t) + b̂ (t) v (t) (14)

where e(t) = î(t) − i(t) is the error of the estimation. ao(t) is the initial parameter of

observer, â(t) and b̂(t) are parameters to be estimated. Since a(t) and b(t) are periodic

functions based on the inductance profile of the machine, it is assumed that the variations

from the model are only in the form of gains and so

a (t) = kaam(t), â (t) = k̂aam(t) (15)

b (t) = kbbm(t), b̂ (t) = k̂bbm(t) (16)

where k̂a and k̂b are the parameters to be estimated while am and bm are assumed to be

known similar to the introduced parameters in (12). Then the observer model is rewritten

as

d̂i (t)

dt
= am (t) e (t) + k̂aam (t) i (t) + k̂bbm (t) v (t) (17)

Hence, the error satisfies the differential equation

de (t)

dt
= am(t)e(t) + (k̂a − ka)am(t)i(t) + (k̂b − kb)bm(t)v(t) (18)
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and with adaptive law candidates

dφ(t)

dt
=
d(k̂aam(t))

dt
= −γ1am(t)e(t)i(t)

dΨ(t)

dt
=
d(k̂bbm(t))

dt
= −γ2bm(t)e(t)v(t) (19)

The justification for the choice of the adaptive laws (19) is based on the Lyapunov

function candidate [15]

V (e, φ, ψ) =
1

2
[e2(t) + φ2(t)/γ1 + ψ2(t)/γ2] (20)

V (e, φ, ψ) is a quadratic form and is positive-definite. Evaluating the derivative

dV

dt
= am(t)e2(t) < 0 (21)

As it was mentioned before, am(t) is periodic and is greater than zero for a portion of

the period. However, that portion corresponds to the generating mode of DSSRM. This

adaptive controller will be deactivated during phase angles corresponding to generation

mode. Therefore, it can be guaranteed that this controller will only operate when am(t) <

0. Therefore, the adaptive observer is suspended during the generating conduction band.

As a result, the adaptive law can be corrected as

dφ

dt
= −γ1am(t)e(t)i(t)w(t) (22)

dψ

dt
= −γ2bm(t)e(t)v(t)w(t) (23)

where

w(t) =

 1 am(t) < 0

0 am(t) ≥ 0
(24)

hence, dV/dt ≤ 0 and V (e, φ, ψ) is a Lyapunov function. For digital implement, above

adaptive laws are transformed to discrete form

φ(k) = φ(k − 1)− γ1Tmam(k)e(k)i(k)w(t) (25)

ψ(k) = ψ(k − 1)− γ2Tmbm(k)e(k)v(k)w(t) (26)

IV. RESULTS

In this section, we will validate the proposed method using various simulations and

experimental analysis.
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Fig. 5. Simulation results using a hysteresis current control.

Fig. 6. Simulation results using the proposed MPC.

A. Simulation Results

In this section, it is assumed that a known reference current (i.e. Iref ) is an input to

the current controller. The control block diagram is shown in Figure 4. This controller is

simulated in the MATLAB for a DSSRM designed specifically for automotive applica-

tions. This motor has an inductance profile that is shown in Figure 2. The maximum input

voltage and currents are 700 V, and 600 A respectively. Figure 5 illustrates the simulation

results using a hysteresis current controller. It can be observed that the current ripple is

unacceptable for a low audible noise, low torque ripple operation of the machine. This

is due to very low phase inductances in combination with a high dc bus voltage. These

conditions are required to achieve a wide speed ratio that is mandatory for automotive
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Fig. 7. Simulation results for estimation of a(t).

Fig. 8. Simulation results for estimation of b(t).

applications. Figure 6 demonstrates the performance improvement using the proposed

MPC-based current controller. The reduced torque ripple will increase the efficiency,

reduce the audible noise, and reduce the torque ripple of the DSSRM. Moreover, lower

stresses over the DSSRM as well as the drive system introduces longer life-time for this

automotive traction system.

Using an adaptive observer, the DSSRM dynamic parameters are identified and tracked

as shown in Figure 7 and Figure 8, in which â(t) and b̂(t) is convergent to a(t) and b(t)

respectively. In order to avoid unstable starting of system, it is recommended that the

observer results are gradually implemented to predictive controller until the estimation

error converges to zero within several cycles.
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Fig. 9. The experimental test setup.

B. Experimental Results

the simulations were performed for a DSSRM for automotive applications, the exper-

imental results are measured from a 0.5 HP 3-phase 12/8 SRM. This is due to a delay

in manufacturing of the DSSRM. However, the results are promising and the proposed

method can be applied to the DSSRM. In this test setup, the SRM is connected to a dc

motor. Torque of the dc motor is controlled using the field current. This test setup is

shown in Figure 9. The experimental results are measured from a drive system with a

switching frequency of 1.5 kHz. Each phase of the motor is controlled with a different

current control strategy to illustrate the effectiveness of MPC in comparison with the

conventional methods. Results from this test are illustrated in Figure 10. Phase a of

this motor is controlled using the proposed MPC with N = 3. Low current ripples are

observed for this phase. Phase b is controlled using hard-chopping. It can be observed

that the current ripple is much larger. Phase c is controlled using soft-chopping. Although

the current of this phase is better than phase b, the ripples are higher than the ripples of

phase a. Hence, model predictive current control of a switched reluctance machine can

significantly improve the current ripple.
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Fig. 10. Measured signals from a 3-phase SRM.

V. CONCLUSIONS

In this paper an adaptive model predictive control scheme was introduced. Due to a

complete access to the model of the DSSRM, this paper implemented a model predictive

control strategy for current control of the DSSRM using the exact inductance profile.

In order to compensate for aging and inductance variations due to high temperatures

and imperfect manufacturing, an adaptive observer was integrated with the MPC to

follow the inductance variations of the machine. Simulation and experimental results

demonstrated the performance improvement for this drive system. In conclusion, model

predictive current control of a switched reluctance machine can significantly improve the

current ripple while maintaining the high dynamics required during the activation and

deactivation of each phase.
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II. MODEL PREDICTIVE CURRENT CONTROL OF SWITCHED

RELUCTANCE MOTORS WITH INDUCTANCE AUTO-CALIBRATION
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Abstract

This paper investigates application of an unconstrained Model Predictive Controller

(MPC) known as a finite horizon Linear Quadratic Regulator (LQR) for current control of

a Switched Reluctance Motor (SRM). The proposed LQR can cope with the measurement

noise as well as uncertainties within the machine inductance profile. Due to very low

phase inductances of high-speed high-power SRMs, traditional delta modulation (fixed-

frequency hysteresis) current controllers suffer from large ripples and are not suitable for

such SRMs. Hence, application of MPC for Pulse Width Modulation (PWM) drive of

these machines is of interest. In this paper, first a practical MPC scheme for embedded

implementation of the system is introduced. Afterwards, Kalman filtering is used for state

estimation while an adaptive controller is used to dynamically tune and update both MPC

and Kalman models. Hence, the overall control structure is considered as a stochastic

MPC with adaptive model calibration. Lastly, simulation and experimental results are

provided to demonstrate the effectiveness of the proposed method.
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I. INTRODUCTION

Conventionally, induction machines (IM) and permanent magnet motors (PM) are

widely employed in electric vehicles (EV) [1] and air conditioning (HVAC) systems [2].

Some advantages of these machines in comparison with SRMs include simplicity of the

drive and low acoustic noise. SRMs are mostly used for specialty applications including

safety critical applications and high speed drives [3], [4]. Due to recent reductions in the

cost of power electronics and superior properties of SRMs including rugged construction,

low manufacturing costs, wide speed range, and high reliability, SRMs are becoming

viable candidates for replacing IMs and PMs in variable speed drives [5]. In particular,

double stator switched reluctance motor (DSSRM) has shown superior performance in

power density which exceeds IM benchmarks while maintaining a low acoustic noise

operation which makes this machine a candidate for the traction drive of future EVs [6].

