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ABSTRACT 

Breast cancer is one of the most common cancers and claims over one thousand lives 

every day. Breast cancer turns fatal only when diagnosed in late stages, but can be cured when 

diagnosed in its early stages. Over the last two decades, Digital Mammography has served the 

diagnosis of breast cancer. It is a very powerful aid for early detection of breast cancer. However, 

the images produced by mammography typically contain a great amount noise from the inherent 

characteristics of the imaging system and the radiation involved. Shot noise or quantum noise is 

the most significant noise which emerges as a result of uneven distribution of incident photons on 

the receptor. The X-ray dose given to patients must be minimized because of the risk of exposure. 

This noise present in mammograms manifests itself more when the dose of X-ray radiation is less 

and therefore needs to be treated before enhancing the mammogram for contrast and clarity. 

Several approaches have been taken to reduce the amount of noise in mammograms. This thesis 

presents a study of the wavelet-based techniques employed for noise reduction in mammograms. 
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1. INTRODUCTION 

1.1. MOTIVATION 

Breast cancer or Malignant Breast Neoplasm is the most common type of cancer in 

women. It originates most commonly from the inner lining of ducts or the lobules that supply the 

ducts with milk. Worldwide, breast cancer comprises 22.9% of cancers in women and causes 

approximately 500,000 deaths every year. It can be treated depending on the size, stage, growth 

rate and other characteristics of the tumor; but a late diagnosis can prove to be fatal too. For this 

reason, it is best if the cancer is diagnosed in its early stages. There are several ways of examining 

breasts for early detection of breast cancer - Mammography, MRI (Magnetic Resonance 

Imaging), Clinical Breast Exam, Breast cancer screening etc. Figure 1.1 shows the mammogram 

of a woman diagnosed with breast cancer. The arrows in the figure point at micro-calcification. 

Mammography is the use of low-energy X-rays to examine the human breast. It is used 

by the radiologists in the early detection of breast cancer through detection of micro-

calcifications. All mammography systems have inherent noise which degrades the visual 

appearance of digital mammograms and gives the image a mottled, grainy, textured or snowy 

appearance thus making it difficult to detect micro-calcifications. 

Several techniques have been proposed both in the spatial and frequency domain to 

reduce/remove the noise present in digital mammograms. Transformations/manipulations in the 

frequency domain using wavelet transforms have yielded very good digital images with reduced 

noise. Wavelet domain also has other added advantages which are discussed in the next chapter. 

This thesis presents a study of 5 different wavelet-based noise reduction techniques in Digital 

Mammograms. 
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Figure 1.1 Mammogram of a woman diagnosed with breast cancer 
 

 

1.2. DIGITAL MAMMOGRAPHY 

Over the last decade, digital mammography has been increasingly replacing the 

conventional screen-film mammography because in a screen-film mammography system, the 

output is simply a film with an X-ray image of the breast. This film cannot be processed or 

manipulated for better visual appearance while a digital mammography system is known for the 

ease of manipulation to improve the visual quality of digital mammograms. Studies have 

demonstrated that a digital mammography system is at least as accurate as a conventional screen-

film mammography system [1]. Figure 1.2 below demonstrates the difference in visual quality of 

a digital and screen-film mammogram. 
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Figure 1.2 Digital mammogram (left) vs. Screen-film mammogram 

 

 

The basic difference between screen-film mammography and digital mammography is 

the use of digital receptors in place of X-ray film in digital mammography systems. The digital 

receptors transduce incident X-rays into electrical signals which are conditioned and displayed as 

digital images on computer screens. In younger women, digital mammography presents 

significant improvements over the conventional screen-film mammography. 

There are several advantages of using a digital mammography System [2]: 

 Digital mammograms can be viewed in different orientations, magnifications and 

brightnesses to make them more discernible just by pixel manipulation. 

 Digital mammograms are more storage friendly since they can be stored electronically. 

This enables ease of remote access and retrieval for distant consultation and diagnosis. 

 Digital mammograms have also been found to give fewer false positives when compared 

with screen-film mammography. 

 Studies show that digital mammography leads to a fewer number of recalls or repeat 

mammograms. 
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 Faster image acquisition (less than a minute as compared to several minutes in screen-

film mammography) is achieved. 

 Digital mammography has a short exam time, hence more number of mammograms can 

be generated in a given time. 

 Lastly and most importantly, a digital mammography system gives a lesser dose (up to 

50%) of X-ray radiation to the patient when compared with a screen-film mammography 

system. [2] 
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2. BACKGROUND 

The three factors that constitute the quality of an image are noise, contrast and sharpness. 

 Noise – is the unwanted variation in brightness of an image. 

 Contrast – is the difference in luminance or pixel value (intensity) that makes an object 

discernible from its background or other objects. 

 Sharpness – is the amount of details an image can convey 

It is evident from the above definitions that an image with low noise and high contrast 

and sharpness is desired. Contrast and sharpness play very important roles in making the different 

anatomical parts in an X-ray or mammogram discernible. The digital radiography and 

mammography systems that are used today produce crude images with a very low contrast and 

sharpness. Thus, various digital image processing techniques are employed to improve contrast 

and sharpness of a digital image. But the underlying problem is that most of these image 

processing techniques tend to enhance the inherent noise present in the raw image. Therefore, it is 

necessary to free these images from noise and then process them for a better contrast and 

sharpness. 

 

2.1. IMAGE NOISE 

Noise means an unwanted sound. In the context of images, image noise also known as image 

mottle, is an unwanted variation of brightness or color information in a displayed image even 

when no image detail is present. This variation is usually random and has no particular pattern. 

This is especially significant when the images have a low contrast. It can be produced by the 

underlying circuit in the receptor or in the film grain or due to the characteristics of incident 

photons. This noise level can vary from almost imperceptible specks on a photograph clicked in 

good ambient light, to astronomical images which almost entirely consist of noise. It is from these 
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noisy images that we extract useful details/information about the subject of the image. Figure 2.1 

below shows an example of clean image and a noisy version of it. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Original Lena image (left); noisy Lena image (right) 

 

 

All medical images tend to contain some visual noise. Medical images generally refer to 

images from radiography systems, fluoroscopy systems, MRI (Magnetic Resonance Imaging) 

scanners, photo-acoustic systems, breast thermography systems, CT (Computed Tomography) 

systems or ultrasound imaging systems. Noise is more prevalent in certain types of imaging 

systems than others. The noise present in these images degrades the visual appearance of an 

image by making it grainy, thus hiding the actual features of the image. This effect is most 

evident and significant in low-contrast images when the images are very close to their visibility 

threshold. The visibility threshold for low-contrast objects is very noise dependent. When we 

reduce image noise, more of low-contrast objects within the body become visible. 
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2.2. TYPES OF NOISE IN RADIOGRAPY IMAGES 

2.2.1. Quantum Noise. In an X-ray imaging system such as a digital mammography 

system, the X-ray photons impinge on digital image receptors. Nothing can cause them to be 

evenly distributed over the receiving surface. Thus, one area of the receptor might have more 

photons incident on its surface than another area even when both the areas are exposed to the 

same average X-ray intensity. The image noise produced by the random fashion in which the 

photons are distributed in an image is designated as quantum noise or shot noise or quantum 

mottle. It is determined by the variation in incident X-ray photon concentration. 

