

Scholars' Mine

Masters Theses

Student Theses and Dissertations

1967

A study of film boiling of liquid nitrogen and liquid argon over a wide pressure range with cylindrical heaters

V. J. Flanigan

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Mechanical Engineering Commons Department:

Recommended Citation

Flanigan, V. J., "A study of film boiling of liquid nitrogen and liquid argon over a wide pressure range with cylindrical heaters" (1967). *Masters Theses*. 5171. https://scholarsmine.mst.edu/masters_theses/5171

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A STUDY OF FILM BOILING OF LIQUID NITROGEN AND LIQUID

ARGON OVER A WIDE PRESSURE RANGE WITH

CYLINDRICAL HEATERS

ΒY

VIRGIL J. FLANIGAN, JR.

А

DISSERTATION

submitted to the faculty of

THE UNIVERSITY OF MISSOURI AT ROLLA

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

Rolla, Missouri

1967

Approved by

(advisor)

Hand Mean A.

TABLE OF CONTENTS

Abstract	Page t						
Acknow1	edgements						
List of	Illustrations						
List of	Tables						
CHAPTER							
I.	Introduction						
II.	Previous Work						
III.	Experimental Equipment						
IV.	Experimental Procedure						
V.	Theory of Corresponding States As Applied to Film Boiling						
VI.	Results						
VII.	Discussion of Results						
VIII.	Discussion of Error In Measurement						
IX.	Conclusions						
Nomenclature							
Bib liogr	aphy						
Appendic	es						
Α.	Experimental Data						
В.	Sample Calculation						
C.	Calculated Physical Properties						

Vita

ABSTRACT

A film boiling heat transfer study was conducted with three different diameter cylindrical copper heaters over a wide range of pressures for nitrogen and argon with the heat transfer surface in the horizontal position.

The data were compared to the commonly used film boiling heat transfer relations. The common relations were found to be considerably in error for the range of variables covered in this investigation. A semi-empirical equation for corresponding states fluids which correlates the available data as a function of the reduced temperature and reduced pressure was derived and discussed.

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. E. L. Park for assistance, guidance and advice during this study.

The author acknowledges support of the National Science Foundation whose grant made this study possible.

The assistance of Mr. Richard Smith, R. T. Montgomery, T. C. Wilson, and the never ending encouragements of my wife, Louise, are furthermore appreciated.

LIST OF ILLUSTRATIONS

Figur	e	ŀ	Page
1.	A Typical Boiling Heat Transfer Curve		3
2.	Pressure and Condensing System - Schematic Diagram		14
3.	Heat Transfer Element		15
4.	Film Boiling Results for Argon at 56 psig, 0.95 in Diameter Heater		22
5.	Film Boiling Results for Nitrogen, 0.55 in. Diameter Heater.	0	23
6.	Film Boiling Results for Nitrogen, 0.75 in. Diameter Heater.		24
7.	Film Boiling Results for Nitrogen, 0.95 in. Diameter Heater.		25
8.	Film Boiling Results for Argon, 0.55 in. Diameter Heater	•	26
9.	Film Boiling Results for Argon, 0.75 in. Diameter Heater	•	27
10.	Film Boiling Results for Argon, 0.95 in. Diameter Heater		28
11.	Comparison of Nitrogen Film Boiling Data with Equation 3		30
12.	Comparison of Argon Film Boiling Data with Equation 3	•	31
13.	Comparison of Nitrogen Film Boiling Data with Equation 12 .	•	33
14.	Comparison of Argon Film Boiling Data with Equation 12		34
15.	Comparison of Nitrogen Film Boiling with Equation 16		36
16.	Comparison of Argon Film Boiling with Equation 16		37
17.	Comparison of Nitrogen Film Boiling Data with Modified Equation 16		39
18.	Comparison of Argon Film Boiling Data with Modified Equation	16	40
19.	Comparison of Argon Film Boiling Data with Modified Equation	16	41
20.	Comparison of Film Boiling Data with Equation 17		43
21.	Comparison of the Argon and Nitrogen Film Boiling Data with Equation 17	ø	44