SRMs operate based on complete switching of the magnetic field within each phase

of the motor. Therefore, unlike IMs and PMs where the field variations correspond with

a smooth sinusoidal functions, in SRMs, these variations occur in the form of a train of

pulse. In order to provide the required sharp edges in this pulse train, a sufficiently large

ratio between the dc bus voltage and the phase inductance is demanded. Maximum dc bus

voltage is limited to the availability of a high voltage source as well as limitations induced

by insulation classes and existing standards. Hence, in many practical applications, the

phase inductance is used as a design parameter for controlling the maximum speed of the

machine and maintaining the required pulse edge sharpness. Based on this introduction,

it is expected to observe low phase inductances in high-power high-speed machines.

Unfortunately, in high power applications, the maximum switching frequency of the

semiconductor switches is limited by the switch technology. Hence, the drive system

encounters a technical challenge in offering low phase current ripples for low inductance

SRMs under limited switching frequencies.

Drive of SRMs has been a significant research topic with a variety of drive objectives

such as position sensorless drives [7], [8], torque ripple reduction [9], and automotive

drives with a wide speed range [10]. To ensure accurate tracking of the reference torque

and current signals, an accurate current controller is of interest.
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As a widely employed solution for SRMs, hysteresis controller (or bang-bang control)

[11] has been effective in regulating the phase currents with a good dynamic response.

However, this controller suffers from variable switching frequencies which leads to higher

electromagnetic interferences. Also, ideal hysteresis control is not applicable as the

maximum switching frequency is limited by the thermal response of the semiconductor

technology. Hence, a practical hysteresis control has an upper cap for this frequency.

Therefore, in many applications, this controller is implemented with the comparisons

performed at fixed sample times and is known as a fixed frequency delta modulation.

This approach will introduce high ripples in low inductance applications [12].

For this reason, research has been investigated to find alternative controllers with

a fixed switching frequencies mostly by utilizing a PWM unit. A common approach

for PWM current control is by incorporating a PI controller, however, as SRM winding

inductance is inherently dependent on the phase current and rotor position, it is difficult

to design PI parameters which well fit all operation conditions without any additional

effort. Furthermore, a PI controller is not sufficiently fast to deliver sharp current pulse

edges. Research for current control of SRMs include improved hysteresis control [13],

improved PI control [14], [15], sliding mode control [11], model predictive control [16]–

[18], and non-conventional methods such as neural networks [19]. Among these, MPC is

a promising methods to handle the non-linear magnetic characteristic of SRMs, provide

fast response, and maintain a fixed switching frequency.

MPC or receding horizon control offers good transient and fast tracking response.

However, it has a high computational burden and requires accurate knowledge of the

model. Various implementations of MPC have been reported in the power electronic

literatures. Some common methods are Finite Control Set Model Predictive Control (FCS-

MPC) [20] or Direct MPC [21]. FCS-MPC has gained a significant attention in the recent

literatures on motor drives. Due to the finite number of possible circuit configurations in

a power converter, it is possible to enumerate all feasible switching states for upcoming

steps. Afterwards, by evaluating the cost function, the optimal control input is selected.

FCS-MPC has low computational burden when predictive horizon is short. For motors

with a neutral point and H-bridge drive topologies, methods like FCS-MPC perform well

and provide a pattern similar to that of a PWM on each phase. However, this approach is
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not applicable to SRMs. In SRMs, there are no significant interactions between different

phases and hence, FCS-MPC suffers from current ripples as a fixed-frequency delta

modulation.

Another approach is the single-step predictive control, or so-called the deadbeat con-

trol with PWM where the input vector is selected by solving the receding horizon problem

for only a single step. This approach offers a straightforward closed-form expression and

is easy to combine with other control strategies. However, a drawback of the deadbeat

control is that it is sensitive to load variations, vulnerable to measurement noise, and

cannot deliver multiple objectives. In addition to these common MPC methods, some

other MPC approaches have been introduced in the literature such as the explicit MPC

which is solved by multiple offline optimizations and is enforced using a lookup table

[22], and the adaptive MPC which uses self-tuning techniques for model correction and

calibration [23].

One of the main challenges in industrial deployment of a MPC current controller

is the uncertainty of the model. The controller of a motor drive has feedbacks from

current sensors such as resistor-based voltage sampling or Hall-effect transistors which

contain a significant amount of noise and disturbances. These noises and disturbances

often generated by electromagnetic interferences, zero drift, or gain drift and nonlinearities

due to temperature variations [24]. In addition, a technical challenge in implementation

of a MPC scheme for SRM is the inherent magnetic saturation during normal modes

of operation. Unlike IMs, a SRM can have local magnetic saturations in currents below

the nominal value. This effect is worsened in the +presence of eddy currents which are

frequency dependent [25]. Hence, perturbations in the inductance profile of SRMs are a

function of current, temperature, switching frequency, and rotor speed.

In this paper, a model predictive control with Kalman filtering and inductance profile

auto-calibration is presented, which aims to address the introduced issues surrounding

SRM current control. In particular, a tracking MPC is applied for current control and

regulation in the machine. Kalman filters are used for state estimation by minimizing

the influence of measurement noise. In addition, both MPC and Kalman filter parameters

are updated dynamically using adaptive techniques to maintain an accurate model of the

system. After analytical modeling, the proposed strategy is simulated. Lastly, experimental
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Fig. 1. The topology of an asymmetric bridge inverter.

results are provided to validate the proposed techniques.

II. MODEL PREDICTIVE CONTROL OF SRMS

Without loss of generality, a three phase 12/8 SRM is considered as the plant.

However, the discussion results can be readily used in other SRMs as well. Figure 1

demonstrates the topology of a widely used asymmetric bridge for SRM drives. Unlike

[26], in this topology, each phase of the SRM is controlled individually which eliminates

any concerns regarding the deactivation of other phases. In this section, first two standard

implementations of MPC in the form of LQRs are introduced, then a stochastic LQR is

incorporated for SRM current control.

A. Dynamic Model of a SRM

In various SRM structures, the mutual inductance between adjacent phases are negli-

gible. In order to derive a simple MPC scheme with low computational cost, the mutual

inductance between phases are neglected. With this assumption, the flux linkage of a

single phase of the machine is

dψ (t)

dt
= −Rs

ψ (t)

L (t, ψ (t) , θ)
+ v (t) (1)

where Rs is the phase resistance. To include saturation, L(t, ψ(t), θ) is the nonlinear

position dependent inductance of each phase. v(t) is the input voltage and the current

can be calculated as i(t) = ψ(t)/L(t, ψ(t), θ). For a digital implementation, the SRM

model is derived in the discrete-time domain using the forward method as

ψk+1 =

(
1− Ts

Rs

L(k, ψk, θ)

)
ψk + Tsvk (2)
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where Ts is the sampling time. In using the converter shown in Fig. 1, only one switch of

each bridge is controlled using Pulse Width Modulation (PWM). For instance, during the

operation of the phase a, S1 is active while S2 has a duty cycle of dk ∈ [0, 1]. Therefore,

each phase can generate a voltage in the set of [0, Vdc]. PWM control of the motor during

the turn-off period is not required. During the turn-off period, the maximum negative

voltage is generated by turning off both switches which corresponds to −Vdc. Hence, in

(2), vk = dkVdc. Also, since the control is much faster than the variations due to the rotor

speed, it is assumed that θ̄k = θk and L(k, ψk, θ̄k) ' L(k, ψk) which is simply denoted as

Lk. This inductance is inherently periodic due to the mechanical structure of the machine.

Depending on the number of rotor poles, the period will change. For standard machines,

this period is often π/4 or π/3. Due to the periodic nature, the inductance of the machines

can be represented using Fourier series such as [12]

Lk = l0(ik) + l1(ik)cos(4θ̄k) + l2(k)cos(8θ̄k) (3)

where the Fourier coefficients l0(ik) through l2(ik) are calculated using
l0(ik)

l1(ik)

l2(ik)

 =


0.25 0.5 0.25

−0.5 0 0.5

0.25 −0.5 0.25



la(ik)

lm(ik)

lu(ik)

 (4)

where la(ik), lm(ik), and lu(ik) are the inductance at fully aligned, midway, and un-

aligned positions of the rotor under phase current of ik, respectively. Unfortunately, these

parameters change during operation of the machine as a result of temperature variations

and aging. Hence, a method for adaptive estimation of these parameters is proposed in

the next section. An example plot of these parameters for the machine under study is

depicted in Fig. 2.