From Figure 2.2 below, the most important characteristic of quantum noise is observed– 

it can be reduced by increasing the concentration of photons or exposure used to produce an 

image. The deviation described in the Figure 2.2 below follows a Poisson distribution. 

Mathematically speaking, quantum noise is inversely proportional to the square root of the 

exposure or concentration of photons [3]. 

There is a fundamental tradeoff between image noise and required exposure. A high 

patient exposure can be harmful but yield a good image quality. This image will have a higher 

magnitude of absolute noise but a very high visual quality since the magnitude of useful 

information is quite high. But this approach cannot be followed since this increases the risk of 

harming the patient and more specifically, the risk of breast cancer in case of digital 

mammography systems. So to keep a patient safe, the patient exposure can be reduced but at the 

expense of an increased quantum mottle. Thus the point of operation of most digital 

mammography procedures is a compromise between patient exposure and noise in the obtained 

image. 
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Figure 2.2 The concept of quantum noise 

 

 

In different words, shot noise is the predominating unwanted factor in the brighter areas 

of an image where the intensity or pixel value is high. It has a root mean square value 

proportional to the square root of the image intensity. Also, the noises at different pixels are 

independent of each other or random. Shot noise is thus found to follow a Poisson distribution 

which is very close to Gaussian distribution [3]. 

The Poisson distribution expresses the probability of given events in a limited time or 

space given the average rate of occurrence of the events and the fact that they occur 
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independently of time or space of the last event [4]. This means that it predicts a degree of spread 

around a given average rate of occurrence. The variance of a Poisson distribution is equal to its 

mean. 

For a given average rate or variance 휆, the probability of occurrence of 푋 = 푘 is given by 

[4]: 

Pr	(푋 = 푘) =
휆 푒
푘!

 

To summarize, the characteristics of quantum noise are –  

 It is the most significant contributor to noise in radiography or mammography images. 

 There is always a tradeoff between the image noise and patient exposure to X-rays. 

 The magnitude of quantum noise is higher in brighter areas of the image, i.e., the portions 

of the image with higher intensity. 

 Quantum noise follows a Poisson distribution. 

2.2.2.  Grain and Structure Noise. For the case of screen-film mammography, the 

structure of the film, intensifying screens, intensifier tube screens or digital receptors can 

introduce noise into images. A film consists of several small silver halide crystals or grains. 

These grains become visible when an image on screen-film is optically enlarged or projected onto 

a screen. This film grain is a form of noise. 

 The image-intensifying screens and the screens of intensifier tubes are layers of very 

small crystals. This crystal structure presents a slight variation in light production from point to 

point in an image. This is designated as structure noise. This noise is usually insignificant in most 

radiographs. 
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2.2.3.  Electronic Noise. Noise often gets introduced into a system from the leakage 

currents and any other random electrical currents produced by thermal activity in a device. These 

devices have a gain or amplification circuit for the amplification of weak signals. These circuits 

end up amplifying noise along with the signal thus making the noise very evident in an image. 

Of all the noise sources discussed above, quantum mottle forms the most significant part 

of noise in any radiography image. Quantum mottle has noise intensity vs. frequency plot very 

close to an exponentially decreasing curve, i.e., it has a high intensity at lower frequencies and 

vice versa. 

 

2.3. FACTORS AFFECTING NOISE 

There are numerous factors which affect the different kinds of noise in radiography 

images described above –  

 Pixel size- The larger a pixel is, the more photons are incident on it. This gives rise to a 

better Signal-to-Noise Ratio (abbreviated as SNR) for a particular exposure. Noise power 

is directly proportional to the area of the sensor while noise voltage is directly 

proportional to the square root of power (as expected) or area. If the dimensions of a 

sensor are increased to 2 times (300% increase in area), the SNR is also doubled. 

 Receptor technology - The two major technologies employed are CCD (Charge Coupled 

Device) and CMOS (Complementary Metal Oxide Semiconductor). Until the 21st 

century, CMOS showed a highly degraded performance with abundant noise in the 

images produced. But today, CMOS gives results comparable to CCD [3]. CMOS is less 

expensive, easy to manufacture and maintain. 
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 Exposure - Long exposures with reduced dose produce way more noisy images than 

short exposures with reasonable dose. Exposure can be high either due to tube current 

which means greater concentration of photons or due to higher exposure time. 

 

2.4. NOISE METRICS 

Knowing the existence of noise isn’t good enough if it cannot be measured in quantity or 

numbers. There needs to be a well-defined metric which can quantify the amount of noise present 

in an image. This would also enable a measure of the amount of noise reduced by various noise 

reduction techniques. Thus, different noise reduction techniques can be compared and used 

according to the application. There are several techniques used for noise reduction. Before 

looking at these universally used metrics, it is good to know some characteristics of noise 

measurements. Noise measurements should: 

 Have a relation with the perceived appearance 

 Be in reference with the original scene 

 Be simple to interpret and compute 

 Incorporate good details of the image while calculating to give an accurate understanding 

of performance of a sensor/camera 

The most widely used noise metrics are: 

2.4.1 SNR (Signal to Noise Ratio). It is often used as a measure of sensitivity of an 

imaging system. SNR has been defined as the ratio of average value of signal (μ ) to the 

standard deviation of background (σ ). When the background is black, a better definition is the 

ratio of average value of signal (μ ) to standard deviation of signal (σ ). 

푆푁푅 =
μ
σ
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2.4.2 CNR (Contrast to Noise Ratio). It is often used as a measure of quality of image. 

This metric is more useful when the ROI (Region Of Interest) in an image is degraded uniformly. 

Two different areas in ROI are subtracted to cancel out the uniform degradation [5]. 

