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INTRODUCTION 

Theoretical stress analysis in mine structures begins 

with the assumption that the structural elements are homo­

genous, isotropic and perfeetly elastic. It is this writers 

belief that stresses in a mine root supported by barrier 

pillars may be compared to those stresses which may be found 

in a thin plate supported and restrained in the manner simi• 

lar to suoh a mine root. Therefore the stress and aoment 

equations developed t:or plates are herein applied to mine 

roots of 1.1m1ted thickness. 
f I 

A thin roof bed which is stressed with &venly distrib• 

uted l.ateral load and supported with . barrier pillars will 

be regarded •• a large rectangular plate clamped at the two 

longitudinal ends and with the other edges simply supported. 

Yigure la shows the free body diagram or such a plate. 

AB and CD are buil.t-in or clamped edges, and AD and BC are 

simply supported edges. My is the bending moment along the 

buil.t~in edges, and q is the unit load on the mine root bed. 

The weight ot the bed per unit area may be included into the 

q. The moment My wi.ll be considered positive and when it 

produces compression at the top of the bed. 

The most oonTenient method to analyze the stresse s in 

auoh a plate will be to find a general ~quati on for the de­

tlection of 8 rectangular plate which is loaded similar to 

th~ mine root bed. 
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To determine the general equation ot bending tor 

such a plate it is necessary to take two general cases or 

bending or plates: One of which is the bending or a 

plate by moments along the edges or the plate as shown in 

Figure lo, and the other one is the bending of the pl.ates 

by evenly distributed load, Figure lb, and then superimpose 

them to apply tor a plate which is subjected to evenly dis­

tributed loads and oo~tains bending moaents along two 

parallel edges. 

·First, the relations between the bencling aoments and 

the curvature in pure bending ot plates will be determined. 

!§VIE! Olr LI~A.'r!¥1! 

!here are •umerous artioles writte• · on the atresa 

analysis or mine structures, but the~ are no theoretical 

studies which aay be complimen~ary to the work done in this 

thesis.. TheretoJ'e, the reader, to suppleJilent his knowledge on 

the subject, should reter to those books listed in the 

b~bliography. 
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A- RELATIONS BETWEEN BENDING MOMENTS AND CURVATURE IN 

PURE BENDING OF PLATES 

3 

Figure ~e shows a rectangu~ar plate, the bendi'Itg 

moments ~and My are unit'orm~y .distributed along the edges. 

The XY plane coincides with the middle p~ane of the plate 

be f'ore it i .s deflected. ·The X- and . Y-axis are along the 

edges of the p~ate, and z-axis is perpendicular to the XY 

plane at point (0), and is taken positiTe downward. The 

bending moment MX acts on the edges parallel to the Y-axis, 

and My also a bending moment-acts on the edges parallel 

to the x-exis. 
Figure 2 shows an element •ut out of this plate by two 

planes parallel to lZ and yz planes. By assuming that the 

lateral sides of this element romain plane and rotate about 

the neutral axis nn so as always to remain normal to the 

deflected middle surface of the plate, it ean be concluded 

that the middle surface of the plate does not undergo any 

e:xtention during this bending. '.!he midd~e surface, nnnn 

Figure 2, is called the neutral surface. 

The curvature of the deflection of a plate, when the 

plate is bent, can be expressed as[:- -a~~ ... ]in the lZ p~ane, 
and c-a .. w -:1 in the '1Z plane. Where w is the. c!etlection or 

L.: -a ~ z. =._] 

the plate in the z direction. 

The unit elongations ex and G::~ of a fiber, along the 

X• and Y•azia respectively, and at a distance Z from the 

neut~al •urt••• 1a the~ 
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1 

According to Hooke's Law, the ~nit elongations tK 

and E:~ in terms of normal stresses vx 

ing on the elemeat are given aa 

Cx= y (the- l) ~) 

e!l == _, c ~ _ !J V)() 
f 

act-

2 

(1) Timosb.enko, s., Theory ot elasticity, p.a, New York, 
McGraw Hill Book co,, li~4. 

