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ABSTRACT 

 

The blood vessels are part of the circulatory system and function to transport 

blood throughout the body. Vessels have their own features such as distinctive color 

compared to surrounding skin as well as distinctive curved and/or linear shape. 

Telangiectases are small dilated blood vessels near the surface of the skin or mucous 

membranes, measuring between 0.5 and 1 millimeter in diameter. In this research, image 

analysis techniques are investigated to detect vessels in dermoscopy skin lesion images. 

Machine vision and neural network methods are explored to discriminate skin lesions 

containing telangiectases from those containing normal vessels.                                                                                      

A vessels Detection technique is implemented firstly to find the possible vessels 

in dermatology skin lesion images. In addition, a noise filtering technique is applied, 

which filters out the ―noise‖ such as hair, bubble and so on, according to their own 

features. Based on the fact that some of the images are fuzzy, a contrast enhancement 

technique can be added to increase the contrast. After obtaining the final masked regions 

containing vessel-like structures, features are computed to facilitate the discrimination of 

skin lesion with normal vessels from lesions containing telangiectases. The features are 

mostly about the number, shape and size of telangiectases mask. 

Two different artificial neural networks including back-propagation artificial 

neural networks (BP-ANN) and Particle Swarm Optimization (PSO) as a part of neural 

network are examined for vessel discrimination on a skin lesion by skin lesion basis.  

Experiments and results are reported for vessel detection and discrimination. Conclusion 

and the future scope are shown in the last. 
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1. INTRODUCTION 

 

Telangiectases are widely open (dilated) blood vessels in the outer layer of the skin.  

They are very common in healthy people and are usually caused by sun damage or aging. 

When seen on the legs, they do not necessarily indicate a vein disorder, such as varicose 

veins or underlying deep vein problems. Figure 1.1 presents an example of a dermoscopy 

skin lesion image with telangiectases present in (a) and a skin lesion image with normal 

(indistinct) vessels present in (b) (Many lesions have rudimentary vascular structures. 

The challenge here is to differentiate the short, rather indistinct from the longer, clear 

vessels of skin cancer).  The arrow in Figure 1.1 (a) points to an area with telangiectases 

present.  

 

 

 

 

 

(a) Telangiectases 

Figure 1.1: Skin Lesion Example. 
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(b) Normal (Indistinct) Vessels 

Figure 1.1: Skin Lesion Example. (cont.) 

 

 

 

 

These vessels are observed with a number of diseases, including acne rosacea, 

birthmarks (eg, port-wine stains), scleroderma, several types of inherited disorders 

(ataxia-telangiectases, hereditary hemorrhagic telangiectases, xeroderma pigmentosum, 

and others), or with prolonged use of oral or topical corticosteroids [1]. Therefore, it is 

very necessary to discriminate Telangiectases as early as possible to avoid any danger. In 

this research, image analysis techniques are investigated to detect vessels in dermoscopy 

skin lesion images. Characteristic features of the vessels are examined to foster the 

discrimination of normal vessels from Telangiectases on a skin lesion by skin lesion 

basis.  

Color and shape features are used for vessel characterization. Color is an important 

skin lesion feature for detecting vessels. The red, green and blue (RGB) color space is 
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used to represent colors characteristic of each image. For RGB space, there are eight bits 

per pixel, providing 256 possible values for each of the components. Thus, there are a 

total of 256
3 

possible colors in this color space. However, there is a problem with 

detecting vessel based on color, which is that quantifying the colors considered 

characteristic of vessels is difficult due to variations in lighting and slide processing 

whether using photography or digital imaging. The use of relative color, in which the 

average background skin color is subtracted from each lesion pixel, has been proposed as 

a technique to help compensate for color distortion in the imaging process. This 

technique equalizes color changes due to different skin types as well as to lighting and 

image processing techniques [2].  

Therefore, the basic approach investigated for detecting vessels is according to the 

fact that vessel has different color with surrounding skin. The vessels detection technique 

is implemented firstly to find the possible vessels in dermatology skin lesion images 

using the red, green and blue color drop between the pixels inside vessel and the 

surrounding pixels in eight directions, including East, South, West, North, Northwest, 

Northeast, Southwest and Southeast. 

 In addition, shape is an important skin lesion feature for discriminating lesions 

with telangiectasias from others. For example, the area of vessels, the length of vessels 

and the number of vessels could be generated as the features for data sets. Dermoscopy 

image sets consisting of skin lesions with and without telangiectases are examined for 

vessel feature-based discrimination. Two different artificial neural networks, including 

multi-layer perception back-propagation neural networks (BP-ANN) and Particle Swarm 
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Optimization (PSO) based neural network are examined for vessel discrimination on a 

skin lesion by skin lesion basis.  

