
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2007

Generic algorithms and NULL Convention Logic hardware Generic algorithms and NULL Convention Logic hardware

implementation for unsigned and signed quad-rail multiplication implementation for unsigned and signed quad-rail multiplication

Samarsen Reddy Mallepalli

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Mallepalli, Samarsen Reddy, "Generic algorithms and NULL Convention Logic hardware implementation
for unsigned and signed quad-rail multiplication" (2007). Masters Theses. 4565.
https://scholarsmine.mst.edu/masters_theses/4565

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229286237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4565?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

GENERIC ALGORITHMS AND NULL CONVENTION LOGIC HARDWARE

IMPLEMENTATION FOR UNSIGNED AND SIGNED QUAD-RAIL

MULTIPLICATION

by

SAMARSEN REDDY MALLEPALLI

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

2007

_______________________________ _______________________________
Dr. Scott C. Smith, Advisor Dr. Waleed K. Al-Assadi

Dr. Daryl G. Beetner

iii

ABSTRACT

This thesis focuses on designing generic quad-rail arithmetic circuits, such as

signed and unsigned multipliers and Multiply and Accumulate (MAC) units, using the

asynchronous delay-insensitive NULL Convention Logic (NCL) paradigm. This work

helps to build a library of reusable components to be used for automated NCL circuit

synthesis, which will aid in the integration of asynchronous design paradigms into the

semiconductor industry.

First, an array structured partial product summation algorithm for quad-rail logic

was developed. A number of NCL quad-rail adders required for this implementation were

designed at the gate level; and the algorithm was implemented in hardware to design a

generic VHDL implementation of an unsigned MAC, where the lengths of the multiplier,

multiplicand, and accumulator are specified as generic constants. A number of different

sized MACs were instantiated and tested with exhaustive VHDL testbenches, proving

that the generic MAC is functionally correct.

Second, a partial product generation algorithm for 2s Complement quad-rail logic

was developed. New NCL quad-rail partial product generation components and adders

required for this implementation were designed at the gate level; and the algorithm was

implemented in hardware to design a generic VHDL implementation of a 2s Complement

multiplier, where the lengths of the multiplier and multiplicand are specified as generic

constants. A number of different sized multipliers were instantiated and tested with

exhaustive VHDL testbenches, proving that the generic multiplier is functionally correct.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Scott. C. Smith, for his guidance and

continued advice and financial support throughout the research and preparation of this

thesis. I would also like to express my gratitude to Dr. Waleed K. Al-Assadi and

Dr. Daryl Beetner for serving on my thesis committee. I would like to thank Srikanth

Kotla and Ravi Sankar Parameswaran Nair for helping me with the documentation work.

Furthermore, I would like to thank my parents and friends for their continued

encouragement and blessing toward achieving my goal.

v

TABLE OF CONTENTS

Page

ABSTRACT... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS.. vii

LIST OF TABLES... ix

SECTION

1. INTRODUCTION .. 1

1.1. OBJECTIVE ... 1

1.2. ASYNCHRONOUS CIRCUITS .. 1

1.3. ARITHMETIC CIRCUITS... 2

1.4. OVERVIEW OF NCL .. 2

1.4.1. Delay-Insensitivity ... 2

1.4.2. Logic Gates... 4

1.4.3. Input Completeness. ... 7

1.4.4. Observability. ... 7

1.4.5. NCL Registration. .. 8

1.5. THESIS OVERVIEW... 12

2. PREVIOUS WORK.. 13

2.1. DUAL-RAIL NCL MULTIPLIERS... 13

2.2. QUAD-RAIL NCL MULTIPLIERS .. 13

3. DESIGN AND IMPLEMENTATION OF A GENERIC UNSIGNED QUAD-
 RAIL MULTIPLY AND ACCUMULATE UNIT... 15

3.1. QUAD-RAIL MULTIPLICATION.. 15

3.1.1. Partial Product Generation. .. 15

3.1.2. Unsigned Quad-Rail Multiplication. .. 15

3.2. MULTIPLY AND ACCUMULATE.. 18

3.2.1. Registers. .. 19

3.2.2. Partial Product Generation. .. 19

3.2.3. Partial Product Summation... 20

vi

3.2.4. Accumulator. .. 21

3.2.5. Adders for Array Multiplier and Accumulator....................................... 22

3.3. VHDL IMPLEMENTATION... 36

4. DESIGN OF A GENERIC 2S COMPLEMENT QUAD-RAIL MULTIPLIER 41

4.1. 2S COMPLEMENT QUAD-RAIL MULTIPLICATION 41

4.1.1. Registers ... 41

4.1.2. Partial Product Generation ... 41

4.1.3. Partial Product Summation... 51

4.1.4. Adders for 2s Complement Array Multiplication................................... 52

4.2.VHDL IMPLEMENTATION.. 61

5. CONCLUSIONS AND FUTURE WORK ... 65

BIBLIOGRAPHY... 66

VITA .. 68

vii

LIST OF ILLUSTRATIONS

 Page

Figure 1.1. THmn threshold gate .. 4

Figure 1.2. Single bit dual-rail register and single signal quad-rail register....................... 9

Figure 1.3. N-bit NCL completion component... 10

Figure 1.4. NCL AND function: Z = X • Y.. 10

Figure 1.5. NCL DATA/NULL cycle... 11

Figure 3.1. Binary multiplication.. 16

Figure 3.2. Quad-rail multiplication ... 17

Figure 3.3. MAC block diagram.. 18

Figure 3.4. Q33mul circuitry .. 19

Figure 3.5. Array multiplier .. 21

Figure 3.6. Accumulator unit .. 22

Figure 3.7. Q33add circuitry... 23

Figure 3.8. Q32add circuitry... 24

Figure 3.9. Q3Dadd circuitry .. 25

Figure 3.10. Q332add circuitry... 26

Figure 3.11. Q322add circuitry... 28

Figure 3.12. Q33Dadd circuitry .. 30

Figure 3.13. Q22Dadd circuitry .. 32

Figure 3.14. Q2DDadd circuitry ... 33

Figure 3.15. Q32Dadd circuitry .. 34

Figure 3.16. Simulation for 12+6×4 MAC ... 37

Figure 3.17. Complete system diagram of 24+8×8 MAC .. 38

Figure 3.18. 22+10×8 MAC ... 39

Figure 3.19. 16+8×8 MAC ... 40

Figure 4.1. 2s complement multiplier block diagram.. 42

Figure 4.2. Binary 6×4 2s complement multiplication.. 43

Figure 4.3. Quad-rail 2s complement multiplication .. 43

Figure 4.4. K-map for LRPP PPH .. 46

viii

Figure 4.5. MSPP circuitry ... 47

Figure 4.6. MSLRPP circuitry .. 48

Figure 4.7. LRPP circuitry .. 49

Figure 4.8. LSLRPP circuitry ... 50

Figure 4.9. 8×8 quad-rail 2s complement partial product summation 51

Figure 4.10. 10×8 quad-rail 2s complement partial product summation 52

Figure 4.11. Q3D02add circuitry .. 53

Figure 4.12. Q3D02Cadd circuitry ... 54

Figure 4.13. Q32D1add circuitry .. 55

Figure 4.14. Q32D2add circuitry .. 57

Figure 4.15. Q2DD23add circuitry ... 59

Figure 4.16. Simulation results of 6×4 Multiplication.. 62

Figure 4.17. Quad-rail 2’scomplement 8×8 multiplier ... 63

Figure 4.18. Quad-rail 2’s complement 10×8 multiplier .. 64

ix

LIST OF TABLES

 Page

Table 1.1. 27 fundamental NCL gates .. 6

Table 3.1. Gate delays for MAC components... 36

Table 4.1. Truth table for partial product generation.. 44

Table 4.2. Gate delays for 2S complement multiplier additional components.................. 61