퐶푁푅 =
|푆 − 푆 |

휎
 

푆  and 푆  are the intensities (pixel values) of two different areas 퐴 and 퐵 in ROI and 휎  

is the standard deviation of the pure image noise 

 2.4.3 PSNR (Peak Signal to Noise Ratio). It is an often-used a metric to quantify the 

noise present in an image with reference to the original known-to-be-good image. It is the ratio 

between maximum possible power of a signal and the power of noise present. Since this could be 

a very big value, it is often expressed in a logarithmic scale. It is conveniently defined using the 

Mean Squared Error (MSE) which is computed using two 푝	푥	푞 monochrome (mono color plane) 

images 푋 and 푌. One of the images 푋 or 푌 is a noisy approximation of the other [6]. 

MSE =
1
푝	푞

	 [푋(푖, 푗) − 푌(푖, 푗)]  

푃푆푁푅 = 10 ∙ log
푀퐴푋
푀푆퐸

 

where, 푀퐴푋 	  is defined as the maximum intensity (pixel value) of the known-to-be-good image. 

 

2.5. ADDED NOISE QUANTITY 

 In this thesis, Gaussian noise and Poisson noise is added to clean Lena image to form 

noisy images which undergo several de-noising techniques. Gaussian noise is added with a mean 

of 0 and a variance of 0.01. Poisson noise is generated from the image itself. The noisy pixel is 
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generated from a Poisson distribution of mean equal to or proportional to the input pixel 

depending on the number of significant bits in the input pixel. 

 

2.6. NOISE FILTERS 

 There are several techniques employed for the removal of noise in images. All techniques 

have some characteristic parameter which is sensitive to the noise intensities of a particular kind 

of noise. By employing these techniques, the noise levels in radiography images and 

mammograms are reduced, post which these images can be processed for contrast and sharpness 

enhancement without the risk of enhancing noise. 

Any technique applied to the images for noise reduction broadly falls under either of the 

two domains: 

1. Spatial Domain  2. Frequency Domain 

2.6.1. Spatial Domain Techniques. An image is a 2-dimensional or 3-dimensional 

matrix of numbers when represented digitally or electronically. Each of these numbers, more 

technically called the gray levels or intensity values, corresponds to a particular shade of gray in a 

gray level image, a particular color in a 2-D color image or a shade of Red, Green or Blue in an 

RGB image. Each element of this matrix is called a pixel. 

 As is evident, the visual appearance of the image changes as we modify these pixels. If 

these pixels are modified in a particular fashion or obeying a particular equation or a set of 

equations, a uniform change in the image can be expected. This is known as point to point 

processing. 

푔(푥,푦) = 푇[푓(푥, 푦)] 
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Here 푔(푥,푦) is the output image,		푓(푥,푦) is the input image, 푇 is a transfer function 

between 푓(푥,푦) and 푔(푥,푦). 

At times, a small window (matrix) ℎ(푥,푦)	is defined with some weights and is applied to 

the whole image. This window scans through the image and modifies the pixel of the image 

where the window is centered. This modification involves the neighboring pixels and every 

neighbor contributes according to a weight factor defined in the window. This is known as spatial 

filtering. 

푔(푥,푦) = 푓(푥,푦) ∗ ℎ(푥,푦) 

Here 푓(푥,푦) is the input image and 푔(푥,푦) is the output image which is obtained by the spatial-

domain convolution (∗) of input image 푓(푥,푦) and weight matrix ℎ(푥, 푦). 

2.6.1.1. Smoothing filters. A smoothing filter sets each pixel to the average value or a 

weighted average value of itself and its neighboring pixels. This basically smoothens or averages 

an image and sets every pixel much closer in intensity to its neighbors. Since, noise is essentially 

a random high magnitude variation in intensity, using a smoothing filter would degrade the noise 

to an intensity level close to its neighbors. This is essentially a linear technique because the whole 

image undergoes the same linear manipulation.  

It can be seen from Figure 2.3 that with averaging, the amount of noise reduces but the 

edges are blurred. For this reason, averaging is not considered a good technique for noise 

reduction [7]. 
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Figure 2.3 Lena image with Gaussian noise (left); averaged image (right) 

 

 

2.6.1.2. Median filters. A median filter sets each pixel to the median of itself and its 

neighboring pixels. This filter modifies the noisy intensity values to a lower intensity value close 

to its neighbors and thus aims at lowering noise. This kind of filter is good at removing salt and 

pepper noise. This is a non-linear technique since the modification doesn’t obey a linear equation 

or manipulation [7]. 

Figure 2.4 demonstrates the result of median filtering. Median filtering presents a 

significant reduction in noise while the edges are preserved better than by averaging. 

 

 

 



16 
 

 

 

 

 

 

 

 

Figure 2.4 Lena image with Gaussian noise (left); median filtered image (right) 

 

 

2.6.1.3. Fuzzy-logic based techniques. Fuzzy means multiple-valued. In the context of 

image processing, fuzzy logic means there are multiple transfer functions between an input and 

output pixel. Every input pixel is evaluated for its membership in a given parameter space. There 

are rules for every different kind of membership which define the transfer function between the 

input and output pixel. In other words, there are different mappings between the input and output 

pixel based on membership. Such techniques are called adaptive. They adapt to the input to 

produce an output [8]. 

Fuzzy-logic based techniques work best in photographic images where the edges are 

long. In case of radiography images, especially mammograms, the edges are too small and very 

close to each other. This makes it difficult to design mappings which will preserve the edges and 

aid noise reduction. Thus, it is difficult to avoid producing artifacts when dealing with 

mammograms. 
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2.6.2.  Frequency Domain Techniques. Image processing in the frequency domain 

involves 3 basic steps: 

 Transforming an image into its frequency (Fourier) represntation 

 Perform image processing by modifying the Fourier representation 

  Computer inverse transform into spatial domain 

 When there exists a high-magnitude variation in intensity over a fixed spatial distance 

(measured in pixels), it corresponds to a high frequency. If an object being imaged is 

homogenous, i.e. if the variation in intensity is not too high, it corresponds to a low-frequency. 

From the characteristics of noise as discussed earlier, noise is a high frequency 

component. Thus in order to eliminate/reduce noise in an image, the high frequency components 

need to be removed. As is obvious, the edges of an image also correspond to high frequency. This 

complicates the process of noise filtering as edges need to be preserved in order to maintain the 

quality of an image. Thus, a low-pass filter with some edge preserving mechanism is needed to 

remove noise while preserving edges. 