By u•ing equatiolls (2), tilie normal stress GX ud . ~ 

.can be cletermine4 in terms or unit elonge:ciona t.)( dnd (.,!1 • 

~roa the rtrst equation ot eq~atio~a (2), 

ant 1r the right hand side of this equation is substituted 

in the aecon4 equation of e.quatioas (2), ~ can be tound .. , 
by the same method ox is tound u 

ux=- ,:pz (tx,..llt~) 

B;r au'f).aii tut~ns the value a ot tx and t, tro• equations (l), 



int·o these tw,o equations, it will be tound that, 

-E 
Ux = --­,_ JJ z. 

~ = -E 
1-JJZ. 

5 

3 

These normal stresses distributed over the lateral 

sid~s ot the ~lement in Figure 2, can be re4uoed to 

oouplea , the magnitudes ot whioh per unit length must 

be equal to the external momenta M)( and My • 
I n this way the following equations are obtained. 

~~ 

j U: :z.d~ d~: Mx cls 
-"k +1i 4 1 c;y z_ dg ax = M ~ olx 
-lz. 

(h) ia the th1okness ot plate. By substituting Ux 

in equations ( 4) and valuating be~ween - !!._ encl 
~ ~ 

-+ J:L the t ol lowing e' uatioas result . (See Appendix A) 
2. 

Eh 3 ( t!lw ~2w ) 
M x =- IG (1 - lll) axz. + JJ a92. 

Eh3 ( () l w a1w) 
M~ = - t2 ( t-JJ 2) o ~ 2 + l> a )('2 

4a 

and 

The term [ Eh 3 :l is called the tlectural ~igidi ty ot 
IZ (I-"-'~t.J 

plate. It takes the place ot ( E I) in the case of' the 
beams . The tlectural rigidity is customarily shown with 

1• 1 D B.Y sub .. atituting D in equation (4a) in place the cap .,a • 

et 



z 

I 
I 

1 
I 

I 

,...~--- dx--

I 

)---

FIGURE- 2 

5a 

FIGURE- 2o 



Now, consider the stresses acting on a section ot the 

1amina abed ~1gure 2. When the p1ate is bent this 1am1na 

undergoes distortion, Figure 3, (0) moves to (0'). The 

total. 4etormat1on is equal to the awa ot the ang1ea A'o'x' («) 

and • 
be~een the planes 

This aua is equa1 to the shearing atrain 
( 2) . 

xz and Yz • 

(2) Ibid. P.& 

There tore, 
t "', , ' 

dn "OX: dlC 
~u 
"'ii" d~ -au 

t o"' s 'o'y'::: ---.,..-- s: -
d!i Cl!1 

These ang1es are ama11. By trigonometry, when 

'.rhea 

ec • :: av + au , -,,- ox a .Y 

oc is 811.&11 

The sum ot oc and 1 1s equa1 to ahearins strain, and it is 

shown 'b7 • 
d"" cHI 

~xu=-+--
J ox -a!:f 

The aubaoripta ot ~ show the p1ane in whioh the compo­

nents or shearing strain act. 

!he corresponding shearing stress is 
(3) 

~ !1 = G ( ~~ + ~ ~ ) 

,£$') -P14. p. t-10 



<HJ d A U-tT>( lr o==~~dx~==~~==~~----r I 

'V : lA k 1---~~~-or~- - . , ~dx 
1 ------ A ax 

"0,., I I ----1 I I 

----_J_\ ___ J c. 
I I 

' ' 

B~ \ \ 

I 8'1_ ------- --J.., 
·-1--- ------
1 -au"'~ c' ~~ 

X 

El \ 

y 

• FIGURE - 3 

X 

s 

z 
FIGURE- 3a 
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Where lG= E J and is called the modulus ot rigidity. L" zc ..... ll) 
Now, t ake a section or the detormatioa curTe along 

the XZ plane, Yigure 3a, and consider tha• the line P' 

was originally perpendicular to the x-axia or the XY plane. 