1. INTRODUCTION

1.1. OBJECTIVE

This M.S. thesis is intended to familiarize the reader with the aysnchronous

NULL Convention Logic (NCL) design paradigm for digital circuits and to develop

arithmetic algorithms, along with their gate-level structural VHDL hardware

implementation, for design of generic quad-rail NCL multipliers. The development of

arithmetic circuits using NCL quad-rail signals will complement the work already done

using NCL dual-rail signals. This will help in building a reusable design library that can

be used for automated NCL synthesis thus assisting in the integration of NULL

Convention Logic asynchronous design into the semiconductor industry.

1.2. ASYNCHRONOUS CIRCUITS

Synchronous design using a global clock has been the most prominent

methodology for designing digital integrated circuits for the past few decades. However,

with deep sub-micron technology’s shrinking feature sizes, clock distribution, clock

skew, power, and EMI are becoming issues of major concern for synchronous design.

Therfore, a renewed interest has developed for research in the area of asynchronous

design of digital logic circuits. Traditional asynchronous design, which eliminates the use

of a clock, suffers from problems such as race-conditions and timing optimization.

However, NULL Convention Logic (NCL), a delay-insensitive asynchronous design

paradigm, combines control and data information for synchronization, thus eliminating

the necessity of referencing time. NCL, being a delay-insensitive paradigm, has no glitch

2

power, produces less EMI, consumes less power, and allows for easier design re-use,

compared to both synchronous and bounded delay asynchronous paradigms [1].

1.3. ARITHMETIC CIRCUITS

Delay-insensitive asynchronous design paradigms like NULL Convention Logic

eliminate the use of a clock by combining control and data information in a single path.

Stand-alone NCL functional blocks can be used as modules in larger NCL designs

without any need for further timing analysis while interfacing, thus reducing design

effort. Therefore, building libraries with basic functional blocks such as adders and

multipliers facilitates design re-use. This thesis focuses on developing algorithms for a

quad-rail array-structured multiply and accumulate unit and 2s complement multiplier,

and designing generic structural VHDL hardware implementations of both circuits.

1.4. OVERVIEW OF NCL

NCL offers a self-timed logic paradigm where control is inherent with each

datum. NCL follows the so-called “weak conditions” of Seitz’s delay-insensitive

signaling scheme [2]. As with other self-timed logic methods, the NCL paradigm

assumes that forks in wires are isochronic [3]. The origins of various aspects of the

paradigm, including the NULL (or spacer) logic state from which NCL derives its name,

can be traced back to Muller’s work on speed-independent circuits in the 1950s and

1960s [4].

1.4.1. Delay-Insensitivity. NCL uses symbolic completeness of expression [5] to

achieve delay-insensitive behavior. A symbolically complete expression is defined as an

expression that only depends on the relationships of the symbols present in the expression

3

without a reference to their time of evaluation. In particular, dual-rail signals, quad-rail

signals, or other Mutually Exclusive Assertion Groups (MEAGs) can be used to

incorporate data and control information into one mixed signal path to eliminate time

reference [6]. A dual-rail signal, D, consists of two wires, D0 and D1, which may assume

any value from the set {DATA0, DATA1, NULL}. The DATA0 state (D0 = 1, D1 = 0)

corresponds to a Boolean logic 0, the DATA1 state (D0 = 0, D1 = 1) corresponds to a

Boolean logic1, and the NULL state (D0 = 0, D1 = 0) corresponds to the empty set,

meaning that the value of D is not yet available. The two rails are mutually exclusive, so

that both rails can never be asserted simultaneously; this state is defined as an illegal

state.

A quad-rail signal, Q, consists of four wires, Q0, Q1, Q2, and Q3, which may

assume any value from the set {DATA0, DATA1, DATA2, DATA3, NULL}. The

DATA0 state (Q0 = 1, Q1 = 0, Q2 = 0, Q3 = 0) corresponds to two Boolean logic signals,

X and Y, where X = 0 and Y = 0. The DATA1 state (Q0 = 0, Q1 = 1, Q2 = 0, Q3 = 0)

corresponds to X = 0 and Y = 1. The DATA2 state (Q0 = 0, Q1 = 0, Q2 = 1, Q3 = 0)

corresponds to X = 1 and Y = 0. The DATA3 state (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 1)

corresponds to X = 1 and Y = 1, and the NULL state (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 0)

corresponds to the empty set meaning that the result is not yet available. The four rails of

a quad-rail NCL signal are mutually exclusive, so no two rails can ever be asserted

simultaneously; these states are defined as illegal states. Both dual-rail and quad-rail

signals are space optimal 1-out-of-N delay-insensitive codes, requiring two wires per bit.

Other higher order MEAGs may not be wire count optimal; however, they can be more

power efficient due to the decreased number of transitions per cycle.

4

1.4.2. Logic Gates. NCL differs from many other delay-insensitive paradigms in

that these other paradigms only utilize one type of state-holding gate, the C-element [4].

A C-element behaves as follows: when all inputs assume the same value then the output

assumes this value, otherwise the output does not change. On the other hand, all NCL

gates are state-holding. Thus, NCL optimization methods can be considered as a subclass

of the techniques for developing delay-insensitive circuits using a pre-defined set of more

complex components, with built-in hysteresis behavior.

NCL uses threshold gates for its basic logic elements [7]. The primary type of

threshold gate is the THmn gate, where 1 ≤ m ≤ n, as depicted in Figure 1.1. THmn gates

have n inputs. At least m of the n inputs must be asserted before the output will become

asserted. Because NCL threshold gates are designed with hysteresis, all asserted inputs

must be de-asserted before the output will be de-asserted. Hysteresis ensures a complete

transition of inputs back to NULL before asserting the output associated with the next

wavefront of input data. Therefore, a THnn gate is equivalent to an n-input C-element

and a TH1n gate is equivalent to an n-input OR gate. In a THmn gate, each of the n

inputs is connected to the rounded portion of the gate; the output emanates from the

pointed end of the gate; and the gate’s threshold value, m, is written inside of the gate.

Figure 1.1. THmn threshold gate

5

Another type of threshold gate is referred to as a weighted threshold gate, denoted

as THmnWw1w2…wR. Weighted threshold gates have an integer value,

m ≥ wR > 1, applied to inputR. Here 1 ≤ R < n; where n is the number of inputs; m is the

gate’s threshold; and w1, w2, …wR, are the integer weights of input1, input2, … inputR,

respectively. For example, consider a TH34W2 gate, whose n = 4 inputs are labeled A, B,

C, and D. The weight of input A, W(A), is therefore 2. Since the gate’s threshold, m, is 3,

this implies that in order for the output to be asserted, either inputs B, C, and D must all

be asserted, or input A must be asserted and any other input, B, C, or D must also be

asserted. NCL threshold gates may also include a reset input to initialize the gate's output.