Model of the SRM can be summarized as ψk+1 = akψk + bkdk

ik = ckψk

(5)

where ak = 1 − TsRs/Lk, bk = TsVdc, and ck = 1/Lk. This open-loop model is stable,

reachable, and observable. Using the flux-linkage model in opposite to a current-based

model avoids derivative of the inductance with respect to position and time which can

lead to peaks due to noise and calculation error.
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Fig. 2. Variations of the base inductance parameters as the function of phase current.

B. The Matrix Form of the Controller

MPC is a form of sub-optimal control which uses the model of the system to generate a

sequence of future control actions for a finite prediction horizon under some constraints.

MPC is often used in tracking applications. Also, a distinctive feature of MPC is the

recalculation of the optimal input for each step of the control. Although the optimization

includes multiple steps in the time horizon, only the immediate control input is used

and future inputs are recalculated in upcoming sample times. In general, objectives are

in the form of quadratic cost functions and constraints include the model of the system

and boundaries on the input and states. To relax practical implementation of MPC, in

this paper, mutual inductances were neglected. Hence, the model of SRM contains one

linear differential equation and the objective function is in the form of a quadratic cost.

Output of the MPC is the duty cycle for soft-chopping of the asymmetric bridge converter.

Hence, the input has an inherent clamping function which limits it to the set of [0, 1].

Since the goal of this paper is a practical implementation of the MPC, some assump-

tions are made. First, the objective function is selected as a sum of a quadratic function of

the tracking error and a quadratic input cost function. Also, to reduce the computational

burden, no additional input or state constraints are considered. It should be noted that

a power converter has an inherent input constraint of d ∈ [0, 1]. However, if a proper

input cost matrix is selected, the input will remain in this boundary and will only exceed

this boundary when a large tracking command is exerted. For such scenarios, the input

is clamped to the available boundary and is no longer optimal. However, in a practical

application, this sub-optimality occurs in a small number of steps and is negligible. In

return, the reduced complexity is of interest for practical deployment of the controller.
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Elimination of any further constraints (other than the model itself) converts the MPC to

a finite horizon LQR problem.

Traditionally, the matrix form of MPC was used as the control scheme. Examples

include dynamic matrix control and a wide range of problems were solved using this

approach [27]. Given a predictive horizon of Hp and a control horizon of Hu ≤ Hp, the

flux linkage model can be expressed as a known portion ψk and an unknown duty cycle

vector Dk = [dk|k,· · · , dk+Hu−1|k]T . If the inductance variations are neglected for the time

period of t ∈ [kTs, (k+Hp)Ts] (assuming a small sampling time, low mechanical speed,

and a small predictive horizon), then the behavior of the system during the prediction

horizon can be expressed as an augmented system of

ψ̂k+1|k
...

ψ̂k+Hu|k
...

ψ̂k+Hp|k


=



ak
...

aHu
k

...

a
Hp

k


ψk +



bk 0 · · · 0
... . . . . . . ...

bka
Hu−1
k bka

Hu−2
k · · · bk

...
... . . . ...

bka
Hp−1
k bka

Hp−2
k · · ·

∑Hp−Hu

j=0 bka
j
k


Dk (6)

and the current is estimated as [̂ik+1|k,· · · , îk+Hp|k]T = IHp ⊗ ck[ψ̂k+1|k,· · · , ψ̂k +Hp|k]T

where I is the identity matrix and ⊗ is the Kronecker product. This augmented system

can be modeled as Ψ̂k = Akψk + BkDk and Îk = CkΨ̂k. Additionally, the quadratic

cost function considered is JHp|k = (Îk − I∗)TQ(Îk − I∗) + DT
kRDk where Q and R

are the weight factors and I∗ is the reference signal. In tracking applications, the input

often has a non-zero mean. Hence, costing the input can reduce the accuracy of the

control. Therefore, in some applications, JHp|k = (Îk − I∗)TQ(Îk − I∗) + ∆DT
kR∆Dk

where ∆Dk = Dk −Dk−1. In this paper, Dk is directly used for calculating the cost and

observed results are satisfactory.

By substitution and expansion of the augmented model in the cost function, the cost

function can be written as

JHp|k = DT
k

(
BT

k C
T
k QCkBk +R

)
Dk + δTkQδk − 2Tr

(
DT

kB
T
k C

T
k Qδk

)
(7)

where δ = I∗ − CkAkψk is the tracking error. Since the problem is convex, the solution

can be simply calculated by setting ∇Dk
JHp|k = 0 as 2

(
BT

k C
T
k QCkBk +R

)
Dk −
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Tr
(
2BT

k C
T
k Qδk

)
= 0 and the optimal vector is

Dk = [BT
k C

T
k QCkBk +R]−1BT

k C
T
k Q[I∗ − CkAkψk] (8)

and lastly, dk|k is applied to the system. This is equivalent to a single step recursive LQR

on the augmented system. Although the derivation of the problem was simple and no

dynamic programing was needed, the matrix inversion required for this input cannot be

calculated easily.

If R = 0 and the horizon is set to unity, the algorithm is simplified and the MPC is

transformed into the deadbeat control. In order to reduce the sensitivity of this deadbeat

control, artificial sampling steps can be used (as introduced in [12]). In this approach,

inputs are assumed to be constant over a number of m steps (or in the signal processing

language, the actual sampling frequency is reduced by a ratio of m). If m = Hp, dk|k =

(1−ak)(I∗−ckaHp

k ψk)/(bkck(1−akHp)). The main purpose of this method is to minimize

the required number of calculations while maintaining robustness to the noise.

C. Recursive Implementation of the Controller and Sub-optimal LQR

In practice and since the system has Markovian property, one can utilize standard

dynamic programming to solve the problem backward in time. If the Markovian property

does not hold, then the principal of optimality will not be met. In such conditions, one can

often augment the state space to convert the system into a Markovian system. Examples

of such systems include delayed control problems.

Results from this approach is similar to the original matrix form while the compu-

tational burden is reduced. Additionally, a simplified version is proposed for the SRM

model. First, instead of augmenting the model and calculating the input vector as a single

step LQR, the input can be calculated backward in time. Since the model of the SRM is

scalar, this approach provides a simple solution ideal for practical implementations. In this

approach, for the time period kTs to (k+Hp−1)Ts the inputs dj for j ∈ {0,· · · , Hp−1}

are calculated as

dk+j|k = Mj[uj+1 − Sj+1akψk+j|k] (9)

Mj = [bTk Sj+1bk +R]−1bTk (10)
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Sj = cTkQck + aTk Sj+1[I − bkMjSj+1]ak (11)

uj = aTk [I − bkMjSj+1]
Tuj+1 + ckQi

∗
k+j (12)

SHp = cTkQck, uHp = cTkQi
∗
k+hp

(13)

where the sequences of Mj and Sj can be calculated for different angles and currents

(for which the matrices ak and ck change) and stored in a table. These sequences can

be re-calculated every time the inductance profile is updated. This approach requires

more memory and in return, provides less computational burden. Two simplifications are

possible in SRM drives.

II.C.1) Option 1: In SRM applications, the input reference needs not to vary during a

control step as the firing angles can be adjusted to achieve the desired behavior. Variations

of the reference will occur during the turn-off and turn-on periods. Therefore, instead

of having a time varying sequence of i∗j , the reference input can be constant during one

control step and be updated for the next step. Using this simple approach, the uj sequence

can be calculated at a lower frequency (every time the inductance profile is updated) and

only dk|k is calculated for every control step.