]	Page
I.	Deviation	of	${\tt Thermocouples}$	from	Standard	Tables					48

CHAPTER I

INTRODUCTION

This study deals with film boiling as defined in the following discussion and shown in Figure 1. Figure 1 is the entire boiling curve as first predicted by Nukiyama (18)* in 1934. This curve is broken up into four distinct regions which can best be understood by considering a heat transfer surface submerged in a saturated liquid. As the temperature of the surface is raised slightly above the saturation temperature, convection currents circulate the liquid and evaporation occurs at the free surface. This region is described as the convection region (region I in Figure 1). As the surface temperature is raised further, bubbles begin to form at specific points on the surface. The locations where bubbles form are called nucleation sites. This region, characterized by the formation of nuclei is named the nucleate boiling region (region II, in Figure 1). As the temperature is increased further, more sites are activated until the surface is completely covered with bubbles forming a continuous vapor film which is specified as point A on Figure 1. This point is known as the burn-out point or the critical heat flux point. The nucleate boiling region is of special importance, because of the very high heat fluxes obtained with a small temperature difference.

As the temperature is further increased, the film forms and collapses rapidly, causing an increased resistance which quickly drops the heat transfer rate. This unstable film region continues until point B (the Leidenfrost point). The Leidenfrost point is the point where the film is continuous and becomes stable even though the film surface is in violent agitation.

^{*} Numbers in parentheses refer to listings in Bibliography.

The region to the right of the Leidenfrost point is denoted as the film boiling region (region IV), and is of interest in this investigation.

The film boiling data presently available over a wide range of pressures seem to be very limited. More data are required in order that theoretical equations and the effects of pressure and diameter on film boiling can be checked.

This study was originated to provide data for the above reasons and to provide design data for nitrogen and argon.

Figure 1 A Typical Boiling Heat Transfer Curve

Log Heat Flux

S

CHAPTER II

PREVIOUS WORK

Scorah and Farber (11) were the first investigators to completely describe the boiling curve. Nukiyama (18) had difficulty in his work. He was not able to describe the region between the maximum and minimum points, A and B. The work of Scorah and Farber also predicted a heat transfer element material dependence in the stable film boiling region. Later work contradicts these findings.

The first investigator to suggest a method of predicting heat transfer coefficients for natural convection film boiling was Bromley (4). Bromley derived a relation analogous to Nusselt's equations for condensation by replacing ρ in Nusselt's equation by $\rho_1 - \rho_v$. The resulting equation was:

h = Const
$$\frac{\left[k^{3}\rho_{v}(\rho_{1} - \rho_{v})g\right]^{\frac{1}{2}}}{\Delta T_{\mu_{v}}D}$$
 (1)*

The relation is for horizontal tubes. The value of the constant was found by empirical means to be 0.62. By theoretical considerations, the value of the constant should be 0.512 if the liquid is assumed stagnant and 0.724 if the liquid moves with the vapor. Bromley suggested that correction for radiation could be made by assuming parallel plates, which in effect assumes that the transmissivity of the liquid is zero.

Bromley's assumed relation predicts that the heater material had no effect on the convective coefficient and his experimental data confirmed the assumption.

The work of Banchero, Barker and Boll (2) for film boiling of liquid oxygen over a large pressure range with considerable variation in heater

* Numbers underlined in parentheses refer to equations.

diameters pointed out the limitations of Bromley's equation. They point out that Bromley's relation seems to be limited to diameters of 0.069 inches to 0.127 inches. The **authors** present the following (equation 2) which is a modification of Bromley's relation (equation 1).

where a equals a constant which is dependent on the boiling substance. The above equation seems to give a better correlation for the entire range of variables than Bromley's (3). The form of the equation also allows it to be adapted to flat plates. The values of a and C are determined by a trial and error fit of the available data. The authors found the quantity **a** to be a temperature dependent function and C to be equal to 36.5 inches⁻¹.

