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ABSTRACT 

The objective of this thesis work is to reduce the 

end-point vibration of a flexible beam using the feedback 

control of the partial state variables. The dynamic model 

is derived from the assumed-modes method. The new feature 

of this model is that it is applicable to control system 

analysis and synthesis . A practical example is presented to 

illustrate the use of control law to improve the transient 

response. 
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I. INTRODUCTION 

A. THESIS GOALS: 

The aim of the dynamic control of an industrial robot 

is to force its end effector to follow a specified path 

that is required to complete its task satisfactorily. 

Sometimes, the task could be complicated by constraints 

imposed in the working space. 

In practice, structures which tend to increase the 

overall weight are preferably used. However, bulky designs 

introduce limitations in terms of speed, energy consumption 

and mobility. An intuitive approach to overcome these 

disadvantages is to design light weight manipulators whose 

chaotic response is not affected by structural flexibility. 

Recently, a lot of work has been done successfully 

using numerical methods to study the dynamics of a flexible 

link. However, not much work has been done to improve the 

end effector behavior. 

In this thesis a single flexible beam with tip mass is 

considered as a simplified manipulator which contains a 

certain amount of distributed elasticity. A general 

procedure to derive distributed characteristics and to 

approximate this flexible dynamic system is formulated. In 

addition, a feedback control strategy to reduce the 

end-point vibration is also presented in terms of realistic 

consideration. 
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B. SUMMARY: 

The computer simulation of the dynamic model and 

control results of the single flexible beam are presented 

in this thesis. Chapter I I I and Chapter IV describe the 

mathematical model. Chapter III formulates the kinetic 

energy and potential energy. Based on these results, the 

equations of motion are derived in Chapter IV by means of 

Lagrange's equations as well as the principle of virtual 

work. The beam is considered to be flexible and able to 

rotate horizontally such that the gravity effects can be 

neglected. For the system analysis, the model of the 

dynamic system is developed as transfer functions. 

Chapter V mentions the theoretical approach to the 

mathematical model and the results are compared with those 

from Chapter IV . 

Chapter VI and Chapter VII describe the control scheme 

and simulation. Chapter VI presents the way to modify the 

characteristics of the system. Chapter VI I presents the 

simulation 

control. 

of the end-point trajectory before/after 

Chapter VII comments on the practical features of the 

formulation presented here and suggests future work for 

extending this approach for more complex systems. 
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II. REVIEW OF LITERATURE 

The literature pertinent to this thesis is classified 

into two catagories. First, researchers in applied 

mechanics have analyzed problems of vibration for elastic 

components. Second, in the application area of control 

systems there are several typical methods which have been 

used in the vibrating manipulators. Upon reviewing these 

publications, it is evident that most investigators have 

focused upon numerical approaches and only a small number 

of papers have been dedicated to studying the system 

transfer function of this flexible manipulator. 

Research dealing with the dynamic response of 

mechanisms containing elastic links has been reviewed by 

Cetinkurt and Book [1], Thompson and Sung [2], and Erdman 

and Sandor [3]. Some early attempts to include elastic 

effects in the analysis of manipulators in references [4 to 

14] have focused on the four-bar or slider crank 

mechanisms. 

The second group of researchers [ 15 to 22] have been 

working on the area of vibration reduction of elastic 

component. The feed-forward control strategy [23, 24] has 

been a useful technique. In addition, optimal control 

techniques [25], which use the state space model, have also 

been used to design beams. 
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III. SYSTEM DESCRIPTION 

A. PHYSICAL MODEL: 

The system, as shown in Figure 1 is composed of a tip 

mass and a flexible beam rotating with respect to Z-axis. 

It is assumed that this is a direct drive system and the 

flexible beam is built in on the motor shaft. Two 

coordinate frames are assigned to the system: 

(X,Y,Z] - a Newtonian reference frame with origin at 0. 

[~, s, ~] a rotating frame with origin at 0 and the~-axis 

tangent to NN' (the neutral axis of the beam) at 0. 