II.C.2) Option 2: In an additional level of sub-optimality, the tracking problem can be

reduced to a settling problem. Define the error as εk+j|k = i∗/ck−ψk+j|k then εk+j+1|k =

akεk+j|k − bkdk+j|k − (1− ak)i∗/ck. Now, in a particular case of SRM applications, one

can notice that (1−ak)/ck = RsTs ' 0. Then, the new model has only one input and can

be studied as a settling LQR problem. Hence, the control sequence uj is eliminated from

(9)-(13) and the processing burden is reduced. Hence, dk+j|k = MjSj+1ak(i∗/ck−ψk+j|k)

where Mj and Sj are calculated as before. In practice, no significant difference between

the performance of this simplification and the original LQR implementation is measurable.

D. Stochastic MPC and State-Estimation

A deterministic MPC was developed for SRMs in the prior section. In order to

convert this MPC to a stochastic MPC both in model and inputs, further additions are

required. In the first step, a Kalman estimator is developed to reduce the influence of

stochastic sampling noise and improve the state estimation. In the next section, a system
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identification approach will improve robustness of the proposed control to stochastic

model variations.

Model of the SRM can be extended to include the stochastic noise as

ψk+1 = akψk + bkdk + gkWk (14)

ik = ckψk + hkMk (15)

whereWk andMk are zero-mean process and measurement noises, respectively. It should

be noted that although this model is scalar, the following analytical studies are written

in the general matrix form. Therefore, in that case of the matrix form, the gain matrices

are written as Gg and Hk where Gk = Ḡk ⊗ gk and Ḡk = [Gij]k = ai−jk Ii≥j where Ix is

the indexer function (Ix = 1 if x is satisfied) and Hk = IHp⊗hk where IHp is an identity

matrix of size Hp. Based on this model, the optimal input in (8) is no longer promising

since ψk is a random variable and can contain the measurement noise. To ensure high

performance operation of this controller, the expected value of the initial state should be

used as E[ψk].

To mitigate the measurement noise, one can calculate the empirical mean using a large

number of samples. However, this approach is not feasible for practical implementations.

In this paper, a Kalman filter is incorporated to maintain an estimation of the mean of

ψk. Using Kalman filter and assuming that the last measurement ik is available and the

noise process is a Wiener process, the flux can be corrected as

ψk|k = ak−1ψk−1|k−1 + bk−1dk−1 +Kk[ik − ck(ak−1ψk−1|k−1 + bk−1dk−1)] (16)

where

Kk = P−k c
T
k [ckP

−
k c

T
k + hkσ

2
mh

T
k ]−1 (17)

P−k = akPk−1a
T
k + gkσ

2
pg

T
k (18)

Pk = (I−Kkck)P−k (19)

which can be calculated easily for the model of this paper (it will be reduced to a

set of scalar equations). Kalman parameters Kk and Pk are calculated recursively and

will quickly converge to their steady state values. σm and σp are the measurement and

process noise variances, respectively. In order to optimize the operation of Kalman filter,
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these variances should be close to the physical values. To do so, one can utilize a

separate estimator to calculate these parameters using empirical samples. Additionally, it

is assumed that the added noise is zero-mean. Hence, Kalman filter cannot compensate

for any drifts in the model. In the next section, drifts in the model are compensated using

a separate inductance estimator.

III. INDUCTANCE AUTO-CALIBRATION

MPC will predict the behavior of the system and correct the optimal control input

in every step to ensure fast and accurate dynamic response. However, a limited control

horizon tends to increase the strength of each input. For this reason, in the first level,

the ratio between Q and R matrices limits the excessive inputs by assigning a cost to

the control input. In the second level, a Kalman filter is used to limit the influence of

the noise on the prediction and the control input. However, it is still assumed that the

model of the system is accurate. Otherwise, the prediction itself is no longer valid and

each control output from the MPC guides the physical system to a different path than the

reference tracking signal. Since MPC corrects the control signal in every step, this drift in

the model is tolerable in many applications. However, in this paper, MPC is used mainly

to reduce the current ripples by providing the optimal converter voltage based on the

operation conditions of the machine. Hence, having an accurate model can significantly

reduce the current ripples and provide the desired behavior. For this reason, on the third

layer, a system identification approach is used to estimate the motor inductance and tune

the control parameters for optimal performance.

Inductance variations in a SRM have fast and slow dynamical terms. Fast variations

are caused by changes in the magnetic circuit as a result of rotor movement and changes

in permeability as a result of saturation. These variations are deterministic. Therefore,

the inductance can be represented as a function lk = L(θk, ik) where θk is the rotor

position at time k and i is the phase current. The surface generated by this function in

illustrated in Fig. 3. Slow variations of the inductance which correspond to slow variations

of the function L(., .) are stochastic and are due to aging of bearings, deformations in the

motor magnetic structure, and chemical reactions such as rusting as well as faults such

as inter-turn short circuits within the windings. In this section, an inductor estimation
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Fig. 3. Inductance profile of a 12/8 SRM as a function of rotor position and phase

current.

and identification scheme is introduced to maintain a dynamic knowledge of the function

L(., .). Using this function, optimal operation of the MPC is satisfied.

A discrete time adaptive estimation algorithm known as Recursive Least-Squares

(RLS) is employed to estimate the inductance and eliminate the requirements for a matrix

inversion of the standard Least-Squares Estimator (LSE). To perform the estimation, the

inductance can be calculated directly using measured current samples. However, this

approach requires derivation and is vulnerable to noise. For this reason, similar to the

approach used in MPC, a flux model of the motor is used for derivation of the inductance

profile. To do so, the flux is calculated by integration of the phase voltage. To eliminate

drifts induced by the integration error, the flux is manually set to zero every time a phase

has reached its firing angle. Therefore ψk = Ts
∑n=k−1

n=1 (Vdcdn − R̂sin) = l̂kik where R̂s

and l̂k are the parameters to be estimated. It should be noted that the performance of this

approach is highly influenced by parasitic parameters such as the voltage drop over the

semiconductor switches. To cope with this problem, one can incorporate high frequency

signal injection methods.

After acquiring a new estimate, the table (or discrete function) L(θk, ik) is updated

with the new estimate for l̂k. To do so, it is assumed that the shape of the inductance

profile will not change. Hence, the inductance profile is still calculated using (3) and



31

(4). However, a gain coefficient is added to enforce the impacts of variations in the

total inductance as l̂k = α̂klk = α̂kL(θk, ik). Similarly, the resistance is estimated as

R̂s = β̂kRs. By defining the estimation error ek = ik− îk where ik is the measured signal

(which is filtered for reduction in the sampling noise), then

γ̂k+1 = γ̂k +Gkek (20)

Gk = Fkφk/(1 + φT
kFkφk) (21)

Fk+1 = (I−Gkφ
T
k )Fk/ρ (22)

where γk = [αk, βk]T . ρ ∈ (0, 1) is a discount (or forgetting) factor which controls the

trade-off between the speed of convergence and robustness to noise. Fk is a weight factor

matrix which is calculating the inverse of the training sequence iteratively and F0 > 0.

I ∈ R2×2 is the unity matrix. φk is the regression vector and contains the derivatives of the

estimated output with respect to the estimation parameters as φk = [∂ψ̂k/∂α̂k, ∂ψ̂k/∂β̂k]T

or

φk = [ikLk, Ts

k−1∑
n=1

inRs]
T (23)

Using this method, both inductance and resistance are calibrated on-line. In order to

ensure stability, variations of γk is limited to a closed set containing unity. If Rs is

small, then this term can be neglected and the estimator is reduced to a scalar form

which improves computational burden. Since the current has to be filtered, it is better to

perform this estimation only when the current has been kept constant for a few sampling

steps. In another word, this estimation should be performed while the phase current is

regulated at a certain reference value and during the active region of each SRM phase.

This requirement is easily achieved due to the nature of a SRM drive.

Lastly, this estimator can dynamically tune the model parameters in the MPC and

Kalman filter controllers. The overall block diagram of the proposed scheme is depicted

in Fig. 4. It should be noted that this block is needed per each phase of the SRM. For

instance, in the case of a three phase SRM, three sets of control blocks are needed to

drive the machine.
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Fig. 4. Control block diagram of the overall system.