The remaining sections of this thesis include: 1) the vessel detection technique, 2) 

the image noise filtering technique, 3) the neural network methods for lesion-based vessel 

discrimination, 4) experiments performed, results and discussion and 5) conclusions and 

the scope of future research.   
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2. METHODOLOGY 

 

An overview of the methodology for this research is provided in the flowchart in 

Figure 2.1. This study uses dermoscopy skin lesion images containing 59 Telangiectases 

images and 235 competitive benign images as the input sets. Those images are from the 

following clinics 1)Stoecker & Associates, Rolla, MO (W.V. Stoecker, D. Calcara), 2) 

Skin and Cancer Associates, Plantation, FL (H.S. Rabinovitz and M. Oliviero), 3) The 

Dermatology Center, Rolla, MO (J. Malters), 4) Sheard & Drugge PC, Stamford, CT (R. 

Drugge), and 5) Boone Clinic, Columbia, MO (L.A. Perry). From Figure 2.1, the basic 

approach for dermoscopy skin lesion analysis is to apply vessel detection and noise 

filtering techniques to generate an output binary vessel mask. Since a vessel looks redder 

than the surrounding skin, the vessel detection technique uses color drop from the 

surrounding pixels to mark the possible vessel pixels. However, other areas such as hair, 

bubble and so on might still be marked falsely because they may also meet the color drop 

requirement. The noise filtering technique is used to mitigate these noise sources. Then, 

image-based features are computed based on the vessel mask.  This process is performed 

for all images in the data set.  Image-based vessel discrimination is done for the two 

classes of skin lesions with telangiectases and without telangiectases.   

A training data set of the images is used and the remaining data set of the images 

is used for the test set. Image-based telangiectases discrimination is performed using 

different neural network classifiers.  
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Figure 2.1:  Overview of Vessel Detection and Discrimination Process. 

 

 

 

 

2.1. IMAGE ANALYSIS 

This technique is implied to the entire telangiectases data set. With the help of Dr. 

Stoecker, the parameters such as drop color value and surrounding skin size used in the 

design were adjusted to find all possible vessels.  

 

2.1.1. Vessel Detection Technique.  To a human, a vessel looks red compared to 

the surrounding skin. Using machine vision, the pixels inside the vessel have color drops 

from the surrounding pixels. The vessel detection technique is developed based on this 

fact and uses color drop with surrounding skin to find vessels. This work builds on the 

techniques developed by David Erdos. 

In this specific application, all input images are accompanied by a lesion mask, 

which is a TIFF (Tagged Image File Format) image that is 0 for pixels not in the lesion, 1 
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for the border of the lesion and 2 for the interior of the lesion. This lesion mask is created 

manually with the certification from Dr. Stoecker. This algorithm iterates through every 

single pixel inside the lesion, selecting a new center pixel with each iteration, it then 

moves outward a set number of pixels (NumPix) from a given center in eight directions. 

It starts with the pixels labeled with the number 1 (Figure 2.2), and then the second 

iteration would move on to the pixels labeled with a number 2, and so on. Once a center 

pixel is found that matches the required color drops in two of the eight directions that are 

at least 135 degrees apart (e.g., North and Southwest directions are 135 degrees apart), 

then the center pixel is marked.  According to the feature of vessels which have different 

color with surrounding skin, we specified different color drops for red, green and blue.  

As determined experimentally, 135 degrees is large enough to compare the 

surrounding pixel with the center pixel; 45 degrees and 90 degrees will bring too much 

noise, while 180 degrees may miss some actual vessel pixels.  

For example (see Figure 2.2 as a reference), starting from the North direction, 

assume that the first pixel in the direction of North has three values for red, green and 

blue color, named N_Red(1), N_Green(1) and N_Blue(1). First, we could take North and 

Southwest directions. Therefore, 

 

 ((N_Red(1) - Center_Red > Red_Drop and N_Green(1) - Center_Green > Green_Drop 

and N_Blue(1) - Center_Blue > Blue_Drop) and (SW_Red(1) - Center_Red > Red_Drop 

and SW_Green(1) - Center_Green > Green_Drop and SW_Blue(1) - Center_Blue > 

Blue_Drop))                                                                                                                    (1)                                                                                 
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will be the one of the conditions to mark the center pixels. Besides the North and 

Southwest directions, the North and South directions and the North and Southeast 

directions should be considered as other two conditions to mask the center. It is the same 

for the other seven directions. When a pixel is marked, it is placed in an array that is the 

same size as the input image and recorded as the Boolean value of  ―1‖ [3]. 
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Figure 2.2:  Direction Mask Used for Pixel Marking. 