B. BEAM CONFIGURATION: 

The arm is modeled as a continuous clamped-free beam 

of length L and linear density p. 

The following assumptions are made. 

a. The flexible link can bend and rotate freely in the XY 

plane but does not deform out of the XY plane [26,27]. 

b. An ideal planar motion does not result in torsion [28]. 

c. Elastic deformation u(~,t), shown in Figure 1, is always 

so small (<O.lL) that any extension is negligible [29]. 

d. For transverse vibrations due to small rotary and 

shearing effects, approximately 1.7% [30], bending effect 

is negligible. 

e. Tip mass is considered as a point mass. 



y 

z,~ 

Figure 1: The Flexible Beam 
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f. ~1,~2' .. ,~n-1 are shape functions of the first n-1 

modes in clamped-free beam, respectively. 

Following the assumptions d and f, the local 

deflection u(~,t) of the points along the deformable beam 

can be expressed as below . 

n-1 
U(t~ I t) = I </> i(t!)q i(t) 

i=1 
(3. 1) 

where qi(t) =the time dependent portion of i-th mode. 

Consequently, the first derivative and second 

derivative with respect to time and spatial variables, 

respectively, can be derived as follows. 

n-1 
zi(t~ I t) L </> i(t~)q i(t) 

i=1 

n-1 
u"(t~' t) L </>" i(.-,)q i(t). 

i=l 

(3. 2) 

(3. 3) 

Applying assumption c, it is easily understood that 

(3. 4) 

where Rd = vector of the point interested 

e 0 = unit vector in 0 direction. 
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C. KINETIC ENERGY: 

The kinetic energy of the beam and the tip mass can be 

expressed as 

(3. 5) 

Since . . " . . " 
= (xO + u)eo. (xiJ + u)e0 

(xiJ + u)2 (3. 6) 

= x 2iJ2 + 2xBzi + u2 . 

Therefore, 

T 

(3. 7) 

where 

[M] = [mij] 

m ij = J8 cf> i'P jF>d'1 + t5 ijMtcf> i(L)<f> j(L) i,j=l,2, .. ,n-1 

min = mn i 

i=l,2, .. ,n-1 

(3. 8) 
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D. POTENTIAL ENERGY: 

As the motion in ideal planar gravitational energy is 

negligible and the potential energy of the system will be 

assumed to be the elastic strain energy of the link only. 

Since 

n-1n-1 

= I I cP ~cP ;q i<t>q 1<t>. 
i j 

n n 
Consequently V = ~ 2:2:Kijqiqj 

i j 

where [K] = [K ij] 

K · · - f EI cP" ·cJ>" ·d., ~J - JB ~ J 

(3. 9) 

(3. 10) 

(3. 11) 

i,j=1,2, .. ,n-1 

i=1,2, .. ,n. 
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IV. EQUATIONS OF MOTION AND A 

SIMPLIFIED MODEL 

A. PRINCIPLE OF VIRTUAL WORK: 

To apply Lagrange's equations, one needs to formulate 

the generalized forces ti(t) associated with generalized 

coordinates qi by means of the principle of virtual work. 

The principle of virtual work relates the work done by 

external forces F· l. during a virtual displacement of 

generalized forces. As a sequence, we can easily show that 

n 
t5W = L T jt5q j 

j=l 

where n = No. of generalized coordinates 

t5W 

where 

p 

= ~ F ·t5r · ~ ~ ~ 

i=1 

p = No. of external forces, and deduce the form 

n L ori 
F·-­
~ iJq 

. 1 n 
~= 

n=1,2, .. ,n. 

(4. 1) 

(4. 2) 

(4. 3) 

As in this case, it is noted that the generalized 

forces need not necessarily be forces and sometimes could 

be torques. 



n 
bW = L T j(jq j 

}=1 

p 

bW = L F i br i = TbO • 

i=1 

10 

(4. 4) 

(4. 5) 

By comparison of both equations (4.4) and (4.5), it is 

easily concluded that 'ti=O, 

Therefore, 

0 
0 

T(t) 

B. LAGRANGE'S EQUATIONS OF MOTION: 

i=1, .. ,n-1 and 't n =t ( t ) . 