 

2.7. WAVELET DOMAIN ANALYSIS 

 Wavelets are mathematical functions with Time-frequency representation (TFR). In this 

context, TFR refers to space-frequency representation. Unlike the spatial domain or frequency 

domain representation which only describes either the spatial or frequency distribution of 

intensities, a wavelet transform describes both spatial and frequency distribution of intensities at 

the same time. Wavelet transforms are multi-resolution decompositions that can be used to 

analyze signals and images. They describe a signal by the power at each scale and position. 
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2.7.1.  Multi-scale Processing. With wavelets is achieved what is known as multi-scale 

processing. It is a very commonly used noise reduction technique. This approach was first 

introduced by Laine et al to digital mammography in 1994 [9]. A wavelet transform basically 

decomposes the input image into its high frequency and low frequency components. The low 

frequency coefficients usually carry the contrast information while the high frequency coefficients 

(horizontal details, vertical details and diagonal details) contain the edge information or detail 

information. [7] [10] [11]. As discussed earlier, the high frequency coefficients also contain noise. 

Therefore it is evident that for the reduction of noise, high frequency components must be 

modified. Once the coefficients are modified, the output image is reconstructed from the modified 

coefficient using the inverse wavelet transform. 

2.7.2. Multi-resolution Analysis. An image is composed of connected regions of 

similar texture and intensity levels that combine to form objects. If objects are small in size, the 

analysis usually requires high resolution; on the other hand when they are large in size then coarse 

view suffices the requirement. If both the situations are present simultaneously like in 

mammograms, having several resolutions help in examining the image more efficiently. This is the 

motivation behind multi-resolution processing. 

2.7.3. Wavelet Decomposition. Various filters could be used to decompose the image 

into high frequency and low frequency coefficients. A few examples are Daubechies, Coiflets, 

Symlets, Discrete Meyer, Bi-orthogonal and Reverse bi-orthogonal [7]. A wavelet decomposition 

decomposes an image into low frequency coefficients and high frequency coefficients. These 

components are half the dimension of the original image, i.e. if the image I has a size (푋 × 푌), the 

size of the coefficients is ×  [7]. This wavelet transform is termed as the first-order wavelet 

decomposition. If the low frequency component of size ×  is further decomposed, it is known 

as the second-order decomposition. Now the sizes of coefficients is × . The decomposition 
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can go on further until dimension of coefficients is (1 × 1). Figure 2.5 below explains the concept 

of wavelet decomposition. 

 

Figure 2.5 The concept of wavelet decomposition 

 

 

Here, (    ) stands for down-sampling. Thus, an input image is down-sampled twice, once 

along each dimension to obtain the wavelet coefficients A (approximation), H (horizontal detail), 

V (vertical detail) and D (diagonal detail) coefficients. 

Figure 2.6 below shows an image of size (푋	 × 	푌). It was decomposed into four sets of 

coefficients LL1, HL1, LH1 and HH1. LL1 is the set of low frequency components, also known as 

approximation coefficients. Since this ×  matrix consists of low frequency components, it is 

a blurred version of the original image. It does not carry the detailed edge information of the 
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original image. HL1, LH1 and HH1 are sets of high frequency coefficients. HL1 is the set of 

horizontal detail coefficients; LH1 is the set of vertical detail coefficients and HH1 is the set of 

diagonal detail coefficients. As is obvious, to reduce noise, the high frequency coefficients HL1, 

LH1, and HH1 need to be modified. 

 

 

 

Figure 2.6 First and second level wavelet decomposition of an image 

 

 

Similarly, the approximation low frequency coefficients LL1 from the first level of 

decomposition can be treated as an image and further decomposed into its wavelet coefficients 

LL2, HL2, LH2 and HH2. These would be of size × . The blurred (version of original) image 
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LL1 still has some edges visible along with other homogenous objects. The second level of 

decomposition separates the low and high frequency components leaving behind LL2 which is a 

blurred version of LL1. This process could keep continuing until the dimension of the set of 

coefficients is (1 × 1). Figure 2.7 below shows an image and its wavelet coefficients at levels 1 

and 2. 

 

 

 

Figure 2.7 Wavelet decomposition at level 1 and 2 

 

 

2.8. WAVELET BASED DE-NOISING 

A de-noising algorithm based on wavelet transformation usually includes three steps: 

1. Perform wavelet transformation of the image 
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2. Use different conditions of image and noise in the criterion space and remove noise from 

the image 

3. Reconstruct the image by performing inverse wavelet transformation 

De-noising in the wavelet domain can be generally divided into three kinds: the wavelet 

shrinkage method, the wavelet projection method and the wavelet correlation method. The 

wavelet shrinkage method is most commonly used because of the excellent noise reduction that 

has been achieved by its use [12]. The wavelet shrinkage method forms basis of study in this 

thesis. 

Wavelet shrinkage method is a signal de-noising technique based on the idea of 

thresholding the wavelet coefficients. Wavelet coefficients having absolutely small value are 

considered to encode mostly noise and very fine details of the signal. The important information 

is encoded by the coefficients having a large absolute value. [13] [14]. Therefore removing small 

absolute value coefficients and then reconstructing the signal should produce signal with lesser 

amount of noise. The wavelet shrinkage approach can be summarized as follows: 

 Apply the wavelet transform to the signal 

 Estimate the threshold value 

 Remove (zero-out) the coefficients that are smaller than the threshold 

 Reconstruct the signal by applying the inverse transform 

A very big challenge in wavelet shrinkage approach is finding an appropriate threshold 

value. The following section describes five different techniques used for finding a threshold value 

and applying the wavelet shrinkage method. 
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3. TECHNIQUES 

3.1. TECHNIQUE 1 – DAUBECHIES COMPLEX WAVELET BASED SHRINKAGE 

3.1.1. Principle. The fundamental equation guiding multi-resolution theory is the 

following scaling equation [15]: 

훷(푡) = 2 푎 훷(2푡 − 푛) 

Where an’s are coefficients and ∑푎 = 1.  

 Daubechies assumed the coefficients (an) to be real-valued. The symmetric Dabuechies 

complex wavelet transform is advantageous in that it has a good reconstruction property. The 

symmetric behavior enables easy handling of edge points during reconstruction. 

3.1.2. Algorithm. The symmetric Daubechies complex wavelet transform of the image 

is computed. Then a decomposition level-dependent threshold is calculated as follows [16]: 

푇 =
1

2
휎
μ
푀 

Where j is the resolution level, σ is the standard deviation of wavelet coefficients, µ is the mean 

of the absolute value of the wavelet coefficients and M is the median of the absolute value of 

coefficients at the jTh level for a particular sub-band. 