Resetable gates are denoted by either a D or an N appearing inside the gate, along with

the gate's threshold, referring to the gate being reset to logic 1 or logic 0, respectively.

Table 1.1 lists the 27 fundamental NCL gates, along with their corresponding

Boolean equations, used to construct NCL circuits. These 27 gates constitute the set of all

functions consisting of four or fewer variables. Since each rail of a NCL signal is

considered a separate variable, a four variable function is not the same as a function of

four literals, which would normally consist of eight variables.

Twenty four of these gates can be realized using complex threshold gates,

identical to the standard threshold gate forms for functions of four or fewer variables [17,

18, 19]. The other three macros could be constructed from threshold gate networks, but

have been implemented as standard gates to provide completeness. Table 1.1 also

contains the transistor count for the static and semi-static implementaion of these 27

gates. The semi-staic implementation results in lesser number of transistors compared to

the static implementaion of the gates.

6

 Table 1.1. 27 fundamental NCL gates

NCL Gate Boolean Function
TH12 A + B 6 6
TH22 AB 12 8
TH13 A + B + C 8 8
TH23 AB + AC + BC 18 12
TH33 ABC 16 10
TH23w2 A + BC 14 10
TH33w2 AB + AC 14 10
TH14 A + B + C + D 10 10
TH24 AB + AC + AD + BC + BD + CD 26 16
TH34 ABC + ABD + ACD + BCD 24 16
TH44 ABCD 20 12
TH24w2 A + BC + BD + CD 20 14
TH34w2 AB + AC + AD + BCD 22 15
TH44w2 ABC + ABD + ACD 23 15
TH34w3 A + BCD 18 12
TH44w3 AB + AC + AD 16 12
TH24w22 A + B + CD 16 12
TH34w22 AB + AC + AD + BC + BD 22 14
TH44w22 AB + ACD + BCD 22 14
TH54w22 ABC + ABD 18 12
TH34w32 A + BC + BD 17 12
TH54w32 AB + ACD 20 12
TH44w322 AB + AC + AD + BC 20 14
TH54w322 AB + AC + BCD 21 14
THxor0 AB + CD 20 12
THand0 AB + BC + AD 19 13
TH24comp AC + BC + AD + BD 18 12

Transistors
(static)

Transistors
(semi-static)

By employing threshold gates for each logic rail, NCL is able to determine the

output status without referencing time. Inputs are partitioned into two separate

wavefronts, the NULL wavefront and the DATA wavefront. The NULL wavefront

consists of all inputs to a circuit being NULL, while the DATA wavefront refers to all

inputs being DATA, some combination of DATA0 and DATA1. Initially, all circuit

elements are reset to the NULL state. First, a DATA wavefront is presented to the circuit.

Once all of the outputs of the circuit transition to DATA, the NULL wavefront is

presented to the circuit. Once all of the outputs of the circuit transition to NULL, the next

DATA wavefront is presented to the circuit. This DATA/NULL cycle continues

7

repeatedly. As soon as all outputs of the circuit are DATA, the circuit’s result is valid.

The NULL wavefront then transitions all of these DATA outputs back to NULL. When

they transition back to DATA again, the next output is available. This period is referred

to as the DATA-to-DATA cycle time, denoted as TDD, and has an analogous role to the

clock period in a synchronous system.

1.4.3. Input Completeness. NCL combinational circuits must ensure input-

completeness in order to maintain delay-insensitivity. The completeness of input criterion

[5] requires that:

1. all inputs must transition from NULL to DATA before the outputs transition from

NULL to DATA, and

2. all inputs must transition from DATA to NULL before the outputs transition from

DATA to NULL.

In circuits with multiple outputs, it is accepatable, according to Seitz’s weak

conditions [2], for some of the outputs to transiton without having a complete input set

present as long as all outputs cannot transition before all inputs arrive.

1.4.4. Observability. There is one more condition that must be met to ensure

delay-insensitivity for NCL circuits and other delay-insensitive circuits. No orphans may

propagate through a gate [8]. An orphan is defined as a wire that transitions during the

current DATA wavefront, but is not used in the determination of the output. Orphans are

caused by wire forks and can be neglected through the isochronic fork assumption [3], as

long as they are not allowed to cross a gate boundary. This observability condition, also

referred to as indicatability or stability, ensures that every gate transition is observable at

8

the output, which means that every gate that transitions is necessary to transition at least

one of the outputs.

1.4.5. NCL Registration. NCL systems contain at least two delay-insensitive

(DI) registers, one at both the input and at the output. Two adjacent register stages

interact through their request and acknowledge signals, Ki and Ko, respectively, to prevent

the current DATA wavefront from overwriting the previous DATA wavefront, by

ensuring that the two DATA wavefronts are always separated by a NULL wavefront. The

acknowledge signals are combined in the Completion Detection circuitry to produce the

request signal(s) to the previous register stage. NCL registration is realized through

cascaded arrangements of single-bit dual-rail registers or single-signal quad-rail registers,

depicted in Figure 1.2. These registers consist of TH22 gates that pass a DATA value at

the input only when Ki is request for data (rfd) (i.e., logic 1) and likewise pass NULL

only when Ki is request for null (rfn) (i.e., logic 0). They also contain a NOR gate to

generate Ko, which is rfn when the register output is DATA and rfd when the register

output is NULL. The registers shown below are reset to NULL, since all TH22 gates are

reset to logic 0. However, either register could be instead reset to a DATA value by

replacing exactly one of the TH22n gates with a TH22d gate.

An N-bit register stage, comprised of N single-bit dual-rail NCL registers,

requires N completion signals, one for each bit. The NCL completion component, shown

in Figure 1.3, uses these N Ko lines to detect complete DATA and NULL sets at the

output of every register stage and request the next NULL and DATA set, respectively. In

full-word completion, the single-bit output of the completion component is connected to

all Ki lines of the previous register stage. Since the maximum input threshold gate is the

9

TH44 gate, the number of logic levels in the completion component for an N-bit register

is given by ⎡log4 N⎤. Likewise, the completion component for an N-bit quad-rail

registration stage requires 2
N

inputs, and can be realized in a similar fashion using TH44

gates. Figures 1.4 and 1.5 shows the flow of DATA and NULL wavefronts through an

NCL combinational circuit (i.e., an AND function) and an arbitrary pipeline stage,

respectively.

Figure 1.2. Single bit dual-rail register and single signal quad-rail register

10

Figure 1.3. N-bit NCL completion component

Figure 1.4. NCL AND function: Z = X • Y

Initially X=DATA1 and Y=DATA0, so Z=DATA0; next X and Y both transition to
NULL, so Z transitions to NULL; then X and Y both transition to DATA1, so Z
transitions to DATA1.