(4. 6) 

Equations (3.7), (3.9) and (4.6) can be rewritten as 

following. 

T = 

v = 

1 
2 

1 
2 

~1 
q2 

qn 

m11 m12 m1n ~1 
m21 m22 m2n q2 

(4. 7) 

mn1 mnn qn 

(4. 8) 



{-r} = 

0 
0 

-r(t) 

II 

(4. 9) 

Here, both the kinetic energy and potential energy 

are in a form generally known as quadratic. Thus, 

oL fj 
= - . -(T-V) 

oqJ oqJ 

n n ( · . ) 1 oqr . . oqs 
= 2 I I mrs ~s + qr~ 

r=1s=1 qJ qJ 

n n 

= ~I I mrs<iJsbrj + qrbsj) (4. 10) 
r=1s=1 

n n 
= 1 I . 2 mjsqs 1 I . + 2 mrjqr 

s=l r=1 

n 
= I mjsiJs j=1,2, .. ,n. 

S=1 

Where 6rj is the Kronecker delta, which is equal to 

zero for rls and equal to unity for r=s. 

Moreover, by analogy the following equations can be 

derived. 
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iJL o(T- v) 
= 

aqJ aqJ 

av = ---
aqJ 

n n 
= ~I L krs(qslJrj + qrlJsj) 

r=ls=1 (4.11) 

n n 
= ~ I kjsqs + ~ L krjqr 

S=l r=1 

n 

= L kjsqs j=1,2, .. ,n. 

5=1 

Introducing equations (4.9), (4.10) and (4.11) into 

Lagrange's equations: 

d ( iJL ) iJL 
dt aq1 - aq1 = TJ j=1,2, ... ,n. (4.12) 

One obtains Lagrange's equations of motion for a 

general linear system. 

n 
L [m jsii5 (t) + k jsq5 (t)] = T j(t) 

s=l 

j=1,2, ... ,n. (4. 13) 

Equation ( 4. 13) constitutes a set of n simultaneous 

second-order differential equations in the generalized 

coordinates qs(t) (s=1,2, ... ,n). 

To obtain a more compact form, the equations can be 

written in matrix form. 
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[M]{q} + [K]{q} = {-r}. (4.14) 

The above matrix equations form the basis of an 

explicit relationship between generalized qi ( i=1, 2, .. , n) 

and joint torque t{t). Such relationship is particularly 

attractive from a control point of view. Taking Laplace 

transformation and imposing zero initial condi tiona, the 

following equations can be obtained. 

X 

(4. 15) 

T(s) 

C. THE SIMPLIFIED SYSTEM: 

For computational simplicity, equation (4.15) can be 

truncated down to the first two modes (i.e. n-1=2) and this 

should not lose its generality and the final result wi 11 

not be effected [21]. 

Thus, equation (4.15) reduces to the compact form 
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D. SOLUTIONS OF GENERALIZED COORDINATES Qi~ : 

It is easy to relate each Qi' s to T(s) by means of 

matrix operations. Therefore, 

(4. 16) 

(4. 17) 

(4. 18) 

where AmPij is the effective amplitude of the system and 

its value depends on the system matrices [M] and [K]. For 

all practical purposes, it is customary to add to each mode 

a damping term proportional to the natural frequency and 

damping coefficient ~i· 

Rewrite equations (4.16), (4.17) and (4.18). 

(4. 19) 

(4. 20) 

= { Amp30 AmP31 + Amp32 }T(S) 
2 + 2 2 2 2 . s s + 2e 1s + w 1 s + 2e2s + w2 

( 4. 21) 
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Based on equations (4.19), (4.20) and (4.21), the end 

point trajectory can be written as follows: 

(4.22) 

The block diagram representation of equation (4.22) is 

given in Figure 2 for the case of zero damping. 



