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11. 

ABSTRACT 

This study is an investigation into analytical 

techniques used in deriving probability of error 

expressions ~or baseband multi-level digital trans

mission systems.. A fixed-level decision rule is used 

to solve this statistical detection problem tegether 

with some simple concepts from probability theory. 

To illustrate these techniques, probability of error 

expressions are derived for the general uncoded system,. 

a simple coded system, and a complex coded system. 

Ourves of probability of error versus signal-to-noise 

ratio are plotted for the various systems considered •. 



111. 

AOXN'OWLEDGIME.NT 

In appreciation to Mr. Carl G. Eilers for his 

help in selection of the topic for this study; Mr. 

James Banas for his helpful comments; and Dr. T. L. 

Noack for his suggestions and counsel. 



1v. 

TA::SLE OF CONTENTS 

Page 

LIST OF ILLUSTRATIONS • • • • • • • • • • • • • • • vi 

I. 

Il. 

III. 

IV. 

v. 
VI. 

INTRODUCTION e • • • • • • • • • • • • • • e 

TERMINOLOGY AND ASSUMPTZO!lS • • • • • • • • 

REVIEW OF LITERATURE • • • • • • • • • • • • 

OBJECTIVE ••• • • • • • • • • • • • • • • •• 

FORMULATION OF THE GENERAL EXPRESSION • • •• 
STATJMENT OF THE PROBL]M • • • • • • • • • • 

1 

2 

9 

ll 

12 

14 

VII. PROBABILITY OF ERROR OF BINARY UNCODED SIGNAL 24 

A. Forming the General Expression • • • • • 24 

B. Solving for P( E f s1 ) • • • • • • • • • • 25 

c. Solving for P(E 1· s2) ••• o • • • • • • 26 

D. Solving for P(E) •• • • 0 • • • • • • • 27 

V~II. PROBABILITY OF ERROR OF M-LEVEL UBCODED SIGNAL 29 

IX. 

x. 

A. Forming the General Expression • • • • • 29 

B. Solving for P( E l ~) • • • • . . . . . . 30 

o. Solving for P( E l ~) • • • • • • • • • • 31 

D. Solving for P(E f~a) • • • • • • • • • 32 

l. Derivation of P(l) •• 

2. Derivation of P(2) •• 

Solving for P(l) ••••• 

• • • • 

• • • • 

• • • • 

CODED SYSTEMS • • • • • • • • • • • • • 

PROBABILITY OF ERROR OF CODE ONE SIGNAL 

Coding Technique for Code One • • • 

• • • 

• • • 

• • • 

• •• 

•··. 
• •• 

33 

34 

36 

37 

38 

38 

B. Forming the General EXpression. • • • • • 40 



v. 

c. Solving for P(~) • • • • • • • • • • • • 41 

D. SOlving for P( I) • • • • • • • • • • • • 45 

XI. PROBABILITY OF ERROR OF CODE TWO SIGNAL • • • 46 

A. Coding Technique for Code Two • • • • • • 47 

B. Forming tb.e General Expression • • • • •• 50 

o. Solving for P(~) • • • • • • • • • • • • 50 

1. Solving for P(l) and P(O) • • • • 0 • 52 

2. Derivation of P(~) • • • • • • • • • 54 

D. Solving for P( E I~) • • • • • • • • • • • 55 

1. Solving for Yb.l • • • • • • • • • •• 56 

a. Derivation of P(3) • • • • • • •• 57 

b. Derivation of P(4) • • 0 • • • •• 58 

2. SolV1D.& for yh2 • • • • • • • • • • • 58 

3. Solving for Th3 • • • • • • • • • • • 60 

4. Solving for yh4 • • • • • • • • • • • 61 

I. Solving for P( E) • • • • • • • • • • 0 •• 65 

XII. P(E) CURVES • • • • • • • • • • • • • 0 • • • 67 

1.. Signal-to-Boise Ratio • • • • • • • • • • 67 

1. Average Signal Power • • • • • • • • 68 

a. For unooded signal • 0 • • • • 0 68 

b. For code one signal • • • • • • • 69 

Co For code two signal • • • • • 0 • 71 

2. Average Noise Power • • • • • • • • • 71 

B. Computer Program • • • • • • • • • • • •• 72 

o. P(E) Curves for the Three Systems • • • • 72 

l. Curves for the v,ncoded Signal • • • • 72 



vi. 

2. Curves for the Oo:de One Signal •- • • 74 

3. curves for the Code Two Signal • • • 74 

4. Comparative P{B) Curves • • • • • • • 78 

D. The Polybinar1 versus Poly~1polar Signal 78 

XIII. O.OllOLUSIOB .. 

A. m.acussion 

B. Summary •• 

APPEND! X: I • • 

• • • • • • • • • • • • • • •• 

• • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • 

APPENDIX II • • • • • • • • • • • • • • • • • 
BIBLIOGRAPHY • • • • • • • • • • • • • • • • 
VIT..l • • • • ••••••••••••••••• 

ss 
86 

88 

91 

94 

96 



vii. 

LIS~_OF ILLUSTRATIONS 

FI.GURES: · PAGE 

1. Baseband Data Transmission System 3 

2. Polybipplar ,_level Rectangular Signal 5 

3. Polybinary 3-level Rectangular Signal 5 

4. Block Diagram of M-level 87Btail 15 

5. Tfpical Wavefor.m of Bandl1m1ted 5-level Signal 17 

6. Rectangular Baseband Waveforms for Code One 39 

7. Rectangular Baseband Wavet·orms for Code Two 49 

8. fypioal Waveform of Bandl1mited 5-level Signal 51 

9. EXample of First Signal Transformation 53 

10. Typical Program for Computing P(E) 73 

11. 

12. 

13. 

14. 

15o 

P(E) Curves for Uncoded Signals 

P( E) curves for Code One Signals 

P( E) curves for Oode !Yo Signals 

Comparative curves for Poly-bipolar 

Comparative CUrves for Poly-binary 

16. Waveform of a Random Signal 

Signals 

Signals 

75 

77 

79 

80 

81 

91 



I. INTRODUCTION 

Most present day digital data transmission systems 

use a binary method of operation. However, these systems 

are somewhat restricted in their capacity, 1e., the number 

of 1nforma..t1on bits they can transmit in a specified 

period of time.. Recently, in an effort to achieve higher 

speed digital transmission, multi-level techniques have 

been developed1 and used2. Multi-level techniques make 

use of M discrete signal levels and therefore represent 

Log2 M binary channels. That is to say;: for a fixed peak 

power, an M~level signal. has Log2 X times greater capa.

citl relative to a binary signal •. This 1ncreasa in capa

c1 ty, however, is accomplished only at the expense of a 

higher signal-to-noise ratio in the system. 

A much used figure. of merit for any baseband digital 

transmission system is the expression of error probability 

as a function of signal and noise. Slep1aa3.·11sts error 

probabilitT. as one o~ six important parameters used in 

comparing. the performance of transmission systems. Since: 

most literature on this sub3ect refers to binary systems, 

there is a need to treat probability of error calculations 

for current ~level systems of interest. 
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II. TERMINOLOGY AND ASSUMPTIOHS 

Before discussing probability of error calculations 

for multi-level systems, it 1s necessar1 to become familiar 

with pertinent terminology and assumptions which seem to 

be common to digital data ~eohniques. 

A typical baseban.d digital data transmission system 

is described in the block diagram of Figure 1. Referrring 

to J'igure 1,, a rectangular binary input is assumed as the 

initial signal to be transm1tte4. This binary signal is 

converted in the encoder to either an uncoded or coded 

M-level signal. This K-level output signal from the 

encoder oan be· described as being either polybinary or 

polybipolar in character. A polybinary signal can gener

ally be defined as a~id1~1•level signal (where H>2) 

wi ~h upper peak value of A and lower peak value of o •. 
There will always be a d.c .. component present 1:n a polyb1-

nacy signal except when. the Q:.level is present •. j. polybi

polar. signal,. on. tb.e other hand, can_ be defined as a mul t1-

lwvel sigllal (~ere M>2) with upper. peak: value of 

+A/2 and lower peak value of -J/2., These def1n1 t1ons do 

not seem to be standard 1n the literature but are used by 

some authors4 to distinguish between binary and H-arp sig

nals. Jor the sake of un1form1 ty, only polyblnary signals 

Will be considered in developing the probability of error 

expressions,. although Bennett and Dav~, have indicated 
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the resulting expressions for the two types of signals 

are identical... Figure 2 and Figure 3 are typical of a 

3-level-polJbipolar and polybinary rectangular digital 

signal. 

4. 

The output of the enc.oder in J'1gure 1,, then,, is 

represented by these kinds of rectangular M-1 evel pulse 

type signals.- In most practical data transmission SJs

tems, bandwidth is exp.nsive and it is not economical to 

attempt to preserve a rectangular wave shape.. For this 

reason, a transmitting filter is used to limit the signal 

spectrum applied to the transmission link as indicated in 

Figure 1. A receiving filter, also indicated in Figure 1, 

serves to exclude noise and other interference picked up 

by the transmission link. 

It sb.all be assumed that a simple threshold ty-pe 

detector is used 1n the receiver for the various systems 

under consideration •. For uniform1t7. and s1mpl1c1tr, the 

decision threshold leYel shall be chosen to be one half 

the pulse height between signal levels. This seams to be 

a frequent choiee in the literature for idealized calcu

lation purposes and it does make the derivations simpler. 

When discussing transmission systems, it is important 

to distinguish between modulation techniques and coding 

techniques. The baseband digital signals referred to 

here_ are coding teomnques. An uncoded H-level signal is 

a multi-level signal 1n which the probab111t7 of occurrence 
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of an7 particular level is as likely as an7 other. By 

the expression "coded" M-level signal is meant a multi

level signal in which tb.e probability of occurrence of 

&nJ particular level is not as likely as any of the 

others~ 1e., the probability distribution is not uniform. 

The baseband d1g1 tal signals to be discussed can all 

be used for direct wired transmission systems capable of 

passing d.c. For radio transmission. systams however, only 

those baseband digital signals which contain no inherent 

d. c. component are compatible ('-n the frequency domain) 

with the various acceptable techniques for modulation. 

