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ABSTRACT 

The principal aim of this thesis is to present a new index 

of performance which when minimized wil I slmultaneouslv optimize 

the system energy and sensitivity function of a multlvariable linear 

control system. 

With this performance index it is usually desirable to 

discriminate between the sensitivity factor and the energy term 

by weighting them differently. Two types of weighting factors 

are presented. 

Since it is not easy to minimize that performance index for 

alI types of problems, further research fs suggested to find 

methods of solution for such problems. 

I 1 lustrative examples demonstrate the optimization process 

and the type of assumptions needed for solvinq such a problem. 
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Chapter I 

INTRODUCTION 

A. STATEMENT OF THE PROBLEM 

In a practical multivariable optimal linear conTrol system 

one usually encounters the problem of smal 1 variations of plant 

parameters, or uncontrolled small perturbations In The signals 

flowing from the plant to the controller or vice-versa. In order 

to estimate the effect of these unpredicted changes on the system's 

performance, a sensitivity coefficient or, equally well, a sensitivity 

function was defined in the early literature [6] as the ratio of 

the norma I I zed transmission function variation to the norma I i zed 

parameter variation, or, 

where, 

S~ = the sensitivity coefficient 

T = the system's nominal transmission function 

AT = the change in the system's transmission function 

P = the system's parameter under t nvest i gat ion 

t t The system's dynaml cs 
AP = he change of the system's parame er. 

may be rep resented by the fo I I ow I n g state varl ab I e equation 

( I ) 

! = !. (~, ~· .9.· t> 

where, 

X = the system's state vector -
• 
X = the time derivative of the state vector 

m = the system's control vector 



~ = the system's parameter vector 

t = the time, 

Equation (I) may be rewritten as 

x ' = G ( x, m, ~~ t) - ----
Expanding£ around its operating point,~ , by Taylor's 

expansion and neglecting alI the oartial derivatives except those 

with respect to~ 

The term ax -
~ 

+ • • • 

is the Jacobian matrix and its columns a! 
rqi 

are 

defined as the sensitivity coefficient vectors !t• or the sensitivity 

function vectors v .• The second partial derivative is a higher _, 
order sensitivity coefficient but has little practical use, because 

it wf II usually be negligible In comparison with the first oartial 

derivative. 

The time domai.n sensitivity functions can be found from the 

sensitivity equation. This equation is developed as follows. 

Equation (I) may be rewritten as 

.[ ( !. ~· ~· ~· t) = 0 

Assuming ~(t) is independent of~· the partial derivative of equation 

(4) with respect to S• gives 
• 

a!! a _a ax a _a ax 
- + + ax = 0 
ag, ax a~ ag 

Si nee 

(2) 

(3) 

( 4) 

(5) 



• ax d · ax) 
39_ = dt( ~ = i 

equation (5) can be written as 

v t ~ • v = ( 6) 

ax ax 

Equation (6) contains the sensitivity coefficient and its first 

derivatives with respect to time, hence, it is called the sensitivity 

equation, It has been pointed out by Tomovic [19] that the sensitivity 

equation (6) is always a linear differential eauation in <v>. This 

results from the fact that the coefficients of <~> and (V) are 

independent of <v> and its derivatives. 

In sensitivity analysis of optimal control systems, it may be 

necessary to investigate the variations of the oerformance index 

due to the variations in the parameters of the system, For such 

cases a method of numerical computation was proposed [5]. This 

method has been further developed, and useful results obtained for 

linear control systems whereby a performance index of the quadratic 

form has been considered [18, 9]. Furthermore, a normalized sensitivity 

function of the performance index has been suggested to be a design 

criterion for optimization of the systems with Incompletely specified 

or variable plant characteristics by using the time domain sensitivity 

[9] definition for one parameter only as either: 

T 
= ! I V~t) I dt (7) 

0 
_, 

or 
T V~(t) dt = ! 

0 
_, ( 8) 

2 2 2 2 T 
v = [VI vz ••••• vk J 
-I • 

where 



The unifying characteristic in the references discussed above 

is that the sensitivity analysis of the optimal control system is 

performed after their optimal input control is synthesized. 

In this thesis, using the time domain sensitivity techniques, 

a rather general index of optimality is sought wherein both sensitivity 

and optimality characteristics are incorporated. This enables the 

synthesis of the optimal control action to be performed simultaneously 

with respect to sensitivity and performance criteria required for 

system optimization. 



B. LITERATURE REVIEW 

The sensitivity problem, its definition and solution, have 

passed through several steps of development. 