Bromley corrected his relation to account for the sensible heat of the vapor (5). His corrected relation is given below:

$$h = 0.62 \qquad \left[\frac{k^3 \rho_v (\rho_1 - \rho_v) g \lambda'}{\Delta T_\mu D} \right]^{\frac{1}{2}} , \quad (3)$$
where
$$\lambda' = \lambda \left(\frac{1 + 0.4 C_p T}{\lambda} \right)^2 .$$

Subsequently it was shown (3) that a better fit could be obtained by equation 1 if the correction constant used in equation 3 was 0.34 rather than 0.4.

Bromley (5) also suggested that his relation could easily be adapted to vertical surfaces, by substituing L for D, and changing the value of the constant C_2 . Bromley's vertical surface relation is given:

$$h = C_2 \left[\frac{k^3 \rho_v (\rho_1 - \rho_v) g \lambda'}{\mu_v L \Delta T} \right]^{\frac{1}{4}}$$
 (4)

Again, a better fit can be obtained by using 0.34 (3) instead of 0.4. The theoretical value of C_2 is 0.667 if the liquid is stagnant and 0.943 if the liquid has the same velocity as the vapor. Bromley presented no data to check his vertical surface relation; however, Hsu and Westwater (14) investigated this condition and found that Bromley's relation (3) predicted heat transfer coefficients much too low when compared to their experimental values for tubes in the vertical position. The authors used a method suggested by Colburn (9) for film type condensation on vertical surfaces. This relation converted to film boiling is:

$$h\left[\frac{\mu_{V}^{2}}{k^{3}\rho_{V}(\rho_{1}-\rho_{V}) g}\right] = \frac{\left(\frac{4W}{\pi D\mu}\right)}{22\left(\frac{C_{D}}{k}\mu\right)^{-1/3}\left[\left(\frac{4W}{\pi D\mu_{V}}\right)^{-3.64} + 12,800\right]} + 12,800$$

The above relation produces better results than Bromley's relation for all Reynolds numbers above 2000. The Reynolds number is defined as $\frac{4W}{\tau D\mu}$ where W is the maximum vapor mass flow rate. This Reynolds number points out the main limitation of Bromley's equation, the fact that laminar flow was assumed. In later work, Hsu and Westwater (13) proposed another relation for film boiling on vertical surfaces. They used an approach which assumed a turbulent core and a laminar sublayer and ignored the buffer zone between the regions. The division between the zones was determined by the universal velocity profile. The relation is given below:

$$\frac{\mathrm{hL}}{\mathrm{k}_{\mathrm{V}}} = \frac{2 \lambda' \,\mu_{\mathrm{V}} \mathrm{Re}^{*}}{3 \mathrm{k}_{\mathrm{V}} \,\Delta \mathrm{T}} + \frac{\mathrm{B} + 1/3}{\mathrm{A}} \left[\left(\frac{2}{3} \left(\frac{\mathrm{A}}{\mathrm{B} + 1/3} \right) \left(\mathrm{L} - \mathrm{L}_{\mathrm{O}} \right)^{-1} \left(\frac{1}{\mathrm{y}} \frac{2}{\mathrm{y}} \right)^{2} \right]^{-1} \left(\frac{1}{\mathrm{y}} \frac{1}{\mathrm{y}} \right)^{3} \right], \quad (\underline{6})$$
where
$$\mathrm{A} = \left(\frac{\mathrm{g}\left(\rho_{1} - \rho_{\mathrm{V}} \right)}{\rho_{\mathrm{V}}} \right) \left(\frac{1}{\mu_{\mathrm{V}} \mathrm{Re}^{*}} \right),$$

$$\mathrm{Re}^{*} = \frac{\mathrm{y}^{*} \mathrm{u}^{*} \rho_{\mathrm{V}}}{\mu_{\mathrm{V}} \mathrm{v}}, \quad \mathrm{and}$$

$$B = \begin{bmatrix} \mu_{v} & + & f_{\rho_{v}} & \mu_{v} \text{Re}^{*} \\ & & \frac{1}{2\rho_{v}} & & \frac{1}{\lambda} \end{bmatrix} \begin{pmatrix} k_{v} & \Delta T \\ & & \frac{1}{\lambda} \end{pmatrix}$$