The unooded polfblpolar signal is a simple example. Some 

forms of tb.e coded signals to be disousset Dan also be -

\l&el~;fer radio transmission.. Ill the ltlook diagram of 

figure 1, therefore. all the means of transmission such 

as modulators, demodulators, and transmission line or 

medium, are included in the box labeled data transmission 

l.1nk. The ma~or concern in the forthcoming developments 

shall be with the encoding generator and that part of the 

receiver which contains the decision mechanism. 

All transmission systems, irrespective of the modu

lation technique used, are corrupted b7 the presence of 

what 1s generallJ called "noise". By the term noise6, 

is meant any spurious or undesired disturbances that 

tend to aask the tranD1 tted signal. There are many 

co~•- sources ot these d1stu•~ancea and they can ocour 



almost anywhere in the transmission system. Since a 

simple threshold type decision mechanism has been assumed 

in the receiver, our major concern shall be for that 

additive noise which might effect the amplitude of the 

desired M-level signal prior to that signal being proces

sed through the decision mechanism. Therefore, it shall 

be assumed that the transm1 tted signal is oorrap~•4·;! wi tb. 

additive noise. This is shown in Figure 1 as occurring 

in tb.e transmission link, although in practice,; this may 

not be the case •. 

Boise can generally be classified into three·cate

gories: man-made interference, impulse noise, and ran

dom gaussian noise. For ideal anal7s1s purposes, random 

gaussian noise w1 th zero average value and mean square 

value of cf'~ is generall7 assumed as the corrapting 

additive noise in the transmission system. This assump

tion will also be made here. Since the statistics of 

a gaussian probability density function are well known, 

a valuable tool exists for the evaluation of probability 

of error expressions for digital systems. 

A further restriction is that baseband systems onl7 

are to be considered. If some technique of modulation 

is used to transmit the signal at radio frequencies, it 

is as~ed that a linear detector in the receiver will 

restore 1ihe baseband signal to 1 ts original form.. Irt has 

been shown7, that a linear operation on a gaussian random. 
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process yields a gaussian random process, therefore, we 

are able to make direct application of the gaussian 

probab111tl density function in all derivations. 

The following is a listing of the previous assump~! .. -

tiona: 

1. Assume the input a1aaal is composed of a rectangu

lar binary pulse train. 

2. For derivations,. assume the mul t1-level signal is 

polybinary 1n character. 

3. Assume the received signal is corrupted with 

additive gaussian noise onll• 

4. ~ssume the decision mechanism 1n the receiver operates 

on a threshold basis only. 

5o Consider baseband signals onl7• 

Note that in making the above assumptions, general 

digital transmission systems are no longer being consider

ed. The digital systems to be discussed are now somewhat 

restricted. 
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III. REVIBV OF LITERA.!BBE 

The general approach used in calculating the proba

bility of error for multi-level digital systems does not 

seem to be discussed very thoroughly in the 11teraiure •. 

In his textbook on Information Theory, Abramson8 

presents an expression for finding the probability of 

error for binary signals. However, this author quickly 

moves on to other topics without g1vtng the reader any 

insight as to how the expression might be used. 

Schwartz6, considers the binary signal in more_ detail. 

He formulates the problem assuming an unooded binary 

transmitted signal corrupted with additive gaussian 

noise and then leaves it as an exercise for the reader •. 

He does present the resulting expression, however: 

Probability of Error • P(E) 

P( :1) • (l/2) ( 1 - erf 2f!~] 
where;: A is the peak amplitude of the signal. 

I" 2 is the mean square noise power. 

(1) 

Authors Bennett and Davy in a recent bookS, also 

mention the binary: unooded signal and likewise wr1 te 

down the resulting expression which is identical to equa

tion. 1 above.. In add1 tion, Bennett and Davy consider a 

mul t1-level uncoded transm.i tted signal and again wr1 te 



down the resulting expression (without derivation), 

wh1 oh. 1 s : 

P(E) : K-1 -M 
[1-erf ( A )] 

2(M-l)Cf ~ 

10. 

( 2) 

They. also 1nclu4e a plot of the probab1lit~ of error 

versus tb.e ratio of average signal power to average noise 

power for uncoded multi-level signals where 2~ M ~16. 

Recent periodical literature makes frequent use of 

probabilit~ of error curves and expressions as figures 

of merit for various multi-level systems. For example, 

Shagena and Kvarda9 submit a relatively simple coding 

technique for an M-level signal and present the corres

ponding probability of error expression and a set of curves 

for the various M levels. 

Lander1 • 4•10 •11, in. a series of articles sugg_ests 

a rather complex coding technique for an M-level signal. 

He presents a limited amount of d1scusa1on together with 

his probability of error expression and a set of curves 

showing probability of error versus normalized signal to 

noise ratio. 

In sumn1ng up this perusal of the literature, it is 

difficult to determine the probability of error !or a 

given system on the basis of what any one author is 

saying. 
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IV. OBJEOTIVI 

In the following discussion, a general analytical 

approach will be presented which can be used to determine 

the probability of error expression for any coded or 

uncoded multi-level digital signal of interest •. Further

more •. this general approach will be illustrated by apply

ing it to the four signals mentioned previously. These 

are: 

1. fb.e binaey uncoded signal. 

2. The ~level uncoded signal. 

'· The M-level coded signal of Shagena and Kvarda. 

4. The ~level coded signal of Lender. 

In addition, probability of error curves for the 

above systems will be presented and discussed. £ typical 

computer program written in the :Portran IV language will 

be presented. 
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V. FORMULATION OJ THE GENERAL EXPRESSIOB 

The general approach for determining the probability 

of error expression for an M-level signal is taken from 

introductory probability theory. (See Appendix I.) 

The desired expression is the probability of the event 

E which occurred when an experiment was performed. Let 

this probability be called P(E) in keeping with information 

tb.eory8 and probability theoryl-2 notation. Let the sample 

space of the experiment be divided into M mutually exclu

sive regions BJ.,, s2, --- Sx• These regions represent 

the M possible causes of an experimental outcome which 

are of interest. 

Next, let E be the event that occurred when the ex

periment was performed and consider the problem of calcu

lating the probab111t7 that ~ was the cause of the occur

rence of E (~here 1 ~-k ~M). In other words, the sample 

point was one of the points inside ~ associated with the 

occurrence of E. From ~ppendix I, equation r~s, this 

conditional probability is given by: 

P(stiB) : P(~,I)/P(I) (.}) 

From equation I-4: 

( 4) 
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Now, the event I can occur only in conjunction with 

one of the M possible events s1, S2, --- ~· Thus, E 

will occur 1!, and only if, one of the mutually exclusive 

events ( S1, E), ( ~2• E),. ---- (~'E) occurs. Tb.e addition 

rule for mutually exClusive events, as stated in .t.ppendi:x 

I.,- gives as the probability of the event E: 

Applying the last expression of equation 4 to each 

term on the right of equation 5 will result in: 

P(E) = P(S1)P(EIS1) + P(S2)P(BIS2) + -------

---- + P(S..)P(II~) (6) 

k=K 

P{ E) • t P( SJs:) P{ li ISJs:> 
k81 

(7) 

Re-define the variables in equation 7. Let E repre

sent the event •'ERROR" and let ~· s2,, ---- S:K represent 

the B]t levels of the transmitted signal s(t). By changing 

the meaning of the variables and not the variables them

selves, the general expression for calculating the proba

bility of error for any H-level transmitted signal is 

given by equation 7. 
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VI. STATlKENT OF THE PROBLJH 

A concise statement of the problem can now be pre

sented. Consider an encoding generator as in Figure 4, 

which converts a continuous binary input message m(t) into 

a polyb1nary multi-level coded or uncoded message s(t). 

The message s(t) is applied to a "noisy" linear channel 

for transmission as in Figure 4. The output of the noisy 

channel is a data signal f(t) where, for all time:. 

Bow: --
f(t) • s 1 (t) + n(t) (8) 

s'(t) is a polybinary M-level message of peak vol

tage A which has been operated on in a linear man

ner in the channel. 

n(t) is additive noise described by a gaussian r~ 

dom process w1 th zero average value and mean square 

value tr2 • 

The continuous data signal f(t) is applied to the 

decision mechanism in the receiver for appraisal. This 

decision mechanism will first synchronously gate or sample 

f(t) at periodic intervals of time and, on the basis of 

the amplitude of f(t) at these sample points, will decide 

which level of s(t) has been transmitted through the ch~

nel. The decision mechanism operates on. a simple vol- 'J 

tage threshold principle. This decision threshold 
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shall be chosen to lie halfway between the peak values 

of the M-levals present in s'(t) somewhat ideallyo With 

no thought here of optimization, this decision criterion 

is a conveDient choice as it leads to simpler derivations 

and expressions. Note that an M-level received signal 

s'(t) will require a decision mechanism with (M-1) dec1-

sion thresholds. 

Figure 5 represents a typical 5-level bandlimited sig

nal. It illustrates the decision threshold voltages neces

sary for the detector. Let the decision threshold for 

level 1 be called D. Then, the decision threshold for 

level 2 will be 'D (as a consequence of selecting the 

decision voltage halfway between levels). etc.etc. 

Now, the decision mechanism in the receiver must 

examine f(t) and decide which level of s(t) was trans

mitted. Let this decision process obey the following 

general rules• 

If f(t) ~ D; receiver decides s'(t) =level 1 = ~· 
If D<f(t) ~3D; receiver decides s'(t): level 2 • s2• 

If 3D< f( t) ~ 5D; rece1 ver decides s • ( 't) = 1 evel } = s3• 

If ( SJc-D) < f( t) ~. (~+D); receiver decides level k = ~· 
If ( aH-3) J) < f( t); receiver decides s 1 

( ~) • level M • Sx• 

where:: 1 < k < H -· - (9) 
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At any given instant of time, it is necessary that 

f(t) lie within a specific amplitude range for the receiver 

to make the correct decision. If, due to additive noise, 

f(t) does not lie within this specified amplitude range, 

then the receiver will make an error.. For example, if 

s(t) is at level 5 of an M-level signal, then 7D<f(t) "S: 9D 

for the receiver to make the correct decision. Should 

f(t) ~ 7D. or f(:t) > 9D, then the receiver will make an -. 

error. 