IV. SIMULATION RESULTS

In this section various simulations are provided to evaluate individual control blocks

shown in Fig. 4.

A. Effectiveness of the Kalman Filter

In this scenario, the inductance estimator is deactivated and the MPC is studied

with a fixed model. Also, performance behavior of the MPC with and without the

Kalman filter is simulated and compared. For this purpose, a Gaussian noise is added

to the simulation model and the behavior of the MPC is analyzed. In this scenario,

two probability distribution functions are generated to represent the distribution of the

current error. These functions are generated using the statistical data collected from the

simulations. Fig. 5 illustrates the results from this study. It can be observed that the

current tracking error is significantly reduced if the Kalman filter is present. It should be

noted that not all variations are due to the noise. In SRM applications, due to the large

amount of current ripples present, accurate estimation of the mean current is a technical

challenge. Hence, even though the system is equipped with a Kalman filter and MPC, it

cannot perfectly track the reference input signal and there will be ripples present in the

measured signals.

B. Cost Function Analysis

In this scenario, 1000 Monte Carlo simulations of the system is performed to analyze

the auto-calibration and Kalman filter. In each simulation, the value of the MPC cost
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Fig. 6. Distributions of MPC objective function values, (a) without Kalman filter and

auto-calibration, (b) with Kalman filter and auto-calibration.

function is stored. In the end, the distributions for the two scenarios are generated and

are illustrated in Fig. 6a and Fig. 6b.
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C. Inductance Profile Adaptation

To validate the RLS inductance profile adaptation, the simulation is started with

a wrong knowledge of profile which is at the 75 % of the actual inductance profile

(25% lower than the motor parameters). Since the resistance is small, it is neglected

and the RLS is reduced to the scalar form as aforementioned. It can be found in Fig. 7

that the RLS coefficient γk is convergent to around 1.33 which exactly compensates the

difference between the pre-loaded and the actual inductance profiles (i.e. 0.75×1.33 ' 1).

Consequently, the inductance profile is corrected by the RLS estimator for MPC and

Kalman filter.

V. EXPERIMENTAL RESULTS

In this section, various experimental results are provided to evaluate the effectiveness

of the proposed method. The experimental setup is developed using a three-phase 0.5

HP SRM, TI TMS320F28377D micro controller, and an asymmetric bridge inverter.

In the first test, the motor is driven with a 20kHz delta modulation (fixed frequency

hysteresis) controller and with a reference current of 3 A. During this test, motor is

rotating at 100RPM which corresponds to low internally induced voltages and higher

ripples. Current measurements for this scenario are illustrated in Fig. 8.

The same test is performed under the proposed simplified LQR control with a sam-

pling frequency of 10kHz (to correspond with a 20kHz delta modulation if a switching

event occurs in each comparison window). Results are illustrated in Fig. 9. It can be

observed that the current ripples are much lower for the same reference current of 3 A

and dc bus voltage of 60 V. Hence, LQR is a good control approach for SRM drives.
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Fig. 8. Current ripples under a 20kHz sample time delta modulation.

Fig. 9. Current ripples for the simplified LQR controller with no inductance profile

adaptation.

In Fig. 9, one can notice a tracking error as a result of the mismatch between the

model and the physical system. By enabling the inductance profile adaptation method

proposed in this paper, this error is reduced as it is depicted in Fig. 10. The remaining

mismatch in the shape of this signal is as the result of curve fitting errors in modeling the

inductance surface using the Fourier and Taylor series with a low number of representative

basis functions.

VI. CONCLUSIONS

In this paper, a model predictive current controller for applications in switched re-

luctance motor drives was introduced. This controller is equipped with Kalman filter

state estimators. Additionally, to cope with model variations, two adaptive gains were

dynamically calculated to compensate for the inductance and resistance mismatch between

the model and the physical system. These adaptive estimators were implemented in



36

Fig. 10. Current ripples for the simplified LQR controller with inductance profile

adaptation.

the form of a recursive least squares estimators. In conclusion, the proposed control

scheme is successful in providing low current ripples and ensuring successful tracking

of the reference current signal in SRM drives. Simulation and experimental results were

provided to evaluate the effectiveness of the proposed controller.
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Abstract

In this paper, a stochastic Model Predictive Control (MPC) scheme for the current

control of Switched Reluctance Motors (SRM) is introduced. This MPC is equipped

with state estimators and is implemented as a recursive linear quadratic regulator for

practical deployments in hybrid vehicle applications. Additionally, a learning mechanism

is developed to dynamically adapt to the inductance profile of the machine and update the

MPC and Kalman filter parameters. The introduced control scheme can cope with noise

as well as uncertainties within the machine nonlinear inductance surface. The introduced

system will benefit from a fixed switching frequency and will offer low current ripples

by calculating the optimal duty cycles using the SRM model. Lastly simulations and

experimental results are provided to evaluate the proposed method.
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I. INTRODUCTION

Recently, Switched Reluctance Motors (SRM) have gained more attention as alterna-

tives to Induction Machines (IM) and Permanent Magnet Synchronous Machines (PMSM)

in Hybrid Electric Vehicle (HEV) applications [1]–[3]. Also, SRMs have been utilized

in HVAC systems, compressors, and many industrial applications where high speed high

reliability machines are of interest [4]–[8]. In particular, due to the simple and rugged

structure of these machines, their cost of manufacturing is relatively low and they have a

very long life-span (in comparison with IMs and PMs). Simple rotor structure eliminates

thermal management concerns regarding the rotor. Also, SRMs are able to operate at

speed ratios of four to six (ratio between the top speed and the nominal speed) which is

much higher than that of PMs. This feature has particularly encouraged electric vehicle

manufacturers to consider SRMs as the traction machine [7].

Traditionally, SRMs were not considered as feasible industrial and commercial so-

lutions for two main reasons. The first reason was the high amount of acoustic noise

generated by these machines. This problem was mitigated by introduction of machines

with lower acoustic noise such as the double stator SRMs [1]. The second challenge

was the higher cost of the drive systems. SRMs require a high number of semiconductor

switches in comparison with IM and PM drives. This problem has been recently mitigated

by the significant reductions in the cost of semiconductor switches and introduction of

new drive topologies such as [3]. Based on these solutions, there has been a growth on

research and commercialization of low power switched reluctance machines.

Unfortunately, high power high speed SRMs which are used in HEV applications

suffer from a third challenge that has to be addressed. Unlike rotational magnetic field

machines, the reference current to each phase of SRM is a train of pulses. Hence, winding

inductances should be sufficiently low to permit large variations of currents in short

periods of time. In high power high speed SRMs, not only this time period is smaller,

but also due to the higher power rating, the peak current is larger. Hence, these SRMs

are designed with low phase inductances. It should be noted that in high speed motors,

to cope with the internal induce voltage source of the machine, a large dc bus voltage is

demanded as well. Therefore, there is a potential for high variations of the current if a
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phase observes the dc bus voltage for a long period of time.

Meanwhile, high current semiconductor switches cannot operate at high frequencies.

For many switch manufacturers, the maximum switching frequency of modules suitable

for 50 to 500 HP drives is limited to 10 to 20 kHz. Hence, conventional hysteresis con-

trollers require a constraint on the maximum switching frequency. Using such controllers,

each phase of the SRM will observe one of the states of +Vdc, −Vdc, or 0 for at least 50

µs in a 20kHz operation which corresponds to large current ripples. For instance, in 2014,

the U.S. department of energy invested in a 100 kW double stator SRM for applications

in a hybrid truck. This SRM is capable of operating up to 10,000 RPM. To do so, this

machine was designed for a dc bus voltage of 600 V and has a minimum inductance

of 200 µH [2]. In low speeds where the internal voltage of the motor is negligible, the

current ripple can be as high as 300 A for a 10 kHz switching frequency using a delta

modulation control method. This amount is equivalent to 75% of the nominal current of

the machine and can render the control of the machine ineffective. Hence, in this paper,

a solution to this problem is offered using a Model Predictive Control (MPC) approach

which will enable utilization of high speed high power SRMs in HEVs using low cost

low frequency semiconductor switches.