The first one to define and use the sensitivity term was Bode 

in 1945 [6]. He used it as a tool for feed-back amplifier design. 

Since then many scientific applications have made it necessary to 

have a measure of change of some system behaviour arising from 

disturbances and parameter variations. Several aspects of 

sensitivity have been investigated, such as the root locus 

sensitivity due to parameter variations of the system by Ur [20], 

the pole-zero sensitivity by Kuo [7], and sensitivity of large 

multiple loop control system by Ness and lmad [13]. 

A wide step of advancement was achieved through the application 

of the state space representation of linear systems In the formulation 

of the measure of the system's sensitivity by Porter [10]. An 

Important feature of such an approach is the ability to handle 

within a common framework the free and forced response sensitivity 

problems of discrete, continuous, and composite systems. 

The use of higher order terms of Taylor's expansion of the 

system equation to define the sensitivity function was first used 

by Chang [15]. However, most authors disregard the second and higher 

order derivatives in the expansion. This fact brought about a big 

dispute between Thau and Sinha [8, 1], from one side, Witsenhausen 

and Athans [18, 17] from the opposite side. The latter have proved 

the equality between open and closed loop quadratic oerformance index 

sensitivity using only the first derivative term; the former have 

numerically shown that the closed loop sensitivity Is etways less 

than the open loop sensitivity. 



In the investigation of the minimization of sensitivity as one 

of the ultimate goals of design, it was observed that the system 

stability and sensitivity are mutually contradictory. This fact 

was stressed by Si ljak and Burzio [16] who used the concept of a 

parameter plane to check for some stability constraints during 

the sensitivity minimization. However, their aporoach was limited 

due to being able to only adjust two parameters simultaneously, and 

that the form of the system must be defined before-hand. Many 

authors use the procedure of optimizing the sensitivity functions 

by conventional methods [5, 16] and then check the other system 

criteria, such as stability, rise time, etc. Ootimization of the 

sensitivity functions alone have been treated by many authors 

[10, 18]. 

For the system described by equation ( 1>, this thesis seeks 

to extend the previous work by finding an optimal control vector 

that wi I I force the system from its initial to its specified final 

states with minimum energy and optimum sensitivity. The formulation 

of a new performance index is sought, which wi II, in effect, help to 

optimize the system behaviour with respect to energy and sensitivity. 



Chapter II 

SENSITIVITY MINIMIZATION IN OPTIMAL CONTROL SYSTEMS 

A. STATEMENT OF THE PROBLEM 

The system to be considered here is a linear time Invariant 

multivariable system of degree n represented by the vector differ

ential equation ( 1). Eq4ation (I) may be represented as 

• 
X=~~+ Bm 

where A is the Jacobian matrix so that, 

and, 

The solution of equation (9) Is: 

t 
x(t) = Q(t) x(O) + ! QCt-T)B m<T> • dT 

0 - --

where, 

£<t> is the state transition matrix given by £<t> = Exp[At] 

The schematic representation of equation (9) Is shown in Figure I. 

EVALUATION OF THE STATE CHANGE DUE TO A PARAMETER CHANGE. 

The sensitivity of the state variables to variations of the 

parameters can be represented by the change of state dx(t) due to a 

(9) 

C I O> 

( 12) 

change of a parameter qk by using perturbation techniaues as follows, 

x = (A + ED)x ( 13) 

where, EQ represents the change in the system matrix and E is a 

small constant. Then eauation < 13> may be written as, 



3 

(IJ 
0 

I .... 
0 

f:;1 :! 

~ 1 
9 E 
~ 
~ 

~ 

~ 
IX ~ 

~ -'-D -



• 
X = A X + E 0 X -

Due to the similarity between equation (14) and (9), it fol tows 

that the solution of equation ( 14) is similar to equation ( 12), 

thus, 
t 

!(t) = O(t) x(O) + E I Q(t-T)D x(T) dT 
0 

The approximate solution of equation ( 15) may be obtained by usinq 

the approximation, 

x<t> = o<t> x<O> 

Then 

xCT) = OCT) x<O> 

and equation ( 15) becomes approximately 

t 
x(t) = Q(t) x(O) + E 1 Q(t-T)D OCT> x(O) dT 
- - -- 0 - --

Therefore, the change in the state vector due to the chanqe in the 

system matrix is, 

( I 4) 

( 15) 

( 16) 

