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ABSTRACT 

This thesis focuses on designing generic quad-rail arithmetic circuits, such as 

signed and unsigned multipliers and Multiply and Accumulate (MAC) units, using the 

asynchronous delay-insensitive NULL Convention Logic (NCL) paradigm. This work 

helps to build a library of reusable components to be used for automated NCL circuit 

synthesis, which will aid in the integration of asynchronous design paradigms into the 

semiconductor industry.  

First, an array structured partial product summation algorithm for quad-rail logic 

was developed. A number of NCL quad-rail adders required for this implementation were 

designed at the gate level; and the algorithm was implemented in hardware to design a 

generic VHDL implementation of an unsigned MAC, where the lengths of the multiplier, 

multiplicand, and accumulator are specified as generic constants. A number of different 

sized MACs were instantiated and tested with exhaustive VHDL testbenches, proving 

that the generic MAC is functionally correct. 

Second, a partial product generation algorithm for 2s Complement quad-rail logic 

was developed. New NCL quad-rail partial product generation components and adders 

required for this implementation were designed at the gate level; and the algorithm was 

implemented in hardware to design a generic VHDL implementation of a 2s Complement 

multiplier, where the lengths of the multiplier and multiplicand are specified as generic 

constants. A number of different sized multipliers were instantiated and tested with 

exhaustive VHDL testbenches, proving that the generic multiplier is functionally correct. 



 

 

iv

ACKNOWLEDGMENTS 

I would like to thank my advisor, Dr. Scott. C. Smith, for his guidance and 

continued advice and financial support throughout the research and preparation of this 

thesis. I would also like to express my gratitude to Dr. Waleed K. Al-Assadi and  

Dr. Daryl Beetner for serving on my thesis committee. I would like to thank Srikanth 

Kotla and Ravi Sankar Parameswaran Nair for helping me with the documentation work. 

Furthermore, I would like to thank my parents and friends for their continued 

encouragement and blessing toward achieving my goal.  

 



 

 

v

TABLE OF CONTENTS 

Page 

ABSTRACT....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS............................................................................................ vii 

LIST OF TABLES............................................................................................................. ix 

SECTION 

1. INTRODUCTION .................................................................................................... 1 

1.1. OBJECTIVE ....................................................................................................... 1 

1.2. ASYNCHRONOUS CIRCUITS ........................................................................ 1 

1.3. ARITHMETIC CIRCUITS................................................................................. 2 

1.4. OVERVIEW OF NCL ........................................................................................ 2 

1.4.1. Delay-Insensitivity ................................................................................... 2 

1.4.2. Logic Gates............................................................................................... 4 

1.4.3. Input Completeness. ................................................................................. 7 

1.4.4. Observability. ........................................................................................... 7 

1.4.5. NCL Registration. .................................................................................... 8 

1.5. THESIS OVERVIEW....................................................................................... 12 

2. PREVIOUS WORK................................................................................................ 13 

2.1. DUAL-RAIL NCL MULTIPLIERS................................................................. 13 

2.2. QUAD-RAIL NCL MULTIPLIERS ................................................................ 13 

3. DESIGN AND IMPLEMENTATION OF A GENERIC UNSIGNED QUAD- 
    RAIL MULTIPLY AND ACCUMULATE UNIT................................................. 15 

3.1. QUAD-RAIL MULTIPLICATION.................................................................. 15 

3.1.1. Partial Product Generation. .................................................................... 15 

3.1.2. Unsigned Quad-Rail Multiplication. ...................................................... 15 

3.2. MULTIPLY AND ACCUMULATE................................................................ 18 

3.2.1. Registers. ................................................................................................ 19 

3.2.2. Partial Product Generation. .................................................................... 19 

3.2.3. Partial Product Summation..................................................................... 20 



 

 

vi

3.2.4. Accumulator. .......................................................................................... 21 

3.2.5. Adders for Array Multiplier and Accumulator....................................... 22 

3.3. VHDL IMPLEMENTATION........................................................................... 36 

4. DESIGN OF A GENERIC 2S COMPLEMENT QUAD-RAIL MULTIPLIER .... 41 

4.1. 2S COMPLEMENT QUAD-RAIL MULTIPLICATION ................................ 41 

4.1.1. Registers ................................................................................................. 41 

4.1.2. Partial Product Generation ..................................................................... 41 

4.1.3. Partial Product Summation..................................................................... 51 

4.1.4. Adders for 2s Complement Array Multiplication................................... 52 

4.2.VHDL IMPLEMENTATION............................................................................ 61 

5. CONCLUSIONS AND FUTURE WORK ............................................................. 65 

BIBLIOGRAPHY............................................................................................................. 66 

VITA ................................................................................................................................ 68 

 
 
 
 
 
 
 
 
 
 
 



 

 

vii

LIST OF ILLUSTRATIONS 

               Page 

Figure 1.1. THmn threshold gate ........................................................................................ 4 

Figure 1.2. Single bit dual-rail register and single signal quad-rail register....................... 9 

Figure 1.3. N-bit NCL completion component................................................................. 10 

Figure 1.4. NCL AND function: Z = X • Y...................................................................... 10 

Figure 1.5. NCL DATA/NULL cycle............................................................................... 11 

Figure 3.1. Binary multiplication...................................................................................... 16 

Figure 3.2. Quad-rail multiplication ................................................................................. 17 

Figure 3.3.  MAC block diagram...................................................................................... 18 

Figure 3.4. Q33mul circuitry ............................................................................................ 19 

Figure 3.5. Array multiplier .............................................................................................. 21 

Figure 3.6. Accumulator unit ............................................................................................ 22 

Figure 3.7. Q33add circuitry............................................................................................. 23 

Figure 3.8. Q32add circuitry............................................................................................. 24 

Figure 3.9. Q3Dadd circuitry ............................................................................................ 25 

Figure 3.10. Q332add circuitry......................................................................................... 26 

Figure 3.11. Q322add circuitry......................................................................................... 28 

Figure 3.12. Q33Dadd circuitry ........................................................................................ 30 

Figure 3.13. Q22Dadd circuitry ........................................................................................ 32 

Figure 3.14. Q2DDadd circuitry ....................................................................................... 33 

Figure 3.15. Q32Dadd circuitry ........................................................................................ 34 

Figure 3.16. Simulation for 12+6×4 MAC ....................................................................... 37 

Figure 3.17. Complete system diagram of 24+8×8 MAC ................................................ 38 

Figure 3.18. 22+10×8 MAC ............................................................................................. 39 

Figure 3.19. 16+8×8 MAC ............................................................................................... 40 

Figure 4.1. 2s complement multiplier block diagram........................................................ 42 