 

 

 

 

2.1.1.1. Drop color value.  As shown in Eq. 1, Red_Drop, Green_Drop and 

Blue_Drop need to be adapted to detect as many vessels as possible. By observing the 

color changes of the blood vessels it was determined, the red should decreaset from the 
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surrounding skin by more than -2 (Red_Drop) while green and blue are required to 

decreaset by 4 (Green_Drop) and 12 (Blue_Drop), respectively. After applying the 

direction mask on a pixel-by-pixel basis within the lesion and retaining the pixels that 

satisfy the drop constraints above, the output mask images can be obtained. Figure 2.3 

presents an example of the output images based on different red color drops with 2 in (b) 

and -2 in (c). With decreasing the red drop from 2 to -2, some vessels missed in (b) can 

be detected.   

 

 

 

 

 

(a) Original Image 

Figure 2.3: Mask Image with Different Red Drops. 



 

 

10 

 

(b) Mask Image with Red Drop=2 

 

(c) Mask Image with Red Drop=-2 

Figure 2.3: Mask Image with Different Red Drops. (cont.) 
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2.1.1.2. Surrounding skin size.  Vessels have different shapes and sizes; some 

are very thin while others are very thick. The thick vessels may be missed if there are not 

enough surrounding pixels comparing with the center one. This algorithm iterates through 

every single pixel inside the lesion, selecting a new center pixel with each iteration. It 

then moves outward a set number of pixels (NumPix) from a given center in eight 

directions. NumPix is the value to illustrate the surrounding skin size and has to be big 

enough to detect the widest vessels. Figure 2.4 shows the vessel mask using different 

NumPix values. Because one of the vessels in the top is very wide, it cannot be detected 

if NumPix is 4, but it could be found after increasing NumPix to be 7, as determined 

experimentally.  

 

 

 

 

 

(a) Original Image 

Figure 2.4: Mask Images with Different NumPix Values. 
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(b) NumPix=4 

 

(c) NumPix=7 

Figure 2.4: Mask Images with Different NumPix Values. (cont.) 
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2.1.2. Noise Filtering Technique.  After implementing the above algorithm, not 

only vessels, but also some other noise sources such as hair, bubble and brown area were 

marked. A noise filtering technique is used to mitigate these noise sources.  Figure 2.5 

shows brown areas that are labeled as vessels using the vessel detection technique. The 

following sections present noise filtering approaches used to address the different types 

of noise sources. All of these techniques are applied on a pixel-by-pixel basis to pixels 

included in the vessel mask from the vessel detection algorithm.  

 

2.1.2.1. Brown area filtering.  For pixels within brown area structures, the green 

value is always bigger than the blue value. The opposite is true for vessels. This 

condition—Green>Blue+5, was used to filter the brown area as shown in Figure 2.6. This 

technique is applied on a pixel-by pixel basis to unmark the vessel mask from the vessel 

detection algorithm.  

 

 

 

 

Figure 2.5: Brown Area Labeled as Vessels. 
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Figure 2.6: Unmarked Brown Area. 

 

 

 

 

2.1.2.2. Hair filtering.  For skin lesions containing hair, the ratio of Red to Green 

has different values with the surrounding skin. We define a 5x5 square and calculate the 

variance of the Red/Green ratio for those 25 (5x5) pixels (Figure 2.7), then apply on a 

pixel-by pixel basis to unmark the vessel mask inside this square if the variance of the 

Red/Green ratio is greater than 0.01. The disadvantage of this algorithm is that for some 

wider hair or the wider part in a hair, the variance may be not greater than 0.01 so that 

those noise could be eliminated.   
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(a) Original Image 

 

(b) Hair Labeled as Vessels 

Figure 2.7: Hair Filtering. 
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(c) Unmarked Hair 

Figure 2.7: Hair Filtering. (cont.) 