( 17) 

t 6x(t) = E I O<t-T)D Q(T) xCO> dT (18) 
0 - ---

For a stable system, the elements of Q{t) decay exponentially with 

time and thus equation (18) converges to zero as time Increases 

without limit. If the variation of the system oarameters is such 

that identical perturbation in each coefficient of the system 

matrix~ occurs, then, equation (13) becomes 

• x = CA + EA>x --
Thus the chanqe in the state vector Is, 

Furthermore, the~ matrix may be written through a suitable linear 

transformation tn the following manner, 

( 19) 

(20) 



0 0 • • • 

0 0 I • • • A ~ • . = ~ . ~ . 
0 0 0 • • • 

-ani -a -a • n2 n3 • • 

If the system was initially displaced so that, 

T 
~ (0) = [f, o, o, ••• , 0] 

then equation (20)~becomes 

T 
lu(.(t) = E ! QCt-T> 

0 - • 
• 

• • • 
' 

0 

0 . 
• . 

0n-1, I <T> 

R(T) 

where, 

dT 

RCT> = -anl011-an2Q21- • • • • • -an,n-1Qn-l,l-ann°nl 

Therefore, the change in the state vector can be evaluated for a 

( 21) 

( 22) 

change in the system parameter matrix by utilizing equation (18) or 

equation (22) as the case might require. 

THE SENSITIVITY COEFFICIENTS 

The variations in the state variables due to a smal I variation 

of parameter qi may be written as, 

v. 
-I 

( 23) 

The above definition of the sensitivity coefficient ~I is frequently 

used in modern literature. In the case where K parameters vary, 

then the variation in the state variables due t~the ~vector may be 



s a e vee or x with evaluated as the partial derivative of the t t t 

respect to the parameter vector Q - ' 
where, 

= 

then the change of the state vector~ due to S Is, 

ax, ax · I 

~ • • • aq; 

a~ • • 
- = • • 
as • • 

ax ax 
n n 

• • • 
3qj aqk 

or, 

From equation (23>, equation (26) may be written as, 

The sensitivity coefficients cy1, y2, ••• , ~> may be obtained 

by perturbation techniques [10], or the time domain method [9] 

as in equation (27). The last method, however, is the one which 

(24) 

( 25) 

(26) 

(27) 

wt II be considered in this thesis for its simplicity in mathematics 

and its physically significant results. 

SENSITIVITY COEFFICIENTS IN THE TIME DOMAIN 

The system's vector differential equation (I) may be rewritten 



as, 
• x - F (x, m• q, t) = 0 - ----

or, 
• 

~ ( !• ~· .!!!.• .9.• t) = 0 

Equation {28} is a system of linear differential equations of 

the form: 
• g.<x, x, m, q, t) = 0 l = 1, 2, ••• , n I----

Now ft is desired to obtain the variation in each state variable 

with respect to the parameter qk: that is Assuming .!!!,<t> 

is independent of .9. then the partial derivative of equ~tion (29) 

with respect to the parameter qk fs: 

m 
m ag. axJ agi axJ agi 

I 
I: • + I: X + - - -• aok J=l axj aqk J=l axJ aqk 

But from equation (28) and (29) we can see that: 

= 

r 0 when 

l I when 

' + J 

i = J 

= 0 

Then equation (30) may be modified to the following form, 

ax. ag. 
J I 

+ -= 0 
~ aqk 

For different values of J and i equation (32) may be written in 

matrix form as; 

( 28) 

( 29) 

(30> 

r('3() 

{ 32) 



• ax 1 ag, ag, ag, ax 1 ag, 

aq; rxt 
• • • ax2 rx aqk rq; n 

.• ax2 ag2 ag2 ag2 ax2 ag2 

~ + ax 1 ax2 
• • • + ax • aq; -rq; n 

• • • 
• • • • •• ••• • •• = 0 -• 1l lt 

ax ag agn axn agn n n • • • 
aqk ax 1 ax- aak ()qk n 

Or in vector form, equation < 33) may be rewritten as 

• ax ax a.[ -
-ai:rk + <! .9.> aqk + -=0 

()Qk -

Where <~s_) is the gradient of a, with respect to !• and Is a I so the 

Jacobian matrix <+L> and a! is the sensitivity coefficient vector _, rok 
~ as defined before. Equation (34) may be written as: 
~ 

Where, 

0 = -L V + Z 

-aS. 
z = rq-; 

Since equation( ~5) is of the same form as the linearized system 

equation (9t, the solution of equation (35) is of the same form of 

the solution of equation (9), that is, 

t 
V(t) = OCt> VCO) + / Q(t-T) ZCT> dT 

..... 0 -

where, 

QCt) = ExpC-Lt> - -
Therefore, we have the variation tn the state vector due to a 

change tn a single parameter as 

= ~(f) 