To determine the probability that the receiver will 

make just such an error for a given system is the problem 

to be considered here. Its solution requires careful ap

plication of equation 7, using the known statistics of 

gaussian random noise together with the probabilities of 

the system under investigation. Re-stating equation 7: 

k•K 

P( Error) = P( lil) = ~ P( B.k:) P( EISJt) (10) 

In sb.ort,, this equation says that the total proba

bility of an error, given that an M-level signal is 

transmitted," is the sum of the following• 

P(lil) = P [s(t) • ~] P [Error I s(tt) = ~] + 

+ P [s(t) ----
- + P [s(t) = s..:J P [Error I s(t) • B.k:] + ---
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-- - + p [s(t) = Sx]P [Error I s(t). ax]-- (11) 

Bote that the first probability expression after the 

summation sign in equation 10 is the average probability 

of occurrence of any of:the k levels in a very long mes

sage train s(:t) and is a function only of the particular 

signal being transmitted. For unooded systems, this 

probability can be simply expressed. For coded systems 

however, a thorough understanding of the coding technique 

of the particular system is necessary before this quantity 

can be put into a concise form. !rote also, the second 

probability expression in equat1o~ 10 is a conditional 

probability. This probability should read as follows: 

P(ll~) = The probability the receiver makes an 

erroneous decision given that a certain 

k level of s(t) was transmitted. 

In general, the solution for these conditional pro

bab111 ties for any given M-level system is not trivial •. 

To proceed in a straightforward manner requires the use 

of some introductory concepts of continuous random. signals. 

Il).deed,, 1f these. concepts of random signals did not exist, 

it would be d1.t~1atll·'l·; to make any meaningful pro ba bil1 ty 

of error calculat1ons6• 
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Appendix II. contains a limited review of the per

tinent continuous random signal theory needed.. Tb.e pre

vious assumption that the error producing noise is a gaus

sian. random process provides the statistical distribution 

of the noise which is given by equation II-3 in Appendix II 

as a probability density function and is re-stated here as: 

(12) 

Re-arranging equation 8. 

n(t) : f(~) - s'(~) (13) 

For convenience, change the notation. in equation 13 to 

read: 

I: l- S 

Now, substituting this into equatio~ 12: 

p(li) = l • p(Jis> 

J'or an M-level signal E3:k:; where 1 ~ k ~H. 

p(FIB:i:> = l -(J-SJc)2/262 
e 

(l4) 

(15) 

(16) 
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As these are density functions, it is necessary 

to use the idea of a probability distribution function 

as defined in Appendix II to solve for actual probabi

lities. From the defining equation II-5: 

Xl J p(x) dx (17) 

-oo 

Using this expression and equation II-4 from Appendix II, 

note the following relationships are also true. 

L et• 
~ 

e(t) = F 

xl • fl 

--

and 

And equation 17 becomes: 

-oo 

where a 1<k<M - -

(18) 

J p(x) d:x: (19) 

p(x) dx = 

-(P-S]c) 
2
/2a-2 

e dF (20) 



Likewise, substituting equation 16 into 18 and 191 

1 

f2 

~~! 
fl 

-(F-SJc) 2/2~2 

·-

22. 

(21) 

(22) 

Thus, by appropriate use of equations 20 and 22, the 

probability of finding the noisy signal P within any speci

fied amplitude range can be solved for, given that some 

~ level of s(t) was transmitted. Using these functions, 

the conditional error probabilities of equation 10 can be 

determined. 

~t might be mentioned here that some authors prefer 

to talk of the probab111t7 of detection, whereas others 

speak only of the probability of error. There should be 

no confusion. about this. When a particular level of a 

multi-level signal is transmitted, the receiver will 

either make a correct decision ( 't;hat 1s, interpret the 

signal correctly.) or make an incorrect decision Unake an 

error). 

Let the probability the receiver makes a correct 

decision = P(RCD). 

Let the probability the receiver makes an incorrect 

decision= P(BID). 
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Then, P(ROD) + P(RID) • 1, because some level of signal 

was sent. Or: 

P(RCD) : 1 - P(RID) 

P(RID) : 1 - P(ROD) 

(23) 

(24) 

As an initial illustration of the general approach 

used for calculations,. the prev1ous11 discussed topics 

will be utilized and the probabilit7 of error for a binary 

uncoded transmitted signal will be ditermined. 
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VII. PROBABILITY OF ERROR OF A BINARY UNOODED SIGNAL 

A. Forming the General Expression 

For a binary uncoded signal s(~), there are two 

possible levels of signal which are transmitted.. Oall 

these two levels: 

s(t) = s1 

s(t) = s2 

From equation 10, the general expression for calcula-

t1ng the probability of error P(E) is: 

where: The probability that level l was sent • l(S1). 

The probability that level 2 was sent • P(S2). 

The conditional probability the receiver makes 

an error given that 51 was sent = P(EfSl)• 

The conditional probab1lit1 the receiver makes 

an error given that s2 was sent • P(EIS2).o 

(25) 

Assume the detector threshold level between S1 and 

s2 to be D as soown in .. Figure 5. Assume also, that s( t) 

is a random pulse train. Then: 

P(E) = l/2 [ P(EI~) + P(EjS2)] ( 27) 
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To solve the conditional error probabilities of equation 

27, consider the following: 

Let ~ refer to the event the receiver decides that 

s = s1 • 

Let B.2 refer to the event the receiver decides that 

s = s2• 

From the previously discussed decision rules on page 16, 

the receiver decides the following: 

· S = level 1 when F ~D. 

S = level 2 when F >D. 

I 

B. Solving for P( El'~) 

Using equation 22: 

(X) 

o-.vk J dl' 

D 

Change the variable of integration. 

Let: Q= 
l-Sl 

IJlen: dQ = dF • 
cr'\12 ' 6'V2 -'· 

.ls: ~ Ci) • Q ;;.. 00 - , 

!!: !>D • Q "> 
D-Sl 

• L , 
trl\.[2. 
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Therefore: 

( 28) 

The integral of equation 28 is frequently called the com

plementary error function and its solution is tabulated 

1n many handbooks16 as the followingl 

(J) 

-t2 
erfo x = ...5... J e dt : 1 - erf x 

'\[if 
X 

Therefore: 

P(IIBJ.) = (l/2) ertc ( ~~} 

Oo Solving for P( 11 S2) 

P( El s2) • P(a1 j s2> c P [ (F !:.. D) I s2] 

Using equation 20: 

l 

tr~ f 
-oo 

D 

Change the variable of integration,. 

Let: -
~s: -
,s. -· 

.,. 

• , 

• 
' 

Then:: dQ = dF 
oV2 

( 29) 

( 30) 



Therefore: 
T 

J 
-oo 

However, this is not in an acceptable form. Change the 

variable of integration again. 

Let: Q= -z ; Tb.en: dQ • -dZ -
As: Q > -CD • z !)II Q) - , 
.A.s: Q > D-S2 z ~ S2-D - : L 

tS"\12 ~V2 

Therefore: 
L -z2 

P(Eis2) 1 J ·-- e dZ 
V1f 

(I) 

Inverting the limits: 

CD 
-z2 

P(EIS2) - 1 J -- e dZ 
'\fit 

L 

!gain, the form of tb.e complementary error function given 

in. equation 29 is recognized. Therefore: 

( 31) 

D. Solving for P(E) 

Substitution of equations 30 and 31 into equation 

~ forms the final expression for the probability of 

error of an uncoded mi.naey signal. 
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P( E) = (1/2) [ (1/2) erfo ( ~~) + (l/2) erfo { :~ )] (32) 

This expression can be simplified by substituting in-our 

previous assumptions that the transmitted polybinary sig

nal has peak amplitude A and the receiver threshold level 

is midway betwean the two signal levels. Thus:: 

P( E) = (1/4) erfo ( (A/2)-0) -+.. (1/4) erfc { A-(4/2) ) 
trV2 ~V2 

P(E) • (1/2) erfCl ( 2cr~) ( 33) 

per symbol or pulse 1n the binary signalo 

Equation 33 above, is the widely used probabilitJ 

of error expression for a binary uncoded signalS·, 6•15. 

It agrees with equation 1. This same approach can be 

used ,to~·.extend the above results and determine the proba

bility of error for an M-level uncoded transmitted signalo 
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VIII. PROBABILITY OF ERROR OF AN M-LEVEL UNCODED SIGNAL 

~. Forming the General EXpression 

For an uncoded M-level signal with received peak 

value of A, there are A(k-l)/(M-1) possible voltage levels 

for s 1 {t) (where l <k < H)o Figure 5 indicates the appro-- -· 
priate terminology for describing the amplitude variations 

of the received signal f(~), the desired signal s'(t), and 

the voltage thresholds for the decision mechanism in the 

receiver. From equation 10, the general expression for 

P( E) is: 
H 

P(E) = L P(~) P(BIB.!t> 

kill 

where P(~) and P(ll~) are defined on pages 18 and 19 •. 

For an uncoded ~level baseband signal with no corre

lation between. levels, each of the k-levels (::Where l ~ k ~- M) 

will appear with equal liklihood; therefora: 

P(SJc) : i for all k 

M 

P(l) = t L ( 34) 

Ital 



The conditional probabilities P(JI~) oan be divided 

into three possibilities: 

P(Eisl) =Probability of an error when the trans

mitted signal S.1s at level 1. 

P(EJ~) = Probability of an error when the trans

mitted signal S is at level M. 

P(EISk,) :Probability of an error when the trans

mitted signal S is at the k 1 level 

where 2 < k 1 1< (M-1) - -
Therefore: 

P(E) : l [ P(EIS~) + P(EI~) + P(EI~•)] (35) 

From the decision rules, the receiver decides the 

following: (See Figure 5) 

S , level l 1t (I >D) 

S, level 2 1! (~ ~.F >3D) 

S ; level 3 1f (3D~ F > 5D) 

~ - - - - - - - - - ~ - ~ ~ 

S ~ level ll if [ l!' '!. ( 211-3) D] 

B• Solving for P(ll~) 

P(IIBJ.) = p [ (:r> D) I~ J 
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Note that this is the same situation as solving for P(Eis1 ) 

for the binary case. Hence, that result, equation 30, can 

be written down: 

(l/2) erfc ( D - 81) 
~V2 

SUbstituting into this expression with the appropriate 

amplitudes: 

~ = 0 

D: _..A.___ 
2(M-l) 

Therefore: 

c. Solving for P( II ax> 

P( EISx> = P [ (r ~- <2M-3) D) I Sx ] 

( 36) 

(37) 

If equation 20 is used to solve for this cond1 tional pro

bability,. recognize that this is the same form as the solu-

tion for P(Eis2) for the binary uncoded signal. From 

equation ;1: 

lfow, however: 

: (1/2) erfc ( 82 -D) 
oV2 

s2 is replaced by ~ 

D is replaced by (eM•3)D 
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P(EI~) : (1/2) erfc ( SJ! ;(~)D) 

Su'bst1tut1ng into this expression with j;he appropriate 

amplitudes: 

Then: 

Sx = A. 