When deformation takes plaoe line pt will rotate in a 
~ 

counterclockwise direction through an angle ~ 

deformation angle is a amall angle 

A= aw 
o)( 

• 

Owing to the rotation, a point of the element pt at a 

It this 

4iatanee Z trom the natural surraee has a displacement in 

the X direction equal to 

aw 
'U::. - ·z ~ v.X 

By considering another aeotion through the "'Z plane, it can 

be shown that the sa.e point has a displacement in the Y 

4ireotion equal to 

"'.,.. a w 
v =- z ~ 

Subatituting these T&luea or U and V in equation (6), it 

will be obtained that 

~" = - 2. G z ol w 
.J ~X~~ 

6 a 

considering all laminas, suoh aa a4c in Figure Sa, the 

shearing stresses cause the twisting aaaent acting on 

seotiona ao or the plate. 'rhe magnitude ot the ·twisting 

moment is .,. %. 1 G-h 3 alw 
Mxy:: ~s Z d3 =. ~ • oxcl~ 

-% 



e 

I~ the va1ue ot G is substituted in the above expreseion, 

7 
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B- DEFL ECTION DUE TO THE EVENLY DISTRIBUTED LATERAL LOAD 

When a plate is bent by an evenly distributed lateral 

load, in addition to the bending moments Mx and M~ 
' 

and the twisting moment Mx~ which was found when consider­

ing the pure bending of a plate with the bending moments 

al.ong the edges, there a:-e vertical shearing forces act-

ing on the sides of an element which is out from a 

laterally loaded plate in the same manner as described in 

the previous case. (4 ) 

(4) Timoshenko, s., Theory of plates and shells, p. 85, New 
York, McGraw Hill Book Go., 1940. 

The magnitudes ot these torces per unit length parallel to 

the X: and Y-ax1s, will be shown by Qx and Q~ respeet!.~l-y,. 

Figure 

' 8 

~om equations 5, 7, and e, it can be seen that the 

moments and the shearing torces are runctions of the 

t T d y Therefore, in discussing the equilibrium coordina . es A an • 

conditions of the element, the small changes ot these 

1 -ill be taken iato consider ation when the quan:t1t es .. 

coordinates x ~d y ch~s• by the small quaut1ties dx and 
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The neutral surtace ot the el ement is shown in 

Figures 4a and 4b as tree body diagrams. Moments are 

taken positive in the clockWise directions, and nega­

tive in counterclockWise direction. 

From Figure 4a, by using the taet that the sum 

ot all the t ore•• in the Z 4i_rect1on ~· equal to zero, 

- Q. d~ + Q. c:l9 -+ a Qx ax d~- Q!t q)( + ~ ~ dx + 0 QIJ ol')t du. + tl Q)(d';/:::0 ax ~Y d ~ 

Th• (~d,dy) ia the l.oad ever the element . 

o Qx () Qy + 0... =. 0 
~+ 0~ , 

The moments o£ all the torees acting on the element, 

Figare 4a , which tend to rotate the element about the 

X"'"axis, must be equal to zero. 

M~ d, _ MIJ ot. _ ~ M!l d~ dx _ Mx!1 d!l +- Mlt!J d!J + C)Mxg d~ tix 
~~ ~X 

+ Q~ d'J d)(+ · ~~ d~ d)( + ~ d"'Czdztj = o 

by simplifying, and neglecting the higher o~ders or 
dx and d~ the above expression will be reduced 

to 
oMx~ CjM~ Q _ 0 

a" - a~ + ' - 10 

abou• y~ax· ta in the same manner it 
~ak1ng the moments v 

will. be determined that: 