( 33) 

( 34) 

(35) 

( 36) 

( 37) 

( 38) 

( 39) 



The forcing function ~(t) in the inteqrand of equation (37) relates 

the solution of the parameter sensitivity vector V to the oriainal 

system state vector, !(t), If the parameter aopears tn only one of 

the set of equations (29>, for example at t=n, then 

z < T > = < o, • • • , o, a~ n > 

aqk 

In general,~ is comprised of several of the system state variables 

x 1, x2, ••• , xm. In any case, the explicit solution of equation (35) 

requires the avai lab II ity of several, if not all, of the state 

( 40) 

variables. To evaluate the resulting change in each state variable for 

a linear system with parameter variations, the system matrix(~) will 

be written in the form of equation (21), For example, if the 

parameter that is varytnq is -an 1=q 1, then we have 

T 
~ = [0, o, ••• , x1] 

If the parameter varies a smal 1 amount so that it assumed a new 

value of -ani(I+E>, and if V(O) = 0 <which Is a reasonable assumotion, 

since for any number of systems under comparison tt just chanqes 

the datum of comparison by making ~(0) = 0), then from equation <37) 

it follows that, 
t V(t) = f O<t-T) ZCT> dT 

0 - -

By substituting the value of Z<T> from equation (40) into <41) it 

fo II ows that, 
t 

v<t> = r 
0 

T 
However, tf! (0) = [1, O, O, 

follows that 

Qln<t-T> 

02n<t-T> 

. 
0 (t-T> nm 

OJ then from equation ( 16) it ... ' ' 

( 41 ) 

(42) 



thus, 
t 

V C t) ';[ ! Q. ( t-T) Q I I CT) dT 
0 In 

Equation (43) is the time domain expression of the sensitivity 

coefficients. 

( 43) 



B. THE COMBINED PERFORMANCE INDEX 

In order to compare one system design with another, some 

numerical measure of system sensitivity Is necessary. It was shown 

In equation (43) that the sensitivity coefficients viet> are 

functions of time and thus cannot readily serve as an index. In 

general, an integral function of the sensitivity time response 

V.(t) is useful because it will give the combined effect as a _, 
number for any specified period of time. Therefore, a general 

index may be written as: 

T 
t = 

0
! K<y_1, v2, ••••• , ,4> dt 

For practical purposes the sum of weighted quadratics or the 

absolute value of sensitivity coefficients is useful for writing 

the sensitivity index as, 

Or, 

T 
= f 

0 

2 + a 1v ) • dt 
k- -k 

(44) 

(45) 

( 46) 

where a 1, a2, a are weighting factors [0] • • • • • • , k-1 

The optimal control problem is normally taken as the problem of 

minimizing a given performance index J under the constraints on 

both the control vector m and the state vector ~· where, 

T 
J = 1 

0 
f(x, m, t> • dt --

Then the sensitivity of the performance index J due to a change 

in the parameters is evaluated and defined as the sensitivity of 

(47) 



the optimal system ,thus the sensitivity of the optimal system is 

by definItion ~J ( !!!.) • 
a~ 

In contrast to the above idea, it is the purpose of this thesis 

to include the effects of parameter variations in the performance 

index. Then the minimization of the new performance index results 

in an optimal system which will be optimal with respect to the 

performance.criteria and sensitivity. A general form of the 

performance Index useful for this purpose is 

T 
J = r f (X' m. v I ' v,.,' • • • • • ' v t) • dt 

Q ----L ~ 

The optimal control law ~<t>, which may minimize the index J, 

(48) 

may be obtained, in some special cases, by using the modern 

optimization techniques Q4, II]. Then the optimal control law is 

wrl tten as: 

m*( t) = ( x, _y_1, Y.:;_, 1., .. , ~~ t> 
(49) 

Or, 

m*<t> = (~, ~~ t> 
(50) 

For practical purposes, however, the optimal control problem 

including the effect of sensitivity may be formulated in several 

ways. One standard approach is to use a formulation in terms of 

quadratic functions of the variables. Then the optimal control 

problem becomes the minimization of the performance index J where, 

+ I I I I I + 
2 

V ) • dt 
ak+2.:..k 

(51) 

h t the Tmoort~nce ot some of the 
In practice, it mey be desirable to emp as ze 

sensitivity coefficients over the others. Thus a proposed weighting 

scheme for the sensitivity coefficients in the performance index is 



shown tn the following equation as, 

• • • 
T 2 

ak 2<w V ) ] • dt + --k 
T where w is the transpose of the weighting vector~ where, 

w2 
w = • - • 

• 
wn 

The nature of the weighting vectors will be discussed l~ter tn the 

examples and the conclusion. 