 

 

 

 

2.1.2.3. Bubble and other lighter area filtering.  Examining the image data set, 

there are two kinds of vessels including dark red and light red. For the light red vessels, 

the red color value is much larger than green value (Green/Red<0.6); for the dark red 

vessels, the red color value is still larger than green (Green/Red<0.7), while for bubbles 

and other lighter area, Green/Red has a larger ratio. Therefore, the Green/Red>0.6 

constraint for light red and the Green/Red>0.7 constraint for dark red are applied on a 

pixel-by pixel basis to unmark the bubble and other lighter area. All of the ratio 

constraints were determined experimentally from the skin lesion image data set. Figure 

2.8 shows an image example of filtering bubble and other lighter area.  
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(a) Original Image 

 

(b) Bubble Labeled as Vessels 

Figure 2.8: Bubble and Other Lighter Area Filtering. 
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(c) Unmarked Bubble 

Figure 2.8: Bubble and Other Lighter Area Filtering. (cont.) 

 

 

 

The disadvantage of this algorithm is that although most parts of bubbles could be 

filtered out after this, however, some noises surrounding the bubbles are still hard to be 

removed.  

 

2.1.2.4. Image dilation and erosion.  Image Dilation and Erosion are used to 

connect the disconnected vessels. In general, a vessel should be a connected curvilinear 

structure, but parts of it after noise filtering become disconnected. After creating a flat, 

disk-shaped structuring element with radius 3, the vessel mask is dilated to see if it 

becomes a connected curvilinear structure.  However, since the structure may become 

very wide after dilating, the erosion operation can be used to constrict the structure.  

Based on experimentation, the radius value used for the disk-shaped structuring element 

is 2. This technique is applied on a pixel-by-pixel basis to dilate and erode the vessel 
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mask for each image. Figure 2.9 shows an image example with the dilation and erosion 

operations applied.   

 

 

 

 

 

(a) Original image 

 

(b) Mask after Noise Filtering 

Figure 2.9: Image Dilation and Erosion. 
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(c) Mask after Dilation (dilRad=3) 

  

(d) Mask after Erosion (eroRad=2) 

Figure 2.9: Image Dilation and Erosion. (cont.) 
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2.1.2.5. Square comparison algorithm.  Some large blob noise could be filtered 

out using the square comparison algorithm.  A 41x41 square is used as the standard 

window which is moving from the left to the right and from the top to the bottom inside 

the lesion for each image. If 70% or more of the pixels inside this square are marked, 

those pixels which were marked as vessels after the above procedure will be unmarked.  

As shown in Figure 2.10, the arrow in 2.10 (b) shows                                                             

the big blob noise, which is filtered out in 2.10 (c).   

 

 

 

 

 

(a) Original Image 

Figure 2.10: Square Comparison Algorithm. 
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(b) Big Blob Labeled as Vessels 

 

(c) Unmarked Big Blob 

Figure 2.10: Square Comparison Algorithm. (cont.) 

 

 

 

 

2.1.2.6. Length and area limitation.  Since the result after performing all of the 

previous noise removal steps was still noisy and not particularly accurate, the next step is 
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to skeletonize the vessel mask image and remove objects that are not long enough to be 

considered linear vessels. For skeletonization, the Matlab
® 

function bwmorph(BW, 

‘skel‘) executed to perform skeletonization.  This operation is used to remove pixels on 

the boundaries of objects but does not allow objects to break apart and the pixels 

remaining make up the image skeleton. The minimum object length of the skeleton is 

defined as 30 pixels. Any object will be removed if its length is less than the required 

value.  In addition to applying the skeleton length constraint for object removal, objects 

with an area of less than 40 pixels are eliminated as too small.  Figure 2.11 presents an 

image example with the skeletonization length and object area constraints applied.  

Figure 2.11 (a)-(d) give the original image, vessel mask after applying the vessel 

detection and noise removal algorithms described in Section 2.1.2.5, vessel mask with 

length constraint applied and vessel mask with area constraint applied, respectively.   

 

 

 

 

 

(a) Original Image 

Figure 2.11: Length and Area Limitation. 
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(b) Mask with Noise 

 

(c) Mask after Length Limitation 

Figure 2.11: Length and Area Limitation. (cont.) 



 

 

25 

 

(d) Mask after Area Limitation 

Figure 2.11: Length and Area Limitation. (cont.) 

 

 

 

 

2.1.3. Contrast and Brightness Change.  For some telangiectases images, which 

have low contrast and there are few vessels detected after implementing the above 

algorithm, a contrast enhancement technique can be applied. For this reason, the contrast 

and brightness need to be adjusted to find more vessels. Working with dermatologist, Dr. 

Stoecker, the parameters of brightness and contrast need were determined to be -68 and 

+27, respectively, as determined from three images of the data set using Paint.net 

[http://www.paint.net]. These brightness and contrast values were applied to all images in 

the data set using the brightness and contrast function in Adobe Photoshop®. The 

original image and the image with brightness decrease and contrast enhancement are 

shown in Figure 2.12. 
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(a) Original Image   

 

(b) Image After Brightness and Contrast Change 

          Figure 2.12: Different Images Before and After Changing Brightness and Contrast. 