Figure 4.2. Binary 6×4 2s complement multiplication...................................................... 43 

Figure 4.3. Quad-rail 2s complement multiplication ........................................................ 43 

Figure 4.4. K-map for LRPP PPH .................................................................................... 46 



 

 

viii

Figure 4.5. MSPP circuitry ............................................................................................... 47 

Figure 4.6. MSLRPP circuitry .......................................................................................... 48 

Figure 4.7. LRPP circuitry ................................................................................................ 49 

Figure 4.8. LSLRPP circuitry ........................................................................................... 50 

Figure 4.9. 8×8 quad-rail 2s complement partial product summation .............................. 51 

Figure 4.10. 10×8 quad-rail 2s complement partial product summation .......................... 52 

Figure 4.11. Q3D02add circuitry ...................................................................................... 53 

Figure 4.12. Q3D02Cadd circuitry ................................................................................... 54 

Figure 4.13. Q32D1add circuitry ...................................................................................... 55 

Figure 4.14. Q32D2add circuitry ...................................................................................... 57 

Figure 4.15. Q2DD23add circuitry ................................................................................... 59 

Figure 4.16. Simulation results of 6×4 Multiplication...................................................... 62 

Figure 4.17. Quad-rail 2’scomplement 8×8 multiplier ..................................................... 63 

Figure 4.18. Quad-rail 2’s complement 10×8 multiplier .................................................. 64 

 



 

 

ix

LIST OF TABLES 

               Page 

Table 1.1. 27 fundamental NCL gates ................................................................................ 6 

Table 3.1. Gate delays for MAC components................................................................... 36 

Table 4.1. Truth table for partial product generation........................................................ 44 

Table 4.2. Gate delays for 2S complement multiplier additional components.................. 61 

 

 



 

 

1. INTRODUCTION 

1.1. OBJECTIVE 

This M.S. thesis is intended to familiarize the reader with the aysnchronous 

NULL Convention Logic (NCL) design paradigm for digital circuits and to develop 

arithmetic algorithms, along with their gate-level structural VHDL hardware 

implementation, for design of generic quad-rail NCL multipliers. The development of 

arithmetic circuits using NCL quad-rail signals will complement the work already done 

using NCL dual-rail signals. This will help in building a reusable design library that can 

be used for automated NCL synthesis thus assisting in the integration of NULL 

Convention Logic asynchronous design into the semiconductor industry. 

 

1.2. ASYNCHRONOUS CIRCUITS 

Synchronous design using a global clock has been the most prominent 

methodology for designing digital integrated circuits for the past few decades. However, 

with deep sub-micron technology’s shrinking feature sizes, clock distribution, clock 

skew, power, and EMI are becoming issues of major concern for synchronous design. 

Therfore, a renewed interest has developed for research in the area of asynchronous 

design of digital logic circuits. Traditional asynchronous design, which eliminates the use 

of a clock, suffers from problems such as race-conditions and timing optimization. 

However, NULL Convention Logic (NCL), a delay-insensitive asynchronous design 

paradigm, combines control and data information for synchronization, thus eliminating 

the necessity of referencing time. NCL, being a delay-insensitive paradigm, has no glitch 
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power, produces less EMI, consumes less power, and allows for easier design re-use, 

compared to both synchronous and bounded delay asynchronous paradigms [1]. 

 

1.3. ARITHMETIC CIRCUITS 

Delay-insensitive asynchronous design paradigms like NULL Convention Logic 

eliminate the use of a clock by combining control and data information in a single path. 

Stand-alone NCL functional blocks can be used as modules in larger NCL designs 

without any need for further timing analysis while interfacing, thus reducing design 

effort. Therefore, building libraries with basic functional blocks such as adders and 

multipliers facilitates design re-use. This thesis focuses on developing algorithms for a 

quad-rail array-structured multiply and accumulate unit and 2s complement multiplier, 

and designing generic structural VHDL hardware implementations of both circuits. 

 

1.4. OVERVIEW OF NCL 

NCL offers a self-timed logic paradigm where control is inherent with each 

datum. NCL follows the so-called “weak conditions” of Seitz’s delay-insensitive 

signaling scheme [2]. As with other self-timed logic methods, the NCL paradigm 

assumes that forks in wires are isochronic [3]. The origins of various aspects of the 

paradigm, including the NULL (or spacer) logic state from which NCL derives its name, 

can be traced back to Muller’s work on speed-independent circuits in the 1950s and 

1960s [4].  

1.4.1. Delay-Insensitivity. NCL uses symbolic completeness of expression [5] to 

achieve delay-insensitive behavior. A symbolically complete expression is defined as an 

expression that only depends on the relationships of the symbols present in the expression 
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without a reference to their time of evaluation. In particular, dual-rail signals, quad-rail 

signals, or other Mutually Exclusive Assertion Groups (MEAGs) can be used to 

incorporate data and control information into one mixed signal path to eliminate time 

reference [6]. A dual-rail signal, D, consists of two wires, D0 and D1, which may assume 

any value from the set {DATA0, DATA1, NULL}. The DATA0 state (D0 = 1, D1 = 0) 

corresponds to a Boolean logic 0, the DATA1 state (D0 = 0, D1 = 1) corresponds to a 

Boolean logic1, and the NULL state (D0 = 0, D1 = 0) corresponds to the empty set, 

meaning that the value of D is not yet available. The two rails are mutually exclusive, so 

that both rails can never be asserted simultaneously; this state is defined as an illegal 

state.  

A quad-rail signal, Q, consists of four wires, Q0, Q1, Q2, and Q3, which may 

assume any value from the set {DATA0, DATA1, DATA2, DATA3, NULL}. The 

DATA0 state (Q0 = 1, Q1 = 0, Q2 = 0, Q3 = 0) corresponds to two Boolean logic signals, 

X and Y, where X = 0 and Y = 0. The DATA1 state (Q0 = 0, Q1 = 1, Q2 = 0, Q3 = 0) 

corresponds to X = 0 and Y = 1. The DATA2 state (Q0 = 0, Q1 = 0, Q2 = 1, Q3 = 0) 

corresponds to X = 1 and Y = 0. The DATA3 state (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 1) 

corresponds to X = 1 and Y = 1, and the NULL state (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 0) 

corresponds to the empty set meaning that the result is not yet available. The four rails of 

a quad-rail NCL signal are mutually exclusive, so no two rails can ever be asserted 

simultaneously; these states are defined as illegal states. Both dual-rail and quad-rail 

signals are space optimal 1-out-of-N delay-insensitive codes, requiring two wires per bit. 