In the case where only one parameter is to be considered In 

the optimal control problem. a new state vector <r> can be defined 

so that the sensitivity vector( 1> can augment the system state 

variables, then 

• 

• 
• 

axn 
TqJ 

(52) 

(53) 

(54) 

Then the optimal control problem may be formulated as the minimization 

of the index J, where 
T J = 1 f g ( v , m, t > dt 

0 .J- -
force wi II stop. 

and Tf is the final time at which the control 

quadratic formulation of this index can then be written as, 

J = rTf <y_2 + am2> • dt 
0 -

{55) 

A 

(56) 



The optimal control law, mf<t>, whtch wtl I minimize the index J ..... 
results tn a system which Is optimal wtth resoect to both oerfonmance 

criterion. 

In the following chapter the principle of oerformance index 

sensitivity wil I be presented, and some illustrative examoles wil I 

be solved to show the applicability of *hat new combined oerformance 

index. 



Chapter Ill 

DISCUSSION 

In this chapter, illustrative examples are presented to 

Indicate the usage and effect of the proposed new index In control 

problems. Through the presentation of these examples, the time 

domain sensitivity derivation and the value of particular types of 

weighting factors wi I I be shown. The concept of performance index 

sensitivity wi II be presented to distinguish it from our approach 

that wi I I optimize the sensitivity and the other performance criteria 

of the system simultaneously. 

A. PERFORMANCE INDEX SENSITIVITY 

The sensitivity problem In optimal control theory ts concerned 

with the variations in performance index caused by variations in 

plant parameters. Assume that the performance index J Is given by 

Tf 
J = f F(x, m) dt <57> 

0 - -

where Tf is the final time at which the control force stops, and 

!=!<~, t>. The plant (controlled object> output !(t) Is related to 

the plant input (control input> !Ct> by a vector differential eouation 

~(t) = f[x<t>, m(t), sJ -- -
where .9. is the plant parameter vector of dimension k,! and! are 

column vectors of dimension (n) and CL> respectively. The optimal 

closed-loop control law, denoted by m*<t>, which minimizes J <assuming 

that J can be minimized) may be obtained at least in principle from 

any currently avai table optimization techniques and is generally of 

the form 

(58} 



m*(t) = !3. [x(t), s_, t] (59) 

Unfortunately In actual practice the plant parameter vectorS 

which appears in equation (57) seldom corresponds to the value of 

S used in the controller. This is due to such things as component 

inaccuracies, environmental effects, aging, etc, The problem then 

is to determine the effect of such variations on (J), Generally, 

the controller components are less subJect to variations than plant 

components; hence, it Is assumed that Sin equation (58) remains 

fixed at a n.om ina I va I ue .9.o wh II e S in equation (57) may vary 

arbitrarily. However, in any optimization interval [t0 , Tf] S. 

is assumed to 1:e a constant vector, The c I osed I oop system dynamics 

are then described by: 

~( t> = f[~, !3_( x( t>, So• t>, .9.J 

with a corresponding performance index value J(So• .9.>. Optimal 

operation, however, requires that .9. =So and that the minimum 

value of (J) is given by J(Bb, So>· Variations in J due to plant 

parameters variations may then be represented by the difference 

L!J where~ 

L!J = J(.9o• s.> - J(.9.o• So' 
For intfhtt1esioial parameter variations one can evaluate 6J as 

follows: 

f!J = dJ 

Equation ( ~ may be written i n vector form 

••••• + ~,.dqK 
ilq~ 

6J - ~ • d.9. - ".9. aJ 
where ~ is defined to be a row vector with components aq 1 ' 

as_ 

and d_g_ is a column vector with components d.9. = <~1 - qoi>. 
The 

( 60) 

( 61) 

( 62) 



aJ term a~ is referred to here as the performance index sensitivity 

vector and is evaluated at the point~= 3o• In terms of J given by 
aJ 

equation (57), aq becomes 

aJ -
~-

T t aF a_x 
! -. dt 

0 a~ ag, 
aF 

where ax 
aF ax 

is a row vector with components ~ , and "CJ9: 