Various papers have studied different current control techniques for SRM including

conventional hysteresis control [9], PI controllers [10]–[12], MPC [13]–[15], sliding-mode

methods [16], [17], and methods with integrated estimators [18]. In some applications

similar to the one mentioned previously, fixed switching frequency hysteresis current

controllers (i.e. delta modulation) are not suitable for SRM drive. The major drawback

with this type of control is that the state of the switch cannot be changed faster than a

preset time period which is dictated by the semiconductor limitations. Hence, the phase

current can pass the hysteresis bands with no control. To cope with this problem, methods

that can benefit from Pulse Width Modulations (PWM) are of interest. In such methods,

the controller will generate a duty cycle that can mimic the internal voltage of the machine

plus the additional voltage required to regulate the phase current. Hence, the regulation

is achieved under a fix switching frequency with the ripples much lower than that of a

delta modulation. A traditional approach to achieve this goal is by using a PI controller

in combination with a PWM generator [19]. PI controllers have shown effectiveness in
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variety of power electronics applications and are not model dependent. Although PIs have

been used for SRM current control [10], [12], dynamics of these controllers are not fast

enough to deliver sharp current edges. MPCs are highly dynamic and can be used to

generate a reference duty cycle for the PWM unit [15], [20].

High dependency of the MPC to the model of the plant poses significant technical

challenges in practical implementation of this type of control. In particular, model of

SRM is both current and position dependent which leads to a set of nonlinear time-

varying state equations. Additionally, this model will vary with aging and mechanical

deformations. Hence, to utilize MPC for SRMs, not only the inductance as a function

of current and rotor position is required, but also an estimation technique is needed to

dynamically adapt to variations of this inductance surface. Some efforts are present in the

literature to cope with variations of the model in SRM. For instance, iterative learning

control was studied in [21]. In [20], the inductance profile as a function of current and

rotor position was provided to the MPC. To cope with aging and further variations,

adaptive estimators were incorporated to linearly gain the base inductance surface to

match the new motor parameters. However, the main drawback with this approach is the

inherent assumption that the Taylor and Fourier coefficients in representing the position

and current dependency of the inductance surface remain unchanged. In practice, these

values will change and the surface does not age linearly. For instance, rusting of the SRM

magnetic core can reduce the aligned inductance. However, it has a negligible effect on

the unaligned inductance of the machine. Hence, the shape of the inductance surface will

change over time and a method to estimate the new nonlinear surface is of interest.

In this paper, a new model predictive current control of SRM is presented which

benefits from state estimators using Kalman filters and a model identification unit based

on an on-line inductance surface estimator. In this approach, the nonlinear inductance

surface is locally linearized and the inductance data is recorded in a two dimensional table.

This table is dynamically updated to maintain a knowledge of the true inductance surface

of the machine. First, the principle and objective of a stochastic predictive current control

for SRM is introduced in section II, and then various auto-calibration options are studies

and evaluated in section III. Lastly, the proposed approach is simulated. Experimental

results are provided to evaluate the control scheme.
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II. MODEL PREDICTIVE CURRENT CONTROL OF SRMS

A. Model Formulation and Control

The model of a SRM can be derived based on variations of the current or variations of

the flux. Current based models are good for electrical analysis of the machine. However,

utilization of such models for MPC applications tend to generate inferior results compared

to a flux-based model. This is mainly due to the term corresponding to the derivative of

the motor inductance. In a current-based model, the derivative of the inductance profile

is used which is not completely known in a SRM with stochastic variations of the model.

For instance, if the inductance surface is generated using a table, the derivative of the

inductance will have a lattice form with no useful information. In this paper, a flux-based

model is used to form the MPC as ψ̇t = −Rsψt/Lt + vt + k1Wt

it = ψt/Lt + k2Mt

(1)

where ψ(t) is the flux linkage of a phase of a machine and vt is the input terminal voltage

of the machine. In this model, mutual coupling between different phases of the machine

are neglected (details regarding modeling the mutual flux is available in [22], [23]). Rs

and L(t) are the phase resistance and the phase inductance, respectively. Wt andMt are

standard Wiener processes to model process and measurement noise, respectively. k1 and

k2 are used to tune the variances of the Wiener processes. This model is transformed

into a discrete form using a forward method for digital implementation of the MPC

as ψk+1 = akψk + bkdk + k1Wk and ik = ckψk + k2Mk where ak = (1 − RsTs/Lk),

bk = TsVdc, and ck = 1/Lk where Ts is the sampling period, vdc is the dc bus voltage,

and dk is the duty cycle of the converter for this period.

Another advantage of using a flux-based model is the coefficient ak which is always

within the unit circle (assuming that a proper Ts is selected). However, in a current-

based model, this parameter is outside of the unit circle during the generation mode of

operation.

For now, it is assumed that the model parameters are deterministic. Variations of the

model parameters are studied in the next section. It should be emphasized that Lk =

L(θk, ik) is a function of the current itself. Hence, for now, it is assumed that during
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the control step k, ik which is the measurement at time k is available and the controller

can use this parameter to derive the parameter Lk. Later, a new method is introduced to

compensate for the delays if ik is not available.

MPC or receding horizon control is an attractive control technique for many motor

drive applications [24]. In many motor drive applications, the objective function is in the

form of a quadratic cost and no further constraints other than the model itself is present.

In this case, the problem is known as a finite horizon Least Quadratic Regulator (LQR)

and can be solved using

dk+j|k =Mj[uj+1 − Sj+1akψk+j|k] (2)

Mj = [bTk Sj+1bk +R]−1bTk (3)

Sj = cTkQck + aTk Sj+1[I − bkMjSj+1]ak (4)

uj = aTk [I − bkMjSj+1]
Tuj+1 + ckQi

∗
k+j (5)

SHp = cTkQck, uHp = cTkQi
∗
k+hp (6)

where Q and R are the tracking and input cost matrices, respectively. P is the length of

the control horizon and j ∈ {0,· · · , P − 1}. i∗k+j is the tracking reference signal.

To reduce the effect of the noise on ψk+j|k, Kalman filtering can be incorporated. For

this purpose, if ik is available,

ψk|k = ak−1ψk−1|k−1 + bk−1dk−1

+Kk[ik − ck(ak−1ψk−1|k−1 + bk−1dk−1)] (7)

where

Kk = P−k c
T
k [ckP

−
k c

T
k + hkh

T
k ]
−1 (8)

P−k = akPk−1a
T
k + gkg

T
k (9)

Pk = (I−Kkck)P
−
k (10)

and hence the controller is capable of driving the motor under stochastic measurement

and process noise.
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Fig. 1. Flux linkage within a SRM.

B. Delay Compensation

If there exists a delay between the measurement of ik and the control step k, then

the previous Kalman filter needs to be modified. Such delays occur in many practical

applications if low cost low speed analog to digital converters are utilized or if multiple

samples are used to generate a low noise signal using a finite impulse response filter. In

this case, the most recent information is at time k − 1 which is ik−1. Hence, ψk|k−1 can

be calculated as

ψk|k−1 = ak−1ψk−1|k−2 + bk−1dk−1

+ ak−1Kk−1[ik−1 − ck−1ψk−1|k−2] (11)

and Kk−1 is calculated as before. Now, the controller has an expected knowledge of ψk

based on information state in k− 1. The next step is to get an information regarding the

duo îk and L̂k based on the fact that ψk|k−1 = îk|k−1L̂k and using a prior knowledge on

the magnetics characteristics of the core.