(2M-3)D : (2M-3)A 
2(M-l) 

P(EI~) = (l/2) erfa ( A ) 
2(M-l)e""V2 

D. Solving !or P(EI~tr) 

!or all 2 < k 1 < (M-1) -· -

(38) 

(39) 

One approach that could be used to solve for P(EI~ 1 ) 

would be to derive the conditional error probability for 

tb.e k 1 level and then sum over all 2 ~ k 1 ~ (M-l) levels 

for the total P{EI~•>• 

M-l 

P(ll~a) - l: [ P(l) + P(2)] ( 40) -
k 1=2 

where: 

P(l) - p [ ( ~·-D ~ l!') I~·] -
P( 2) - p [ (l!' < ~·+D) f ~·] -



The solution of these conditional probabilities is 

similar to previous derivations. However, this derivation 

will be given in detail as it is for the general k' 

(interior) level. 

1. Solving for P(l) 

P(l) = P [<~·-D~.r) tsk.J 

From equation 20: 

P(l) : 

~,-D 

f 
-(F-~t) 2/2~2 

e dF 

-oo 

Ohanga the variable of integration. 

Let: -· 

As: -
.ls: -
Then: 

-...ii·.., -CD; 

-L 

P(l) : ;}, f 
-CD 

• , then 

Q 

Q _....iii,_ .. -oo 

dQ = dF 
rrV2 

: -L 

To put this integral into the form of the complementary 

error function, change the variable of integration again. 



Let: --· z = -Q • f then dZ = - dQ 

A.S• -· Q ..,. -L ; z .,.. L 

!S: -- Q ~ -m ; z \)I (X) 

L -z2 
1 f P(l) - e dZ - - -;;If 

Q) 

(X) 
_z2 

1 f P(l) - - e dZ - "ifF 
L 

P(l) = (l/2) er!c L = (1/2) erfo ( D ) 
~V2 

P(l) = (l/2) ertc ( I. ) 
2(H-l)~V2 

2 •. Solving for P(2) 

P( 2) = p [ (J' > S.:•+D) I SJc• J 
From equation 22: 

CD 

J P(2) : l -(F-~t )2/2~2 
e dF 

Btc•+D 
Change the variable of integration • 

., Sa:' dJ' .. 
Let: Q = ~-- • then dQ = 

~w-
, 

tr¥2. 

.ls: I • ~·•D; Q ~ D = L -·· ~V'l 

34. 

(42) 

(43) 
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As: F :a-m • Q >co - ' 
Then: 

Q) 

-Q2 
P(2) • ~! a dQ 

L 

P(2) - (1/2) erfc L • (1/2) erfc (~~) -
P(2) - (1/2) erfc { 2(M-lt~\12) - (44) 

Now that P{l) and P(2) have been evaluated, the total 

expression for P(E(B.E•) can be formed by substituting into 

equation. 40. 

erfc ( A -) 
2(M-1)6'¥2. 

k 11i2 

Note that equation 45 is independent of k 1 , therefore, 

replace the summation with multiplication by (M-2). 

P(ll~a): (M-2) er.fc ( .l ) 
2(M-l)lr-J'2 

(45) 

(46) 

In comparing equation 45 with equations 36 and 38, 

note that the probabilitr ~he receiver makes an error 

given the transmitted signal was an interior level (a k 1 

level) turns out to be twice the probability of an error 

given the transmitted signal was an end level (that is, 

level l or level M) •. 



E. Solving for P( E) 

Substitution of equations 36, 38, and 46 into equation 

35,. forms the desired upress1on for the probab111 ty of 

error for an uncoded multi-level signal. 

P( B) : (M-1) 
K 

~ erfc ( .l ) + 
2(M-l) o- .y'2 

+ (M-2) erfc ( A ) J 
2(M-l)e-¥2 

(47) 

erfc { .l ) 
2(M-l)oV2 

(48) 

per sJ,aDol or pulse 1n the multi-level signal. 

Equation 48 agrees w1 th Bennett and DavyS 1n their 

equation 7-53 which was presented as equation 2 of this 

paper •. 

Note that the derivation of P(i) for uncoded signals 

depended only on the fixed threshold levels. 



IX CODED SYSTEMS 

Oons1der nov some coded multi-level systems found 

i~ recent literature. The reasons for using coded sig

nals seem to v~71f1 th the respec.tive systems. For 

example, one might use coding techniques to increase the 

data rate 1n an existing channel with a fixed bandwidth; 

such as Shagena and Kvarda9 claim to nave done with 

their simple coding technique.. On the other hand, one 

mignt use coding techniques to re-distribute the spectral 

energy in the frequency domain of the baseband signal, 

such. as Lander4 has done with a complex coding technique. 

Without going into the relative merits of the many reasons 

for coding, let us investigate the approach wh1o£L can be 

used to calculate the P(E) for these ooded.multi-level 

signals •. 
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X. PROBABILITY OF ERROR FOR SYST»l OODE ONE 

Note that Code One refers to the multi-level coded 

signal of Shagena and Kvarda9 •. Bow that coded signals 

are being discussed,, 1 t is necessary to consider more than 

just the fixed decision thresholds; a thorough understanding 

of tb.e coding technique is necessary to determine the 

required ch~el probabilities. 

A. Ooding Technique for Oode One 

This coding technique coneerns taking a binary pulse 

train and encoding it into an M-level signal such that 

each level is advanced one step for each character (pit) 

of the binary data that 1s in the ONE state and remains 

in the existing level for each binary character that is 

in the ZERO state.. These levels advance in one direction 

until either level M or level 1 of theM-level signal is 

reached,, at whioh point succeeding binary Oll·l characters 

cause the levels to step in the opposite direction. Hence 

the transitions are cyclic. With an M-level signal, the 

shortest complete cycle requires 2(M-l) binary bits in 

the ONE state. Figure 6 illustrates a rectangular base

band coded signal for a given input binary sequence with 

M = 5. 
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FIGURJI 6 RECTANGULAR BASEBAND WAVEFORMS FOR CODE ONE 
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B. Forming the General Expression 

For the code one M-level signal, f.!V1~h received peak 

value of· A, there are M possible voltage levels of peak 

value A.(k-1)/(M-1) for s 1 (t)wb.ere 1 ~-k ~M. This is the 

same as for the uncoded H-level signal. !gain, Figure 5 

indicates the appropriate terminology for describing the 

amplitude variations of the received signal f(t) and the 

voltage thresholds for the detector. Using equation 10,. 

the general expression for P(E): 

H 

P(E) : r P(~) P{lll~) 

where P(~) and P(EI~) are defined on pages 18 and 19. 

First, consider the conditional probabilities P(IJBt), 

and observe that they can again be divided into three 

poss1b111 ties. 

P(BIS1 ) =Probability of an error when S = level 1. 

P(EISx) = Probability of an error when S = level K. 

P(EI~•,) = Probability of an error when S = level k 1 • 

where 2 < k' < (M-1) - -
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It appears the coding constraints imposed by code 

one do not effect the conditional probabilities found for 

the uncoded M-level system if a simple threshold detector 

is assumed. As this is a previous assumption, observe that 

the conditional probabilities for the code one system are 

identical to the conditional probabilities solved pre

viously for the uncoded M-level system. Therefore, equ~ 

tiona 36, 38, and 46 apply also for the code one system 

Thus: 

erfo 

P< E 1 ax> = ~ ertc ( ! ) 
2(M-l)crV2 

erfo ( A ) 
2(M-l)a .v2 

The general expression for P(E) now is: 
( 49) 

P(i) : [P(Sl) + P(Sx) + (M-2) P(~t)J 
2 2 

erfc 

It is now necessary to deter-mine P(~) for the code one 

system. 

a •. Solvtng for P(St) 

Recall that P(Stt) is the average probability of 

occurrence of any of the k levels in a very long message 

s(\t) • I!t can. no longer be assumed that each of the k levels 



will appear with equal 11kl1b.ood because of the coding 

constraints imposed by the code one system. However, it 

is assumed the two levels of the input binary pulse se

quence to the encoder are equiprobable. That is: 

P(O) : P(l) : 1/2 (50) 

One way to find P(~) for the code one system is to 

determine P(~) for specific values of M and then arrive 

at a general expression. lirst, let M = 5. From proba

bility theoryl2, there is the relation (whose form 1s 

similar to equation.lO): 

P(a1 ) : .L P('bj) P(ail bj) (51) 

all 3 

With M.: 5, P(SJ.) can be solved for by applying this 

relation to a code one signal. Let 1 = l; and l ~ J ~- 5. 