Other higher order MEAGs may not be wire count optimal; however, they can be more 

power efficient due to the decreased number of transitions per cycle.  
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1.4.2. Logic Gates. NCL differs from many other delay-insensitive paradigms in 

that these other paradigms only utilize one type of state-holding gate, the C-element [4]. 

A C-element behaves as follows: when all inputs assume the same value then the output 

assumes this value, otherwise the output does not change. On the other hand, all NCL 

gates are state-holding. Thus, NCL optimization methods can be considered as a subclass 

of the techniques for developing delay-insensitive circuits using a pre-defined set of more 

complex components, with built-in hysteresis behavior.  

NCL uses threshold gates for its basic logic elements [7]. The primary type of 

threshold gate is the THmn gate, where 1 ≤ m ≤ n, as depicted in Figure 1.1. THmn gates 

have n inputs. At least m of the n inputs must be asserted before the output will become 

asserted. Because NCL threshold gates are designed with hysteresis, all asserted inputs 

must be de-asserted before the output will be de-asserted. Hysteresis ensures a complete 

transition of inputs back to NULL before asserting the output associated with the next 

wavefront of input data. Therefore, a THnn gate is equivalent to an n-input C-element 

and a TH1n gate is equivalent to an n-input OR gate. In a THmn gate, each of the n 

inputs is connected to the rounded portion of the gate; the output emanates from the 

pointed end of the gate; and the gate’s threshold value, m, is written inside of the gate.  

 

 

 

 
Figure 1.1. THmn threshold gate 
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Another type of threshold gate is referred to as a weighted threshold gate, denoted 

as THmnWw1w2…wR. Weighted threshold gates have an integer value,  

m ≥ wR > 1, applied to inputR. Here 1 ≤ R < n; where n is the number of inputs; m is the 

gate’s threshold; and w1, w2, …wR, are the integer weights of input1, input2, … inputR, 

respectively. For example, consider a TH34W2 gate, whose n = 4 inputs are labeled A, B, 

C, and D. The weight of input A, W(A), is therefore 2. Since the gate’s threshold, m, is 3, 

this implies that in order for the output to be asserted, either inputs B, C, and D must all 

be asserted, or input A must be asserted and any other input, B, C, or D must also be 

asserted. NCL threshold gates may also include a reset input to initialize the gate's output. 

Resetable gates are denoted by either a D or an N appearing inside the gate, along with 

the gate's threshold, referring to the gate being reset to logic 1 or logic 0, respectively. 

Table 1.1 lists the 27 fundamental NCL gates, along with their corresponding 

Boolean equations, used to construct NCL circuits. These 27 gates constitute the set of all 

functions consisting of four or fewer variables. Since each rail of a NCL signal is 

considered a separate variable, a four variable function is not the same as a function of 

four literals, which would normally consist of eight variables. 

Twenty four of these gates can be realized using complex threshold gates, 

identical to the standard threshold gate forms for functions of four or fewer variables [17, 

18, 19]. The other three macros could be constructed from threshold gate networks, but 

have been implemented as standard gates to provide completeness. Table 1.1 also 

contains the transistor count for the static and semi-static implementaion of these 27 

gates. The semi-staic implementation results in lesser number of transistors compared to 

the static implementaion of the gates. 
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            Table 1.1. 27 fundamental NCL gates 

NCL Gate Boolean Function
TH12 A + B 6 6
TH22 AB 12 8
TH13 A + B + C 8 8
TH23 AB + AC + BC 18 12
TH33 ABC 16 10
TH23w2 A + BC 14 10
TH33w2 AB + AC 14 10
TH14 A + B + C + D 10 10
TH24 AB + AC + AD + BC + BD + CD 26 16
TH34 ABC + ABD + ACD + BCD 24 16
TH44 ABCD 20 12
TH24w2 A + BC + BD + CD 20 14
TH34w2 AB + AC + AD + BCD 22 15
TH44w2 ABC + ABD + ACD 23 15
TH34w3 A + BCD 18 12
TH44w3 AB + AC + AD 16 12
TH24w22 A + B + CD 16 12
TH34w22 AB + AC + AD + BC + BD 22 14
TH44w22 AB + ACD + BCD 22 14
TH54w22 ABC + ABD 18 12
TH34w32 A + BC + BD 17 12
TH54w32 AB + ACD 20 12
TH44w322 AB + AC + AD + BC 20 14
TH54w322 AB + AC + BCD 21 14
THxor0 AB + CD 20 12
THand0 AB + BC + AD 19 13
TH24comp AC + BC + AD + BD 18 12

Transistors 
(static)

Transistors  
(semi-static)

 

 

 

By employing threshold gates for each logic rail, NCL is able to determine the 

output status without referencing time. Inputs are partitioned into two separate 

wavefronts, the NULL wavefront and the DATA wavefront. The NULL wavefront 

consists of all inputs to a circuit being NULL, while the DATA wavefront refers to all 

inputs being DATA, some combination of DATA0 and DATA1. Initially, all circuit 

elements are reset to the NULL state. First, a DATA wavefront is presented to the circuit. 

Once all of the outputs of the circuit transition to DATA, the NULL wavefront is 

presented to the circuit. Once all of the outputs of the circuit transition to NULL, the next 

DATA wavefront is presented to the circuit. This DATA/NULL cycle continues 
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repeatedly. As soon as all outputs of the circuit are DATA, the circuit’s result is valid. 

The NULL wavefront then transitions all of these DATA outputs back to NULL. When 

they transition back to DATA again, the next output is available. This period is referred 

to as the DATA-to-DATA cycle time, denoted as TDD, and has an analogous role to the 

clock period in a synchronous system.  

1.4.3. Input Completeness. NCL combinational circuits must ensure input-

completeness in order to maintain delay-insensitivity. The completeness of input criterion 

[5] requires that: 

1. all inputs must transition from NULL to DATA before the outputs transition from 

NULL to DATA, and 

2. all inputs must transition from DATA to NULL before the outputs transition from 

DATA to NULL. 

In circuits with multiple outputs, it is accepatable, according to Seitz’s weak 

conditions [2], for some of the outputs to transiton without having a complete input set 

present as long as all outputs cannot transition before all inputs arrive. 

1.4.4. Observability. There is one more condition that must be met to ensure 

delay-insensitivity for NCL circuits and other delay-insensitive circuits. No orphans may 

propagate through a gate [8]. An orphan is defined as a wire that transitions during the 

current DATA wavefront, but is not used in the determination of the output. Orphans are 

caused by wire forks and can be neglected through the isochronic fork assumption [3], as 

long as they are not allowed to cross a gate boundary. This observability condition, also 

referred to as indicatability or stability, ensures that every gate transition is observable at 
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the output, which means that every gate that transitions is necessary to transition at least 

one of the outputs. 