11 



ll 

Equations 9, 10, and 11 completely define the 

equilibrium of the element, tieeause all the toroes acting 

on the element are taken into consideration, By substituting 

the values ot Qx and Q!:f trom equations 10 end ll into . 

equation g, it is possible to find a rela~ion between bend-

ing twisting momenta Mx , M'i . , M "~ , My x and <6' • 

and 

Then, 

Q~ : ()M~ 
C)~ 

cH\)y _ ()2 M1:4 

d~ - 0~2 

:CMx ~ M!fx 
~x + a~ 

a2.MIC C)2M!SJC 
---:- · + 
~)(2 oxa~ 

+ 

lOa 

lla 

12a 

It can be obaer•e4 trom equ1librium of the element 

that ~)t-::.- ~~ , and this gives the condition of 

Mtjx = - Mx~ • substituting this into equation l2a, 

0 Z MJ( ~ZMy _ z -;}2Mx~ _ 12 
~ + C\ ~ 2 olCl';S - - ~ . 

![ow, by subst1 tut1ng the Talues ot Mx and M.Y , and M"'C~ 

5. Aftcil e, the deflection equation will be from equat1ells ..... ~ 

obtained. 

5 

7 



ll 

Substituting this expression into equation 12. 

-D a2 ( ~2w +lJ ~1.w )-D oz (a2w +Jl ~zw)-2D(a-ll) dz ~zw 
aK2 "6)( 2 o&J2 'd.!J2 ~ ())(z d xai ~l(aiJ = -~ 

-0'+ -a•c.J +~ ~·w + ~ ... w +Jl ~·w + 2. a•w ll) ~·w] __ (L t ox• dlCta'.iz a~4 ~xz~~2 ()xza'it- a')(ic)~::J- 0 

and finally 

'd4w + a•w + 2. d 4 W - L 
Clx.f. o!;j4- ()x2~Cj2.- 0 15 

The problem of. bending of a mine root reck subjected 

to evenly distributed lateral load q is reduced to the 

integra~ion of equation 13. It tor e. particular caae, a 

solution of equation 13 is tound that satisfies the boundry 

condi tioas ot the root; the bencU.ng and twisting m.omen ta 

can be oaleulated trom equations 5 and 7, aad the corres­

ponding normal ·~resaes oan be touud from equation s. 
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C-BOUNDARY CONDITIONS IN A MINE ROOF BED SUF?ORTED WITH 

BARRIER Pn.L .ABS 

Figure 5 shows such a mine root bed. The edges AB and 

DC are buil t•1n and edges .AD and BC are simply supported. 

CONDITIONS AT BUILT-IN EDGES: 

The 4erlection along the built-in edges is ze~o, and 

the tangent plane to the deflected middle surface along this 

edge coineides with the initial position or the middle 

plane of the roof. Since the x~ax1s is in the same direc­

tion as the built-in edg$; 

CONDITIONS 

u .. b 
~= o where .J = - T 

dW L - =o w,.,•re 
d~ 

+ b 
'J=- 2 

~zw + !Ia 
- D ~~2.-:::: M~ where ~ :.-y 

AT THE SIMPLY SUPPORTED EDGES: 

a 

b 

The deflection along the simply supported edge is zero. 

But at the aaae time this edge can rotate about its own 

axis; therefore, there are no bending moments along a 

aiaply supported edge. 

It in Figure ~, the edges X= o and x= a are simply 

supported, 
W=O where X::. o, X= d 

"-1r= 0 where X: o • X :: d. 

in seneral 
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Then the boundary con~itions become 
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»-DETERMINATION OF G-ENERAL EQUATION OF DEFLECTION BY 

. _ SUPERPOSITION . 

It was found that the determination of «etlection 

( ~ ) ean be round by integrating the equation 

and aatist'ying th:e existing boundary ooaditions. 