P(Si): P(~)P(S1f~) + P(S2)P(S11 S2) + P(S3)P(s1ts3) + 

+ P(S4)P(S11s4) + P(Ss)P(S11s5) 

From the system coding constraints, the following 

conditional probabilities are realized: 

P(s11~) : P(O) • 1/2 

P(Sll S2) • P(l)/2 • 1/4 

P(s11s3): 0 

P(s11s4) • 0 

PCttls5) = o 



Therefore: 

= ~ P(Sl) + ! P(S2) 

: ~(S2) 
2 

(52) 

With M : 5, P(S2) can be solved for by using rela

tion 51 and let 1 = 2; 1 < j < 5. Tb.us: .. -
P(S2) : P(~)P(S2 1Sl) + P(S2}P(S21S2) + P(S3)P(S2ts3) + 

t P(s4)P(S2 1S4) + P(S5)P(~2 1s5 ) 

From the system coding constraints, the following 

conditional probabilities are realized' 

P(S21s1) : P(l) • l/2 

P(S2fS2) • P(O) • 1/2 

P( S21 s3) : P(l)/ 2: 1/4 

P.( s2t S~.) • 0 

P(s2Js5) : 0 

Therefore: 

Using equation 52, this reduces to: 

P( s2 ) : P( s3) 

Siailarly, it can be shown that: 

P( s,) : P( 84) 

P(S5) • P(S4)t2 

(53) 

(54) 

(55) 



Reoall that some level Sk is always being transmitted: 

Then: 

H 

l: P(~) = 1 

k=l 

Substituting in equations 52,53,54, and 55 in terms of 

P(S2): 

P(S2) + P(S2) + P(S2) + P(S2) + P(S2) • 1 
2 2 

P(S2) ~ P(S3) : P(S4) • 1/4 (56) 

P(S1) • P(S5) • 1/8 (57) 

Therefore,. for the cad.e ou.e system w1 th M = 5, the 

interior level probabilities are equal to 1/4, and the 

two extreme level probabilities areequal to 1/8. 

u_sing similar operations, it can be shown that the 

following probabilities for P(~) result for the code one 

system: 

X P(~t) P(BJ_) P(Sx) -
3 l/2 1/4 l/4 

4 1/3 l/6 1/6 

5 1/4 1/8 l/8 

6 l/5 1/10 1/10 

7 l/6 1/12 1/12 



These results can be generalized for an M-level code 

one system as: 

P(level 1) - 1 - 2(M-l) 

P(~) P(level k 1 ) - 1 (58) - (M-1) 

P(level H) = l 
2(M-l) 

D. Solving for P(E) 

The final P(l) expression can now be found by sub

sti tuting equation 58 into equation. 49 •. 

P(l) = [ l + 1 + (M-2) J erfc ( j. ) 
4(M-l) 4(M-l) (M-1) 2(M-l)cl '\1'2 

P( E) = 2M-3 
2(M-l) 

erfc ( A ) 
2(M-l)o-\/2 

per symbol or pulse in the multi-level signal. 

(59) 

This then, is the expression for P(E) for the coded 

system of Shagena and Ivarda9, and it agrees with the 

expression presented by these authors in their Addendum. 
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XI.. PROBABILITY OF ERROR OF SYSTEM CODE TWO 

Code two refers to the multi-level coded signal of 

Lender1 • 4•10 •11• His investigations have been directed to 

the possibility of using descrete signaling levels that 

would be correlated in the process of generating such 

levels and yet, could be treated independently in the 

detection process. Unlike the general multi-level syst~ 

where eaoh l•vel in the signal might repres~t a spec1f1a 

binary sequence (e.g., 00, 01, 10, 11) ,: each level in a 

o.orrelated system represents only one binary digit: MABK 

or SPACE.. Therefore,: the term "correlated levels" as 

used b7 L:ender implies that, in the coding process at the 

transmitter, each M.lRK or SPACJ.is associated w1 th one o! 

several pre-determined lwvels and the choice of a particu

lar level depends upon the past history of the signal •. 

However, at the receiver, eallh level c.an still be uniquely 

associated w1t~•41( or SPACE without examining the past 

history of the waveform •. 

Using such techniques with correlated levels, Lender 

has achi.eved over-all frequenc~- spectrum shaping.. He has 

:round it possible to re-d1stribut.e the spee:tral ener87 so 

as to concentrate most of 1 t at low frequencies or,. altar

natively,, to eliminate 8.Il1' energy at low frequencies •. 



A. Coding Technique for Code TWo 

This coding technique concerns taking a binary pulse 

train as an input signal and encoding it into an M-level 

signal in two separate steps. 

For the first step, the input binary sequence an, with 

two signaling levels (MARK or SPACE), is converted into 

another binary sequence bn, with two signaling levels 

( 0 or 1 ), in such a manner tha~ a group of (M-1) con

secutive digits 1n sequence bn represents a MARK in se

quence &n if the group of digits contains an odd number of 

binary l's, otherwise the group of (M-1) consecutive digits 

represents a SPACE. The binary sequence bn has exactly 

the same bit speed as the input sequence an• Note however, 

the symbols l and 0 in the new sequence bn no longer re

present MARK and SPACE in the original sequence &n• For 

example; suppose M = 5 leYels and the input sequence an is 

M M S M S M M S (where M and S stand for MARK and SPACE 

respeoti vely). Then, a group of (M - 1) = 4 b1 ts .. of 

sequence bn represent each M or s. A possible sequence 

bn is 0 0 0 1 0 1 1 0 1 1 0 • No~e the first four bits in 

bn (0001) represent M, the second through fifth (0010) re

present M, the third through sixth (0101) represent s, and 

so on. See Figure 7 a and b for a baseband waveform repre

sentation of a similar example. 
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The second transformation step of oode two involves 

the conversion of the new binary sequence bn into a coded 

signal with M levels numbered consecutively from zero to 

(M-1), starting at the bottom. This conversion is accom

plished by forming the digit sum of successive groups of 

(M-1) consecutive digits of sequence bn• Since only the 

binary l's contribute to the digit sum, an odd-numbered 

level of the multi-level signal, representing a MARK will 

result if the number of l's in a group of (M-1) digits of 

sequence bn is odd. Similarly, an even-numbered level of 

the multi-level signal representing a SPACE will re.sul t 

if the number of l's in the group of (M-1) digits of se

quence bn is even. Using the example on the previous 

page, 0001 and 0100 will result in level 1, each repre

senting a MARK, and 0101 will result in level 2 repre

senting a SPACE, etc. 

One result of the level conversion process of code 

i·vo is that SPACES and MARKS of the input binary sequence 

an correspond uniquely to the even and odd-numbered levels 

respectively of the multi-level signal. Therefore, in 

spite of the correlation properties which span over (M-1) 

digits, each level of the multi-level signal can be inde

pendently identified at the receiver as MARK or SPACE. 

Figure 7 gives an example of this entire coding proeess 

in a rectangu.J.ar baseband waveform representation. 
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B. Forming the General Expression 

For the code two multi-level signal with recieved 

peak value of A, there are M possible voltage levels of 

peak value Ah/(M-1) for s• ( t) where 0 ~ h ~ M-1. Note 

that the variable k has been replaced with the variable h, 

and that h has a slightly different range than k which was 

used previously. This variable change is introduced so 

that the resulting expression might more closely resemble 

Lender's. Figure 8 then, represents a typical 5-level 

band-limited signal with appropriate terminology for 

describing the received signal of code two. Note that 

it is similar to Figure 5 except for the different label

ing on the signal and decision levels. !gain, equation 10 

is used for the general expression for P(E). Thus: 

M-1 

P(E) • ~ P(Bt,.) P(EI~) ( 60) 

h•O 

where P(~) and P(E I sn> are essentially defined on 

pages 18 and 19 as P( S:tt) and P( E I SJt). 

0. Solving for P( 5n) 

P(Sn) is the average probability of occurrence of 

any of the h levels in a very long message s(t) where 

0 <h < (M-1). Code two is a relatively complex coding 
_.... -·~ 
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scheme and 1 t cannot be assumed that each of the h 1·evels 

of s(t) will appear with equal liklihood. In keeping with 

previous practice, the two levels of the input binary 

pulse. sequence ~ shall be assumed to be equlprobable. 

That is: 

P(MARK) : P(SPACE) : 1/2 

As code two has a two-step encoding process, the 

derivation of P(~) will also be made in two steps. 

1. Solving for P(l) and P(O) in binary sequence bn 

( 61) 

Since the first step of the code two encoding process 

involves the transformation of the input binary sequence ~ 

into a binary sequence bn, the solution for P(l) and P(O) 

in bimary sequencs bn is sought first. Due to the com

plexity of the coding technique however, a single general 

expression for the probability of getting a l or 0 1n 

sequenc.e bn do.as not seem to exist. However, given the 

conditions of equation 61 above, some def1n1 te conclusions 

about P(l) and P(O) in binary sequence ~ can be drawn. 

Oonsider the following example of the first step in 

the encoding process: 

For this example, let M • 4; therefore, (M-1) = 3. 

Assume the encoding process has 'been going on for some 

tim• when it is stopped at time t = t1• oonsider the 

si tuat1on. of predicting the next symbol at t = t 2• Ob

serve the following figure •. 
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I 

I I l1lJ 
FIGUi.E·.9· EXAMPLE OF FIRST SIGNAL TR.A.NSFOBMATION 

For this specific example, with M = 4, and given the 

past history of ~ and bn, the following oan be said:· 

From the encoding process, it is known that if the symbol 

at t : t2 in sequence ~ is a MARK, then the corresponding 

symbol in sequence ~ will be a o. Another way of saying 

the same thing is: It P(MARK) • 1 at t = t 2 in sequence 

~~ then the P(O) = 1 for the corresponding symbol in se

quence 'bn• Oonversely, it is known that if P(SPACB) • 1 

at t = t 2 in sequence ~· then P(l) : 1 for the correspon

ding symbol in sequence bn• However, from equation 61, it 

is assumed P(~RK) = P(SPACI) for all time in sequence an, 

therefore 1t follows that P(O) = P(l) at t-= t 2 in se

quence bn• 
This conclusion. apparently holds true, not only for 

the specific example considered above, but also for any 

other example with different past histories and diffefent 

values of M. Simply stated th1s·.oonclusion is: Given the 

probab111t7 of M£Hl and IPAOI 1n sequence &n 1s equ1probabl\ 

then the probability of 1 and 0 1n sequence bn is also 

equiprobable. 



54. 

Therefore:: 

P(O) = P(l) • 1/2 ( 62) 

2. Solving for P( st.,) knowing P(O) and P(l) 

The second step of the code two enoDding process 

involves the transformation of the binary se.quence bn 

composed of l.'s and 0 1 s into an M-level signal. This is 

done, as was discussed previously, by forming the digit 

sum of successive groups of (M-1) consecutive digits in 

sequence ~· In other words, to get to the h level in the 

m.ul. t1-..level signal, tb.ere~.must be h 1 1 s in the pulse se

quence bn (•1 thin; 1+-1 d1g1 ts) .• !lbw: 

a. The total number of ways of getting h l's in a 

series of (M-1) digits is ( ~l) where 0 ~ h ~. (M-1) •. 

The sym.bolo( ~1) is the binomial function1
'•

17 •. 

b. The probab111 ty of getting any particular combi

nation of O's and l's in (M-1) digits is: 

Therefore: 

Using Equation 62: 



~: 

This result agrees with Lender in his equation 32. 