Input 
torque 

_T_(_s_)_r--~ { ArnPll + Amp12 } 

s 2 + w~ s 2 + co~ 
1-----..-t t/J 1 (£) t------..-c 

L 

Figure 2: System Block Diagram Representation 

End 
point 
trajectory 



17 

V. VERIFICATION OF BEAM MODEL 

A. EFFECT OF STIFFNESS: 

Results for the flexible arm model were compared with 

those of a rigid arm, which has the same corresponding 

characteristics except the flexibility. Clearly as the 

stiffness, EI(x), of the link increases, the system 

response of the flexible model converge to the rigid model 

response. This convergence is graphically shown in Figures 

3 and 4 which are plots of tip position vs. time for beams 

with stiffness 14.7MPafMPa and 100MPa respectively. 

B. ANALYTICAL SOLUTION - EULER EQUATION FOR BEAMS: 

For simplification consider the beam shown in Figure 

S(a) with constant EI(x), m(x) but without tip mass. 

1. Boundary-Value Problem Formulation: At any point x 

the bar has a mass per unit length m(x), a cross-sectional 

area A(x), and an area moment of inertia I(x) about the 

neutral axis as shown in Figure S(b). This is a one-

dimensional problem because only one space variable, x, is 

involved. 

The total deflection y(x, t) of the bar at a point x 

consists of two parts, one caused by bending and one by 

shear. Therefore, the slope of the deflection curve at the 

point x can be written 

oy(x, t) 
ox 

= t/J(K 1 t) + P(K 1 t) (5. 1) 
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where 'l'(x, t) is the angle of rotation due to bending and 

~(x,t) is the angle of distortion due to shear. As usual, 

the linear deflection and angular deflection are assumed 

small. 

The relation between the bending moment M(x,t) and the 

bending deformation is 

M(x, t) = EI(x) ot/J(x, t) 
ox 

(5. 2) 

and the relation between the shearing force Q(x, t) and 

shearing deformation is given by 

Q(x, t) = k'GA(x){J(x, t) (5. 3) 

where G is the shear modulus and k' is a numerical factor 

that depends on the shape of the cross section. Shear 

alone will cause distortion without rotation. 

To formulate the boundary-value problem we shall make 

use of the extended Hamilton principle. 

Here, kinetic energy is due to translation and 

rotation and is expressed as 

T(t) = _l_ rL[ oy(x I t) J m(x)dx + _l_ rL[ ot/J(X It) J J(x)dx 
2 J0 at 2 J0 at 

(5. 4) 

where L is the length of the bar · and J(x) is the mass 

moment of inertia per unit length about the neutral axis 

which passes through the center Cas shown in Figure 5(b). 

But J(x) is related to I(x) by 
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J(x) = ai(x) 
m(x) 2 

= A(x) I(x) = k (x)m(x) (5. 5) 

where cr is the mass density and k(x) is the radius of 

gyration about the neutral axis. The variation of T can be 

readily written as 

(5. 6) 

The virtual work consists of conservative and 

nonconservative work. Since the external load is in the 

direction of the displacement, the virtual work for the 

whole bar is 

L 
bW(t) = bW c(t) + bW nc<t) = - c5V(t) + J

0 
p(x, t)by(x, t)dx (5. 7) 

where V(t) is the potential energy given by 

V(t) = _!_iL M(x I t) ot/J(X I t) dx + lf.L Q(x I t){J(x I t)dx 
2 0 ~ 2 0 

= lf.L EI(x)[ ot/J(X I t) J' dx + lf.L k'GA(x){J2(x I t)dx. 
2 0 ~ 2 0 

(5. 8) 

Hence the variation of potential energy has the form 

oV = I: EI ~~ b( ~! )dx + I: k'GA{J bfJ dx 

(5. 9) 

~ J:EI ~! o( ~! )dx + Ck'GA( !~ -~ )o( !~ -~ )dx. 
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Introducing equations ( 5. 6), ( 5. 7) and ( 5. 9) in the 

variational principle leads to 

(5. 10) 

- f£ EI oY, lJ( oY, )dx - f£ k'GA( oy - Y,)lJ( oy - Y,)dx 
J0 oX ox J0 ox ox 

+ I: p6ydx J dt: = 0. 