 

 

 

 

Also, the original telangiectases mask and the telangiectases mask after changing 

Brightness and Contrast are shown in Figure 2.13. 
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(a) Telangiectases Mask Before Brightness and Contrast Change 

 

(b)  Telangiectases Mask After Brightness and Contrast change 

Figure 2.13: Different Masks Before and After Changing Brightness and Contrast. 

 

 

 

 

However, for some benign competitive images, the vessel masks contain an 

increasing number of false vessels  after changing the contrast and brightness in the color 
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images. Figure 2.14 shows the original image and the image with brightness decrease and 

contrast enhancement. Figure 2.15 shows this example with the original mask and the 

mask after changing brightness and contrast. 

 

 

 

 

 

(a) Original Image 

 

(b) Image After Brightness and Contrast Change 

Figure 2.14: Different Images Before and After Changing Brightness and Contrast. 
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(a) Mask Before Brightness and Contrast Change 

 

(b) Mask After Brightness and Contrast Change 

Figure 2.15: Different Masks Before and After Changing Brightness and Contrast. 

 

 

 

 

Therefore, to balance the tradeoff between using all original images and using all 

contrast and brightness changed images, a conditional contrast enhancement is 
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implemented.  The contrast value is determined by calculating the standard deviation of 

all the pixels inside the lesion area for each image. If this value is less than the threshold , 

which is set up as 14.47 by experiment, the responsible contrast and brightness changed 

image should be used; otherwise, the original image is used as the input. For this 

research, only conditional contrast enhancement images are used for the feature 

generation for lesion discrimination. 

 

 

 

2.2. FEATURE GENERATION 

The final vessel mask is generated after applying the algorithm with noise 

removal steps presented in Section 2.1. For this research, there were 59 telangiectases and 

235 no-telangiectases dermoscopy images for analysis. The telangiectases images are of 

lesions that have been diagnosed with Basal Cell Carcinoma (BCC).  The no-

telangiectases images are of benign lesions. However, in some non-telangiectases images, 

part of them are still marked as the telangiectases in the final mask. To discriminate 

telangiectases from normal vessels characteristic of a benign lesion, the following 

features were computed from the final vessel mask: 

 Object number/Lesion area. This represents the ratio of the total number of 

telangiectases objects to the lesion area. Benign dermoscopy images usually have 

a lower value of object number/lesion area ratio than telangiectases images. 

 Maximum Object length after skeletonizing/sqrt(Lesion area). It represents the 

ratio of maximum length among the entire telangiectases objects to square root of 

the lesion area after skeletonizing. Benign dermoscopy images usually have a 

lower value. 
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 Maximum Object area/lesion area. This represents the ratio of maximum area 

among all the telangiectases objects before skeletonization to the lesion area. 

Benign dermoscopy images usually have a lower value. 

 Average Object length after skeletonizing/sqrt(Lesion area). This represents the 

ratio of average length among all the telangiectases objects after skeletonization 

and square root of the lesion area.  Benign dermoscopy images usually have a 

lower value. 

 Average Object area/ sqrt(Lesion area). This represents the ratio of average area 

among all the telangiectases objects before skeletonizing and square root of the 

lesion area. Benign dermoscopy images usually have a lower value. 

 Average width of all objects/sqrt(Lesion area). For telangiectases, the width of 

each object should not be too large, while, it is possible for the vessels in benign 

lesions to have a greater width.  

 Standard Deviation width of all objects/sqrt(Lesion area). For benign images,    

standard Deviation width of all objects/sqrt(Lesion area) could be greater.  

 Maximum Eccentricity. The eccentricity is the ratio of the distance between the 

foci of the ellipse enclosing the candidate vessel and its major axis length. Benign 

images may have a greater value. 

 Average Eccentricity. Benign images may have a greater value. 

 Object Number within ten Erosions. Erode the Telangiectases mask with the 

radius from 1 to 10 and record the remaining object number for each erosion.  

 Area within ten Erosions. Erode the Telangiectases mask with the radius from 1 to 

10 and record the remaining mask area for each erosion.  
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2.3. LESION DISCRIMINATION 

In order to evaluate the effectiveness of the vessel detection process, lesion 

discrimination is performed using the two classes Basal Cell Carcinoma (BCC) and 

benign lesions. Two approaches for lesion discrimination are investigated, including a 

multilayer perceptron back propagation neural network and particle swarm optimization 

(PSO) using a neural network.  These approaches are presented as follows. 