1.4.5. NCL Registration. NCL systems contain at least two delay-insensitive 

(DI) registers, one at both the input and at the output. Two adjacent register stages 

interact through their request and acknowledge signals, Ki and Ko, respectively, to prevent 

the current DATA wavefront from overwriting the previous DATA wavefront, by 

ensuring that the two DATA wavefronts are always separated by a NULL wavefront. The 

acknowledge signals are combined in the Completion Detection circuitry to produce the 

request signal(s) to the previous register stage. NCL registration is realized through 

cascaded arrangements of single-bit dual-rail registers or single-signal quad-rail registers, 

depicted in Figure 1.2. These registers consist of TH22 gates that pass a DATA value at 

the input only when Ki is request for data (rfd) (i.e., logic 1) and likewise pass NULL 

only when Ki is request for null (rfn) (i.e., logic 0). They also contain a NOR gate to 

generate Ko, which is rfn when the register output is DATA and rfd when the register 

output is NULL. The registers shown below are reset to NULL, since all TH22 gates are 

reset to logic 0. However, either register could be instead reset to a DATA value by 

replacing exactly one of the TH22n gates with a TH22d gate. 

An N-bit register stage, comprised of N single-bit dual-rail NCL registers, 

requires N completion signals, one for each bit. The NCL completion component, shown 

in Figure 1.3, uses these N Ko lines to detect complete DATA and NULL sets at the 

output of every register stage and request the next NULL and DATA set, respectively. In 

full-word completion, the single-bit output of the completion component is connected to 

all Ki lines of the previous register stage. Since the maximum input threshold gate is the 
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TH44 gate, the number of logic levels in the completion component for an N-bit register 

is given by ⎡log4 N⎤. Likewise, the completion component for an N-bit quad-rail 

registration stage requires 2
N

inputs, and can be realized in a similar fashion using TH44 

gates. Figures 1.4 and 1.5 shows the flow of DATA and NULL wavefronts through an 

NCL combinational circuit (i.e., an AND function) and an arbitrary pipeline stage, 

respectively. 

 

 

 

 

Figure 1.2. Single bit dual-rail register and single signal quad-rail register 
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Figure 1.3. N-bit NCL completion component 
 

 

 

Figure 1.4. NCL AND function: Z = X • Y 
 

Initially X=DATA1 and Y=DATA0, so Z=DATA0; next X and Y both transition to 
NULL, so Z transitions to NULL; then X and Y both transition to DATA1, so Z 
transitions to DATA1. 
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a) DATA flows through input register and combinational circuit 

 

 

b) DATA flows through output register and rfn flows through completion circuit 

 

 

c) NULL flows through input register and combinational circuit 

 

d) NULL flows through output register and rfd flows through completion circuit 

Figure 1.5. NCL DATA/NULL cycle                    
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1.5. THESIS OVERVIEW 

This thesis is organized into five sections. Section 2 reviews the previous work 

done in the development of NCL arithmetic circuits. In Section 3, a generic algorithm for  

multiplication of unsigned quad-rail vectors is developed. Partial product generation and 

various adder components are designed. Carry save addition with array structured partial 

product summation is used to obtain the multiplication product. Using the generic 

unsigned quad-rail multiplier and ripple carry accumulator, a multiply and accumulate 

unit is designed and implemented as a structural VHDL module. Section 4 presents a 

generic algorithm for quad-rail 2s complement partial product generation and additional  

partial product generation and summation components are designed. Using these 

components and the ones already designed for unsigned multiplication, a generic quad-

rail 2s complement multiplier is designed and implemented as a structural VHDL module. 
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2. PREVIOUS WORK 

Multiplication is an important arithmetic operation that requires a lot of 

computational effort. A number of efficient multiplication algorithms have been 

developed and implemented in hardware. Fast and computationally efficient algortihms 

whose hardware implementation requires less area and consumes less power are desired. 

To integrate Asynchronous NULL Convention Logic design into the 

semiconductor industry, it is required to develop the key components of a reusable-design 

library, the foremost being arithmetic circuits, including multipliers. This chapter 

presents the previous work in the field of asynchronous NCL multiplier design. 

 

2.1. DUAL-RAIL NCL MULTIPLIERS 

A number of multiplication algorithms have been implemented in NCL using 

dual-rail signals, including a generic Baugh-Wooley multiplier, an 8×8 Modified Booth2 

multiplier [9], a bit-serial multiplier [10], and a number of 72+32×32 Multiply and 

Accumulate (MAC) units [11, 12].  The Baugh-Wooley multiplier used a carry-save array 

structure [13] for partial product (PP) summation, while the rest of the multipliers/MACs 

utilized a Wallace Tree [13].  

 

2.2. QUAD-RAIL NCL MULTIPLIERS 

Additionally, unsigned quad-rail multipliers utilizing Wallace Tree PP summation 

have been designed [9, 14]; however, a Wallace Tree is not a regular structure and 

therefore cannot be implemented as a generic structure. This thesis addresses this 

drawback by developing two new quad-rail multiplication algorithms for generic 
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multipliers: array-structured PP summation and 2s complement PP generation. These 

agorithms are then used in generic VHDL implementations of a quad-rail NCL unsigned 

MAC and 2s complement multiplier. 
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3. DESIGN AND IMPLEMENTATION OF A GENERIC UNSIGNED QUAD-
RAIL MULTIPLY AND ACCUMULATE UNIT 

This section presents the design and VHDL implementation of a generic unsigned 

NULL Convention Logic (NCL) quad-rail Multiply and Accumulate (MAC) unit. The 

MAC consists of an unsigned quad-rail multiplier and ripple-carry type accumulator, 

along with NCL registers and full-word completion circuitry.  

 

3.1.  QUAD-RAIL MULTIPLICATION  

3.1.1. Partial Product Generation. Since a single quad-rail signal represents two 

dual-rail or two binary bits, multiplication of two quad-rail signals is equivalent to 

multiplying two 2-bit binary vectors. The maximum value a quad-rail signal can 

represent is DATA3 (i.e., Boolean “11”); and the maximum product of two quad-rail 

signals, when both are DATA3, is Boolean “1001”, which can be represented by two 

quad-rail signals, partial product high (i.e., PPH = “10”) and partial product low  

(i.e., PPL = “01”). Since PPH has a maximum value of “10”, it can be represented using a 

three-rail signal (i.e., DATA0, DATA1, and DATA2) instead of a quad-rail signal, thus 

eliminating one wire. PPL has values from “00” to “11”, and therefore requires a quad-

rail signal. The unsigned quad-rail PP generator, Q33MUL [9, 14], multiplies two quad-

rail inputs and generates a three-rail signal, PPH, and a quad-rail signal, PPL.  