To determine the deflection (w) that will satisfy 

the above f!if'terential equation of deflec:tton, 

Nadat5) 

(6) Na4ai, A. , Blaatische platlon , Berlin, 1925. 

has suggested taking the solution of this equation tor 

u niformly l oacled aad simply su.pported plates in the 

:tollowing :tora: 
W: w, + U)2 14 

anc! letting , 
20! 0 ( x~ 2. dX'"' + o1x) w.= 15 

a.o 

W2= 2 y,., . mnx 
S I rt ---a-- 16 

...... , 
The deflection (w ) in equation 14 represents 

the 4etlection ot a unito~mly loaded and simply supported 

plate. ~he~etore to find the deflection of a plate when 

two parallel edges are Qlamped, or built~in, it is 

neoeaaaJ7 tQ superimpose another deflection (w') upon 

the 4etlef)t1on (w) ae dt:f'ined in equation 14. (w) Ia 

the detle tion 4ue ~o 
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the bending moments at the built-in edges . 

1. DEFLECTION OF UNIFORMLY LOADED AND SIMPLY SUPPORTED 

PL ATES 

Equation 15 represents the deflection of a uni­

formly loaded strip parallel to the x-axis. It satis­

fies the deflection equation 

and also the boundary conditions at the edges, x = o and 

:x :::: a • (Page 13) • 

tor 

-x ~ 0 • 
t 

w,"" 24 D (o) .:: o ; 'X.:Ol , w, = 

for 
'X= o, "a't..J, ~ ~'w. : (.zolo) : o · X=.CJ(., -a't.V, + lJ da.c.>, = (JJ.cl-uoh :: o 

~ "z. + a1" ' "'i l(l- ~!1" 

Simce the deflection is eqmposed ot c.u, and w ..t. , 

and w, has already satisfied the right hand member 

or equation 13 t the express-ion tor WJ.. ' Equation 16 t 

evidently has to satisfy the equation 

~·c.J~ + 2 -a.ttw.a. 'd"GJc. = 0 1 3 a 
71;(.. . ~'JC'.ij" + -a !S.., 

and it must be so chosen that it will make the right hand 

side of equation 14 satisfy all boundary eondl tions of t he 

plate. 

From equation 16, 

oD ..,,: 2 Y~ - 7f )C S . .:::.--
'" ol 

111;: I 
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here Y.., is a function ot only and from symmetry 
., :::::. 1, 3, 5, ••• 

Since y.., is a function ot Y only, this aeries readily 

satisfies the boundary conditions at X = o and 

This can be shown in the followi.ng torm; 

for, 

C>O 

X::::o ""' - I Y .... s j " !!!!!..E 2 - dl =-o 

"" "' ' 
. oC> 

(.,J2 = L Yrn 5 i rr mwd 
0 ---c1 = X=d. 

..., .,, 
tor, 

X -=-o 

- Oo 2 a2wz ""z.,.z I 
II. a w2 JJ Y,.,. S i ,.~+J) IY--~· - =- (i2 'O!j2 C1. .... , ,., : I 

tor, X=d 

- 00 

a2wa + J.) o'w~ - - m2.1TZ r y, Sirt , "a JJ Lv: --+ .._xz -a~z - a& d 
M=l "" ::d 

Y,., still remains to be determined. It 

satiety the boundary conditions at • 

• 

m wo 
l l fl -: o 

d. 

s in /71714 - =o 
()l. 

has to 

It equation 16 is substituted in equation 13a, the 

following differential e~uation will be obtained.(See 

!<Jppendix B) 

Jr 2 Z lt 4 

( Ym - 2 ~~ Y ... +- m d.,./ Y ... ) • S i n m;K :0 

.., = . I 

Sino• the second an ot this differential equation 

ta a tuno~ion ot X only, all boundary conditions will be 



18 

satisfied e.t x= o and x =. c:i , it Y..., satisfies t he 
equation 

17 

Integration of this equation gives (See Appendix c) 

+ o ... ,.,,!t Coslt ~) --er- a 18 

It can be observed that the deflected surface or the root 

bea is symmetrical with respect to the x•axis, Figure 15. 