 

2.3.1. MLP Back Propagation Neural Network [4].  Three different MLP back 

propagation neural Networks are created according to different input features. All neural 

networks are implemented in Matlab®.   

 For the first work, the input is the total 30 features. The 30 features computed 

over the image data set include Object number/Lesion area, Maximum Object length after 

skeletonizing/Lesion area, Maximum Object area/lesion area, Average Object length 

after skeletonizing/Lesion area, Average Object area/Lesion area, Average width of all 

objects/Lesion area, Standard Deviation width of all objects/Lesion area, Maximum 

Eccentricity, Average Eccentricity, Object Number within ten erosions (10 Features), 

Area within ten erosions (10 Features). So for this neural network, the neural network 

architecture is 30x18x10x1, with 29 features and a bias in the input layer, 18 nodes in the 

first hidden layer, 10 nodes in the second hidden layer and one output. Sigmoid transfer 

functions are used in the input and hidden layers, and a linear transfer function is used in 

the output layer. 

  For the second work, the input is 19 features. The 19 features computed over the 

image data set include Object number/Lesion area, Maximum Object length after 

skeletonizing/Lesion area, Maximum Object area/lesion area, Average Object length 
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after skeletonizing/Lesion area, Average Object area/Lesion area, Average width of all 

objects/Lesion area, Standard Deviation width of all objects/Lesion area, Maximum 

Eccentricity, Average Eccentricity, Object Number within ten erosions (10 Features). 

The neural network architecture is 20x4x2x1. 

  For the third work, the input is the 19 features including Object number/Lesion 

area, Maximum Object length after skeletonizing/Lesion area, Maximum Object 

area/lesion area, Average Object length after skeletonizing/Lesion area, Average Object 

area/Lesion area, Average width of all objects/Lesion area, Standard Deviation width of 

all objects/Lesion area, Maximum Eccentricity, Average Eccentricity, and Area within 

ten erosions (10 Features), The neural network architecture is 20x4x2x1.   

Because of the relatively small data set, a leave-one-out methodology is used for 

training/test set generation for all neural network architectures. The neural networks are 

trained up to 15 epochs or until root-mean-square error was less than 0.001.   

There are two kinds of MLP Back Propagation Neural Network training---online 

training and offline learning. In online (Stochastic/Delta) learning, the weights are 

adjusted after each pattern presentation. In this case, the next input pattern is selected 

randomly from the training set, to prevent any bias that may occur due to the sequences 

in which patterns occur in the training set. In offline (batch) learning, the weight changes 

are accumulated and used to adjust weights only after all training patterns have been 

presented. Online Training is used in this project, which means that the weights are 

updated after each pattern is presented.  The target value for the telangiectases data set 

(class 1) is set to be 1 and for the competitive benign data set (class 0) to be 0. The result 
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after testing are not the binary values 0 and 1, some outputs are between 0 and 1 and 

some of them even have negative values.  

Receiver operating characteristic (ROC) curve are generated for classification 

results based on the neural network outputs obtained for the leave-one-out cases. A ROC 

curve is a graphical plot of the sensitivity for a binary classifier system as its 

discrimination threshold is varied. The ROC can also be represented equivalently by 

plotting the fraction of true positives (TP = true positive rate) versus the false negative 

rate (FN = false negative rate).   

Figure 2.16 shows the plot of ROC curves and areas under the ROC CURVES for 

the neural network results based on the three different feature combinations.  All neural 

network results presented are based on on-line neural network training.  For the different 

ROC curves presented, the vertical axis shows the true positive rate, and the horizontal 

axis gives the false negative rate. 

 

 

 

(a) ROC Curve for the First 10 Features and 10 Area Features: Area= 0.952 

Figure 2.16: ROC Curve for Different Neural Network Architectures. 

TP=True Positive Rate; FN=False Negative Rate.  

 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Sensitivity_%28tests%29
http://en.wikipedia.org/wiki/Binary_classifier
http://en.wikipedia.org/wiki/True_positive
http://en.wikipedia.org/wiki/False_positive
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(b) ROC Curve for the First 10 Features and 10 Object Features:  Area= 0.959 

 

(c) ROC Curve for First 10 features, 10 Area Aeatures, 10 Object Features:  

Area=0.94 

 

Figure 2.16: ROC Curve for Different Neural Network Architectures.  

TP=True Positive Rate; FN=False Negative Rate. (cont.) 