3.1.2. Unsigned Quad-Rail Multiplication. Unsigned quad-rail multiplication is 

similar to binary multiplication except that each quad-rail signal represents two binary 

bits. So two bits in the multiplier are multiplied with two bits in the multiplicand to 

generate a PP which consists of  partial product high and partial product low as explained 

in Section 3.1.1. Figure 3.1 shows multiplication of two 4-bit binary vectors with their 
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PPs and final product. Figure 3.2 shows a 2-bit quad-rail by 2-bit quad-rail multiplication 

where the quad-rail multiplicand represents the 4-bit binary multiplicand and the quad-

rail multipier represents the 4-bit binary multiplier of Figure 3.1. Comparing the two 

figures, it can be seen that the sum of the first two PP rows in the binary multiplication is 

equivalent to the sum of the 1st  PP in the quad-rail multiplication. The same holds true 

for the sum of the 3rd and 4th  PP rows of the binary multiplication and the 2nd PP of the 

quad-rail multiplication.  

 

 

 

Figure 3.1. Binary multiplication 
 

 

 

Multiplying LSB X0 of the quad-rail multiplier with LSB Y0 of the quad-rail 

multiplicand results in a value which is equal to the sum of multiplication of the LSB of 

the binary multiplier with the last two LSBs of the binary multiplicand and multiplication 

of the 2nd LSB of the multiplier with the last two LSBs of the multiplicand, with the 
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second PP row shifted one place to the left. A similar explanation holds true for X0 

multipied with Y1, X1 with Y0, etc. Therefore, for any vector length of quad-rail 

multiplicand, the sum of the terms in the first PP of a quad-rail multiplication correspond 

to the sum of the 1st and 2nd PP rows of binary multiplication. The sum of terms in the 2nd 

PP of quad-rail multiplication correspond to the sum of the 3rd and 4th PP rows of binary 

multiplication, etc. Thus, one PP in quad-rail multiplication corresponds to two PP rows 

in binary multiplication. Each subsequent quad-rail multiplication PP is shifted one 

position to the left, the same as for binary multiplication; however one position to the left 

in quad-rail multiplication is equivalent to two bit positions, since a quad-rail signal 

corresponds to two bits. This is correct, since each quad-rail PP corresponds to two 

binary PPs, and hence, each subsequent PP should be left shifted by two bit positions. 

The quad-rail PPs can be summed using various algorithms (e.g., array-structured , 

Wallace tree). 

 

 

 

Figure 3.2. Quad-rail multiplication 
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3.2. MULTIPLY AND ACCUMULATE 

A MAC utilizes a multiplier and adds the product of the current inputs to the 

previously accumulated value, which requires the previously accumulated value to be fed 

back from the output to add it to the current product. If the accumulator exceeds its 

maximum value, OV (overflow) is asserted. The block diagram of an NCL MAC is 

shown in Figure 3.3. Any NCL system requires at least two registers, one at the input and 

and one at the output, and feedback requires at least three registers in the feedback loop 

to avoid deadlock [15].  
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Figure 3.3.  MAC block diagram 
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3.2.1. Registers. In order to avoid deadlock, three registers are used in the MAC 

feedback loop. All registers are reset to NULL except for the feedback register, which is 

reset to DATA0 to initialize the accumulator.  

3.2.2. Partial Product Generation. Partial products are generated using the 

Q33mul component, explained in Section 3.1.2 and shown in Figure 3.4, which generates 

the product of two single unsigned quad-rail signals. For an 8×8 multiplication  

(i.e., 4×4 quad-rail) the total number of partial products is 4, with each partial product 

having two terms (i.e., partial product high and partial product low).  
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Figure 3.4. Q33mul circuitry [9, 14] 
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3.2.3. Partial Product Summation. After generating the PPs, they need to be 

summed to obtain the final product. PPs can be summed with Carry-Save Adders (CSAs) 

using a Wallace Tree, Dadda Tree, or array structure [13]. While the Wallace and Dadda 

Tree implementations are faster (i.e., O(Log N) vs. O(N) [13],  where N is the length of 

the multiplier), they do not yield a regular structure that can be used to design a generic 

version of the PP summation hardware, where the multiplier and multiplicand lengths can 

be varied; whereas the array multiplier is a regular structure. All three PP summation 

algorithms require approximately the same amount of hardware, proportional to O(N) 

[13].  

Carry-save addition is applied continuously until only a Sum and Carry PP row 

remain, at which time a Carry-Propogate Adder (CPA) is used to generate the final 

product. For array-structured multiplication, the CPA is usually implemented using a 

Ripple-Carry Adder (RCA); whereas some type of Carry-Lookahead Adder (CLA) is 

normally used with a Wallace Tree or Dadda Tree. This is because a CLA has a worse-

case propogation delay of O(Log N); whereas a RCAs worse-case delay is O(N) [13]. 

However, for asynchronous circuits that operate based on average-case delay, a RCA is 

preferred since both CLAs and RCAs  have O(Log N) average-case delay [13] and RCAs 

have a regular structure and normally require less hardware.  

Hence, for the generic quad-rail MAC designed in this thesis, an array-structured 

PP summation algorithm was developed and utilized, followed by a RCA for final 

product generation, as shown in Figures 3.5 and 3.6 for 8-bit operands (i.e., 4 quad-rail 

signals). Note that the quad-rail PP sumation requires 2 1N −  levels of carry-save addition  

(i.e., 3 for the 8×8 case); whereas a binary multiplier requires N-1 levels of carry-save 
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addition. Figure 3.5 shows the 2
M × 2

N  PP summation array of adders, where M is the 

length of the multiplicand, in bits. Note that the equivalent binary multiplier requires an 

(M-1)×N adder array. The design of the specific adders are detailed in Section 3.2.5. 

 

 

 

Figure 3.5. Array multiplier 
 

 

 

3.2.4. Accumulator. The Accumulator adds the current multiplication product to 

the previously accumulated value. This is implemented using a RCA; and the output of 

this block is fed to the output register from which the output of the MAC is obtained, and 

is also fed back to the Accumulator. Figure 3.6 depicts a quad-rail RCA, which adds a 

16-bit (i.e., 8 quad-rail signals) product to a 20-bit (i.e., 10 quad-rail signals) 

accumulator. 
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Figure 3.6. Accumulator unit 
 

 

 

3.2.5. Adders for Array Multiplier and Accumulator. Since the partial 

products have both 3-rail MEAG signals ( DATA0=”00”, DATA1=”01”, DATA2=”10”) 

and quad-rail signals, partial product summation stages need special adders which can 

add a combination of quad-rail, 3-rail and dual-rail signals. Dual-rail signals are produced 

as carries from some adders whose maximum carry value is ’1’. Following is the list of 

required adders, along with their functional description and NCL implementation. Adders 

Q3Dadd, Q33Dadd and Q33add are used in the accumulator unit, while the remaining 

adders are used in the PP summation of the array multiplier. The circuits were designed 

following the method detailed in [15,16].  