Flux linkage of the SRM as a function of the current is shown in Fig. 1. Based

on the rotor position, the flux linkage curve has to follow a path set by the magnetic

characteristics of the material. Therefore, by using the last two sets of observations, the

expected value of îk can be estimated using a gradient descent method as

îk(0) = ik−2, îk(1) = ik−1 (12)

L̂k(0) = Lk−2, L̂k(1) = Lk−1 (13)

ψ̂k(j) = îk(j)L̂k(j) (14)
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îk(j + 1) = îk(j) + (ψk|k−1 − ψ̂k(j))

× (̂ik(j)− îk(j − 1))/(ψk|k−1 − ψ̂k(j)) (15)

L̂k(j + 1) = L(θk−1|k−1, îk(j + 1)) (16)

where (14)-(16) are calculated repeatedly until |ψ̂k(j) − ψk|k−1| < ε which is the con-

vergence criterion. Although this approach works satisfactory during normal modes of

operation of the SRM or in systems with no inductance surface learning, if large model

variations occur, this approach will not converge to the correct value. Later, it is shown

that if the starting inductance model is not accurate enough or if a significant deformation

occurs, the learning mechanism will start to adapt to the new model based on the newly

observed information. However, this information does not arrive simultaneously and

the inductance model will converge slowly. Hence, there will be times that the flux

linkage model is not monotonically increasing and local minima will appear. Under such

circumstances, a gradient descent approach is no longer satisfactory and will get stuck in

local minima (unless ik, ik−1, and ik−2 are close enough). For such scenarios, heuristic

search algorithms such as multi-tribal differential evolution or multi-agent stair case (hill

climbing) can be used. The goal is to find every minimum of the function, hence, if a

minimum is found, the function in the vicinity of that minimum should be unreachable to

other agents. After finding every minimum and assuming that a proper control sampling

time was selected, the minimum closest to the location of ik−1 is the solution since the

current cannot have large deviations during one Ts period.

III. INDUCTANCE SURFACE LEARNING

A lookup table is a simple method to describe the nonlinear inductance surface of the

SRM. Lookup tables for torque, flux linkage and inductances of SRMs are widely used

in past [25], [26]. In particular, due to the nonlinear nature of the inductance surface in

SRMs, estimating and maintaining the knowledge of this inductance profile is of interest

[27], [28]. MPC is a highly model dependent method and without an accurate knowledge

of the inductance surface, this method can lead to large control errors [29].

Several methods have been proposed for inductance profile auto-calibration or learning

[30]–[32]. One options is to use analytical equations; the model parameters are updated
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Fig. 2. Inductance surface of SRM, (a) the actual surface, (b) a quantized surface to be

stored in the table.

directly and recursively by calculating the controller or observer errors. Due to the pres-

ence of noise in a practical application, it is not easy to tune the auto-calibration algorithm

and to balance the trade-off between the convergence speed and accuracy. Therefore, it is

better to have a separate estimator and not use the main controller to update the estimation

(which can lead to instability of the controller as well). Also, using analytical models

such as Taylor and Fourier series (for instance, in [20]) requires extensive amount of

information to tune the high number of coefficients used. This problem is a multi-input

multi-output regression problem and requires an extensive amount of matrix operations

and inversions. On the other hand, the table-based auto-calibration is a more stable

solution which does not demand a high computational burden as the table entries are

updated individually in a piecemeal manner. The calibration of each element of table is

only driven by the corresponding current and rotor position rather than the entire operation

range feedbacks. The main drawback of this method is the larger memory requirements.

However, cost of fast processors is higher than memory modules and therefore, table

based approach is more appealing to industrial and commercial deployments.

A table containing the knowledge of the inductance surface can be generated by

quantizing the original inductance surface calculated using finite elements analysis of the

SRM. Quantization resolution will control the trade-off between the memory requirements

and accuracy. Fig. 2a illustrates the inductance surface of a 12/8 SRM. To quantize this

surface, a set of currents and a set of angles are selected to form a two dimensional
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grid. The inductance at each node of this grid is recorded in the matrix to form a

quantized inductance surface. The quantized surface of Fig. 2a is illustrated in Fig. 2b.

The procedure of lookup table auto-calibration can be briefly summarized as three steps.

In the first step, the inductance is generated from the lookup table for the MPC. In the

second step, a new inductance value is estimated from prior flux linkage and current

estimations for a local current-rotor position region. lastly, the table is updated with the

new inductance estimation in a filtered manner.

A. Inductance Estimation

A well-known method for on-line inductance profile identification is to inject a high

frequency current into the phase winding and measure the induced voltage amplitude.

However, for high power inverters, it is impossible to inject high frequency currents as the

maximum frequency of switches is limited by the semiconductor technology. A solution

to this problem is to utilize separate high frequency signal injection mechanisms. Another

approach is to use the flux linkage of the machine.

In SRMs, since the flux linkage and current go to zero periodically, the phase flux

linkage may be obtained from the integral of the phase voltages [28].

ψ̂k = ψ0 + Ts

k−1∑
j=1

(Vdcdj −Rsij) (17)

Normally it is assumed that ψ0 = 0 at the beginning of each firing period. A benefit

of using the flux is the integration of the measured signals which acts as a low pass

filter to dampen the zero mean noise of measurements. For further reduction of the

measurement noise, signals can be filtered using finite impulse response filters such as

a moving average filter prior to this integration. The new inductance estimate can be

derived as L̂(θk, ik) = ψ̂k/ik where θk is the position of the motor at the moment of this

calculation. However, this integration is highly influenced by parasitic circuit elements

such as switch and wire voltage drops.

Using any desired method, a new inductance estimate is acquired which will be used

to update the table using a procedure introduced later.
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Fig. 3. Flow of the desired current-position point on the quantized inductance table, (a)

a current sample path with respect to the table, (b) f1 and f2 parameters with respect to

the desired current-position point and table nodes.

B. Table Usage Protocol

Before introducing the update procedure, a protocol for using the inductance table is

introduced. A quantized inductance table is shown in Fig. 3a. In this figure, a sample

current path for one phase of the SRM is shown. Also, a grid of quantized current-rotor

angle nodes are observable which are the locations for individual table entries. To use the

quantized inductance table, one can simply use the data stored in the table entry located

at the nearest current-position node. However, to benefit from a linear interpolation, the

data is retrieved as

L(θ, i) = φ(θ,i)β(θ,i) (18)

where φ(θ,i) = [(1− f1)(1− f2), (1− f1)f2, f1(1− f2), f1f2] defines the location of the

desired measurement with respect to the quantized information where f1 ∈ [0, 1) and

f2 ∈ [0, 1) are the angle and current distances between the desired value and the nearest
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quantized nodes, respectively. These parameters are calculated as f1 = (θ− bθcθstp)/θstp
and f2 = (i− bicistp)/istp where istp and θstp are the quantization resolutions for current

and angle, respectively. bjcq calculates the lower quantized value of j with respect to the

step-size jstp. Implementing this function is very easy on any type of digital controllers.

These parameters are illustrated in Fig. 3b for a sample point of interest of with a current

of 111 A and rotor position of 10.5 degrees.

β(θ,i) = [Lkj, Lk(j+1), L(k+1)j, L(k+1)(j+1)] contains the information of the nodes sur-

rounding the desired point of (θ, i) where k is the index of bθcθstp and j is the index

of bicistp . Using this approach, all four entries surrounding an observation point can be

updated with suitable influence ratios defined by the distances f1 and f2. This approach

will not only improve the accuracy of data interpolation, but also will improve the

convergence performance of the learning mechanism introduced in the following part.

C. Recursive Least-Square Estimation

A discrete time adaptive estimation algorithm known as Recursive Least-Squares (RLS)

is employed to gradually learn the inductance table and eliminate the requirements for a

matrix inversion of the standard least-squares method. To perform the estimation, updates

to the four surrounding nodes derived above can be performed in a learning fashion as

β
(θ,i)
k+1 = β

(θ,i)
k +Gk(L̂(θk, ik)− φ(θ,i)

k β
(θ,i)
k ) (19)

where Gk = Fk[φ
(θ,i)
k ]T/(1 + φ

(θ,i)
k Fk[φ

(θ,i)
k ]T ) and Fk+1 = (I − Gkφ

(θ,i)
k )Fk/ρ is the

weighting matrix where ρ ∈ (0, 1) defines the learning rate. F0 is a positive definite

diagonal matrix. Using this method, β for each rectangular location will converge to a

steady state value which corresponds to the convergence of each table entry.