NCL AND
Function

X0

X1

Y0

Y1

Z0

Z1

Valid
Output

NULL
Output

Valid
Output

0
1

0
1
0
1

X0

X1

Y0

0
1

0
1
0
1

Y1

Z0

Z1

1 ns1 ns

11

a) DATA flows through input register and combinational circuit

b) DATA flows through output register and rfn flows through completion circuit

c) NULL flows through input register and combinational circuit

d) NULL flows through output register and rfd flows through completion circuit

Figure 1.5. NCL DATA/NULL cycle

12

1.5. THESIS OVERVIEW

This thesis is organized into five sections. Section 2 reviews the previous work

done in the development of NCL arithmetic circuits. In Section 3, a generic algorithm for

multiplication of unsigned quad-rail vectors is developed. Partial product generation and

various adder components are designed. Carry save addition with array structured partial

product summation is used to obtain the multiplication product. Using the generic

unsigned quad-rail multiplier and ripple carry accumulator, a multiply and accumulate

unit is designed and implemented as a structural VHDL module. Section 4 presents a

generic algorithm for quad-rail 2s complement partial product generation and additional

partial product generation and summation components are designed. Using these

components and the ones already designed for unsigned multiplication, a generic quad-

rail 2s complement multiplier is designed and implemented as a structural VHDL module.

13

2. PREVIOUS WORK

Multiplication is an important arithmetic operation that requires a lot of

computational effort. A number of efficient multiplication algorithms have been

developed and implemented in hardware. Fast and computationally efficient algortihms

whose hardware implementation requires less area and consumes less power are desired.

To integrate Asynchronous NULL Convention Logic design into the

semiconductor industry, it is required to develop the key components of a reusable-design

library, the foremost being arithmetic circuits, including multipliers. This chapter

presents the previous work in the field of asynchronous NCL multiplier design.

2.1. DUAL-RAIL NCL MULTIPLIERS

A number of multiplication algorithms have been implemented in NCL using

dual-rail signals, including a generic Baugh-Wooley multiplier, an 8×8 Modified Booth2

multiplier [9], a bit-serial multiplier [10], and a number of 72+32×32 Multiply and

Accumulate (MAC) units [11, 12]. The Baugh-Wooley multiplier used a carry-save array

structure [13] for partial product (PP) summation, while the rest of the multipliers/MACs

utilized a Wallace Tree [13].

2.2. QUAD-RAIL NCL MULTIPLIERS

Additionally, unsigned quad-rail multipliers utilizing Wallace Tree PP summation

have been designed [9, 14]; however, a Wallace Tree is not a regular structure and

therefore cannot be implemented as a generic structure. This thesis addresses this

drawback by developing two new quad-rail multiplication algorithms for generic

14

multipliers: array-structured PP summation and 2s complement PP generation. These

agorithms are then used in generic VHDL implementations of a quad-rail NCL unsigned

MAC and 2s complement multiplier.

15

3. DESIGN AND IMPLEMENTATION OF A GENERIC UNSIGNED QUAD-
RAIL MULTIPLY AND ACCUMULATE UNIT

This section presents the design and VHDL implementation of a generic unsigned

NULL Convention Logic (NCL) quad-rail Multiply and Accumulate (MAC) unit. The

MAC consists of an unsigned quad-rail multiplier and ripple-carry type accumulator,

along with NCL registers and full-word completion circuitry.

3.1. QUAD-RAIL MULTIPLICATION

3.1.1. Partial Product Generation. Since a single quad-rail signal represents two

dual-rail or two binary bits, multiplication of two quad-rail signals is equivalent to

multiplying two 2-bit binary vectors. The maximum value a quad-rail signal can

represent is DATA3 (i.e., Boolean “11”); and the maximum product of two quad-rail

signals, when both are DATA3, is Boolean “1001”, which can be represented by two

quad-rail signals, partial product high (i.e., PPH = “10”) and partial product low

(i.e., PPL = “01”). Since PPH has a maximum value of “10”, it can be represented using a

three-rail signal (i.e., DATA0, DATA1, and DATA2) instead of a quad-rail signal, thus

eliminating one wire. PPL has values from “00” to “11”, and therefore requires a quad-

rail signal. The unsigned quad-rail PP generator, Q33MUL [9, 14], multiplies two quad-

rail inputs and generates a three-rail signal, PPH, and a quad-rail signal, PPL.

3.1.2. Unsigned Quad-Rail Multiplication. Unsigned quad-rail multiplication is

similar to binary multiplication except that each quad-rail signal represents two binary

bits. So two bits in the multiplier are multiplied with two bits in the multiplicand to

generate a PP which consists of partial product high and partial product low as explained

in Section 3.1.1. Figure 3.1 shows multiplication of two 4-bit binary vectors with their

16

PPs and final product. Figure 3.2 shows a 2-bit quad-rail by 2-bit quad-rail multiplication

where the quad-rail multiplicand represents the 4-bit binary multiplicand and the quad-

rail multipier represents the 4-bit binary multiplier of Figure 3.1. Comparing the two

figures, it can be seen that the sum of the first two PP rows in the binary multiplication is

equivalent to the sum of the 1st PP in the quad-rail multiplication. The same holds true

for the sum of the 3rd and 4th PP rows of the binary multiplication and the 2nd PP of the

quad-rail multiplication.

Figure 3.1. Binary multiplication

Multiplying LSB X0 of the quad-rail multiplier with LSB Y0 of the quad-rail

multiplicand results in a value which is equal to the sum of multiplication of the LSB of

the binary multiplier with the last two LSBs of the binary multiplicand and multiplication

of the 2nd LSB of the multiplier with the last two LSBs of the multiplicand, with the

17

second PP row shifted one place to the left. A similar explanation holds true for X0

multipied with Y1, X1 with Y0, etc. Therefore, for any vector length of quad-rail

multiplicand, the sum of the terms in the first PP of a quad-rail multiplication correspond

to the sum of the 1st and 2nd PP rows of binary multiplication. The sum of terms in the 2nd

PP of quad-rail multiplication correspond to the sum of the 3rd and 4th PP rows of binary

multiplication, etc. Thus, one PP in quad-rail multiplication corresponds to two PP rows

in binary multiplication. Each subsequent quad-rail multiplication PP is shifted one

position to the left, the same as for binary multiplication; however one position to the left

in quad-rail multiplication is equivalent to two bit positions, since a quad-rail signal

corresponds to two bits. This is correct, since each quad-rail PP corresponds to two

binary PPs, and hence, each subsequent PP should be left shifted by two bit positions.

The quad-rail PPs can be summed using various algorithms (e.g., array-structured ,

Wallace tree).

Figure 3.2. Quad-rail multiplication

18

3.2. MULTIPLY AND ACCUMULATE

A MAC utilizes a multiplier and adds the product of the current inputs to the

previously accumulated value, which requires the previously accumulated value to be fed

back from the output to add it to the current product. If the accumulator exceeds its

maximum value, OV (overflow) is asserted. The block diagram of an NCL MAC is

shown in Figure 3.3. Any NCL system requires at least two registers, one at the input and

and one at the output, and feedback requires at least three registers in the feedback loop

to avoid deadlock [15].