Since the order of integrations with respect to x and t is 

interchangeable and the variation and differentiation 

operators are commutative, we can perform the following 

integrations by parts: 

ft2 o2y 
= - m--tJydt 

t 1 ot 2 

becauseoy vanishes at t=t1 and t=t2 . In a similar fashion 

we obtain 

On the other hand, integration over the spatial variable 

yields 
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I:k'GA( ~~ - ~ )~( ~~ - ~ )dx 

= I: k'GA( ~~ - ~) 0~ (~y)dx - I: k'GA( ~~ - ~ )~~ dx 

= [k'GA( :~ - ~) }y : - r: a~ [k'GA( :~ -V) }ydx 

Using the equation (5.10) produces 

L 

0 



= (
2 [I: { 0q k'GA( !~ -~)]- m ::~ + p}oydx 

r {[ O~ (EI ::) + k'GA( :~ - ~)]- k2m ::~ }o~dx 

- (EI :; )o,; : - [ k'GA( :~ - f) ]oy : ] dt = 0. 
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(5. 11) 

The virtual displacements Oljl and oy are arbitrary and 

independent, so they can be made equal to zero at x=O and 

x=L and arbitrary for O<x<L. Therefore, we must have 

0 [ , ( oy )] o2 y - k GA - - t/1 - m-- + p = 0 
ox ox ot2 

2 
- 0-(EI ot/1 ) + k'GA( oy - "') - k2m~ = o 
ox ox ox ot2 

throughout the domain. In addition, if we write 

( EI ot/J )c5t/l L = 0 
ox 0 

0 

(5. 12) 

(5. 13) 

(5. 14) 

(5. 15) 

there is a possibility that either EI(a'V;ax) or 6"', on one 

hand, and either k'GA[(ay;ax) - '1'1 or oy, on the other, 

vanishes at any of the ends x=O and x=L. Equations (5.12) 

and (5 .13) are the differential equations of motion that 
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must be satisfied over the length of the bar, and (5.14) 

and (5.15) represent the boundary conditions. The four 

equations together constitute the boundary-value problem. 

Equation (5.14) requires that either the bending moment or 

the bar rotation variation vanish at each end and ( 5.15) 

requires that either the shearing force or the deflection 

variation be zero at each end. It is the satisfaction of 

these boundary conditions that renders the solution of the 

differential equations unique. 

2. The Eigenvalue Problem: The formulation given by 

equation (5.12) and (5.13), includes the shear deformation 

effect and the rotary inertia effect, the latter caused by 

the angular acceleration of a bar element. The shear 

deformation effect is reflected in the second integral in 

the potential energy expression, equation ( 5. 8), and the 

rotatory inertia effect is represented by the second 

integral in the kinetic energy expression, equation (5.4). 

When the cross-sectional dimensions are small compared with 

the length of the bar, both shear and rotatory inertia 

effects can be neglected. If this is the case and if the 

external load is zero, i.e. p(x,t)=O, equations (5.12) and 

(5.13) can be combined into a single equation, 

(5. 16) 

The boundary conditions used to solve the above equations 

are 
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y=O 
2 

EI~ = Torque = T(t) 
' ax2 

at X=O (5. 17) 

= 0 = 0 at X=L. (5. 18) 

r 3. Solution of Eigenvalue Problem: Let us consider a 

one-dimensional system described over the domain O<x<L by 

the differntial equation of motion 

O<x<L (5. 19) 

and by the time-dependent boundary conditions 

y(O It) = 0 (5. 20) 

(5. 21) 