1. Q33add – This adder, shown in Figure 3.7, is used to add two quad-rail signals. 

Sum is a quad-rail signal and Carry is a dual-rail signal. Note that the Sum output 

rails are symmetrical, so only rail0 is depicted.This adder is used in the RCA of the 

accumulator unit in the least significant position. This adder is used only once and 

is used to add partial product low of the least significant partial product in the first 

row of partial products to the least significant quad-rail signal of the previously 

accumlated value. 
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a) rail0 of the Sum output 

 

                                     
 

 

 

b)  Carry output 

Figure 3.7. Q33add circuitry 
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2. Q32add – This adder, shown in Figure 3.8, is used to add a quad-rail signal and a 

three-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. 

 

 

 

 
Figure 3.8. Q32add circuitry [9, 14] 
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3. Q3Dadd – This adder, shown in Figure 3.9, is used to add a quad-rail signal and a 

dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. 

 

 

 

a) Sum output 

 
                                     

 

 

b) Carry output 

Figure 3.9. Q3Dadd circuitry [9,14] 
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4. Q332add – This adder, shown in Figure 3.10, adds two quad-rail signals and a 

three-rail signal. Sum is a quad-rail signal and Carry is a three-rail signal. Note that 

the Sum output rails are semetrical, so only rail0 is depicted. 

 

 

 

a) rail0 of the Sum output 

Figure 3.10. Q332add circuitry [9, 14] 
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b) Carry output 

Figure 3.10. Q332add circuitry [9,14] (cont.) 
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5. Q322add – This adder, shown in Figure 3.11, is used to add a quad-rail signal and 

two three-rail signals. Sum is a quad-rail signal and Carry is a dual-rail signal. Note 

that the Sum output rails are symmetrical, so only rail0 is depicted. 

 

 

 

a) rail0 of the Sum output 

Figure 3.11. Q322add circuitry [9, 14] 
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b) Carry output 

Figure 3.11. Q322add circuitry [9, 14] (cont.) 
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6. Q33Dadd – This adder, shown in Figure 3.12, adds two quad-rail signals and a 

dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. Note that 

the Sum output rails are semetrical, so only rail0 is depicted. 

 

 

 

a) rail0 of the Sum output 

Figure 3.12. Q33Dadd circuitry 
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b) Carry output 

Figure 3.12. Q33Dadd circuitry (cont.) 
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7. Q22Dadd – This adder, shown in Figure 3.13, is used to add two three-rail signals 

and a dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. Note 

that the Sum output rails are semetrical, so only rail0 is depicted. 

 

 

 

a) rail0 of the Sum output 

 

 

 

b) Carry output 

Figure 3.13. Q22Dadd circuitry 
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8. Q2DDadd –   This adder, shown in Figure 3.14, is used to add two dual-rail signals 

and a three-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. Note 

that the Sum output rails are semetrical, so only rail2 is depicted. 

 

 

 

a) rail2 of the Sum output 

                                    
 

 

b) Carry  output 

Figure 3.14. Q2DDadd circuitry 
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9. Q32Dadd  – This adder, shown in Figure 3.15, adds a quad-rail signal, a three-rail 

signal, and a dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail 

signal. Note that the Sum output rails are semetrical, so only rail0 is depicted. 

 

 

 

a) rail0 of the Sum output 

Figure 3.15. Q32Dadd circuitry 
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b) Carry output 

Figure 3.15. Q32Dadd circuitry (cont.) 

 

 

10. Q322Dadd – This adder is used to add a quad-rail signal, two three-rail signals, 

and a dual-rail signal. Sum is a quad-rail signal and Carry is a three-rail signal. 

The Sum and Carry have a maximum of 4 and 3 gate delays, respectively, and are 

not shown due to the large size of the circuit. 

11. Q3222add – This adder is used to add a quad-rail signal and three three-rail 

signals. Sum is a quad-rail signal and Carry is a three-rail signal. Both the Sum 

and Carry have a maximum of 4  gate delays, and are not shown due to the large 

size of the circuit. 

12. Q3322add – This adder is used to add two quad-rail signals and two three-rail 

signals. Sum is a quad-rail signal and Carry is a three-rail signal. Both the Sum 
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and Carry have a maximum of 4  gate delays, and are not shown due to the large 

size of the circuit. Gate delays for each adder and partial product generation 

components is given in the Table 3.1 shown below. 

 

 

 
          Table 3.1. Gate delays for MAC components 

  
 

GATE DELAY 
 

COMPONENT 
SUM/PPL CARRY/PPH 

Q3322 4 4 
Q3222 4 4 
Q322D 4 3 
Q332 3 3 
Q322 3 2 
Q33D 3 2 
Q32D 3 2 
Q33 2 2 
Q22D 3 2 
Q32 2 2 
Q3D 1 1 
Q33mul 2 1 

 

 

 

3.3. VHDL IMPLEMENTATION 

The combinational circuitry components of the MAC were designed and 

implemented as structural, gate-level VHDL modules. Every component was subjected to 

exhaustive testing using VHDL testbenches specific to the component. These basic 

components were then used to create a generic MAC unit, where the length of the input 

registers, the number of Q33mul components and the number of rows and columns in the 
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array multiplier change according to the length of the input vectors, X and Y, given as 

generic constants, and the length of the accumulator RCA, output register, and feedback 

registers change based on the length of the accumulator output, A, also a generic constant.  

The functionality of the MAC unit has been verified using exhaustive testbenches 

for a 12+6×4 (i.e., 6+3×2 in quad-rail) and 8+4×4 MAC, and a 256 testvector testbench 

for a 72+44×24 MAC. Simulation results confirmed that all of the various sized MACs 

tested functioned correctly, and showed that the average time per MAC operation 

increased proportinal to the length of the multiplier, N as the MAC size grew larger (i.e., 

5.2 ns, 5.9 ns, and 35.6 ns for the 8+4×4, 12+6×4, and 72+44×24 MACs, respectively), as 

expected. Simulation results for one operation of the 12+6×4 MAC are given in Figure 

3.16, showing that 2303334 + 2234 × 214 = 3030024 (i.e., 287910 + 4310 × 910 = 326610), as 

expected. The complete system diagrams of a 24+8×8 (i.e., 12+4×4 in quad-rail), 

22+10×8, and 16+8×8 MAC are shown in Figures 3.17, 3.18, and 3.19, respectively. 