A c c u m u la to r
R e g is te r

X R e g is te r Y R e g is te r

M u lt ip lie r U n it

A c c u m u la to r U n it

O u tp u t (A) R e g is te r

F e e d b a c k R e g is te r

C o m p

C o m p

C o m p

K

K 0

i

X Y

K i K 0

K i

K 0

A c c u m u la to r R e g is te r

K i

O V

K 0

A

K i K i

K 0 K 0

K 0

X _ le n

A _ le n

X _ le n + Y _ le n

Y _ le nX _ le n

Y _ le n

X _ le n Y _ le n

A _ le n

1 b it d u a l- ra il

O V
A _ le n

A _ le n

A _ le n

A _ le n

A _ le n

Figure 3.3. MAC block diagram

19

3.2.1. Registers. In order to avoid deadlock, three registers are used in the MAC

feedback loop. All registers are reset to NULL except for the feedback register, which is

reset to DATA0 to initialize the accumulator.

3.2.2. Partial Product Generation. Partial products are generated using the

Q33mul component, explained in Section 3.1.2 and shown in Figure 3.4, which generates

the product of two single unsigned quad-rail signals. For an 8×8 multiplication

(i.e., 4×4 quad-rail) the total number of partial products is 4, with each partial product

having two terms (i.e., partial product high and partial product low).

B
3

B
2

B
1

B
0

A
3

A
2

A
1

A
0

TH24compB

D
C

A

TH24compB

D
C

A

2
PPH

2

PPL
3

PPL
1

3

3

TH24compB

D
C

A

1
PPL

0

3

3
PPL

2

1
PPH

0

THand0B

D
C

A
PPH

1

Figure 3.4. Q33mul circuitry [9, 14]

20

3.2.3. Partial Product Summation. After generating the PPs, they need to be

summed to obtain the final product. PPs can be summed with Carry-Save Adders (CSAs)

using a Wallace Tree, Dadda Tree, or array structure [13]. While the Wallace and Dadda

Tree implementations are faster (i.e., O(Log N) vs. O(N) [13], where N is the length of

the multiplier), they do not yield a regular structure that can be used to design a generic

version of the PP summation hardware, where the multiplier and multiplicand lengths can

be varied; whereas the array multiplier is a regular structure. All three PP summation

algorithms require approximately the same amount of hardware, proportional to O(N)

[13].

Carry-save addition is applied continuously until only a Sum and Carry PP row

remain, at which time a Carry-Propogate Adder (CPA) is used to generate the final

product. For array-structured multiplication, the CPA is usually implemented using a

Ripple-Carry Adder (RCA); whereas some type of Carry-Lookahead Adder (CLA) is

normally used with a Wallace Tree or Dadda Tree. This is because a CLA has a worse-

case propogation delay of O(Log N); whereas a RCAs worse-case delay is O(N) [13].

However, for asynchronous circuits that operate based on average-case delay, a RCA is

preferred since both CLAs and RCAs have O(Log N) average-case delay [13] and RCAs

have a regular structure and normally require less hardware.

Hence, for the generic quad-rail MAC designed in this thesis, an array-structured

PP summation algorithm was developed and utilized, followed by a RCA for final

product generation, as shown in Figures 3.5 and 3.6 for 8-bit operands (i.e., 4 quad-rail

signals). Note that the quad-rail PP sumation requires 2 1N − levels of carry-save addition

(i.e., 3 for the 8×8 case); whereas a binary multiplier requires N-1 levels of carry-save

21

addition. Figure 3.5 shows the 2
M × 2

N PP summation array of adders, where M is the

length of the multiplicand, in bits. Note that the equivalent binary multiplier requires an

(M-1)×N adder array. The design of the specific adders are detailed in Section 3.2.5.

Figure 3.5. Array multiplier

3.2.4. Accumulator. The Accumulator adds the current multiplication product to

the previously accumulated value. This is implemented using a RCA; and the output of

this block is fed to the output register from which the output of the MAC is obtained, and

is also fed back to the Accumulator. Figure 3.6 depicts a quad-rail RCA, which adds a

16-bit (i.e., 8 quad-rail signals) product to a 20-bit (i.e., 10 quad-rail signals)

accumulator.

22

Figure 3.6. Accumulator unit

3.2.5. Adders for Array Multiplier and Accumulator. Since the partial

products have both 3-rail MEAG signals (DATA0=”00”, DATA1=”01”, DATA2=”10”)

and quad-rail signals, partial product summation stages need special adders which can

add a combination of quad-rail, 3-rail and dual-rail signals. Dual-rail signals are produced

as carries from some adders whose maximum carry value is ’1’. Following is the list of

required adders, along with their functional description and NCL implementation. Adders

Q3Dadd, Q33Dadd and Q33add are used in the accumulator unit, while the remaining

adders are used in the PP summation of the array multiplier. The circuits were designed

following the method detailed in [15,16].

1. Q33add – This adder, shown in Figure 3.7, is used to add two quad-rail signals.

Sum is a quad-rail signal and Carry is a dual-rail signal. Note that the Sum output

rails are symmetrical, so only rail0 is depicted.This adder is used in the RCA of the

accumulator unit in the least significant position. This adder is used only once and

is used to add partial product low of the least significant partial product in the first

row of partial products to the least significant quad-rail signal of the previously

accumlated value.

23

a) rail0 of the Sum output

b) Carry output

Figure 3.7. Q33add circuitry

24

2. Q32add – This adder, shown in Figure 3.8, is used to add a quad-rail signal and a

three-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal.

Figure 3.8. Q32add circuitry [9, 14]

25

3. Q3Dadd – This adder, shown in Figure 3.9, is used to add a quad-rail signal and a

dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal.

a) Sum output

b) Carry output

Figure 3.9. Q3Dadd circuitry [9,14]

26

4. Q332add – This adder, shown in Figure 3.10, adds two quad-rail signals and a

three-rail signal. Sum is a quad-rail signal and Carry is a three-rail signal. Note that

the Sum output rails are semetrical, so only rail0 is depicted.

a) rail0 of the Sum output

Figure 3.10. Q332add circuitry [9, 14]

27

b) Carry output

Figure 3.10. Q332add circuitry [9,14] (cont.)

28

5. Q322add – This adder, shown in Figure 3.11, is used to add a quad-rail signal and

two three-rail signals. Sum is a quad-rail signal and Carry is a dual-rail signal. Note

that the Sum output rails are symmetrical, so only rail0 is depicted.

a) rail0 of the Sum output

Figure 3.11. Q322add circuitry [9, 14]

29

b) Carry output

Figure 3.11. Q322add circuitry [9, 14] (cont.)

30

6. Q33Dadd – This adder, shown in Figure 3.12, adds two quad-rail signals and a

dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. Note that

the Sum output rails are semetrical, so only rail0 is depicted.

a) rail0 of the Sum output

Figure 3.12. Q33Dadd circuitry

31

b) Carry output

Figure 3.12. Q33Dadd circuitry (cont.)

32

7. Q22Dadd – This adder, shown in Figure 3.13, is used to add two three-rail signals

and a dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. Note

that the Sum output rails are semetrical, so only rail0 is depicted.

a) rail0 of the Sum output

b) Carry output

Figure 3.13. Q22Dadd circuitry

33

8. Q2DDadd – This adder, shown in Figure 3.14, is used to add two dual-rail signals

and a three-rail signal. Sum is a quad-rail signal and Carry is a dual-rail signal. Note

that the Sum output rails are semetrical, so only rail2 is depicted.

a) rail2 of the Sum output

b) Carry output

Figure 3.14. Q2DDadd circuitry

34

9. Q32Dadd – This adder, shown in Figure 3.15, adds a quad-rail signal, a three-rail

signal, and a dual-rail signal. Sum is a quad-rail signal and Carry is a dual-rail

signal. Note that the Sum output rails are semetrical, so only rail0 is depicted.

a) rail0 of the Sum output

Figure 3.15. Q32Dadd circuitry

35

b) Carry output

Figure 3.15. Q32Dadd circuitry (cont.)