E. Solving for P( I I ~) for QOde Two 

Equation 60 can be expanded to be: 

P(E) = L P(~) P(EISJt) • 

all h 
odd 

L P(~) P(EI~> 
all b. 

even, 

55. 

(63) 

(64) 

Due to the unique character of code two, P(E) must be 

derived separately for (M-1) = ODD and (M-1) = EVEN number 

of levels using equation 64. Having 3ust determined P(~); 

next define P(ll~) for the following four oases: 

Yb.J.. • P(lll~); when (X...l) is even and h is even. 

lh2 = P (II~) ; when (M-l) is even and h is odd. 

Yb,' • P(llsts.); when (M-1) is odd and h 

Ib.4 = p ( E I~) ; when (M-l) is odd and h 

Therefore eq~ation 64 now becomes: 

llhp. CM11) is evep. 

P(E) • L P(~) yhl + L P(~) yh2 

a1l h all h 
.v.a odd 

is even. 

is odd. 

(65) 
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When. (M-1) is odd 

P( E) - L P(Sb,) yh3 + L P(Btt) Yh4 ( 66) -
all h all h 

even odd 

l •. Solving for Yhl 

YhJ. • P( E I Btl) when {M-1) is ev~; h is odd. 

When the transmitted signal s(t) is at an even level 

(l.: = even),: an error will occur only when the received 

signal f(t) occurs in the amplitude decision range of an 

odd level... Nqte that when OJmS1der1ng level numbered h 

of height 2~ the noise has this height as '&Jl. average 

yalue. ·. (See- ;l'igure 8) 

Oall a tJPioal odd level Sb where b = 1, 3, 5, • ••• 

• • highest odd number in (M-1) •· When (M-1): is even,. 

the h1e)Lest odd number will be (M-2). The ampl1 tude of 

Sb = 2D(21-l), where 1 • 1, 2, 3, •••• L. 

Let: b = (21-1) -
Then: ( 2L-l) = (M-2) 

Q.£: L • (M-l)/2 

L 

Ihl : ~ P [ ( SrD) < 1 ~. ( Sb+D)] 

1•1 

( 67) 

(oS) 



L 

yhl • ~ P [<sb-D)<F] - P [ (Sb+D)< F] 

1•1 

L 

yhl = L [ P(3) - P(4)] 
1•1 

Using equation 22. 

P(3) • l 
~V2ft 

Let· -· Q: F-2Dh 
6'\/2 

.As: '!> -

.ls: - r > 

~= Sb-D-2Dt 

rstfl 

00 

- 1 f P( 3) --"'ff 
Z]. 

P(3) • (l/2) ertc 

-(F-2Dh) 2/2~2 
e dF 

then: dQ = dF 
6v'2 

CX) • Q > CX) 

' 

sb-D • Q > Sb-D-2Dh , 
rsifi 

D(41-3-2h) 
• a"~ : Zl 

-Q2 
e dQ • (1/2) erfc zl 

( D' 41-;1:2h} ) 
a-Vi 

57. 

( 69) 
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b. Derivation of P(4) 

Using a similar development as was used in solving for 

P(3), it can be shown tb.at: 

P( 4) = (1/2) erfo ( D( 41-l-2h) ) 

~V2 

L et• -· 
Then: 

X= D 
~V2 

L 

Yn1 = (l/2) L [er.fo X( 41-3-2b.) 

1•1 

(70) 

(71) 

- er.fo X( 41-1-2b.~ 

0Dnvert1ng to the error function ( erfc Z • 1- erf Z ): 
H-1 
2 

Yb.l = (1/2) ~ [- erf X( 41-3-2b.) + er.f X( 41-1-2h) J 
.1=1 

But: for h even 

i§I M-b.-1 

L [- erf X(41-3-2b.)] = ~ (-1)
1 

er.f X(21-1) 

And· -· 
M-1 
2 h 

~ er.f X(41-l-2b.) • ~ (-1) 1 er.f X(21-l) 
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Therefore: 
(72) 

h 

(-1)1 erf X{21-1) + ~ ~ {-1)1 erf X(21-l) 

1=1 

:for h even (73) 

2. Solving for Yh2 

when (M-l) is even; h is odd. 

When the transmitted signal s(t) is at an odd level, 

an error will occur only when the received signal f(t) 

occurs iu the amplitude decision range of an even level. 

Level 0 is an even level. 

Level (M-1) is an even level. 

Let S8 be all even levels in between. 

e = 21 for 1 • 1, 2, 3, ---- J 

where J = ¥ 
The amplitude of S8 is 4D1. 

J 

Yh2 =P[r~D]+P[F>(2M-3)D]+ L (P[r>s8-D]-
1=1 

- P [r>S8+D]) {74) 

By making use of equations 20 and 22 and a similar 

development used in solving for Yhl• it can be shown that: 



T.hen: 

P [F ~ n] = (l/2) er:f'c ( D(!h~)) 

P [F > (2M-3)D J = (l/2) erfc ( Di~-~2h) ) 

P [F > S8-D J • (l/2) erfc ( D( 41;1~) ) 

P [F > S8+D J = (l/2) erfc ( D{ 4i!l~) ) 

X : ]) 
(f'\12 

60. 

Yh2 = (l/2) { erfc 

J 

X( 2b.-l) .f. erfc X( 2M-3-2h) + 

+ ~ [ ert:c 

1=1 

X(41-l-2h) - erfc X(41+1-2h)] } 

(75) 

Converting to the error function: 

Yh2 = 1 + ~{- erf X(2h-l) - er:f' X(2M-3-2h) + 

¥ ' . 
+ L [ (-) erf X(41-l-2h) + erf X(41+l-2h)J} 

1=1 

~: ~ 
For h odd: ~ M-h-1 

[-erf X(2M-3-2h) - L er:f' X(41-l-2h)]• L (-1) 1 erf X(21-l) 

l.nd• -· h 

[-erf X(2h-l) + L erf X(41+1-2h)]• ~ (-1) 1 er:f' X(21-l) 

1=1 1=1 
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Therefore: 
(76) 

M-h-1 h 

Yh~ 1 + ~ ~ (-1) 1 
erf X(21-l) + ~ ~ (-l)

1
erf X(21-l) 

1•1 1•1 

Then: for h odd (77) 

3. Solving for Yh3 

when (M-1) is odd; h is even 

Again~ when the transmitted signal s(t) is at an even 

level, an error will occur only when the received signal 

~(t) occurs in the amplitude range of an odd level. 

Level (M-1) is odd. 

Call Sb all other odd levels where b = 1, 3, --

--- highest odd level ·below (M-1). 

Sb • (21-1) where 1 • 1,2,3,--- R 

Then: R : (M-2)/2 

The amplitude of Sb = 2D(21-l) 

yh3 = P[J'>(2M-3)D] + L (P [F>Sb-D]- p [F>Sb+D]) 

all 1 (78) 

By again making use of equations 20 and 22 and the pre

vious developments, it can be shown that: 

. P [ J'> (2M-3) D J = (1/2) erfo ( D{ 2M-3-2b.) ) 
~V2 

P [ l > Sb-D J = (1/2) erfc ( D( 4i-3-2b.) ) 
. crV2 



Let: -·· 
Than: 

P[F>Sb+D] • (1/2) erfc (D( 41-l-2h) ) 
~t/2 

X • . J) 
rrV2 

R 

Yh3 = ~ ferfc X(2M-3-2h) + L [ erfc X(41-3-2h) 

L 1=1 

--- - erfc X( 41-l-2h) J } 
Converting to the error function: 

M-2 
2 

62. 

----

(79) 

Yh3 = ~ + ~ { (-) erf X( 2M-3-2h) + L [ erf X( 41-l-2h) -

1=1 

- erf X(41-3-2h)J} 

But: for h even - M-2 
2 M-h-1 

[-erf X(2M-3-2h) + L erf X(41-l-2hD= 2: (-1) 1 erf X(21-l) 

M-2 
2" h 

L (-)erf X(41-3-2h) = L (-1)
1 

erf X(21-l) 

Therefore I 
(80) 

~h-1 h 

Yh3: ~ + ~ ~ (-1)
1

erf X(21-l) + ~ ~ (-l)1
erf X(21-l) 



Then: for h even (81) 

4. Solving for Yh4 

when (M-1) is odd; h is odd. 

Again, an error will occur only when f(t) occurs in 

the amplitude decision range of an even level. 

Level 0 is an even level. 

Call S8 all other even levels where e • 2,4, --

--- highest even level in (M-1). 

e • 21, where 1 = 1,2,3, --- G. 

Then: G : (M-2)/2 

The amplitude of S
8 

= 4D1. 

Yh4 = P [r ~ D] + L {P [F>S8-D J - P[F>S8+D ]) (82) 

all 1 

It can be shown that: 

P [ F ~. D J = (1/2) erfc ( D( 2b.:z:l) ) 
a~ 

P [F> S8-D] = (1/2) erfo ( D(4~-:,;2h)) 

k!!: X: D 
rJ42. 