Chang (7) suggested that, possibly, a relation for film boiling could be obtained by analyzing the waves formed in vapor release or by applying the instability concept of Taylor. Chang (7) suggested that equation (7)be used to correlated film boiling data from horizontal surfaces.

Nu = 0.234 (Pr* Gr*) 1/3 (7)

$$Pr* = \frac{\gamma}{a_{c}}, Gr* = \frac{g \rho_{V}^{2} L^{3}}{\mu_{V}^{2}} \left(\begin{array}{c} \rho_{1} - \rho_{V} \\ \rho_{V} \end{array} \right),$$

$$Nu = \frac{Lh}{k_{V}}$$

$$a_{c} = \frac{k_{V} \theta_{V}}{2 \lambda \rho_{V}}, \quad \theta_{V} = T_{sat} - T_{W} ,$$

$$Pr* = Pr \left(\frac{2\lambda}{c_{pV} - \theta_{V}} \right),$$

$$y* = \frac{2 \mu^{2} V Re*^{5}}{g \rho_{V} (\rho_{1} - \rho_{V})} ,$$

$$L_{o} = \frac{\mu_{V} Re* \lambda' y^{*}}{2k_{V} \Delta T} ,$$

$$(7)$$

and

Re* = 100

For low subcooled boiling
$$\begin{pmatrix} 1 & 10^{\circ} F \end{pmatrix}$$

Pr* = Pr $\begin{pmatrix} 2\lambda \\ C_{pv} \rho_{v} \end{pmatrix}$ + $\begin{pmatrix} 2\theta_{1} & C_{p1} \rho_{1} \\ \theta_{v} & C_{pv} \rho_{v} \end{pmatrix}$

The L_o denotes the point at which Bromley's equation fails to correlate with published data and y* denotes distance normal to the surface of maximum vapor velocity. Re* was given a value of 100 which denotes the transition between viscous

.

and turbulent flow as supported by Rohsenow's (25) computation of 80 to 120 for critical Reynolds numbers during condensation on vertical surfaces in the presence of large shear stresses. Using the data for water, the relation's of Bromley (3) and Chang (7) were compared. The Chang relation seemed to fit the data much better than that of Bromley relation. For the case of subcooling, the thermal diffusity α_c used in the calculation of the generalized Prandtl number must be found from another equation which is considerably more complicated. Chang presents a correction for radiation. In the case where radiation should be considered, the value of equivalent thermal diffusivity α_c must be corrected in the relations.

Chang also proposed an equation for the surface in the vertical position. The vertical position relation is (8).

$$(Nu) = \frac{L'h}{k_V} = 0.72 (Pr*Gr)^{\frac{1}{4}}$$
 . (8)

Berenson (1) used the above approach in developing a correlation for film boiling from horizontal surfaces. His relation is

$$h = 0.425 \left[\frac{k_v^3 \rho_v g (\rho_1 - \rho_v)}{\mu v \Delta T} \right]^{\frac{1}{2}} \qquad (9)$$

The major difference between (9) and Bromley's (3) is the term $\left(\frac{\mu_{c} \alpha}{g(\rho_{1} - \rho_{V})}\right)^{\frac{1}{2}}$. The relation (9) seemed to be effective only near the minimum point of the film boiling region.