 After calculating the threshold, a thresholding function is required to perform 

thresholding. Usually a hard or a soft thresholding function is used. But here, the following 

thresholding function is used: 

푤 =
0																	, |푤| < 푇

1 −
푇
푤

, |푤| ≥ 푇 
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 Here T is the threshold, w is the wavelet coefficient and 푤 is the thresholded wavelet 

coefficient. This thresholding is performed for all the horizontal, vertical and diagonal wavelet 

coefficients. 

3.1.3. Results. Figure 3.1 below shows the de-noising technique applied to a 

mammogram. 

 

 

 

Figure 3.1 Original mammogram (512 x 512) (left); mammogram de-noised by Daubechies 
complex wavelet (right) 

 

 

3.1.4. Discussion and Analysis. The image on the left in Figure 3.1 is de-noised with 

the technique discussed above. There is a slight reduction in noise as it can be seen visually. For 

the sake of quantifying the reduction in noise, the technique was applied to a Lena image with 

added Gaussian and Poisson noise. As discussed earlier, shot noise, which is the most dominant 
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noise in radiography images, is most accurately modeled as Poisson noise or approximately as 

Gaussian noise. 

Figure 3.2 below shows the best achieved results of the technique applied to the Lena 

image. In the best results obtained, the PSNR of the de-noised image is about 5.5dB higher when 

the input was the Lena image with added Gaussian noise while the PSNR is about 2.2dB higher 

when the input was the Lena image with added Poisson noise. 

 

 

 

Figure 3.2 Daubechies complex wavelet - Lena image with Gaussian noise (top-left); de-
noised version of Lena image with Gaussian noise (top-right); Lena image with Poisson noise 

(bottom-left); de-noised version of Lena image with Poisson noise (bottom-right) 
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It is clear from Table 3.1 that, for decomposition levels of 3 and higher for Gaussian & 2 

and higher for Poisson, the image started to degrade in terms of PSNR. It was observed that the 

images started to blur and develop artifacts which kept increasing in size with every level of 

decomposition. Therefore, a de-blurring technique has to be employed to obtain better results. 

 

 

Table 3.1 Comparing PSNR by applying Daubechies complex wavelet at different decomposition 
levels 

 
Lena with 

Gaussian 

Difference 

in PSNR 

Lena with 

Poisson 

Difference 

in PSNR 

Noisy 19.7241 0 26.8579 0 

Level 1 24.6879 4.9638 29.0186 2.1607 

Level 2 25.4738 5.7497 26.4027 -0.4552 

Level 3 23.2080 3.4839 23.3428 -3.5151 

Level 4 20.6313 0.9072 20.6549 -6.203 

Level 5 18.6091 -1.115 18.6164 -8.2415 

 

 

 

3.2. TECHNIQUE 2 – FEATURE-BASED ADAPTIVE WAVELET SHRINKAGE FOR 
IMAGE DE-NOISING 
 

3.2.1. Principle. This wavelet shrinkage approach applies the  wavelet shrinkage 

function by adapting the features in an image [17]. Experiments performed on images have 

shown that a wavelet shrinkage method which incorporates energies of neighboring pixels 

improves the performance of the de-noising algorithm. 
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 Assume a real image f and an observed image g which is corrupted by AWGN (Additive 

White Gaussian Noise) n: 

g = f + n 

 After a wavelet transform, 

푊 = 푊 + 푊  

 The wavelet transform performs some degree of de-correlation thus implying that the 

wavelet coefficients corresponding to a high variation in intensity (say an edge) are clustered 

together and replicated across the different resolutions and sub-bands of a wavelet tree. The edges 

in an image are expressed by wavelet coefficients which are large in magnitude at the 

corresponding locations. Therefore by evaluating the energy in a localized area or window, the 

information about edges can be decoded. Homogenous objects are represented by coefficients 

smaller in magnitude and therefore contain lesser energy. 

3.2.2. Algorithm. An (RxR) window is considered. The energy of wavelet coefficients is 

calculated in that window as follows [17]: 

S , =
1
푅

	 푤 ,  

where m,n span the whole window of size (RxR), w is the wavelet coefficient and x,y span the 

entire set of high frequency coefficients. 

푤 , =
0																																		, 푆 , < 훽 ∙ 휆

푤 , 1 − 훼 ∗
휆
푆 ,

, 푆 , ≥ 훽 ∙ 휆
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Where 휆 = (4휎 푙표푔푅),  푤 ,  is the center pixel in the window and 푤 ,  is the output 

coefficient. 

 From experiments, the optimal values for α and β are found to be 0.1 and 0.3 

respectively. 

3.2.3. Results. Figure 3.3 below shows the de-noising technique applied to a 

mammogram. 

 

 

 

Figure 3.3 Original mammogram (512 x 512) (left); mammogram de-noised by feature-based 
wavelet (right) 

 

 

3.2.4. Discussion and Analysis. The image on the left in Figure 3.3 is the original 

mammogram which is de-noised using the feature-based adaptive wavelet shrinkage discussed 

above. To quantitatively describe the performance of the technique, the same approach is applied 

to a Lena image with added Gaussian and Poisson noise. The windows used were (5x5) and 
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(7x7). The smaller window yielded better results which are shown in Figure 3.4. The PSNR of the 

noisy Lena image with Gaussian noise is found to be 19.8dB and that of the de-noised image to 

be 27.3dB. A significant decrease in noise is also observed in Lena image with added Poisson 

noise. 

 

 

 

Figure 3.4 Feature-based wavelet - Lena image with Gaussian noise (top-left); de-noised 
version of Lena image with Gaussian noise (top-right); Lena image with Poisson noise 

(bottom-left); de-noised version of Lena image with Poisson noise (bottom-right) 
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From Table 3.2 below, the technique performs better with a window of size (5x5) than 

with a window of size (7x7). The PSNR is also found to increase until a decomposition level of 3 

after which the PSNR starts to decrease. 