(5. 22) 

(5. 23) 

To transform this boundary-value problem with the 

time-dependent boundary conditions into a problem 

consisting of a nonhomogeneous differential equation with 

homogeneous boundary conditions, one assumes a solution of 
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the boundary-value problem described by equations ( 5. 19) 

through (5.23) in the form 

y(x I t) = v(x 1 t) + g(x) T(t). (5. 24) 

Introducing equation (5.24) in equations (5.20) 

through (5.23) the transformed boundary condition is 

obtained 

y(OI t) = v(OI t) + g(O)T(t) = 0 + 0 

2 
~(0 1 t) = 
ax2 

a2y 
- 2-(L 1 t) = 
ax 

3 
~(L 1 t) = 
ax 3 

2 
~(0 It) + g"(O)T(t) 
ax2 

2 
~(L 1 t) + g 11 (L)T(t) 
ax2 

3 
~L1 t) + g 11 (L)T(t) = 
ax 3 

(5. 25) 

0 + T(t) (5. 26) 

0 + 0 (5. 2 7) 

0 + 0. (5. 28) 

Imposing the conditions g(O)=O~ g"(0)=1 1 g"(L)=O~ and 

g"(L)=0 1 in equations (5.25) through (5.28), one obtains 

the nonhomogeneous differential equation 

- Eigiv T - mg(x):r(t) (5. 29) 

with time-independent boundary conditions 

v(O It) = 0 (5. 30) 
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2 
...£__y_(O I t) = 0 
ax2 

(5. 31) 

(5. 32) 

(5. 33) 

Since the time dependence for all the conservative systems 

discussed is harmonic the boundary-value problem reduces to 

the eigen value problem 

4 
EI-d-[X(K)] = w2m(x)X(K) 

dx4 
O<x<L (5. 34) 

with 

v(x,t) = X(x)F(t) 

(5.34) can be rewritten as 

4 
= p4x ~[X(x)] 

dx 
with 4 m 2 

fJ = Ern (5. 35) 

The function X(x) must satisfy appropriate boundary 

conditions. 

X(O) = 
X"(O) = 
X"(L) = 

X" ( L) = 

0 

0 

0 

0 

(5.36) 

(5.37) 

{5.38) 

(5.39) 
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For these boundary conditions general solution of equation 

(5.34) can be shown to be 

X(x) = sin PL sinh px + D sinh PL sin px. 

The natural frequencies of vibration found from 

equation (5.34) are 

(5. 40) 

wherean is given in Table I. 

TABLE I - CHARACTERISTIC VALUES FOR EQUATION (5.34) 

n 0 1 2 3 4 

0 15.4 50.0 104.0 178.3 

C. SYSTEM PARAMETERS: 

The data for the flexible beam in our discussion is 

shown in Table II. 



TABLE II - PARAMETERS OF THE BEAM 

Length Thickness 

(m) (m) 

5 0.005 

Width 

(m) 

0.02 

Linear 

Density(kg/m) 

0.27126 

Young's 

Modulus(GPa) 

14.7917 
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Table III presents the system model parameters derived 

by equations (4.16), (4.17) and (4.18). 

TABLE III - THEORETICAL NATURAL FREQUENCY OF 

THE FLEXIBLE BEAM 

Mode No. 

1 

2 

3 

Natural Frequency wn ( radjsec) 

0 

4.55 

14.97 

A basic computer code called FANCY, which computes the 

parameters used in equations ( 4. 16) through ( 4. 22), has 

been generated for determining system parameters . The 

program also computes the natural frequency shown in Table 

IV. 



TABLE IV - NATURAL FREQUENCY DERIVED BY PROGRAM FANCY 

Modal No. 

1 

2 

3 

Natural Frequency nn ( radjsec) 

0 

4.54 

21.69 
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As the tip trajectory of a flexible link converges to 

that of a rigid link (Figure 3 and Figure 4) and as the 

first two natural frequencies are almost equal, the 

analytical and numerical results obtained for the case 

without tip mass can be assumed accurate. 
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VI. CONTROL STRATEGY 

The lack of tip trajectory accuracy of the flexible 

link limits the work capability in industrial applications. 