Breen and Westwater (3) continued the investigation of film boiling from a cylindrical surface with its axis in the horizontal position. They conducted experiments with a large variation in diameter and with two different fluids. The range of diameters used was from 0.185 to 1.895 inches. They found that the heat flux and the heat transfer coefficient were not monotonous functions of tube diameter. The data showed that as the diameter was increased the heat transfer coefficient began decreasing rapidly and then increased slowly to a flat plateau. This behavior was explained by the critical diameter which must be a function of the fluid. The curves seem to support the hydrodynamic wave length theory. When Bromley's equation (3) was compared to the data, Bromley's equation failed to predict the value of heat transfer coefficient at wave lengths much greater than the hydrodynamic wave length. The hydrodynamic wave length $\lambda_{\rm D}$ for a flat plate is:

$$\lambda_{\rm D} = \sqrt{3} \lambda c \qquad (10)$$

where

$$c = 2\pi \left[\frac{g_{c\sigma}}{g(\rho_1 - \rho_v)} \right]^{\frac{1}{2}}.$$
 (11)

Breen and Westwater using these parameters claimes a general relation (12) for film boiling from horizontal cylinders.

$$\frac{h(\lambda c)^{\frac{1}{2}}}{F} = 0.59 + 0.069 \quad \frac{\lambda c}{D} \quad . \tag{12}$$

They also proposed an alternate relation due to the asymptotic characteristics of the equation at large and small diameters and the agreement with Bromley's equation (3) at intermediate diameters. The alternate relations are given in equations 13A, 13B, and 13C

for
$$\frac{\lambda c}{D} < 0.8$$
, $h(\lambda c)^{\frac{1}{2}}/F = 0.60$. (13A)

for
$$0.8 < \frac{\lambda c}{D} < 8$$
, $h(D)^{\frac{1}{2}}/F = 0.62$. (13B)
for < 8 $\frac{\lambda c}{D}$, $h(\lambda c)^{\frac{1}{2}}/F = 0.16 (\lambda c/D)^{0.83}$. (13C)

Park (21) attempted to fit his data with the Breen and Westwater correlation. He found that the correlation was not general and would not give a satisfactory fit to these film boiling data for nitrogen and methane over a considerable pressure range. He also noticed that the high temperature difference data indicated a temperature difference dependence not accounted for in the Breen and Westwater correlation. Park (21) reported a decrease in the heat flux as the critical pressure is approached. This effect became apparent at reduced pressures greater than 0.9 (the reduced pressure is defined as the absolute pressure divided by the critical pressure of the substance).

Sciance (26) did not record this effect in his continuation of the work of Park; however, his pressures did not exceed a reduced pressure of 0.9.

Wayner and Bankoff (29) have reported some interesting work. They have increased heat transfer rates by the use of porous plates and removing the vapor being formed by suction through the plate. Within certain limits the heat flux and vapor rate could be independently varied, and there was an increase in the heat transfer coefficient by a factor of as much as 2.5 over the nonporous film boiling. Pai and Bankoff (20) reported a continuation of this work.

Tachibana and Fukui (28) reported the effects of film boiling in a subcooled liquid. They presented curves of the effect of the subcooled liquid on film boiling of water from horizontal wires.

The objective of this investigation is to provide film boiling data for design purposes and to determine whether film boiling data for corresponding states fluids can be correlated by application of the principle of corresponding states.

DESCRIPTION OF THE EXPERIMENTAL EQUIPMENT

The equipment used in the investigation consisted of three heat transfer elements, a pressure vessel, a power source, a pressure gauge, and a recording potentiometer.