(n x k) matrix in the following form, 

ax 1 ax, 
-aqk -aq, • • 

• 
• 
• a~ " = 

a~ axn axm 
• -aqk aq, • • 

is an 

The various derivatives which appear as components of 
ax - are 
!S 

( 64) 

( 65) 

a~ is determined 
also evaluated at the point 9. = So• The value of as 

from the equation (58) as, 

d (ax) 
a.!_ ax at ( 66) 

dt"aS = + -. - ~ ax as. -
where, 

at 1 

T,( 

·" 
0 (67) 
• 

at 1 

3xj • 
at • .., 

• • 

atn -- = • ax atn 

rxt" • • • axn 

at ar, 3. 
= - • • • ~k - aql 

a~ 
(68) , • , • 

Iii cln 'in -- • • aqk 
aql • 



at at 
and both a; and - are evaluated along the nominally optimal 

~ 
trajectory <~ = 3o>. The usual boundarv conditions for equation (66) 

are 

:i I · 9. 
t=O 

where~ represents an (n x k) zero matrix. Since equation (66) Is 

linear, though time varying, a solution of eauatton (66) may be 

written explicitly in terms of the transition matrix £<t,T> for 

the system: 

()f 

q=q 
0 

Thus one can write the solution of equation (70) as: 

ax 

which completes the evaluation 6f ~ given by equation (64), 

In general, the solution of equation (66) and the integration in 

equation C o4) are suff i c.i ent 1 y comp I ex as to requIre computer 

solution. It should be noted that if the components of 

q=q 
- _o 

(69) 

(70) 

( 71) 

(72) 

do not all vanish} then a certain plant parameter variation may 

actually yield a smaller value of (J) than the previously ootimal 

val J( T f by the very definition of an optimal 
ue 2.o , .9.o>. here ore, 

centro II e r, It fo I 1 ows that a I I the components of 

aJ {_9o ' s> (73) 

must always vantsh. 



B. ILLUSTRATIVE EXAMPLES 

Examp I e I: 

Consider a simple second order linear system with a gain of 

(K) represented by the following transfer function 

~ =;. 
m<s> s 

It is required to find the optimal control function, m*Ct>, that 

wit I take the system from its initial state to its final state, 

in a specified final time <Tf=IO sec.>, with the optimal performance 

Index in the form of 

J = !Tf [m2<t> + m2<t> v2<t>] dt 
0 

where m2Ct> represents energy put into the system, and m2<t> is 
2 

taken to be the weight t ng factor of y_ C t). 

Writing the state equations of the system in the following form: 

• 

• x2 = km 

then it is possible to write the system's matrix eouatton as follows: 

Hence the A matrix of the system will be eaual to 

0 

A = 
0 0 

T 

The initial and final states will be assumed to be !<o>=fl,l] and 

~(Tfl=~ respectively, Since the system's matrix <Al Is known, by 

[12],the state transition matrix of the system mav be written as 

(74) 

( 75) 

( 76) 

(j8) 



u(t) t where u(t) is the 
unit step function. 

Q( t) = 

0 u( t> 

To find the sensitivity coefficient In the time domain, wil I 

need the use of equation (41). In this case we are considering the 

sensitivity of the system to small variations in the element <a 12 > 

of (A) which has the nominal value of one in this exam~le. It is 

also assumed that the initial value of the sensitivity coefficient 

is equal to zero just for the sake of simplicity of development, 

but it becomes clear that to compare two systems It is essential 

that the initial value of the sensitivity coefficient must be the 

same for a fair comparison. From equation (40) if follows that 

Z<T> = 
0 

Then using equation (41) to get ~(t} 

u(t-T> 

t 
V(t) = ! 

0 

0 

(t-T> 

dT 

u<t-T> 0 

By ustng the approximate value of x2<T> from equation <8 l) it 

fo I I ows that 

therefore 
' 

x<T> = O(T) x(O) 

x <T> = u(T) 
2 

S b X (T) from equation (83) into equation 
u stituting the value of 2 

(81) and integrating from zero to <t> 

t 

V(t) = 

0 

(79) 

{ 80) 

( 81 ) 

( 82) 

{ 83) 

( 84~ 



therefore, 

and, 

v (t) = .2_ = 0 
2 al2 

At this step of minimization tt is required to form the 

Haml ltonian of the system and the costate vector P(t) as 

P(t) = 

p2(t) 