 

 

 

Figure 3.16. Simulation for 12+6×4 MAC 
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Figure 3.17. Complete system diagram of 24+8×8 MAC 
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Figure 3.18. 22+10×8 MAC 
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Figure 3.19. 16+8×8 MAC 
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4. DESIGN OF A GENERIC 2S COMPLEMENT QUAD-RAIL MULTIPLIER 

This chapter presents the design and VHDL implementation of a generic  

2s complement NULL Convention Logic quad-rail multiplier. The multiplier is non-

pipelined and utilizes full-word completion; and the partial product generation algorithm 

is derived from the modified Baugh-Wooley algorithm [13] for binary mulitplication. 

 

4.1. 2S COMPLEMENT QUAD-RAIL MULTIPLICATION 

4.1.1. Registers. The block diagram of a 2s complement NCL quad-rail miltiplier 

is shown in Figure 4.1. The circuit has an input register for X and Y inputs and an output 

register for the multiplication product, P. The main components of the multiplier are 

detailed below. 

4.1.2. Partial Product Generation. The 2s complement quad-rail multiplication 

algorithm is derived from the binary modified Baugh-Wooley multiplication algorithm 

[13]. In binary Baugh-Wooley multiplication, as shown in Figure 4.2 for a 6-bit × 4-bit 

multiplier, PPs are generated the same way as for unsigned multiplication, except for the 

MSB of all rows, excluding the last row, is complemented, and all PP bits in the last row, 

excluding the MSB, are complemented. Additionally, a logic 1 is added at positions M, 

N, and M+N, where M and N are the lengths of the multiplicand and multiplier, 

respectively. Note that if M and N are equal, logic 1 is added at position M+1 instead of 

at positions M and N.  

For unsigned quad-rail multiplication, as detailed in Section 3.1, each PP 

corresponds to two rows of PPs in binary multiplication, and are generated using the 

Q33mul component, which produces a three-rail PPH and quad-rail PPL output. Hence, 
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for 2s complement PP generation, the Q33mul component can be used for all PPs except 

for the last row and the most significant PP of the other rows, as shown in Figure 4.3.  

 

 

 

Figure 4.1. 2s complement multiplier block diagram 
 

 

 

The most significant PP of any row, excluding the last row, is generated using the 

multiplicand’s most significant quad-rail signal and the multiplier’s quad-rail signal 

corresponding to the particular PP row. A new PP generation component, called MSPP, 

generates these most significant PPs, and is designed from Truth Table 4.1, derived from 

the binary modified Baugh-Wooley algorithm. This component generates PPH and PPL, 
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the sum of which is equal to the sum of the two MSB PP postions in each of the 2 

corresponding binary PP rows, as demonstrated in Figure 4.3.  

 

 

 

Figure 4.2. Binary 6×4 2s complement multiplication 
 

 

 

 

Figure 4.3. Quad-rail 2s complement multiplication 
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             Table 4.1. Truth table for partial product generation 
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The last quad-rail PP row corresponds to the last two rows in binary Baugh-

Wooley multiplication, the last of which is complemented; hence, PP generation 

components are needed for this last row, including LSLRPP, which generates the least 

significant dual-rail PP, C, MSLRPP, which generates the most significant PP, and 

LRPP, which generates the rest of the last row’s PPs. These three circuits are designed 

from Truth Table 4.1 and the K-map shown in Figure 4.4, derived from the binary 

modified Baugh-Wooley algorithm, such that the sum of the last quad-rail PP is 

equivalent to the sum of the last two binary PP rows. 

LSLRPP, utilizes the most significant quad-rail signal of the multiplier and the 

least significant quad-rail signal of the multiplicand to generate a dual-rail signal, C, 

which has a value of either 0 or 2. MSLRPP, utilizes the most significant quad-rail signal 

of the multiplier and the most significant quad-rail signal of the multiplicand to generate 

PPH and PPL, where PPH is a dual-rail signal, with value 2 or 3, and PPL is a quad-rail 

signal. Note that this component also takes into account the the logic 1 added at the 

(M+N)th bit postion. The remaining last row PPs are generated by LRPP. This component 

requires the most significant quad-rail signal of the multiplier, MR, and the multiplicand’s 

quad-rail signal corresponding to the particular PP position, MDi, as well as the 

multiplicand’s subsequent quad-rail signal, MDi+1, to generate PPH and PPL, both of 

which are quad-rail signals. 

The logic 1s that need to be added at the Mth and Nth positons, or (M+1)th  position 

if M equals N, are taken into consideration during PP summation by utilizing special 

adders, as detailed in the next section. Circuit diagrams for components MSPP, MSLRPP, 

LRPP and LSLRPP are  shown in Figures 4.5, 4.6, 4.7 and 4.8, respectively. 
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K-map type minimization diagram for partial product high of the component 

LRPP is shown below. 

 

 

 

 

Figure 4.4. K-map for LRPP PPH 
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a) PPH output 

 

 

 

b) PPL output 

Figure 4.5. MSPP circuitry 
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a) PPH output 

 

 

b) PPL output 

Figure 4.6. MSLRPP circuitry                                                                 
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a) rail0 of the PPH output (rail1 and rail2 are symetrical to rail0) 

 
                                     

 

 

b) rail3 of the PPH output 

Figure 4.7. LRPP circuitry 
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c) PPL output 

Figure 4.7. LRPP circuitry (cont.) 

 

 

 

Figure 4.8. LSLRPP circuitry 
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4.1.3. Partial Product Summation. PPs are summed using array-structured 

CSAs, similar to unsigned multiplication, as detailed in Section 3.2.3. However, the 

structure needs to be modified slightly to account for the added logic 1s and the slight 

variance in PPs, as shown in Figures 4.9 and 4.10. This requires a few additional adders 

than the ones explained in Section 3.2.5.  

 

 

 

Figure 4.9. 8×8 quad-rail 2s complement partial product summation 
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Figure 4.10. 10×8 quad-rail 2s complement partial product summation 
 

 

 

4.1.4. Adders for 2s Complement Array Multiplication. The same adders used 

for the unsigned quad-rail multiplier are used for the  2s Complement quad-rail multiplier, 

except for Q3Dadd, which is not needed. Additionally, a number of new adders are 

needed. PP summation is similar to that in unsigned quad-rail multiplication except for 

the last stage, the RCA. This requires an adder, called Q3D2add, to add the least 

significant dual-rail signal, C, which has a value of 0 or 2. Depending on the input vector 

lengths, different adders are instantiated at positons M and N, or M+1, to account for the 

logic 1s. Additionally, the last row’s PPH signals are quad-rail instead of three-rail, 

therefore requiring a different adder. These new adder components are detailed below. 