Then: 

~4 • (1/2) { erfo X(2b.-l) 

---

erfc 

G 

( 
D( 41+1-211) ) 

cr~ 

+ L [erfo X(41-1-2h) 

1•1 } 

- erfo X( 41+1-2h)] 

---

(83) 
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Converting Yn4 to the error function: 

Yh4 • ~ + ~{(-) erf X(2h-1) + ---

M-2 
2 

--- + L [erf X(41+l-2h) - erf X(41-l-2h)]} 

1•1 

But: for h odd -
H-2 

. 2 M-h-1 

[<-) erf X(2h-l) + L: erf X:(41+l-2h)]: l: (-1) 1 erf X(21-l) 

1•1 1=1 

And: -
M-2 
2 h 

~ (-1) erf X(41-l-2h) = ~ (-1) 1 erf X(21-l) 

1=1 

Therefore: 
(84) 

H-h-1 h 

Yh4= ~ + ~ L (-l)1 erf X(21-1) + ~ ~ (-1)
1

erf X:(21-l) 

Then: for h odd. (85) 



E. Solving for P(E) 

When (M-1) is even 

Substituting equations 73 and 77 into equatio~ 65: 

all h 
even 

all h 
odd 

P(E) - L P(~) + 2: P(~) -
all h all h 

odd 

Using equation 63, however: 

~ P(~) = 2: (l/2)M-l (~l) 
all h allh 

odd odd 

Therefore: 
M-1 

yh 

• l 
2 

P(E) • t + r P(~) Yh 

hiiO 

for (K-1) even. ( 86) 

When (M-l) is odd 

Substituting equations 81 and 85 into equation 66: 

P( I) • L P(~) [~ + Yn] ... r P(Sn) [ ~ + Yh] 
&1' l all h l h 

even bdd 

K-1 M-1 

P(l) - tL P(~) L P(5n) yh - + 
h•O h•O 
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Using equation 6:;,. however: 

M-1 ¥-1 

L P(~) = 2: (l/2)M-l (~l) = l 

h•O h•O 

Therefore: 
M-1 

P(E) • t + ~ P(Sn) Yh 

h•O 

for {M-1) odd.. (B7) 

Combining equations 86 and 87: 

M-1 

P(E) : t+ ~ P(~) Yh 

h•O 

(88) 

per symbol or pulse in the multi-level signal. 

where: 

(89) 
M-h-l h 

Yh• t ~ (-1)1 erf X(21-l) + t ~ (-1) 1 erf X(21-l) 

X• 

Equation 88 then is the .zpression.for P(E) for tb.e coded 

multi-level signal of Lender4 and it agrees with his 

equations 36 and 37. 



X. P ( E) CURVES 

Tne usual method of illus~rating probability of 

error for digital data transmission systems is by plotting 

P(E) versus s1gnal-1io-no1se ratio curves. These curves 

take many varied forms in the literature. Perhaps the 

most common form is the plot of P{E) as the ordinate on a 

logarithmic scale with S/~ as the abscissa expressed in 

deoioels. Figures 10, 12, 13, and 14 are examples of this 

form of P( E) curve. 

A. S1gnal-to,.Bo1se Ratio 

It is seea from equations 48, 59, and 89 that the 

error probability of baseband systems depends on the ratio 

of the voltage amplitude A of the received pulse sample to 

the rms noise voltage ~. This ratio is generally expressed 

1n terms of a ratio between signal power and noise power. 

Unfortunately, there seems to be a lack of uniform termino

logy in defining what should be meant by signal-to-noise 

power ratio •. For example, it is difficult to detect any 

common terminology for S/N between Bennett and Davy,_ 

Shagaaa and Kvarda, and Lender. As such, the published 

P(E) curves for their respective systems cannot directly 

be compared. To circumvent a lengthy discussion into the 

m&nT variations possible for this ratio, it shall be as

sumed that S/B, as used hereafter, refers to the ratio of 
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average signal power to average noise powar. This as

sumption provides the following advantages: 

1. Shannon•s18 well-known formula for channel 

capac1tT [c • B LOG2 (l + S/~)J holds onlT for 

average signal power and additive gaussian noise. 

2. With a sampling type receiver (page 14), and 

assuming no 1ntersymbol interference, considera

tion of the shape of the received pulse is un-

necessary. 

3. With this common base~ comparative curves of the 

three discussed systems can then be presented. 

1. Average Signal Power 

From an early technical paper on pulse code modula

t1on19 ,. average signa.]. power is defined as the mean-square 

value of the individual pulse peak amplitudes. Thus, using 

familiar terminology: 

S = 2: P(~) Ph 

allh 
levels 

(90) 

where: P(~) = Probab.111ty of h level (O ~.h ~ M-1). 

Ph = Peak power in h level. 

a. lor unooded signal 

The previous referenoe19 adequately presents the 

average signal power expressions !or the uncoded signal, 



therefore, no development will be given. The expressions 

are: 

For POlYbinary sisnal 

s = .l2{ 2H-l) 

6(M-l) 

For P01Yb1polar signal 

S = .l2(M-l) 

l2(M-l) 

b. For code one signal 

for al.l M (91) 

for all M (92) 

Shagena and Kvarda make no rererence to the average 

signal power l:or their coded signal. Therefore, recalling 

page 45 and using equation 90: 

s = 

P(~) •. l 
(K-1) 

Po 
2(H-l) 

+ Px-1 
2(M-l) 

for h-= 0 and (M-1) 

for 1 < h < (M-2) -· -
H-2 

+ k 
h•l 

Ph 
(M-1) 

For polrJJ1narz signal of peak amplitude .l 

From Figure 8: 

P0 = o ; PH-1 • .a.2 ; 



Therefore: 

s = 

:But: -
H-2 

.&2 

2(M-l) 

~ h2 : [ (K-2H~-3HM-l) J 
h•l 

Then: 

s = 1.2 [~ + 'M-2l(2M-2) J 
(M-1) 6(M-l) 

s = .a.2 
[2M2

-4M+3] 
6(H-1) 2 
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for all H 

(93) 

For polybipolar signal of peak amplitude+ A/2 and- A/2. 

The polyb1polar expression for average signal power 

can be obtained very simply from the polyb1nary expression. 

Recall Figures 2 and 3. As can be seen from these figures, 

a polybipolar waveform is equivalent to a polybinary wave

form w1 th the mean value removed.. For the example pre- . 

sented in ~1gures 2 and 3, this mean value is 1. Ther~ 

fore,, the average signal power for a polybipolar signal 

is 8fJ.Ual to the average signal power of its equivalent 

polyb1nary signal minus tb.e square of the mean value •. 

For a polybinary signal of peak amplitude £, this mean 

va1ue is A/2~ 



Therefore: 

or: -

s: 1,.2 [2M2 -4Mt3 __ 1] 
6.(M-l)2 7; 

5 = ~,.2 x2 
- 2M + 3 

12(M•l) 2 

c. For code two signal 

71. 

(94) 

Lender4 does present an expression for average signal 

power of b.is polyb1nary signal. It is:: 

For polybinary sisnal 

s = A2 M 

4(X•l) 

For polybipolar signal_ 

for all M (95) 

Using the procedure that was used on the code one 

signal for finding the polyb1polar expression, then: 

S • A2 [ II - t·] 
4(K-l) 

s = A.2 

4(H-l) 

2. !verage Boise Power 

(96) 

(97) 

Average noise power r shall be def1ned5' 4 as the mean 

square noise power in a circuit with unit resistance. Tb.us: 

•= (98) 
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Be The Computer Program 

A digital computer was used to obtain values for 

the P(E) curves. This was done for the following two 

reasons. 

1. To evaluate the error function and complementary 

error function. 

2. To perform the many calculations necessary when 

plotting families of curves. 

The erf function and erfo function are easily evalu

ated on a digital computer using approximations provided 

for that purpose in handbooks16• The approximation used 

C~quat1on 7.1.26)16 provides an error~ 1.5 x 10-7 for 

any 0 ~ X ~. oo , and is easily programmed with S/B in units 

of decibels as a variable. A typical program is presented 

in Figure 10, using the Fortran IV language. 

O. P(E) Curves for the Three Systems 

!he P(B) curves for the three baseband systems can 

now ... ,be presented. 

lo Qurves for the uncoded signal 

It 1s necessary to first solve the expression of 

av.erage signal power of a polybipolar signal (equation 92) 

for '-2/rra ..• · :·:fhus: 

! 2 
: S l2(X-l) 

~2 B (K-1) 



/JOB 
/FTC 

Gfl 
LTST 

r, 
r 
r. 
c 

!')J POPP 

-- - ~--- - ---

XX ·= X*X 
fRFCX = (Al*T+A2*T*T+43*T**3+~4*T**4+AS*T**5)*EXP(-XX) 
PF. = ~*FQFr X 

1 0 W R.l TF ( ~, ~) M, K, PF 
CALL FXIT 

1 ~OPMATf//TlO,'FOR UNCfJDff) SYSTFM- AVJ:RAGF POWER'//) 
2 FOPMATfTfl, 'M';--f1s,·•-51N-.-~-T~o, •PfFl ,-/if~- ----- ·----
3 FORMAT(qX,I2,1X,T?,1X,FlR.q) 

[NO 

FI&UitE 10 TV PI CAL PROGRAM FOR. COMPU.TING P(E) 

0002 

-:J 
\it • 
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Using equation 48,_ P(E) for tb.e uncoded polyb1polar signal 

becomes:· 

P(E) = (M-1) 
H 

(99) 

Similarly, using equation 91 for the polybinary signal& 

1:,2 :: S 6(M-l) 

o-2 I (2M-l) 

Using equation_ 48, P(E) for the uncoded polybinary signal 

is: 

P( E) : (M-1) 
M 

erfc ( §. 3 ) 
N 4( 2M-l) {M-1) 

(100) 

These P(E) expressions were programmed for 2 ~ M ~ 12. 

The corresponding P(E) curves were plotted for M = 2, 4, 

6, and 8, and are given in Figure ll a and b. The program 

for the polybipolar uncoded signal is given in Figure 10 as 

a typical program for finding P(E). 

a..- OU.rves for the code one signal 

Using equations ~-9t and t8 for the polybipolar signal: 

&2 = S l2(M-l) 2 

62 lf (H2-2M+3) 

SUbstituting into equation 59, P(E) for the code one poly

bipolar signal 11: 

P(E) = 2K-3 erfc 
2(M-l) 

(101) 
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For the polybinacy signal, using equations 93 and 98: 

! 6(M-l) 2 

lt ( 2M 2-4M+ 3) 

SUbstituting into equation 59, P(E) for the code one poly

binary signal 1s: 

P(E) : 2M-3 
2(M-l) 

erfc ( §., 3 ) 
lf 4( 2M2..4M+:5) 

(102) 

The curves corresponding to these P(E) expressions for the 

code one signal are given 1n Figure 12 a and b. 

3. curves for the code two signal 

For the polybipolar signal, using equations 97 and 98: 

!_2 = S 4(M-l) 
62 N 

For the polyb1nary signal, using equations 95 and 98: 

S 4(M-l) 
~- M 

Using equations 88 and 89, P(E) for the code two s1~al iss 

M-1 

P(li): ~+ ~ (l/2)M•l(.M;l) Yb, 

where Yh is defined 1n equation 89 and: 

for polyb1polar signal 
X: 

for polyb1nary signal 
X• 

1 

( s 1 ) ~ 
i 2(M-l) 

1 

( s 1 )2· 
i 2M·(M-l) 
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The corresponding curves for P(E) of the code two signal 

are giv.en in Figure 13 a and b. 