Therefore equation 18 contains even tunotions of ~ 

only. ?!hus it is necessary to take Rm = D ... = o • 

Deflection equation 14 is then represented in the 

following torm: 

W: 

.f.. 'ffc:l+ \;(c. ... C.osh .!!!.!!..!!.+8,., ~ ~ i " S, rn'W!I) S ill~ 19 
0 L, ci ct e1 a 

. .,a I 
This equation ot deflection satisfies the equation of the 

deflected aurtace, e . i . , equation 13, and also the boundary 

oondi tions at x= o and ><:. ci • But it is necessary to 

determine the · constants c..., and B.., in such a manner that 

they will satist'Y the boundary eondi tions at ~ = ± -i- • 
The bountary conditions at .. ll-!: - . ;;)- 2. 

w : o 



and it has been seen that the deflection equation 

... . mw.~e 

""'"--ct 

19 

~ satisfies the condition · of C)2w 
~)(· = 0 

, there-

tore the boundary conditions are reduced to 

W=.O 

ozw 
-a~z~o 

] + b 
~=- z 20 

To substitute equation 1g, in the boundary conditions 

given by equation 20, it is neeeasary to deTelop 

c.u, = 2~ ( x • - 2 ax~ + d.1 x ) 

into a trigonometric series between (O) an4 (7T) • This 

give• the following aeries (See Appendix D) 

where m = 1 , 3, 5, ••• • Equation 19 will now be repre-

sented in the following torm, 

-•· • 1{ Gl 4 I ( 4 C co sh !!!.!!J!. -=- ~-+- -0 ..,... Ul .... , 
+B... 

21 

where m;; l, 3, 5, ••• •• Substituting this expression 

in the boundary conditions given by equation 20, and 

using tbe a·otation ~=ex,. 6 tor simplic i ty, the 
2. <1 

following equations will be obtained to determine C~ 

and a..., (See Appendix E) 
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( c'" + 2 s... ) c. o $ h cc ...... + oc... 8 s ,·, L Cl( ... , .. =0 

from these equations c ... and 8.., are determined as 

C,.... = _ e(O(-tCIInl,e~....,+ 2) 
.,.~ m 5 Co.J h «.., 

8, = 2. 
22 

By substituting these values of constants c and s .... ... 

in deflection equation lt, the equation of deflection sur-

face will be obtained in the following torm: 

00 

W:. ~~5" 1,_ (o< m ~ • .,h~ ... -r2) cos!. m 7TH L- L z c . . .. Cl(,.. ct 
.... ~ I 

23 

This equation of the deflected surta~e · satisfies the . 

dif:terential ecquation 13 and the boundary conditions 

at x= o and X:.cl , and ~:.:t~ , tor simply supported 
. 2 

plates. 

2. DEFLECTION DUE TO BENDING MOMENTS A'!r ~-= ~ ~ • 

The deflection w 

remains to be determined. 

due to bending moments at ~:.'!: ~ 

Taking the solution of w' in the form of this series 

w ' = 
each ~erm ot whioh, 

4a~y oond~ttons at 

-~ Y- Sin '""~ 
L <t 24 
..... , 

as has been seen satisfies the boun-

.)(:0 
aad x = d. and the foll.ow1ng 
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differential equation or deflection, 

+ 2. 

The t'unctions ot Y ... can be found, as before, in the 

following form, (See Appendix C) 

Y,... = l=l"' . a 1 nh ~ + B.., .!!!..!.!._ ~ i" h ..!!!..!J!..... + c., cosh mTT!I 
ei a a. ---a--

In case or symmetry Y,., has to be an even function ot 

Y, therefore it is necessary to put R..,= 0,.. = o , and 

equation 24 e.a be obtained in the following torm: 

w'= ~ i.., h "'; It + C,.. G es Jt ""~ '4) ~; n 
m7T X 

cil. 25 

To aatisty the boundary conditions (a) tor built-in edges 

given in page 13, it is neeeaaary that 

and substitutins 

round that 

m7T h tor convenience, it can be 
0('" = 2 ~ 

6,.. =- _ C.,... ex,.. f: a" h Cl('" 

Substituting this expression in equation 25. 