 

 

Table 3.2 Comparing PSNR by applying feature-based wavelet at different decomposition levels 

 
Lena with 

Gaussian(5x5) 

Difference 

in PSNR 

Lena with 

Poisson(5x5) 

Difference 

in PSNR 

Noisy 19.8011 0 26.8444 0 

Level 1 24.1663 4.3652 28.7212 1.8768 

Level 2 26.5639 6.7268 29.1763 2.3319 

Level 3 27.3123 7.5112 30.7961 3.9517 

Level 4 26.8083 7.0072 28.6834 1.839 

Level 5 24.2180 4.4169 27.9837 1.1393 

  

 Lena with 

Gaussian(7x7) 

Difference 

in PSNR 

Lena with 

Poisson(7x7) 

Difference 

in PSNR 

Noisy 19.7201 0 26.7955 0 

Level 1 23.5232 3.8031 27.9541 1.1586 

Level 2 25.3589 5.6388 28.6215 1.862 

Level 3 26.1086 6.3885 29.6548 2.8593 

Level 4 25.8134 6.0933 27.2587 0.4632 

Level 5 23.9458 4.2257 26.1395 -0.656 
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3.3. TECHNIQUE 3 – WAVELET SHRINKAGE USING STANDARD DEVIATION 
ESTIMATION 
 

3.3.1. Principle. The image under study can be expressed mathematically as 

푓(푥,푦) = 푠(푥, 푦) + 푛(푥, 푦) 

where 푓(푥,푦) is the image signal, 푠(푥,푦) is the target signal and 푛(푥,푦) is the Gauss noise and 

obeys independent and identical distribution 푁(0,휎 ), σ is the standard deviation of noise 

푛(푥,푦). 

As discussed earlier, the wavelet de-noising process is carried out in the detail 

coefficients. A wavelet shrinkage method is used to process the high frequency component. A 

very common thresholding process known as soft-thresolding is used [18]. 

푤 = 0																														, |푤| < 푇
푠푔푛(푤)(|푤|− 푇), |푤| ≥ 푇 

Where  푤 is the wavelet transformation coefficient, 푤 is the thresholded coefficient and 푇 is the 

threshold. 

3.3.2. Algorithm. The value of the threshold 푇 is related to σ, the noise standard 

deviation. The value of the global threshold 푇 is 휎√2 ln푁 where 푁 is the length of the signal; the 

partial threshold value 푇 is 휎√2 ln푁 / ln(푗 + 1) where 푗 is the decomposition level number. In 

practical applications, σ is usually unknown. Therefore σ should be estimated for de-noising. 

 One way to estimate the noise standard deviation is to suppress the image structure using 

a Laplace template. The remaining part of the image is noise. The equations below are the 

Laplace operator and its discrete form respectively. 

훻 푓 =
휕 푓
휕푥

+
휕 푓
휕푦
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훻 푓 = 푓(푥 + 1,푦) + 푓(푥 − 1,푦) + 푓(푥,푦 + 1) + 푓(푥,푦 − 1) − 4푓(푥,푦) 

From the discrete form, the approximation of two Laplace templates can be obtained: 

퐿 =
0 1 0
1 −4 1
0 1 0

,  퐿 = 	
1 0 1
0 −4 0
1 0 1

 

By using the difference between the above two templates to suppress the  image, noise can be 

estimated [19]. The noise estimation template M is, 

푀 = 2(퐿 − 퐿 ) =
1 −2 1
−2 4 −2
1 −2 1

 

Here the average value of M is zero. If the standard deviation of each element is σn
2, the 

variance of M is 36σn
2. Computing the variance of output of the M operator applied to the image 

will give an estimate of 36σn
2 at each pixel, which can be averaged over the image or local 

neighborhoods to give an estimate of the noise variance σn
2. Therefore the variance of noise in the 

image can be computed as [20]: 

σ =
1

36(푊 − 2)(퐻 − 2)
[푓(푥,푦) ∗ 푀]

	

 

where W and H are the width and height of the image f(x,y) respectively, * represents spatial-

domain convolution. 

If n(x, y) obeys the independent and identical distribution N(0,σ2), the calculation above 

can be simplified as following [19]: 

σ =
휋
2

1
6(푊− 2)(퐻 − 2)

|푓(푥,푦) ∗ 푀|
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3.3.3. Results. Figure 3.5 below shows the de-noising technique applied to a 

mammogram. 

 

 

 

 

 

 

 

Figure 3.5 Original mammogram (512 x 512) (left); mammogram de-noised by standard 
deviation estimation (right) 

 

 

 

3.3.4. Discussion and Analysis. The image on the left in Figure 3.5 is de-noised with the 

technique described above with a decomposition level of 1. For quantitatively expressing the 

amount of noise reduced, a cleaner image (or original image) of the input image is required as a 

reference to measure the PSNR (Peak Signal-to-Noise Ratio). Therefore, the same technique is 

performed on Lena image of the same size after adding Gaussian noise and Poisson noise as seen 

in Figure 3.6. The figure shows the best results obtained. 
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Figure 3.6 Standard deviation estimation - Lena image with Gaussian noise (top-left); de-
noised version of Lena image with Gaussian noise (top-right); Lena image with Poisson noise 

(bottom-left); de-noised version of Lena image with Poisson noise (bottom-right) 

 

 

 

As can be seen both visually and quantitatively, there is a good amount of reduction in 

noise after applying the technique. The Lena image with Gaussian noise has a PSNR of 19.7074, 

while the technique brings about close to 7dB of rise in PSNR. The Lena image with Poisson 

noise has a PSNR of about 26.8461. The technique brings the PSNR to 29.7804. From Table 3.3, 

it is observed that the PSNR increases up to a decomposition level of 2 for Gaussian & a 

decomposition level of 1 for Poisson and then starts to decrease. Therefore, this technique works 

best at a decomposition level of 2. 
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Table 3.3 Comparing PSNR by applying standard deviation estimation at different decomposition 
levels 

 
Lena with 

Gaussian 

Difference 

in PSNR 

Lena with 

Poisson 

Difference 

in PSNR 

Noisy 19.7074 0 26.8461 0 

Level 1 24.7213 5.0139 29.7804 2.9343 

Level 2 26.5118 6.8044 29.5744 2.7283 

Level 3 26.1976 6.4902 29.0095 2.1634 

Level 4 25.7697 6.0623 28.7198 1.8737 

Level 5 25.5680 5.8606 28.6171 1.771 

 

 

 

3.4. TECHNIQUE 4 – BAYESSHRINK METHOD 

3.4.1. Principle. The threshold for wavelet shrinkage is derived in a Bayesian 

framework. The proposed threshold has a closed form and adapts to each sub-band (set of 

coefficients). This method outperforms Donoho and Johnstone’s SureShrink method [21] which 

was a seminal work on image de-noising via wavelet shrinkage back in the early 90’s. Wavelet 

shrinkage methods have shown to have better rates of convergence than linear methods of 

approximating functions in Besov spaces [13] [14]. 

 Technique 3 described above is known to produce overly smooth images since the global 

threshold is 휎√2 ln푁. Here N (the number of samples) is large (>105) since the images being 

considered are of size (512 x 512). The formulation of this technique is grounded on the empirical 

observation that the wavelet coefficients in the sub-band of an image can be adequately 

summarized by a Generalized Gaussian Distribution (GGD). From this observation, it follows 
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that the average MSE (Mean Squared Error) in a sub-band can be approximated by the 

corresponding Bayesian squared error. The thresholding process used is soft-thresolding: 

푤 = 0																														, |푤| < 푇
푠푔푛(푤)(|푤|− 푇), |푤| ≥ 푇 

Where  푤 is the wavelet transformation coefficient, 푤 is the thresholded coefficient and 푇 is the 

threshold. 