The Hamiltonian, H, will then be equal to 

The necessary conditions for the existence of an optimal 

control is that the first and second derivatives of the Hamiltonian 

of the system with resoect to the control function ~(t) are zero 

and a positive quantity, respectively [I 1]. Therefore, 

aH 2 1»n = 2m( l+t ) + KP2<t> = 0 

and 

a2H 2 = 2( l+t2> 
am 

From equation (90>, it ts clear that the second derivative will 

be always a positive quantity, therefore we can assure the existence 

of the optimal control Jaw, which can be found from eauation <
89 > as 

-KP2Ct> 

m*Ct) = 2(1+t2) 

( 85) 

( 86) 

(87) 

( 88) 

( 89) 

{90) 

{ 9 I) 



To determine the optimal control function it is required to 

find the function P2<t>, this may be accomplished by using Lagrange 

equations for a conservative system [II] as tol lows: 

aH 
-~ rx = ( 92) 

and, 

aH = X w -
( 93) 

Applying equation { 92) on the Hami ltonlan in equation (88) one may 

then get, 

3H • (94) 
= -P = 0 

rxt 
and, 

aH • ( 95) 
ax2 

= -P = PI 2 

Solving equations (94) and (95)then finding P1<t> and P2<t> as, 
(96) 

and, 
(97) 

where b1 and b2 are the Initial values of P1<tl and P2<tl respectively, 

determined by using the final conditions at and may be 

t = Tf = 10 seconds. From equations {91) and {97>, we may write 

m*< t) as 

m*{ t> = 

Solving, now, for the state variable 

the systems state equations, we get 

using equation (98> and 

( 98) 



t 
x*(t) = f Km*(T) dT + x2<o> 

2 0 

then, 
t b1T-a2 x2(t) = f 

0 
2( I+T2> 

dT + I 

therefore, 

x2(t) 
b1K b2K -I = 4 In ( l+t2> -2 tan ( t) + I (99) 

and, 

x~<t> 
t 

= f x*<T> dT + x1<o> 
o I 

then, 
b I k t 2 b2k t -I t 

xjCt> = 4 
0
! ln(I+T) dT- z ! tan (T) dT + ! 

0 0 

ldt + I 

From integration tables the above integrals may be found, and then, 

b k 2 -1 
x~(t) = -ir- [t In( l+t ) - 2t + 2tan <t>] 

b2k -1 2 
~ [t tan (t) • l/21n ( l+t >] + t + I 

( 100) 

Now, applying the final time conditions on x1<t> and x2<t> in 

equations: (99) and ( 100), we then wi II get the following two equations, 

with two unknowns namely, b1 and b2 as follows, 

5,8006 bl- 6.22 Kb 2 = -11 
( I 0 I) 

and, 
( 102) 

I • I 5 38 b - 0 • 7 3 7 4 b k = - I 
I 2 

Hence,· so I v ., ng f b • t. ( I 0 I) and ( I 02) we get, or b 1 and 2 tn equa tons 

b = 0,5975 
I k 

(I 03> 

and, 
( 104) 



Thus, by substituting the values of b and b into enuatlon (98) I 2 '~ 

we get the expression for the optimal control m*(t) as 

m*(t) = 
0,5975t - 2,38 

2( l+t2> 

Equation ( 105) represents the optimal control function that wi I I 

force the system from its initial state to Its final state in 10 

seconds, with mt nimal oerformance Index which wt II In turn ootlmize 

the weighted inout energy and sensitivity to any small fluctuation 

of the parameter <a 12 > of matrix A. This control function tends 

to go to zero as the time tends to t ncrease, and It has the shaoe 

indicated in Fl gure 2. 

(I 05) 
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Example II 

Consider the same system of Examole 1, but with a different 

performance index in which the sensitivity term is welqhted by 

powers of the time ( t>, it is required to fInd the ootlmal control 

function that wi II take the system from its Initial states to Its 

final state in 10 seconds, and that wit I minimize the oerformance 

index 

Jz = ,r f [mz<t> + t2<v2<t>J dt c 106> 

0 ,..)~~~ 
The same deve I opment for .1~ t) f and the system state vector equat 1 on, 

however the system's Hamiltonian wit I be changed to, 

H = m2(t) + t 4 + x PI + P Km(t) 
2 2 

Applying the necessary conditions of optimality, then 

m*Ct) = 

Now, using Lagrange's equations to find the costate variables 

P1<t> and P (t) then 2 , 

and, 

aH P = 0 rxj = - I 

aH = -P = PI 
'axz 2 

Solving equations (109) and (I 10) simultaneously tt follows: 

and, 

{I 07) 

( I 08) 

(109) 

( I I 0) 

( II I ) 

( t 12) 
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Substituting the value of p f 2 rom equation ( 112) into equation (108> 

therefore, 

K 
m*(t) = 2 (bit- a2) ( I I 3) 

Using this value of m*(t) in th e original state equations (7S) 

and (76} and integrating 
J 

x;<t> 
k2 2 k2b =r bit 2 t + I """'2"" 

( 114) 

and, 
K2b K2 

x*(t) = I + t + I 
I - 4 I i.e..) 