1. Q3D02add – This adder, shown in Figure 4.11, is used to add a quad-rail signal and 

a dual-rail signal, representing values 0 or 2. Sum is a quad-rail signal while Carry 
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is a dual-rail signal. Note that the Sum output rails are semetrical, so only rail0 is 

depicted. 

 

 

 

a) rail0 of the Sum output 

 

 

 

b) Carry output 

Figure 4.11. Q3D02add circuitry 
 

 

2.  Q3D02Cadd – This adder, shown in Figure 4.12, is used to add a quad-rail signal, 

a dual-rail signal, representing values 0 or 2, and a constant value of 2, to account 

for a logic 1 added at position N. Sum is a quad-rail signal while Carry is a dual-

rail signal. Note that the Sum output rails are semetrical, so only rail0 is depicted. 
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a) rail0 of the Sum output 

 

 

 

 

b) Carry output 

Figure 4.12. Q3D02Cadd circuitry 
 

 

3. Q32D01add – This adder, shown in Figure 4.13,  is used to add a quad-rail signal, 

a three-rail signal, a dual-rail signal, and a constant value of 1, to account for a  

logic 1 added at position M+N. Sum is a quad-rail signal and Carry is a dual-rail 

signal. Note that the Sum output rails are semetrical, so only rail0 is depicted. 
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a) rail0 of the Sum output 

Figure 4.13. Q32D01add circuitry 
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b) Carry output 

Figure 4.13. Q32D01add circuitry (cont.) 
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4. Q32D02add – This adder, shown in Figure 4.14, is used to add a quad-rail signal, 

a three-rail signal, a dual-rail signal, and a constant value of 2, to account for a  

logic 1 added at position M. Sum is a quad-rail signal and Carry is a three-rail 

signal. Note that the Sum output rails are semetrical, so only rail0 is depicted. 

 

 

 

a) rail0 of the Sum output 

Figure 4.14. Q32D02add circuitry 
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b) Carry output 

Figure 4.14. Q32D02add circuitry (cont.) 
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5. Q2DD23add – This adder, shown in Figure 4.15, is used to add a three-rail signal, 

a dual-rail signal and another dual-rail signal which has a value of 2 or 3. Sum is a 

quad-rail signal and Carry is a dual-rail signal.  

 

 

 

a) Sum output 

Figure 4.15. Q2DD23add circuitry 
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b) Carry output 

Figure 4.15. Q2DD23add circuitry (cont.) 

 

 

6.  Q3332add – This adder is used to add three quad-rail signals and a three-rail 

signal. Sum is a quad-rail signal and Carry is a three-rail signal. Both the Sum and 

Carry have a maximum of 4 gate delays, and are not shown due to the large size 

of the circuit. 

7.  Q332Dadd – This adder is used to add two quad-rail signals, a three-rail signal,  

and a dual-rail signal. Sum is a quad-rail signal and Carry is a three-rail signal. 

The Sum and Carry have a maximum of 4  and 3 gate delays, respectively, and are 

not shown due to the large size of the circuit. Gate delays for each adder and 

partial product generation component is given in the Table 4.2 shown below. 
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          Table 4.2. Gate delays for 2S complement multiplier additional components 
 

 
GATE DELAY 

 
COMPONENT 

SUM/PPL CARRY/PPH 

Q3332 4 4 
Q332D 4 3 
Q32D02 3 2 
Q32D01 3 2 
Q3D02C 1 1 
Q3D02 1 1 
Q2DD23 2 1 
MSPP 2 2 
MSLRPP 2 1 
LRPP 1 3 
LSLRPP 1 - 

                        

 

                           

4.2.VHDL IMPLEMENTATION 

The combinational circuitry components of the 2s complement quad-rail 

multiplier were designed and implemented as structural, gate-level VHDL modules. 

Every component was subjected to exhaustive testing using VHDL testbenches specific 

to the components. These basic components were then used to create a generic multiplier, 

where the length of the input registers, output register, the number of Q33mul, MSPP, 

and LRPP components, and the number of rows and columns in the array multiplier, 

change according to the length of the input vectors, X and Y, given as generic constants. 

The functionality of the quad-rail 2s complement multiplier has been verified 

using exhaustive testbenches for a 6×4 (i.e., 3×2 in quad-rail) and 4×4 multiplier, and a 

256 testvector testbench for a 44×24 multiplier. Simulation results confirmed that all of 

the various sized multipliers tested functioned correctly, and showed that the average 

time per multiplcation operation increased proportional to the length of the multiplier, N 
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as the multiplier size grew larger (i.e., 3.9 ns, 4.81 ns, and 35.7 ns for the 4×4, 6×4, and 

44×24 multipliers, respectively), as expected. Simulation results for one operation of the 

6×4 multiplier are given in Figure 4.16 showing that 1234 × 214 = 310034 (i.e., 2710 × -710 

= -18910), as expected. The complete system diagrams of an 8×8 (i.e., 4×4 in quad-rail) 

and 10×8 multiplier are shown in Figures 4.17 and 4.18, respectively. 

 

 

 

Figure 4.16. Simulation results of 6×4 multiplication 
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Figure 4.17. Quad-rail 2s complement 8×8 multiplier 
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Figure 4.18. Quad-rail 2s complement 10×8 multiplier 
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5.  CONCLUSIONS AND FUTURE WORK 

This thesis presents the design and VHDL implementation of generic versions of 

an NCL quad-rail unsigned Multiply and Accumulate (MAC) unit and quad-rail  

2s complement multipler. Both system level designs and each sub-component have been 

simulated and tested exhaustively using VHDL testbenches, showing that the circuits are 

functionally correct. These generic circuit implementations will be utilized in future 

versions of NCL synthesis tools to automatically instantiate arithmetic components from 

IEEE numeric_std package usage during NCL systhesis. Additional generic NCL 

arithmetic components (e.g., divider) also need to be designed to accommodate the full 

range of IEEE numeric_std package functions. 

The last stage of PP summation for the unsigned MAC was designed using a  

RCA; however, this could have instead been combined with the accumulator feedback 

input using a CSA, which would have increased throughput [11], since this would only 

require one RCA instead of two. Both the MAC and multiplier could be pipelined to 

increase throughput; however, if speed is a primary consideration, the PPs should be 

summed using either a Wallace Tree or Dadda Tree, not array-structured CSAs, as used 

in this thesis.  
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