10. Q322Dadd – This adder is used to add a quad-rail signal, two three-rail signals,

and a dual-rail signal. Sum is a quad-rail signal and Carry is a three-rail signal.

The Sum and Carry have a maximum of 4 and 3 gate delays, respectively, and are

not shown due to the large size of the circuit.

11. Q3222add – This adder is used to add a quad-rail signal and three three-rail

signals. Sum is a quad-rail signal and Carry is a three-rail signal. Both the Sum

and Carry have a maximum of 4 gate delays, and are not shown due to the large

size of the circuit.

12. Q3322add – This adder is used to add two quad-rail signals and two three-rail

signals. Sum is a quad-rail signal and Carry is a three-rail signal. Both the Sum

36

and Carry have a maximum of 4 gate delays, and are not shown due to the large

size of the circuit. Gate delays for each adder and partial product generation

components is given in the Table 3.1 shown below.

 Table 3.1. Gate delays for MAC components

GATE DELAY

COMPONENT
SUM/PPL CARRY/PPH

Q3322 4 4
Q3222 4 4
Q322D 4 3
Q332 3 3
Q322 3 2
Q33D 3 2
Q32D 3 2
Q33 2 2
Q22D 3 2
Q32 2 2
Q3D 1 1
Q33mul 2 1

3.3. VHDL IMPLEMENTATION

The combinational circuitry components of the MAC were designed and

implemented as structural, gate-level VHDL modules. Every component was subjected to

exhaustive testing using VHDL testbenches specific to the component. These basic

components were then used to create a generic MAC unit, where the length of the input

registers, the number of Q33mul components and the number of rows and columns in the

37

array multiplier change according to the length of the input vectors, X and Y, given as

generic constants, and the length of the accumulator RCA, output register, and feedback

registers change based on the length of the accumulator output, A, also a generic constant.

The functionality of the MAC unit has been verified using exhaustive testbenches

for a 12+6×4 (i.e., 6+3×2 in quad-rail) and 8+4×4 MAC, and a 256 testvector testbench

for a 72+44×24 MAC. Simulation results confirmed that all of the various sized MACs

tested functioned correctly, and showed that the average time per MAC operation

increased proportinal to the length of the multiplier, N as the MAC size grew larger (i.e.,

5.2 ns, 5.9 ns, and 35.6 ns for the 8+4×4, 12+6×4, and 72+44×24 MACs, respectively), as

expected. Simulation results for one operation of the 12+6×4 MAC are given in Figure

3.16, showing that 2303334 + 2234 × 214 = 3030024 (i.e., 287910 + 4310 × 910 = 326610), as

expected. The complete system diagrams of a 24+8×8 (i.e., 12+4×4 in quad-rail),

22+10×8, and 16+8×8 MAC are shown in Figures 3.17, 3.18, and 3.19, respectively.

Figure 3.16. Simulation for 12+6×4 MAC

38

Figure 3.17. Complete system diagram of 24+8×8 MAC

39

Figure 3.18. 22+10×8 MAC

40

Figure 3.19. 16+8×8 MAC

41

4. DESIGN OF A GENERIC 2S COMPLEMENT QUAD-RAIL MULTIPLIER

This chapter presents the design and VHDL implementation of a generic

2s complement NULL Convention Logic quad-rail multiplier. The multiplier is non-

pipelined and utilizes full-word completion; and the partial product generation algorithm

is derived from the modified Baugh-Wooley algorithm [13] for binary mulitplication.

4.1. 2S COMPLEMENT QUAD-RAIL MULTIPLICATION

4.1.1. Registers. The block diagram of a 2s complement NCL quad-rail miltiplier

is shown in Figure 4.1. The circuit has an input register for X and Y inputs and an output

register for the multiplication product, P. The main components of the multiplier are

detailed below.

4.1.2. Partial Product Generation. The 2s complement quad-rail multiplication

algorithm is derived from the binary modified Baugh-Wooley multiplication algorithm

[13]. In binary Baugh-Wooley multiplication, as shown in Figure 4.2 for a 6-bit × 4-bit

multiplier, PPs are generated the same way as for unsigned multiplication, except for the

MSB of all rows, excluding the last row, is complemented, and all PP bits in the last row,

excluding the MSB, are complemented. Additionally, a logic 1 is added at positions M,

N, and M+N, where M and N are the lengths of the multiplicand and multiplier,

respectively. Note that if M and N are equal, logic 1 is added at position M+1 instead of

at positions M and N.

For unsigned quad-rail multiplication, as detailed in Section 3.1, each PP

corresponds to two rows of PPs in binary multiplication, and are generated using the

Q33mul component, which produces a three-rail PPH and quad-rail PPL output. Hence,

42

for 2s complement PP generation, the Q33mul component can be used for all PPs except

for the last row and the most significant PP of the other rows, as shown in Figure 4.3.

Figure 4.1. 2s complement multiplier block diagram

The most significant PP of any row, excluding the last row, is generated using the

multiplicand’s most significant quad-rail signal and the multiplier’s quad-rail signal

corresponding to the particular PP row. A new PP generation component, called MSPP,

generates these most significant PPs, and is designed from Truth Table 4.1, derived from

the binary modified Baugh-Wooley algorithm. This component generates PPH and PPL,

43

the sum of which is equal to the sum of the two MSB PP postions in each of the 2

corresponding binary PP rows, as demonstrated in Figure 4.3.

Figure 4.2. Binary 6×4 2s complement multiplication

Figure 4.3. Quad-rail 2s complement multiplication

44

 Table 4.1. Truth table for partial product generation

 MSPP

 MSLRPP LRPP

 LSLRPP

MD MR

PPH PPL PPH PPL PPL C

 0 0

 1 2

 2 2

 0

 2

 0 1

 1 2

 2 2

 0

 2

 0 2

 1 2

 2 2

 0

 2

 0 3

 1 2

 2 2

 0

 2

 1 0

 1 2

 2 2

 0

 2

 1 1

 1 3

 2 3

 1

 2

 1 2

 2 0

 2 2

 0

 0

 1 3

 2 1

 2 3

 1

 0

 2 0

 1 2

 2 2

 0

 2

 2 1

 1 0

 2 0

 2

 2

 2 2

 0 2

 3 2

 0

 2

 2 3

 0 0

 3 0

 2

 2

 3 0

 1 2

 2 2

 0

 2

 3 1

 1 1

 2 1

 3

 2

 3 2

 1 0

 3 2

 0

 0

 3 3

 0 3

 3 1

 3

 0

45

The last quad-rail PP row corresponds to the last two rows in binary Baugh-

Wooley multiplication, the last of which is complemented; hence, PP generation

components are needed for this last row, including LSLRPP, which generates the least

significant dual-rail PP, C, MSLRPP, which generates the most significant PP, and

LRPP, which generates the rest of the last row’s PPs. These three circuits are designed

from Truth Table 4.1 and the K-map shown in Figure 4.4, derived from the binary

modified Baugh-Wooley algorithm, such that the sum of the last quad-rail PP is

equivalent to the sum of the last two binary PP rows.