L1" 

( I 15) 

Now, applying the final conditions on x1Ct) and x2<t>,·then'wr1te the 

following two equations in two unknowns, b1 d b f 11 an 2 as o owJ 

and, 

2 
25k bl 

2 
- Sk b = -1 

2 

Solving equations ( 116) and ( 117) for b1 and b2, thus,. 

b - o. 144 
I - k2 

and, 

Substituting these values of b1 and b2 into equation (I 13) then 

m*<t> = C0.072t - 0.46)/k 

( I 16) 

( I 17 > 

< I 18) 

( I 19) 

( 120) 

From equation (.~20~, it is clear that the optimum control function 

is proportional to time, and inversely proportional to the gain of 

the system. A picture of the cant ro I function may be seen in F l gu re 3. 



Example Ill 

ConsIder the same system of Examp I es I and II, Then 

by using a performance index wIthout the sensitivIty term, 

find the optima I centro I that w i II minimize this performance index, 

and take the system from its initial to its final state in 10 seconds 

with minimum energy. The performance index wi II be of the following 

form: 

Forming the Hamiltonian of the system as 

2 H = m (t) + x2P1 + km(t>P2 

applying the necessary conditions for the existence of an optimal 

control we deduce that the optimal control function m*<t> is· 

k 
m*<t> = - 2 P (t) 2 

Now, using Lagrange's equations, 

aH = ax 1 
and, 

= 

• 
-P 

I 
= 0 

Equations ( 124) and (125) are identical to equations (lOg) and 

(IIO) in Example 11, then, they must have the same solution. 

Therefore 
' 

= 
and 

<121) 

( 122) 

{ 123) 

( 124) 

( 125) 

( 126) 

( 127) 



Since equations ( 123} and ( 108) are identical, then the optimal 

control functions for both Examples II and Ill are the same, 

therefore, 
I 

m*(t) =- C0.072t- 0.46) 
k 

From equation C 128) and (120>, it is clear that the value of 

the optimal control function is not affected with or without the 

presence of a sensitivity term in the performance index, whenever 

the term was weighted with a weighting factor of the type (tn) 

Stnce the optimal control law was obtained by the necessary 

conditions of optimality, In which the partial derivative of the 

Hamiltonian H with respect to the control function was taken, 

then if the sensitivity term was not weighted with the control 

function, then it is clear that the effect of the sensitivity 

term in the optimization process will be lost, 

(128) 
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Chapter IV 

CONCLUSION 

For a multivariable linear optimal control system, the 

sensitivity coefficients play an important role In the system's 

performance and it Is always favorable to minimize these coefficients, 

Another sigoificant requirement in such a system is the minimization 

of some performance criteria, such as the input enerqy, the fuel 

consumption, the time taken to reach the final target, etc. 

It was noticed in the literature that the optimization orocesses 

for a certain system for two or more of its performance criteria 

were performed in two or more optimization processes respectively. 

In this thesis however a new performance Index was oroposed, , , 
which is capable of optimizing the system with respect to two 

different functions of the parameters (the sensitivity coefficients 

and the energy) in just one process of optimization. 

A few simple illustrative examples were presented to show the 

optimization process, the generation of the time domain sensitivity 

coefficients, and the significance of the choice of welghtlno 

factors. It was noted that this proposed performance Index has 

vat factors of the sensttivltv coefficients ue only when the weighting 

are not in the form of (tn> where, n=l, 2 ••• 

It is believed that the significant point of this thesis is 

the Idea of optimizing the control system by using aperformance 

index containing more than one performance criterion. 

The Such an Index is the ability It 
practical significance of 

91 time that may be reautred to ootimize 
ves to reduce the effort and 



a specific industrial plant with respect to its parameter variations 

and any other operation criteria. 

Further research is suggested to apply this index to more 

complicated systems, and to extend the idea of optimizing the system 

simultaneously with respect to any number of system criteria that 

36 

may be desirable to optimize simultaneously. The choice of the 

weighting factors and their effect deserves a good amount of research. 

The use of a hybrid computation scheme may help in trying to solve 

such complicated problems. 
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