3.4.2  Algorithm. The noise variance σ2 needs to be estimated first. In some situations, it 

may be possible to measure σ2 based on information other than the corrupted image. But 

otherwise, it is estimated from the band HH1 (which is the set of diagonal coefficients) by the 

Robust Median Estimator [18]. 

휎 =
푀푒푑푖푎푛 푌

0.6745
,								푌 	є	푠푢푏푏푎푛푑	퐻퐻  

휎 = 휎 + 휎  

(or)    휎 =
0																	, 										 휎 < 휎
휎 − 휎 	, 										 휎 ≥ 휎

 

(or)    휎 = max	(휎 − 휎 , 0) 

where 휎  is the variance of Y. Since Y is modeled as zero-mean, 휎  can be found empirically by: 

휎 =
1
푛

푌
,

 

where (n x n) is the size of the subband under consideration. 

Thus threshold TB is given by:  

푇 =
휎
휎
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In the case of  휎 < 휎 , σX is taken to be 0. That is TB is ∞, or, in practice, 

 푇 = max	 푋 , , and all coefficients are set to zero where 푋 ,  is the entire matrix of wavelet 

coefficients. 

3.4.3. Results. Figure 3.7 below shows the de-noising technique applied to a 

mammogram. 

 

 

 

 

 

 

 
Figure 3.7 Original mammogram (512 x 512) (left); mammogram de-noised by BayesShrink 

(right) 
   

 

 

3.4.4   Discussion and Analysis. The image on the left in Figure 3.7 is de-noised with the 

BayesShrink method and the de-noised image is presented on the right. To describe the 

effectiveness of the method quantitatively, BayesShrink method is applied to the Lena image with 

added Gaussian Noise and Poisson Noise as shown in Figure 3.8 below. 
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Figure 3.8 BayesShrink - Lena image with Gaussian noise (top-left); de-noised version of 
Lena image with Gaussian noise (top-right); Lena image with Poisson noise (bottom-left); de-

noised version of Lena image with Poisson noise (bottom-right) 

 

 

It is evident from Table 3.4 below that PSNR gets better with increasing levels of 

decomposition. At a decomposition level of 5, the BayesShrink method on the Lena image with 

added Gaussian noise shows a PSNR of 27.4814 which is almost 8dB higher than the noisy 

image. At the same decomposition level, the method on Lena image with added Poisson noise 

yields an image with PSNR of 31.1979 which is approximately 4.5dB higher than the noisy 

image. For these images, this is about the best that this method can produce. At decomposition 
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levels of 5, the reduction in noise starts to saturate. This can be seen clearly in the difference in 

PSNR values at levels 4 and 5. 

 

 

Table 3.4 Comparing PSNR by applying BayesShrink at different decomposition levels 

 
Lena with 

Gaussian 

Difference 

in PSNR 

Lena with 

Poisson 

Difference 

in PSNR 

Noisy 19.6992 0 26.8542 0 

Level 1 24.7177 5.0185 30.2943 3.4401 

Level 2 27.0185 7.3193 31.1054 4.2512 

Level 3 27.4422 7.743 31.1927 4.3385 

Level 4 27.4786 7.7794 31.1977 4.3435 

Level 5 27.4814 7.7822 31.1979 4.3487 

 

 

 

3.5. TECHNIQUE 5 – MODIFIED BAYESSHRINK AND USE OF DAMF 
 

3.5.1.  Principle. When a signal is encompassed by additive Gaussian noise, its 

estimation is done by finding a wavelet basis that concentrates signal energy over few coefficients 

and by thresholding the noisy coefficients. However, it is found that, in many practical problems 

such as medical X-ray images, the recorded data are not modeled by Gaussian noise but as the 

realization of the Poisson process [22]. This method is an improvement over the BayesShrink 

approach [18]. To remove the large amplitude noise, a new type of filter called the Directional 

Adaptive Median Filter (DAMF) is used. 
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The thresholding process used is soft-thresolding as hard thresholding produces artifacts. 

푤 = 0																														, |푤| < 푇
푠푔푛(푤)(|푤|− 푇), |푤| ≥ 푇 

where  푤 is the wavelet transformation coefficient, 푤 is the thresholded coefficient and 푇 is the 

threshold. 

3.5.2 Algorithm. In the case of Poisson noise, where the noise variance is proportional to 

the image intensities, the BayesShrink approach has a disadvantage. It is only effective for small 

magnitude noise coefficients. Therefore a slightly modified approach is taken. 

 The variance of a Poisson random variable is equal to its mean. Thus, the variability of 

noise is proportional to intensity and, therefore image dependent. The noise power differs 

between wavelet coefficients according to the image pixel under the support of the associated 

wavelet basis function. This spatial variation of the noise needs to be accounted for in the filter 

design. Thus the algorithm of IBS and DAMF is proposed and applied in a sequence as shown in 

Figure 3.9. 

3.5.2.1 IBS. It is found from experiments that wavelet coefficients of an X-ray image are 

smaller than a regular photographic image. This means the thresholds obtained by the 

BayesShrink method are not quite suitable for X-ray images. Therefore threshold is calculated by 

[22]: 

푇 = 훼
휎
휎

 

Here α changes with the size of sub-band under consideration and the decomposition 

level.	휎 and 휎  are calculated the same way as in the BayesShrink method discussed above. 
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Figure 3.9 Algorithm of IBS and DAMF [22] 

 

 

훼 =
log(푛 )

2푥푗
 

where n2 is the size of sub-band under consideration and j is the decomposition level.  

3.5.2.2 Edge detection in wavelet domain. To perform edge detection, it is assumed that 

when the absolute value of a wavelet coefficient is large, it is an edge. The algorithm is as 

follows: 

i. The absolute values of thresholded coefficients are sorted from high to low. 

푊 = 	 {푤 , … ,푤 , … ,푤 }. 

ii. The sum of sorted coefficients SUMn and SUMN are calculated. 
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푆푈푀 = 푎푏푠(푤 )  

푆푈푀 = 푎푏푠(푤 )  

iii. Thresholding value in the sub-band is selected. 