LSLRPP, utilizes the most significant quad-rail signal of the multiplier and the

least significant quad-rail signal of the multiplicand to generate a dual-rail signal, C,

which has a value of either 0 or 2. MSLRPP, utilizes the most significant quad-rail signal

of the multiplier and the most significant quad-rail signal of the multiplicand to generate

PPH and PPL, where PPH is a dual-rail signal, with value 2 or 3, and PPL is a quad-rail

signal. Note that this component also takes into account the the logic 1 added at the

(M+N)th bit postion. The remaining last row PPs are generated by LRPP. This component

requires the most significant quad-rail signal of the multiplier, MR, and the multiplicand’s

quad-rail signal corresponding to the particular PP position, MDi, as well as the

multiplicand’s subsequent quad-rail signal, MDi+1, to generate PPH and PPL, both of

which are quad-rail signals.

The logic 1s that need to be added at the Mth and Nth positons, or (M+1)th position

if M equals N, are taken into consideration during PP summation by utilizing special

adders, as detailed in the next section. Circuit diagrams for components MSPP, MSLRPP,

LRPP and LSLRPP are shown in Figures 4.5, 4.6, 4.7 and 4.8, respectively.

46

K-map type minimization diagram for partial product high of the component

LRPP is shown below.

Figure 4.4. K-map for LRPP PPH

47

a) PPH output

b) PPL output

Figure 4.5. MSPP circuitry

48

a) PPH output

b) PPL output

Figure 4.6. MSLRPP circuitry

49

a) rail0 of the PPH output (rail1 and rail2 are symetrical to rail0)

b) rail3 of the PPH output

Figure 4.7. LRPP circuitry

50

c) PPL output

Figure 4.7. LRPP circuitry (cont.)

Figure 4.8. LSLRPP circuitry

51

4.1.3. Partial Product Summation. PPs are summed using array-structured

CSAs, similar to unsigned multiplication, as detailed in Section 3.2.3. However, the

structure needs to be modified slightly to account for the added logic 1s and the slight

variance in PPs, as shown in Figures 4.9 and 4.10. This requires a few additional adders

than the ones explained in Section 3.2.5.

Figure 4.9. 8×8 quad-rail 2s complement partial product summation

52

Figure 4.10. 10×8 quad-rail 2s complement partial product summation

4.1.4. Adders for 2s Complement Array Multiplication. The same adders used

for the unsigned quad-rail multiplier are used for the 2s Complement quad-rail multiplier,

except for Q3Dadd, which is not needed. Additionally, a number of new adders are

needed. PP summation is similar to that in unsigned quad-rail multiplication except for

the last stage, the RCA. This requires an adder, called Q3D2add, to add the least

significant dual-rail signal, C, which has a value of 0 or 2. Depending on the input vector

lengths, different adders are instantiated at positons M and N, or M+1, to account for the

logic 1s. Additionally, the last row’s PPH signals are quad-rail instead of three-rail,

therefore requiring a different adder. These new adder components are detailed below.

1. Q3D02add – This adder, shown in Figure 4.11, is used to add a quad-rail signal and

a dual-rail signal, representing values 0 or 2. Sum is a quad-rail signal while Carry

53

is a dual-rail signal. Note that the Sum output rails are semetrical, so only rail0 is

depicted.

a) rail0 of the Sum output

b) Carry output

Figure 4.11. Q3D02add circuitry

2. Q3D02Cadd – This adder, shown in Figure 4.12, is used to add a quad-rail signal,

a dual-rail signal, representing values 0 or 2, and a constant value of 2, to account

for a logic 1 added at position N. Sum is a quad-rail signal while Carry is a dual-

rail signal. Note that the Sum output rails are semetrical, so only rail0 is depicted.

54

a) rail0 of the Sum output

b) Carry output

Figure 4.12. Q3D02Cadd circuitry

3. Q32D01add – This adder, shown in Figure 4.13, is used to add a quad-rail signal,

a three-rail signal, a dual-rail signal, and a constant value of 1, to account for a

logic 1 added at position M+N. Sum is a quad-rail signal and Carry is a dual-rail

signal. Note that the Sum output rails are semetrical, so only rail0 is depicted.

55

a) rail0 of the Sum output

Figure 4.13. Q32D01add circuitry

56

b) Carry output

Figure 4.13. Q32D01add circuitry (cont.)

57

4. Q32D02add – This adder, shown in Figure 4.14, is used to add a quad-rail signal,

a three-rail signal, a dual-rail signal, and a constant value of 2, to account for a

logic 1 added at position M. Sum is a quad-rail signal and Carry is a three-rail

signal. Note that the Sum output rails are semetrical, so only rail0 is depicted.

a) rail0 of the Sum output

Figure 4.14. Q32D02add circuitry

58

b) Carry output

Figure 4.14. Q32D02add circuitry (cont.)

59

5. Q2DD23add – This adder, shown in Figure 4.15, is used to add a three-rail signal,

a dual-rail signal and another dual-rail signal which has a value of 2 or 3. Sum is a

quad-rail signal and Carry is a dual-rail signal.

a) Sum output

Figure 4.15. Q2DD23add circuitry

60

b) Carry output

Figure 4.15. Q2DD23add circuitry (cont.)

6. Q3332add – This adder is used to add three quad-rail signals and a three-rail

signal. Sum is a quad-rail signal and Carry is a three-rail signal. Both the Sum and

Carry have a maximum of 4 gate delays, and are not shown due to the large size

of the circuit.

7. Q332Dadd – This adder is used to add two quad-rail signals, a three-rail signal,

and a dual-rail signal. Sum is a quad-rail signal and Carry is a three-rail signal.

The Sum and Carry have a maximum of 4 and 3 gate delays, respectively, and are

not shown due to the large size of the circuit. Gate delays for each adder and

partial product generation component is given in the Table 4.2 shown below.

61

 Table 4.2. Gate delays for 2S complement multiplier additional components

GATE DELAY

COMPONENT

SUM/PPL CARRY/PPH

Q3332 4 4
Q332D 4 3
Q32D02 3 2
Q32D01 3 2
Q3D02C 1 1
Q3D02 1 1
Q2DD23 2 1
MSPP 2 2
MSLRPP 2 1
LRPP 1 3
LSLRPP 1 -

4.2.VHDL IMPLEMENTATION

The combinational circuitry components of the 2s complement quad-rail

multiplier were designed and implemented as structural, gate-level VHDL modules.

Every component was subjected to exhaustive testing using VHDL testbenches specific

to the components. These basic components were then used to create a generic multiplier,

where the length of the input registers, output register, the number of Q33mul, MSPP,

and LRPP components, and the number of rows and columns in the array multiplier,

change according to the length of the input vectors, X and Y, given as generic constants.