4. Comparative P(E) OUrves 

Comparative curves of the three systems for M = 4, 10 

are given in Figures 14 and 15 with M = 2 also given for 

reference. Since the P(E) for the three systems are iden

tical for the binary case, only one curve (that of the 

uncoded signal) is shown. As can be seen from Figure 15, 

in their polyb1nary form, the coded signals offer little 

improvement over the unooded signal. In their polyb1polar 

for.m as seen in Figure 14 however, the code two system 

shows a marked improvement over both the code one and ~ 

coded systems for large M. The reason for this improvement 

is discussed in the next section. 

D. ~e Polybinary versus Polybipolar Signal 

Although derived P(E) expressions are identical for 

both polyb1nary and polybipolar s1gnals5 1: their corres

ponding P(E) curves are not. Tb.is difference is due to 

the do component present in the polybinary average signal 

power expression. This de component carries no signal 

information and, as the curves of Figures 11,12,13,14, and 

15 indicate, requires the polybinary signal to have a higher 

S/1. ratio for a given probability of error when compared to 

a polybipolar signal.. Thus, the polybipolar signal 1s seen 

to·: have a use.tul advantage. 
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To investiga~e more fully the advantage of a polybi

polar signal when discussing average signal power and 

multi-level signals, consider the ave~age signal power 

expressions for the uncoded signal. From equation 91, for 

the unooded polybinary signal, let: 

where: B = (2M-l) 
6(M-l) 

From equation 92, for the polybipolar signal, then: 

s : .&2 0 where: 0 = (Mtl) 
12(M-l) 

The following table compares these two multiplicative 

terms B and 0 as functions of M. 

Signal Power 
M B 0 Differential 

in Decibels (B-0) 

2 1/2 1/4 3.0 

4 7/18 5/36 4.5 

6 11/30 7/60 5.0 

8 15/42 9/84 5.2 

10 19/54 11/108 5.4 

12 23/66 13/1}2 5.5 

As can be seen, with increasing levels, the amount of 

average power in a polybipolar signal decreases at a 

faster rate than in a polyb1nary signal. This differential 

approaches 6 db. for large M and, is reflected directly in 

the P( I) curves. for the uncoded signal in Figure 11. 



A similar table can be formed for the code one 

signal using the expressions for average signal power 

f'ound in equations 93 and 94. 

Signal Power 
M Differential 

in db. 

2 3.0 

4 5.4 

6 5.8 

8 5.9 

10 5.9 

12 6.0 

For large M, the code one signal also approaches 6 db. as 

the maximum signal power differential between polybinary 

and polybipolar signals. The above values are also direct

ly reflected in the corresponding curves of Figure 12. 

Using equations 95 and 97, a similar table can be 

constructed for the code two signal. 

Signal Power 
M Differential 

in db. 

2 3.0 

4 6.0 

6 7.8 

8 9.0 

10 9.9 

12 10.7 



As the table for the code two signal indicates, the signal 

power differential continues to increase as M is increased. 

ForM= 100 (a rather impractical case), the differential 

is 20 db. The differential values in the table are seen 

to correspond to the differences in the curves of Figure 

13, and they fully account for the marked advantage sho~ 

for the code two polybipolar signal in Figure 14. 
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XI. OONCLUSIONS 

.l. Discussion I 

This study has illustrated that, after making 

numerous assumptions, comparative P(E) curves for various 

multi-level baseband digital systems can be presented. 

There are certain factors which should be kept in mind 

when making suoh comparisons. 

For one thing, only baseband multi-level signals have 

been considered; therefore P(E) has been defined per sym

bol or pulse of the multi-level signal. In a data com

munication system using multi-level signals, each level 

frequently represents a specific binary sequence. (The 

code two system is an exception.) To determine P(E) for 

such a communication system, consideration must also be 

given to the specific assignments of binary codes to the 

various levels. The resulting P(E) would then be expres

sed per b.it. In general, this is not a straightforward 

consideration. According to the literatureS, certain 

assumptions can he made which allow the use of the fol

lowing approximation •. 

average number of errors 
bit 

P(E) 

(LOG2 M) 

If this approximation were used on the uncoded or code 

one signal however, the P(E) curves would not change 

appreciably due to the steepness of the curves. 
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The general utility of the P(E) expressions derived 

1n this study is somewhat restricted by the assumption of 

additive gaussian noise. (This restriction limits the 

means of transmission of the the three baseband signals 

either to direct line or to those modulation methods which 

linearly translate the signal and noisa back to baseband 

in the receiver.) 

As mentioned b7 Shagena, Kvarda, and Lender, both 

code one and code two signals have interesting possibili

ties for providing error detecting functions. Purther 

investigation into these possibilities should lead to a 

reduction in P(E) for the coded systems. It is somewhat 

of a paradox that these authors assume a sLaple threshold 

detector when discussing P(E) ~or their respective systems. 

B. SUmmary 

The analytical approach used to derive P(E) expres

sions for unooded and coded multi-level digital signals 

has been presented. It has been shown that the derivation 

for a random uncoded multi-level signal is simply an exten

sion of the derivation for a random binary signal. The 

same analytical approach can be used to determine P(E) 

expressions for both simple and complex coded multi-level 

signals. The development for coded signals is reasonablJ 

straightforward. However, the coding constraints require 



the derivations to be more complicated and the resulting 

P(E) expressions more complex than was the case for random 

signals. 

The transformation necessary to convert these P(E) 

expressions into comparative curves has also been pre

sented. It has been shown that one of the two coded 

signals, in its polybipolar form, offers a distinct P(E) 

advantage as the number of levels in the signal are in

creased.. These families of curves require many calcula

tions and the use of a digital computer has been extremely 

helpful •. 
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APPENDIX I 

A convenient mathematical device for developing the 

theory of probability as it applies to the outcomes of 

experiments is the idea of a sample point and a sample 

space.l2, 13 

A. DJm'II'ITIOB 

An- event is simpl7 a collection or •set" of sample 

points; a simple event is comprised of only one 

sample point. A set of sample points representing 

the possible outcomes of an experiment 1s called the 

sample space,: or the event space of the experiment.-

B.. DBFINITIOlf 

Two events are said to be mutually exclusive if the 

occurrence of one precludes (and therefore excludes 

from consideration) the other. 

c. DEFIXITIO!l 

The union of two events is also an event. It is com-

prised of all the sample points which belong to either 

or both of the two events. However, 1n for.ming the 

union,, no point is counted more than once. The 

union of two events is SJmbolized by ".& U B" where 

A and B are two events. 

D. DEFINITION 

The intersection of two events is also an event. It 

is comprised of all points which are common to both 



of the events from which it 1s formed. The inter

section of two events is symbolized by "AB". Note 

that this is not to be interpreted as the product 

of ..l and B. 

E. DEFINITIOI' 

The probability that an event A will occur is the 

swm of the probabilities of the sample points that 

are associated with the occurrence of A. Symboli

cally, if P(A) denotes that the event A will occur 

when the experiment 1s performed, then: 

P(A) : ( I-1) 

where the sum is over the values of the probabilities 

for all sample points corresponding to A. 

F. THEOIDX 1 

Stated symbolically is: 

P(A U B) : P(A) + P(B) - P(A,B) {I-2) 

It frequently happens that the event A and the event 

B have no sample--points in common. Wb.en this happens, 

the events A and B are said to be mutually exclusive. 

Then: 

P(! U:B) = P(A) + P{B) (I-3) 



G. THEOR!M 2 

Stated symbolically is: 

P(A,B) • P(A) P(BIA) • P(B) P(AfB) 

where P(A,B) is read as the probability of the 

joint event A.B. 

H. DEFINITION 

Conditional Probability stated symbolically is: 

P(BfA) • P(A,B)/P(A) 

P(iiB) = P(B,,)/P(B) 

90. 

(I-4) 

(I-5) 

(I-6) 

where P(AIB) 1s read as the probability of the event 

A given the knowledge of the occurrence of event B. 
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APPENDIX II 

In general, a random signal or process or variable 

is one whose value at any given time is a function of 

h 12,14,15 c ance • There are a number of ways a random 

signal can be described. This discussion will be limited 

to the amplitude domain. 

A. PROBABILITY DENSITY FUNCTION 

There are two ways a random signal e(t) can be char

acterized in the amplitude domain. First, the probab111 ty 

_density function can be defined as: 

{II-1) 

Equation II-1 states the probability of f1ad1ng a random 

signal e(t) in the small voltage interval ~x around a 

certain voltage x. See Figure 16. 

e(t) 

X 

A.mplitude 

time.-..;;... 

FIGURI 16 WAVEFORM OF A RANDOM SIGNAL 
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.APPENDIX II 

Theoretically,l.o x can be made 1n.f1n1 tesimal, however, 

in practice~ x is made small in comparison with the 

signal amplitude range. 

Probability density functions assume many varied 

forms or shapes. Perhaps, one of the most important 

forms is the gaussian or normal density function which 

is commonly used to characterize random noise. If N1, N2, 

~,, - - - - Nk are k independent random va.iables, each 

distributed according to a given probability density 

function; then the probability density function n(t), 

(where n(t) = Ni + N2 + B3 +-- + Jk) will approach the 

gaussian density function for large k. Stated symbolical

ly, the gaussian density function is: 

p [n(t)] = 1 ( II-2) 

where:. N0 • average value= o, for gaussian random noise. 

o- 2 = mean square noise power of random noise 

(on l ohm resistor). 

therefore: 

1 ( II-3) 
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It should be emphasized that p(x) is a density func

tion and must be integrated over a finite range of values 

in order to yield a probability. Thus: 

-Q) 

J p(x) dx = l ( II-4) 

-co 

B. PROBABILITY. DISTRIBUTION FUNCTION 

The second way a random signal can be characterized 

in the amplitude domain is by defining the probability 

distribution function as: 

P [xl] = P [e(1;) ~Xl.] = Jxl p(x)dx ( II-5) 

-oo 

This says the probability that the random signal e(t) 

assumes a value less than or equal to some given value 

(•.g., x1), is found with equation II-5. This expression, 

together with the probab111t7 density function of gaussian 

random noise (.,equation II-3), provides the necessary tools 

for calculating error probab111 ties •. 
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