 



 

 

36 

2.3.2. Particle Swarm Optimization. Stochastic optimization approach is 

modeled on the social behavior of bird flocks and/or fish school. The ability of birds to 

fly synchronously and to suddenly change direction and regroup in an optimal formation 

is used as the original model for Particle Swarm Optimization [5].  Each bird inside the 

flocks could be considered as a particle. Each particle represents a candidate solution to 

the optimization problem and is ‗flown‘ toward the possible direction. A particle adjusts 

its position according to its own experience and the experience of neighboring particles.  

In this algorithm, each particle has random velocity and memory that keeps track 

of previous best position and corresponding fitness. The previous best value of the 

particle position is called the ‗pbest‘. It has another value called ‗gbest‘, which is the best 

value of all the ‗pbest‘ positions in the swarm. The basic concept of PSO is that each 

particle in the swarm move toward its pbest and gbest locations at each time step. (Figure 

2.17) 
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Figure 2.17: Basic Concept of PSO. 
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The velocity of the particles is given as follows: 

 

(2) 

 

The position vector of the particles is changed as follows: 

 

                                                                                  (3) 

 

Where, 

k – Current iteration (time step) 

i – Current particle 

d - Dimension 

 – Particle‘s current velocity 

– Particle‘s new velocity 

– Particle‘s current position 

– Particle‘s new position 

w – Inertia weight 

 – Cognitive acceleration constant 

 – Social acceleration constant 

Pbest – Particle‘s overall best position 

Gbest – Best position of the swarm 

And  – random numbers from a uniform distribution, U (0, 1).  
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2.3.2.1. MLP neural network trained by PSO.  In this research, PSO is used to 

train a MLP neural network.  The procedure is provided below.   

Step1: initialize particle set, P, with initial weight value from W and V vectors.  

Step2: go through the feed-forward equations. Then use the MSE of each particle solution 

as the fitness of each particle and to update the Gbest and Pbest values. 

Step3: the PSO velocity and position equations will update the new weight changes for 

each particle.  

Step4: if the error is less than the Target error, terminate the program. Otherwise, go to 

Step2.   

 

2.3.2.2. MLP neural network architecture.  In this neural network, the input is 

the first 9 features including Object number/Lesion area, Maximum Object length after 

skeletonizing/Lesion area, Maximum Object area/lesion area, Average Object length 

after skeletonizing/Lesion area, Average Object area/Lesion area, Average width of all 

objects/Lesion area, Standard Deviation width of all objects/Lesion area, Maximum 

Eccentricity, Average Eccentricity. Let x denote the feature vector computed for each 

image from the final vessel mask, therefore, the network has 10 linear neurons in the 

input layer (input ‗x‘ along with bias value of 1), 5 (unipolar) sigmoid neurons in the 

hidden layer and 1 linear neuron in the output layer. The target value for melanoma (class 

1) is set to be 1 and for non-melanoma (class 0) is set to be 0.  

Both the training data set and the testing data set have to be normalized before 

implementing as the input for neural network. The mean and standard deviation are 

obtained for each feature from the training set of feature vectors, then each data set is 

normalized by the equation:  
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                                                                                                  (4) 

 

Offline (batch) learning is used in this PSO-based implementation, which means 

that the weight changes are accumulated and used to adjust weights only after all training 

patterns have been presented. Both telangiectases and no-telangiectases data sets are 

divided into ten subsets as shown in Figure 2.18.  

Therefore, for telangiectases, each subset almost has 5 images while for no-

telangiectases, each subset almost has 23 images. Nine subsets from the telangiectases 

data set and nine subsets from the no-telangiectases data set are taken as the training data 

set while the remaining subset from each is taken as the testing data set.  For example, 

firstly, subset 2~10 from both data sets are taken as the training set while subset 1 is used 

as the testing set. Secondly, subsets 1 and 3~10 would be taken as the training set while 

subset 2 is the testing set and so on.  Therefore, each time there are 54 telangiectases and 

212 no-telangiectases images for training and five telangiectases and 23 no-telangiectases 

images for testing. See Figure 2.19. After 10 times, each subset is tested and an ROC 

curve area can be generated.  
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            Figure 2.18: Ten Subsets for Each Data Set. 

 

 

10%
10%

10%

10%

10%

10%

10%

10%
10%

Training set

10%

Testing set

 

Figure 2.19: Diagram of 90% as Training and 10% as Testing. 