The functionality of the quad-rail 2s complement multiplier has been verified

using exhaustive testbenches for a 6×4 (i.e., 3×2 in quad-rail) and 4×4 multiplier, and a

256 testvector testbench for a 44×24 multiplier. Simulation results confirmed that all of

the various sized multipliers tested functioned correctly, and showed that the average

time per multiplcation operation increased proportional to the length of the multiplier, N

62

as the multiplier size grew larger (i.e., 3.9 ns, 4.81 ns, and 35.7 ns for the 4×4, 6×4, and

44×24 multipliers, respectively), as expected. Simulation results for one operation of the

6×4 multiplier are given in Figure 4.16 showing that 1234 × 214 = 310034 (i.e., 2710 × -710

= -18910), as expected. The complete system diagrams of an 8×8 (i.e., 4×4 in quad-rail)

and 10×8 multiplier are shown in Figures 4.17 and 4.18, respectively.

Figure 4.16. Simulation results of 6×4 multiplication

63

Figure 4.17. Quad-rail 2s complement 8×8 multiplier

64

Figure 4.18. Quad-rail 2s complement 10×8 multiplier

65

5. CONCLUSIONS AND FUTURE WORK

This thesis presents the design and VHDL implementation of generic versions of

an NCL quad-rail unsigned Multiply and Accumulate (MAC) unit and quad-rail

2s complement multipler. Both system level designs and each sub-component have been

simulated and tested exhaustively using VHDL testbenches, showing that the circuits are

functionally correct. These generic circuit implementations will be utilized in future

versions of NCL synthesis tools to automatically instantiate arithmetic components from

IEEE numeric_std package usage during NCL systhesis. Additional generic NCL

arithmetic components (e.g., divider) also need to be designed to accommodate the full

range of IEEE numeric_std package functions.

The last stage of PP summation for the unsigned MAC was designed using a

RCA; however, this could have instead been combined with the accumulator feedback

input using a CSA, which would have increased throughput [11], since this would only

require one RCA instead of two. Both the MAC and multiplier could be pipelined to

increase throughput; however, if speed is a primary consideration, the PPs should be

summed using either a Wallace Tree or Dadda Tree, not array-structured CSAs, as used

in this thesis.

66

BIBLIOGRAPHY

[1] J. McCardle and D. Chester, “Measuring an Asynchronous Processor’s Power
 and Noise,” Synopsys User Group Conference (SNUG), Boston, 2001.

[2] C. L. Seitz, “System Timing,” in Introduction to VLSI Systems, Addison-

 Wesley, pp. 218-262, 1980.

[3] C. H. (Kees) van Berkel, M. Rem, and R. Saeijs, “VLSI Programming,” 1988

 IEEE International Conference on Computer Design: VLSI in Computers and
 Processors, pp. 152-156, 1998.

[4] D. E. Muller, “Asynchronous Logics and Application to Information

 Processing,” in Switching Theory in Space Technology, Stanford University
 Press, pp. 289- 297, 1963.

[5] K. M. Fant and S. A. Brandt, “NULL Convention Logic: A Complete and

 Consistent Logic for Asynchronous Digital Circuit Synthesis,” International
 Conference on Application Specific Systems, Architectures, and Processors,
 pp. 261-273, 1996.

[6] T. Verhoff, “Delay-Insensitive Codes – An Overview,” Distributed

 Computing, Vol. 3, pp. 1-8, 1988.

[7] G. E. Sobelman and K. M. Fant, “CMOS Circuit Design of Threshold Gates

 with Hysteresis,” IEEE International Symposium on Circuits and Systems (II),
 pp. 61- 65, 1998.

[8] A. Kondratyev, L. Neukom, O. Roig, A. Taubin, and K. Fant, “Checking Delay-

insensitivity: 104 Gates and Beyond,” Eighth International Symposium on
Asynchronous Circuits and Systems, pp. 137-145, 2002.

[9] M. V. Joshi, S. Gosavi, V. Jegadeesan, A. Basu, S. Jaiswal, W. K. Al-Assadi, and

S. C. Smith, “NCL Implementation of 8-bit Dual-Rail Modified Booth Multiplier
using Static and Semi-Static Primitives,” IEEE Region 5 Technical Conference,
April 2007.

[10] S. K. Bandapati, S. C. Smith, and M. Choi, “Design and Characterization of

NULL Convention Self-Timed Multipliers,” IEEE Design and Test of Computers:
Special Issue on Clockless VLSI Design, Vol. 30/6, pp. 26-36, November-
December 2003.

67

[11] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, “NULL
Convention Multiply and Accumulate Unit with Conditional Rounding, Scaling,
and Saturation,” Elsevier’s Journal of Systems Architecture, Vol. 47/12, pp. 977-
998, June 2002.

[12] S. C. Smith, “Development of a Large Word-Width High-Speed Asynchronous

Multiply and Accumulate Unit,” Elsevier’s Integration, the VLSI Journal, Vol.
39/1, pp. 12-28, September 2005.

[13] Behrooz Parhami, Computer Arithmetic Algorithms and Hardware Designs,

Oxford University Press, New York, 2000

[14] S. C. Smith, “Designing NULL Convention Combinational Circuits to Fully

Utilize Gate-Level Pipelining for Maximum Throughput,” International
Conference on VLSI, pp. 407-412, June 2004.

[15] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb, “Optimization

of NULL Convention Self-Timed Circuits,” Elsevier’s Integration, the VLSI
Journal, Vol. 37/3, pp. 135-165, August 2004.

[16] S. C. Smith, “Integrating Asynchronous Digital Design into the Undergraduate

Computer Engineering Curriculum,” ASEE Midwest Section Annual Conference,
September 2006.

[17] M. L. Dertouzos, Threshold Logic: A Synthesis Approach, Cambridge, M. I.
 T. Press, 1965.

[18] Lewis & Coates, Threshold Logic, New York: John Wiley & Sons, Inc., 1967.

[19] C. Sheng, Threshold Logic, New York: Ryerson Press, 1969.

[20] S. R. Mallepalli, S. Kakarla, S. Burugapalli, S. Beerla, S. Kotla, P. K. Sunkara, W.

K. Al-Assadi, and S. C Smith, “Implementation of Static and Semi-Static
Versions of a Quad-Rail NCL 24+8×8 Multiply and Accumulate Unit, IEEE
Region 5 Technical Conference, April 2007.

68

VITA

Samarsen Reddy Mallepalli was born on April 2, 1981 in Wanaparthy, India. He

received the degree of Bachelor of Engineering in Electronics and Communications from

Muffakham Jah College of Engineering and Technology, Osmania University,

Hyderabad in June 2002. After obtaining his bachelor’s degree, he worked as an Engineer

in Hindustan Aeronautics Limited, Bangalore, India. He joined the Master of Science

program in Computer Engineering at the University of Missouri-Rolla in August 2005.

He received his Master of Science degree in Computer Engineering at the University of

Missouri-Rolla in December 2007. His research with Dr. Scott C. Smith in the University

of Missouri-Rolla has concentrated in the area of Asynchronous Delay-Insensitive Digital

Design using NULL Conventional Logic.

	Generic algorithms and NULL Convention Logic hardware implementation for unsigned and signed quad-rail multiplication
	Recommended Citation

	Generic algorithms and NULL Convention Logic hardware implementation for unsigned and signed quad-rail multiplication