I 

W=:. 

o<l I C ~ (. "'.;~ Sinh "';~ - "'• i ~. h "'~ <os~ "';~) Ji• "';' 

26 

C will b• determined trom boundary conditions(c) on 
"' 

m =l 

1 ... nn..eae boundary e.ondi tiona are: 
page til• "'" 
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iw' ) - 0 ( "D'" = M~ where ~ :: ;t -fr 
( 6 ) ~ c:. 

Timoshe nko suggests taking the bending moments· along 

(t>) Op.cit., 'l'imoshenko; Wheory . of plates and shells,p.205 

the eclges ,y = ± ~ , in following series, 

Mj = I E.,., Sir~ m;_ x 27 
... =, 

where m = 1, 3, 5,.... and the eonstant E., will be 

cal.oulateci tor each particular case. 

Now, substituting equation 27 and the second deri­

vative of' equation 26 in the boundary condition given 

above, it will be obta ined that 

-20 

'"" I 

trom which 

and 

, 
w ::: 

C,.., Co shq,.sin m:;_x .-
,.., ::, 

2. 0 mz 71& coih o<,., 

( , .. m-,rX ) 
)( Jln­

eX 
28 

The constant £~ will be determined trom the condi­

tions at the built-in edges. 'rhe slope at the built-in 

edge is zero. 
Therefore to obtain this condition it is 

aw and ~w' when super-
necessary that the slopes ~ ~ ~~ 

... u = ± l must add up to zero. 
1mpose4 at the eQges ~ a 

Tb.ue 

0 whe r e • 
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From equations 23 and 28, slopes 

~ = .:t ..J?_ , 
2 

C>O 

'dcu' d :s:- ~ 
0~ =~ l17 

rtr:: I 

'dw' an-d at 
~ 

a 

b 

By adding a"" and c.w 
~~ d':f 

t r om ~hes• Yalues defined in 

the preceding expressions (a) and (b) , E.., will be 4etined 

in the f ollowing tor• 

E... = C( ... - -/:. anh ex.., (I+~- i:. Qnh C(..,.) 
o<. __ t,..,,(l(.,.. (cc,..t .. ., ho<.;...-1 ) 

It , E..... is substituted in equation 28 , w' will be 

de:tined in the following torm: 

(.U I= 

Sit~h mw.!S - o<.., t crnh «- Co .sh ltnr,s, J 
d d 2g 

Since the aeflection due to moments · at the edges 

is caused by load (q) ; deflection VV of mine root beds, 

two parallel edges o:t which are built~in and other two 

edges simply supported becomes as follows 

W::. w-w' 

By substituting w 

equation a~ , 
~ 

w::. 2.ici4 
\ 

.,.so L 
,.. -:: , 

:trom equation 25 and w' :trom 



+ ,.,.# 
d 

24 

30 

This expression gives the detleetion at any point 

within the roor bed . 

The moments Mx and M~ defined by equations 5 

wil.l. be obtained by substituting -a'-w and a"~ 
~ a~L 

rrom equation 30, into equatio:ns 5 and they are found 

to be (S.ee Appendix :r) 

31 

The twisting moment defined by equation 7 will became 

(See Appendix G) 