Three heat transfer elements (0.95, 0.75 and 0.55 inches 0.D.) were constructed and were designed so that they could withstand the thermal shock of going through the burnout point and operating with a 1000° F temperature difference. The design consisted of heat treated Lavatite cores of 0.40 inch diameter for the 0.75 and 0.95 O.D. heaters and of 0.25 inch diameter for the 0.55 inch 0.D. heater. The cores were threaded 12 threads per inch and in the threads, number 26 gauge tungsten wire was wrapped. The tungsten wire was held by nuts on 4-40 machine screws which were screwed into the end of the cores. The screws also acted as the power terminals for the heaters. After the tungsten wire was wrapped on the heaters, they were coated with Sauereisen Electrical Resistor Cement, #78 paste, and allowed to air dry. The cores were then cemented into the outer heat transfer surface with the same cement and dried in a furnace for two hours at 200°F. The heat transfer surfaces consisted of three copper cylinders three inches long with 0.95, 0.75, and 0.55 inches O.D. and with 0.5, 0.5, and 0.35 I.D., respectively.

In each of the three heat transfer surfaces, three thermocouple wells 0.052 inches in diameter and 1 inch deep were drilled 90 degrees apart. Solder was then melted in the wells until they were full. While the solder was molten, 25 gauge copper-constantan thermocouples were placed in the wells. The solder minimized the contact resistance between the heat transfer element and the thermocouples.

Styrofoam plugs with the same diameters as the heaters and of $\frac{1}{2}$ inch thickness were attached to the ends of the heaters to reduce the end losses.

The power was supplied by a Hobart 300 amp, 40 volt, Model M B 204 D.C. Welder connected in a series with a load box which consisted of several fixed size resistors which could be added or subtracted in parallel. The load box and the fine and coarse voltage controls on the welder were used for power control.

The power was measured by using a Weston Model I (class 50) voltmeter to measure the voltage drop across the heater. A Weston Model I (class 50) ammeter was used to measure the current flow through the heater.

The pressure vessel was a one gallon autoclave, described by Sciance (26), which was manufactured by Autoclave Engineers, Inc. The autoclave was 5 inches I.D. by twelve inches deep and was fitted with two l½ inch diameter windows, which were horizontally opposed. The flange of the vessel was fixed and the high-pressure cylinder could be raised or lowered pneumatically to or from the flange. The power leads and thermocouples were brought in through openings in the flange. The gland mounted in the flange for the thermocouples was a Conax MHM-062-Al60T gland with Teflon sealant. The copper-constantan thermocouples leads passing through the gland were Conax 310SS6T-B-PJFC-NONE-18", which were connected to the heater thermocouples. The power leads supported the heater from the flange so that the autoclave could be opened for inspection without disturbing the heater.

The pressure of the vessel was controlled by the amount of liquid nitrogen passing through the internal cooling coils (Figure 2). The liquid nitrogen was stored in Linde LS 110B and LS 156 dewars and was delivered to the system at 235 psig. The system was protected from over pressurization by a Black, Sivall and Bryson rupture disc rated at 960 psi at 72°F.

The pressure of the autoclave was measured with a Heise Bourdon tube pressure gauge with a 16 inch dial. This gauge was graduated from 0 to 1000 psi in 1 psi increments with an accuracy of \pm 1 psi. All connections shown in Figure 2 were 316 stainless steel $\frac{1}{2}$ inch tubing with $\frac{1}{2}$ inch 0.D. and 0.065 wall. The valves were Whitey No. 1 Series 0.25 inch valves (number IRS4-316).

The thermocouple leads came from the flange to a liquid nitrogen reference junction and then were connected to a Leeds and Northrup rotary thermocouple switch which was used in conjunction with Texas Instruments, Servoriter II, single pen recorder. One iron-constantan thermocouple was also used to check for subcooling and was read with a Leeds and Northrup 2436 portable potentiometer.

Figure 2. Pressure and Condensing System - Schematic Diagram

Figure 3. Heat Transfer Element

CHAPTER IV

EXPERIMENTAL PROCEDURE

A series of runs was made with each heater in the horizontal position. Each series consisted of runs at seven different pressures from atmospheric pressure up to 95 percent of the critical pressure for both argon and nitrogen.