푟 =
푆푈푀
푆푈푀

 

 Where r>v is the specific edge preservation percentage. In this study, v=0.9 has been 

used. wn is the threshold of the edge detector. 

iv. Edges are detected by the following criterion: 

  If abs(wi)2 > abs(wn)2, wi is regarded as an edge, else wi is regarded as noise and 

is processed by DAMF(discussed below). 

3.5.2.3 Directional adaptive median filter (DAMF).  DAMF is designed for three 

directions, each for the corresponding sub-band. Figure 3.10 below shows the different median 

filter masks (windows) designed for the sub-bands. The masks for the vertical and horizontal 

direction are applied as any median filter mask is applied. The masks for diagonal direction are 

designed for 45 degrees and 135 degrees.  

The method to determine the diagonal direction to be used is: 

a. The absolute values of coefficients are sorted from low to high in both the directions (45 

degrees and 135 degrees). 

b. The difference of sorted coefficient is calculated by the equations below (refer to Figure 

3.11 below): 

푑 = |퐴(푖 − 1, 푗 − 1)| − |퐴(푖 + 1, 푗 + 1)|  
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푑 = |퐴(푖 − 1, 푗 + 1)| − |퐴(푖 + 1, 푗 − 1)|  

Where A(i,j) is the selected pixel. If d1 >= d2, the window of 135 degrees is selected to process 

the coefficient, else the window of 45 degrees is selected to process the coefficient. An example 

is shown below in Figure 3.12. 

 

 

 

Figure 3.10 Shapes of DAMF [22] 

 

 

A(i-2,j-2)    A(i-2,j+2) 

 A(i-1,j-1)  A(i-1,j+1)  

  A(i,j)   

 A(i+1,j-1)  A(i+1,j+1)  

A(i+2,j-2)    A(i+2,j+2) 

 

Figure 3.11 Diagonal directional filter of DAMF 
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Figure 3.12 Example of diagonal directional filter of DAMF 

 

 

3.5.3 Results. Figure 3.13 below shows the de-noising technique applied to a mammogram. 

 

 

 

Figure 3.13 Original mammogram (512 x 512) (left); mammogram de-noised by IBS and DAMF 
(right) 
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 3.5.4 Discussion and Analysis. The image on the left in Figure 3.13 is de-noised using 

the technique discussed. A significant reduction in noise can be noted visually. As discussed 

earlier, the technique is applied to the Lena image with added Gaussian and Poisson noise to 

quantify the performance of the technique. Figure 3.14 below shows the results. 

 

 

 

Figure 3.14 IBS and DAMF - Lena image with Gaussian noise (top-left); de-noised version of 
Lena image with Gaussian noise (top-right); Lena image with Poisson noise (bottom-left); de-

noised version of Lena image with Poisson noise (bottom-right) 
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As evident from Table 3.5 below, there is a significant improvement in PSNR by using 

the IBS and DAMF filter. At a decomposition level of 5, the technique applied to Lena image 

with Gaussian noise yields a PSNR of 28.5196 dB which is close to 9dB higher than the noisy 

image. Similar results are obtained even on the Lena image with Poisson noise. As expected, the 

PSNR increases with increasing decomposition levels. It saturates at a decomposition level of 5. 

 

 

Table 3.5 Comparing PSNR by applying IBS and DAMF at different decomposition levels 

 
Lena with 

Gaussian(dB) 

Difference 

in PSNR 

Lena with 

Poisson(dB) 

Difference 

in PSNR 

Noisy 19.7159 0 26.8444 0 

Level 1 24.6437 4.9278 30.1571 3.3127 

Level 2 27.8683 8.1524 31.7713 4.9629 

Level 3 28.2165 8.5006 32.0939 5.2495 

Level 4 28.5083 8.7924 32.3194 5.475 

Level 5 28.5196 8.8037 32.6862 5.8418 
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4. CONCLUSION 

 

The five techniques presented treat the wavelet coefficients in different manners to find a 

threshold for wavelet shrinkage. The results obtained are presented together here in Tables 4.1 

and 4.2: 

 

Table 4.1 Comparison of all techniques on Lena image with added Gaussian noise w.r.t. 
difference in PSNR (in dB) 

 

Daubechies 

Complex 

wavelet 

Adaptive 

feature-

based 

Noise 

deviation 

estimation 

BayesShrink Modified 

BayesShrink 

+DAMF 

Level 1 4.9638 4.3652 5.0139 5.0185 4.9278 

Level 2 5.7497 6.7268 6.8044 7.3193 8.1524 

Level 3 3.4839 7.5112 6.4902 7.743 8.5006 

Level 4 0.9072 7.0072 6.0623 7.7794 8.7924 

Level 5 -1.115 4.4169 5.8606 7.7822 8.8037 

 

 

 

In Tables 4.1 and 4.2 above, the highest obtained values of difference (between noisy and 

de-noised images) in PSNR values are bolded. It can be inferred that the BayesShrink approach 

and the Modified BayesShrink approach with DAMF produce the best results. As seen from the 

Tables 4.1 and 4.2 above, the PSNR’s of the noisy images are differ slightly with an average 

deviation of about 0.015dB. This happens because the noise is added using MATLAB. The noise 

addition algorithm used by MATLAB adds noise randomly to the image each time it is used. 
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Hence, there is a slight difference in the noisy images produced which accounts for the slight 

difference in PSNR’s. 

 

 

Table 4.2 Comparison of all techniques on Lena image with added Poisson noise w.r.t. difference 
in PSNR (in dB) 

 

Daubechies 

Complex 

wavelet 

Adaptive 

feature-

based 

Noise 

deviation 

estimation 

BayesShrink Modified 

BayesShrink 

+DAMF 

Level 1 2.1607 1.8768 2.9343 3.4401 3.3127 

Level 2 -0.4552 2.3319 2.7283 4.2512 4.9629 

Level 3 -3.5151 3.9517 2.1634 4.3385 5.2495 

Level 4 -6.203 1.839 1.8737 4.3435 5.475 

Level 5 -8.2415 1.1393 1.771 4.3487 5.8418 

 

 

 It can also be seen that the highest PSNR values are obtained at higher decomposition 

levels. This means that, the more an approach can penetrate into higher decomposition levels 

without harming the edges, the better the performance it will have. 

 This thesis presents a study of leading noise reduction techniques in mammograms based 

on the wavelet domain. The next step after noise reduction is to enhance contrast. These de-

noised images should be enhanced in contrast and evaluated by radiologists. The feedback 

received from radiologists and the results obtained from the study presented should be used to 

develop certain adaptive techniques for noise-reduction which would improve the visual quality 

of mammograms and serve as a better aid in early detection of breast cancer. 
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