It also clearly limits loading ability to levels far below 

their structural limitation. 

Most manufacturing and many assembly tasks require 

position tolerances in the order of 0.02Smm, yet 

sufficiently robust industrial manipulators are always 

characterized by repeatabilities close to 0.2Smm. To 

overcome such an inaccuracy, prior results of flexible 

systems are defined by a single set of partial differential 

equations. However, this study using expressions of system 

transfer function is easier than those prior efforts, 

specially in control application. 

A. THE FORMULATION OF CONTROL LAW : 

The main goal in designing a controller is to relocate 

the position of poles of the system such that a better 

performance can be derived. 

Rearranging equation (4.22), the system transfer 

function H(S) can be written in the form suitable to 

control system design: 

H(S) = U(L,S) 

T(S) 
= 

b 1 s 4 + b2s 3 + b 3s 2 + b 4s + b 5 

s6 + al s5 + a2s4 + a3s3 + a4s2 

b(S) 
= 

a(S) 
(6. 1) 
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where 

b2 = 2(Amp11 + Amp21 + Amp31)~2m2 + 2(Amp12 + Amp22 + Amp32>~1m1 

+ 2Amp3o<~1 m1 + ~2m2) 

b3 = (Amp11 + Amp21 + Amp31)m~ + (Amp12 + Amp22 + Amp32)mf 

+ AmPJo(mf + m~ + 4~1 ~2m1 m2) 
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An auxiliary variable 'V(t) referred to as the partial 

state variables, can be defined as the transfer function 

from 'I' ( S ) to T ( S ) : 

or 

'I'(S) 

T(S) 
= 1 

a(S) 
(6. 2) 

Similarly, the transfer function from U(L,S) to 'I'(S) 

is 

or 

U(L, S) 
'l'(s) 

b(S) (6. 4) 

Combining equations ( 6. 2) and ( 6. 4). the block diagram 

shown in Figure 6 is obtained. 

In order to formulate the control law, one defines the 

state variable of the system as below. 

(6. 6) 

(6. 7) 



Input 
torque 
trajectory 

Figure 6: System Block Diagram in Terms of Partial State Variables 

End 
point 
trajectory 
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(6. 8) 

(6. 9) 

xs = "'" = (6 .10) 

(6. 11) 

These equations can be arranged into a matrix form. 

{i} = 

where {X} = 

{X} 

[F]{X} + {G}r 

x1 
x2 
X3 
x4 
xs 
x6 

~1 
~2 
~3 
~4 
~5 
X6 

(6. 12) 

(6 . 13) 

(6. 14) 
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-a1 - a2 - a3 - a4 0 0 
1 0 0 0 0 0 

[F] 0 1 0 0 0 0 (6. 15) = 0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 

1 
0 

{G} 
0 (6. 16) = 0 
0 
0 

In this case, the form (Figure 6) in which all the 

feedback loops return to the point of application of the 

input is referred to as the control canonical form. 

B. SELECTION OF GAINS : 

Applying matrix operations, the appropriate feedback 

gain values K1 , ... ,K6 (as shown in Figure 7) can be 

determined by selection of the desired pole locations which 

correspond to the roots of new characteristic equation. 

(6 . 17) 

Further more, the characteristic equation of the 

feedback system is: 



Input 
torque 
T(s) --..... 