 

 

Based on applying the PSO neural network-based algorithm to the ten 

training/test sets, the area under the ROC Curve for each training/test set is 0.861, 0.904, 

0.861, 0.957, 0.939, 0.957, 0.861, 0.868, 0.951 and 0.868. Therefore, the average ROC 

curve area is 0.9027.  
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3. RESULTS AND DISCUSSION 

 

The ROC curve area result of different neural network algorithms are presented 

and compared in this part. Table 3.1 shows the ROC curve area result for from the first to 

the tenth training/test set and the average ROC curve area result using the PSO neural 

network-based Algorithm. Table 3.2 shows the ROC curve area result for the MLP back 

propagation neural network algorithm using different features. 

Generally, the MLP Neural Network trained by Backpropagation gives better 

result than PSO neural network-based algorithm. The reason for this is that the leave-one-

out methodology is used for Backpropagation Algorithm while PSO neural network-

based algorithm uses ten percent data for testing and ninety percent data for training. 

Based on the fact that a relatively small data set is generated in this research, the more 

data that is applied in training, the higher the accuracy that is obtained.   

For the comparison of the three structures of MLP Backpropagation neural 

networks, the 19  features including Object number/Lesion area, Maximum Object length 

after skeletonizing/Lesion area, Maximum Object area/lesion area, Average Object 

length after skeletonizing/Lesion area, Average Object area/Lesion area, Average width 

of all objects/Lesion area, Standard Deviation width of all objects/Lesion area, Maximum 

Eccentricity, Average Eccentricity, Object Number within ten erosions (10 Features) give 

the best result. The reason is probably due to the object number within ten erosions in 

benign lesion images has a more distinguished decrease than BCC images. The area 

within ten erosions does not play such a good role. 
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Figure 3.1 shows one of the BCC images which is discriminated as a benign 

lesion falsely. The vessel is not long enough to be considered as telangiectases.  Figure 

3.2 shows one of the benign lesion images which is discriminated as BCC falsely. The 

noise around the bubbles and the noise around the hair could not be removed after 

applying the noise filter technique. Those areas are long and big enough to be considered 

as telangiectases. 

 

 

Table 3.1: ROC Curve Area Result for PSO-Based Algorithm. 

Training Set Number Test Set Number Area under ROC Curve 

2~10 1 0.861 

1, 3~10 2 0.904 

1~2, 4~10 3 0.861 

1~3, 5~10 4 0.957 

1~4, 6~10 5 0.939 

1~5, 7~10 6 0.957 

1~6, 8~10 7 0.861 

1~7, 9~10 8 0.868 

1~8,10 9 0.951 

1~9 10 0.868 

Average Area under ROC Curve 0.903 
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Table 3.2: ROC Curve Area Result for Backpropagation Algorithm. 

ROC curve for the first 10 features and 10 area features 0.952 

ROC curve for the first 10 features and 10 object features 0.959 

ROC curve for first 10 features, 10 area features, 10 object features 0.940 

 

 

 

 

(a) Original Image 

 

(b) Telangiectases Mask 

Figure 3.1:  Falsely Discriminated BCC Image. 
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(a) Original Image 

 

(b) Telangiectases Mask 

Figure 3.2:  Falsely Discriminated Benign Lesion Image. 
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4. CONCLUSION AND FUTURE SCOPE 

 

Essentially this research investigated an approach to find vessel-type structures in 

dermoscopy skin lesion images based on applying color drop and noise removal image 

processing techniques and performing classification basal cell carcinoma/benign skin 

lesion discrimination based on computational intelligence algorithms. For the first 

component, based on the fact that some of images are fuzzy, the contrast enhancement 

technique could be added to increase the contrast. Therefore, the conditional contrast 

enhancement technique is implemented firstly. After applying this, the vessel detection 

technique is used and noise filter technique is added to remove noise from the mask. For 

the second component, two computational intelligence algorithms, including MLP back 

propagation neural network and MLP neural network trained by PSO, are presented and 

compared to discriminate basal cell carcinoma from benign lesions based on features 

computed for skin lesions with normal vessels from lesions containing telangiectases. 

Experimental results have shown that MLP back propagation neural network gives a 

better outcome than the PSO-based approach. 

Although the current discrimination accuracy is fairly high, there is some 

improvement needed for the future scope of this work. The parameters used in the 

contrast enhancement technique affect the output images in a manner that results in 

different vessel masks. Therefore, a new research method, Adaptive Critic Design, could 

be used to increase the ROC curve area by inputting the features extracted from the mask 

images with different levels of contrast enhancement. In the future work, ACD would be 

implemented instead of MLP back propagation neural network or the PSO-based method. 
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