32 

Normal stresses (j')c and CJ!1 de tined by equations 3, now 

are determined in the followinl tor~ 

33 

and ean be determined at upper end lower 

aurtaoes ot the ::oot by $Ubst1 tutin~ z = ± ~ • 

1!b.e equation of unit she:a~"' .(equations 6a) becomea, 

34 



The general equation ot shearing stresses defined 

by equations 10 an4 ll wi1l therefore beeome 

Q. = - 0 .:x . ( ;;; + ;; ) 

Q.., = _ 0 _L_ (;)2w + ·a2w) 
• -a~ o x ~ "a~2 

Substituting va1ues of 

Appendix r 

and as given in 



.APPENDIX A 

Integration of Bending Moments Mx and My 

Mx=-

Mx:::-

~- % 1 CJ'icz d ~ = Mx 

-"'a 

1213 - · 3 

26 



Developnent 

.,p 

~ 
L 
M:::l 

27 

APPENDIX B 

s "'- :a. of Differential Equation v •. :a. .. Tt "'+ ~Y .... ., 
•" "' ... 

';, mTTX 
d. 

....... , 

lfi'II)C 

ot 

jiiJ~-o 
d -



APPENDI X C 

Integr ation ot Differential Equat i on 

- mll'.!f 

e d. 

tolll',!f 

ecr-

ll!: :Jr 

Y,.. -2 ... x.,~. Y- + 
0[& 

Ro• h are 

4 ... 
"" ..,. y,., = 0 
(i4 

,.,.,.il 
+ ( "J + ~~t ... ; Y ) e ~ 

s j" h mlfY 
Co~h ,.."'I'.Y = ~- ~ 

...... !:S 

c '"" 
M"'l' !:l Si .. h 
~ + a-

y.., = (c.eah "'~~~ _ $inh "'a~) (h, ... ~ ,...;_") 

+-(co s~ ~+ sit~h 7!-)(R~+ ~h~ 

28 
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"- - "· -= R ... 

".- " ~ 
':. 8,.. 

~! ,.._ tl, = c. ... 

ftz. ... ~ .. = D.., 

Y. = 



APPENDIX D 

Developme,nt of equation .J..- C• ~·l•l• et#x) int o a 
tri@onometrie series 

} = ; X 

7T' 

b..., = ! ) f (J) lin ~' . dJ 
0 

J=o 
~ =-, 

30 

;3~ >iul J~ ~ [< J'<-'~l•:, [<•-'i';') <•••3 
0 

..,.. 

+ ( ~·3~~ 61) "• -~] 
0 

., 
z~:j J• s; .. "'J JJ 

() 

= 



~in 

7f ;, . ~ .... "'j dJ = :. i,. 
m.:z.. 

() 

7f 

z;~~~ J · ~in ""J .tfJ = 
:2,/(0I.q 

...., 71" 

0 

-n,e, • h,.., 1 

b.., = 'H3}( d. q 

trS' 

C el/f, 4-8d~-= k ' 
7r5" 

M : I b., -= !/,}f 

,.., 
-=- 2. lo_ ::. 0 

'" :: 3 b,.. = ..ZK' 

,., = "' IP ... -= 0 

tultl 5 ~ries. 

00 

2.K' r I 

--;;;? 
~,·n 

,., : I 

o,fi, 

'II' 

J Co5 Ml J ,..,d ---;;:; ;j 

() 

CP $ WJ71 

( 1- C.D.S"" T ) 
btl"" 

C} 
J< =~v 24 

" If ' = 

31 



APPENDIX E 

Determination of some constant$ trom 

boundary eonditions 

w:: 

u ::: ± ..;_ an _j 
.J ' J (A 

:: a<.., 

--. ,.,:.,.s- +C..,.. Ce~sl,o<~ +«...,B.., linhoc.., :r.O 

ltr71b =0(.., 
d 

32 



APPENDIX F 

Determination of Bending Moments Mx and My 
from Deflection Equation 30 

Mx=-D(~+~ axL 

'VV' = Equahon 30,. Page. L4 

t Clift h 0( .. Si•h ~;•J} 

33 



APPENDIX G 

Determination of Twisting Moment Mxy 
from Derleetion Eqaation 30 

) 
;;;:;, 

Co .S h tn-n .!:J 
d.. 

34 
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