+ 

Plant 

End 
point 
trajectory 

............ _r-----:-----t. _________ ..:::::::,....._ 
~----------~ - {Xl ,. (F]{X} + {G}T / 

Figure 7: Control System Block Diagram Representation w 
1.0 



llc(S) = det[SI - (F - GK)] 

= s 6 + (al + Kl)s5 + (a2 + K2 )s4 + (a3 + K3)s 3 + (a4 + K4 )s2 

+ KsS + K6 

= 0 

where 

I = Unity matrix 

( -al- Kl) ( -a2- K2) ( -a3- K3) ( -a4- K4) -Ks -K6 
1 0 0 0 0 0 

F-GK = 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
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(6 .18) 

The feedback gains can then be found by equating equations 

(6.17) and (6.18). The results are 

Kl = - al + a'l 
(6. 19) 

= -al + 2(el WI + e2w2 + ~3w3) 

K2 = - a2 + a'2 

= -a2 + w! + W~ + W~ + 4(el e2w1 W2 + '2~JW2WJ + '1 'JWl WJ) 

(6. 20) 

K3 = - a3 + a'3 

2 2 2 2 
= -a3 + 2wl w2e2 + 2w2wl '1 + 2wl w3e3 + 2w3wl '1 (6. 21) 



K4 = - a4 + a'4 

= -a4 + 4w1w2w3e2e3 + 4w~wlw3ele3 + 4w~wlw2ele2 
2 2 2 2 2 2 + wlw2 + wlw3 + w2w3 

Ks = a's 

2 2 2 2 2 2 
= 2wlw2w3e3 + 2w2w3wlel + 2wlw3w2e2 

K6 = a'6 

2 2 2 = wlw2w3 

41 

(6. 22) 

(6.23) 

(6. 24) 
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VII. SIMULATION OF DYNAMIC SYSTEM 

The response is simulated for a total of two periods 

of the fundamental frequency. The sampling duration in 

computation is fixed at 0.003 seconds, which is 

approximately 110 times higher than the highest frequency 

of the truncated system. To evaluate the system 

performance, a step torque (O.lNm) is utilized as the input 

torque. 

Figures 8 and 9 are the simulation results. Notice 

that the deflections and time elapsed are all normalized 

quantities and these will provide a good picture about the 

system performance no matter how fast or slow the system 

response is. 

Figure 8 illustrates the tip position and its 

commanded trajectory. It is noted that the flexible link 

is deflected backwards and forwards with respect to its 

commanded trajectory all the time. And the actual response 

is always lower than its trajectory. This feature results 

from the fact that the moment of inertia for the link is 

increased due to the link flexibility. 

Figure 9 shows the feedback control simulation. For 

this case the poles are moved to left (Figure 10) such that 

damping ratios of the system are increased to 0.5. It is 

noted from the figures that the feedback control is 

successful in suppressing the structural vibration of the 
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flexible beam and also results in a slow transient response 

(Figure 9). 

Finally, Figure 11 indicates the control efforts for 

this case. It is not accidental that the settling time is 

very satisfactory. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY OF CONCLUSION: 

The results of this thesis support the conclusions 

summarized in this section. 

1. The transfer function approach is a valid, useful, and 

convenient way to model the dynamic system of flexible 

manipulators for the purpose of controller analysis and 

synthesis. 

It has the adaptability for use in the structure 

design. It also has the efficiency for extensive analysis 

of particular configurations of deformable components. 

2. For simple controller, flexibility limits the system 

performance achieved by feedback control. 

3. For manipulators with the common control scheme 

assumed, flexibility is the most critical factor in the 

design of the arm structure for general practical 

requirements. More sophisticated control schemes are of 

interest in these cases if the disadvantanges due to 

inherent flexibility cannot be overcome. 

B. RECOMMENDATIONS FOR FUTURE WORK: 

The recommendations for future work can be classified 

into three categories. 

1. 

are 

Systematic methods 

really needed for 

for evaluating system parameters 

the application of control law 
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proposed. This will be especially important if the 

additional number of arms is present. 

2. Torsional effects should be considered for those cases 

with heavy payload and in high speed. This will result in a 

more complex driving mechanism than the ideally planar 

motion. 

3. Additional control schemes should be explored. Due to 

the inaccessibility of partial state variables used in 

feedback control, a reduced observer will be greatly 

required to implement the control law. 
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