The overall schematic of the proposed inductance table and learning mechanism is

shown in Fig. 4a and the overall control scheme is shown in Fig. 4b. This scheme is per

phase of a SRM. Hence, a three phase SRM requires three parallel control mechanisms.

In order to reduce the computational and memory burden, one can assume that different

phases of a machine perform similarly, therefore, the inductance table can be shared

between different phases.
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Fig. 4. Control diagrams, (a) inductance table and learning mechanism, (b) the overall

control scheme.

IV. SIMULATION RESULTS

A. Delay Compensation

In this scenario, the effectiveness of a delay compensator block for the MPC is simulated

and studied. A Simulink model is generated for a SRM controlled with the block diagrams

shown in Fig. 4. This model has a control and modulation frequency of 10 kHz and the

simulation step is set to 1 µs. The delay compensator is deactivated for one phase of this

machine. Results comparing the performance of the MPC for these two scenarios are

shown in Fig. 5. It can be observed that the phase with a delay compensator performs

significantly better than the case with no compensation.
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B. Inductance Surface Learning

Although the inductance surface is shown beforehand for a computer based simulation,

in this scenario, the simulation is started with a wrong knowledge of the inductance

profile. This inductance table is shown in Fig. 6a. In order to increase the visibility of

the figure, the inverse of the inductance profile is shown. Hence, the contour value are

in fact (1 mH)/Lk.

In the first step, a reference current of 150 A is selected. Using this reference, the

model is simulated for a period of time. During this period, a phase of the machine

was activated several times and rotor positions ranging within [0, 22.5] were observed

multiple times. In each observation, the new estimate of the inductance was gradually

transfered to the inductance table using (19). Fig. 6b illustrates these data points and the

new inductance table values.

In the next step, the reference is increase to 250 A and data is plotted in Fig. 6c.

It can be observed from this figure that the region of 150 A from Fig. 6a and Fig. 6b

are significantly different and the table has learned the inductance profile corresponding

to 150 A. Additionally, it can be observed from Fig. 6c that the system has learned the

new profile corresponding to the current of 250 A as well. These figures illustrate the

effectives of the proposed algorithm in identifying and learning the true model of the

machine on-line.

In particular, phase current of the SRM for the first four cycles after setting the

reference of 150 A is shown in Fig. 7. It can be observed that the first cycle of operating

at this references has much higher inaccuracies and ripples compared to the fourth cycle.
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Fig. 6. Inductance learning simulation, (a) loaded table, (b) learning for 150 A, (c)

learning for 250 A.
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Fig. 8. Distributions of MPC objective function values, (a) without learning mechanism,

(b) with learning mechanism.

In fact, the mean value of the current during this cycle is higher than the reference of

150 A. This is due to the inaccurate model loaded to the simulation. However, after only

four cycles of operation, the learning mechanism has identified and updated the correct

inductance profile into the table. Therefore, during the fourth cycle, MPC is performing

much better than the first cycle which is visually noticeable. It should be noted that

the loaded data is only 25 % higher than the actual inductance surface. In practice, this

difference might be higher and the system cannot operate accurately without a learning

mechanism.

C. Inductance Learning and Improved MPC

In this section the cost function of the MPC is studied with and without the introduced

inductance learning mechanism. For this reason, 1000 Monte Carlo simulations of the

system is performed with and without the learning mechanism. In each simulation, the

value of the MPC objective function is stored. In the end, distribution functions for the
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Fig. 9. Delta modulation at a fixed sampling rate of 20kHz.

two scenarios are generated and are illustrated in Fig. 8a and Fig. 8b. Based on these

figures, it is observed that the mean and deviations of the cost function is lower for the

case with a learning mechanism. This cost corresponds to a better tracking and MPC

performance.

V. EXPERIMENTAL RESULTS

In this section, experimental tests and measurements are provided to demonstrate the

effectiveness of the proposed algorithms. In the first test, a delta modulation current

control of a three phase SRM at a reference current of 3 A and a speed of 50 RPM

is studied. Current measurements for this test are illustrated in Fig. 9. Based on this

figure, one can observe that a delta modulation approach is not effective in regulating

the current of this machine. Hence, a MPC for generating the reference duty cycles for

a PWM control of the machine is of interest.

Fig. 10 illustrates the implementation of the proposed recursive LQR current controller

with the same reference current and at the same speed. In this scenario, the inductance

table is directly utilized by selecting the closest inductance entry based on the angle and

phase currents. Hence, no interpolation is used for this scenario. It can be observed that

large tracking deviations occur at positions where the controller is switching between

different table entries.

To cope with this problem, Fig. 11 illustrates the same test when the proposed linear

table interpolation mechanism is used. It can be observed that the tracking performance
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Fig. 10. Recursive LQR current control at a sampling rate of 10kHz with no inductance

table interpolation.

Fig. 11. Recursive LQR current control with inductance table interpolation.

is significantly improved with the interpolation mechanism in place.

In the next case study, the speed is increased to 250 RPM. At higher speeds, the

magnitude of the internal induced voltage of the motor is increased. This voltage is highly

dependent on the inductance surface of the machine. To demonstrate the demand for the

proposed learning mechanism, in the first test, the learning mechanism is deactivated.

Hence, the control scheme suffers from a mismatch between the utilized model and the

physical system. Fig. 12 illustrates the measured current control results at this speed.

It can be observed that there is a significant tracking error when the internal induced

voltage is at its maximum.

In Fig. 13, the inductance surface learning and delay compensation mechanisms are

both activated. It can be observed that the performance of the LQR current controller
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Fig. 12. LQR with no inductance surface learning or delay compensation.

Fig. 13. LQR with inductance surface learning and delay compensation.

is improved significantly. These results demonstrate the effectiveness of the proposed

techniques in current control of a SRM.

VI. CONCLUSION

This paper was focused on a mechanism to learn and adapt to the inductance surface

of a switched reluctance motor to perform a model predictive current control of this

machine. This inductance surface was stored in the form of a table to be used with a

model predictive current controller with Kalman state estimators. The learning mechanism

is utilizing a recursive least squares estimator to update individual entries in the SRM

inductance table. Additionally, an interpolation mechanism was introduced to improve the

accuracy of the reconstructed inductance surface using the quantized inductance table.

Also, a delay compensation technique was introduced to cope with measurement delays
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in MPC of a SRM. Simulation results and experimental measurements were provided to

demonstrate the effectiveness of the proposed inductance surface learning mechanism in

increasing the performance of model predictive current control of a SRM.
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SECTION 

2. CONCLUSIONS 

This thesis proposes three papers for model predictive current control of SRM. The 

first paper introduces a improved deadbeat MPC with adaptive estimator for deterministic 

system. If the measurement noise and uncertainty present, the second paper proposes a 

novel MPC current controller for SRM allowing for better decision making. The 

proposed controller composes of several modules for different functions, including long 

range MPC which determines optimal duty cycle for PWM, the Kalman filter for 

reducing the variance of processing and measuring noise, and the RLS with moving 

average for parameters auto-calibration. The functional parts and entire system are 

verified by Monte Carlo simulation, which proves that proposed method is feasible and 

has better performance in statistic terms. One of challenges which are not expanded in 

this paper is that the parameters tuning for MPC, Kalman filter and RLS themselves, 

however, relative discussions can be found in a large number of academic works of past 

decades. The novel MPC current controller for SRM proposed in third paper can cope 

with low inductance SRM which is not suitable for conventional hysteresis type current 

controller. When current measurement noises present, this method can reduce current 

tracking deviations in statistic terms by applying Kalman filter.. Furthermore, this method 
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allows user to guess reasonable parameters and calibrate them during operation when 

accurate inductances are not available due to measurement difficulties for high power 

SRM. The auto-calibration is table-based as the lookup can well fit the nonlinearity of 

SRM, meanwhile, the table-base updating is in piecemeal manner to prevent time-varying 

parameters in adaptive analytical equations which will be influenced in entire operation 

range. 
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