To begin a series of runs, the autoclave was cooled by allowing nitrogen to flow through the fill line into the autoclave and out the vent opening in the vessel. The valve was also opened slightly to the cooling coil to maintain the coils at the proper temperature (Figure 2). When the level of the liquid nitrogen reached the top of the window (seven inches), the fill line was closed and the vent plug replaced. The system was then checked for leaks and the pressure raised or lowered to reach 34 psig. The pressure was controlled by regulating the amount of nitrogen flowing through the condensing coils. After reaching 34 psig, the power at the minimum setting was turned on and the system examined for malfunctions. The power was then increased until the burn-out point was reached and then controlled until the heat transfer surface temperature was approximately 70°F. Steady state adjustments were made by watching the temperature versus time plots from the recording potentiometer and making adjustments with the fine adjustment on the power source. After reaching steady state, the three thermocouple outputs were recorded. The power was then reduced and another operating point was recorded. Steady state observations were made with the heat transfer surface temperature range varying between 70°F and approximately 60°F above the boiling point of the fluid, which is a function of pressure. The pressure was then increased to the next pressure and the procedure repeated. After completing the six pressure runs, the pressure was again reduced to 34 psig

and another run made to check the reproducibility of the data.

The power was then turned off and the fill line was opened to the atmosphere allowing the nitrogen to bleed off to the surroundings.

The equipment was left open for an hour at which time the argon bottle was connected to the fill lines. The autoclave was pressurized to 50 psig with gaseous argon and again vented to the surroundings to reduce the contamination. The liquid nitrogen was then allowed to flow through the condensing coils and the regulator on the argon bottle was set at 50 psig and the fill line opened. After a period of time, the argon began condensing. When the argon level reached the top of the window (7 inches) the regulator and the fill line valve was closed.

The pressure was then adjusted to 56 psig and maintained at this level for the first argon run. The procedure was exactly the same as for the nitrogen.

After completing the seven runs for the argon, the autoclave was lowered and a dewar of liquid nitrogen was put in place of the autoclave to make an atmospheric nitrogen run. The same procedure used for the other runs was used during the atmospheric run. The atmospheric nitrogen run could not be done in the autoclave because the condensing coils were not large enough to maintain zero gauge pressure.

During each run the bulk temperature of the boiling liquid was monitored to assure the boiling liquid was at its saturation temperature.

CHAPTER V

THEORY OF CORRESPONDING STATES AS APPLIED TO FILM BOILING

The theory of corresponding states may be safely regarded as the most useful by-product of the van der Waal's equation of state. Presently this equation is recognized to be of little or no value, but the theory of corresponding states correctly applied is extremely useful and accurate.

Pitzer (22) has stated a set of assumptions sufficient to lead to the principle of corresponding states for liquids and showed that argon, krypton and xenon have several properties in accordance with the principle. Pitzer's assumptions are:

- I. "Classical statistical mechanics will be used".
- II. "The molecules are spherically symmetrical, either actually or by virtue of rapid and free rotation".
- III. "Intramolecular vibrations will be assumed the same in the liquid and gas states".
- IV. "The potential energy will be taken as a function only of the various intermolecular distances".
 - V. "The potential energy for a pair of molecules can be written $A\phi(R/R_o)$ where R is the intermolecular distance, A and R_o are characteristic constants and ϕ is a universal function".

Guggenheim (11) restates the assumptions above. He restates assumption one as, "that any distinction between Fermi-Dirac statistics and Bose-Einstein statistics has a negligible effect"; and assumption II as, "that effects of quantization of the translational degrees of freedom is negligible". Assumptions I and II are satisfied provided (mKT) $\frac{1}{2}v^{1/3}$, h, where m denotes molecular mass, T absolute temperature and v volume per molecule. Assumption III is restated to say the intramolecular degrees of freedom are assumed to be completely independent of the volume per molecule. This assumption and assumption II and IV rule out highly polar molecules. Assumption V turns out to be a useful approximation for many non-polar molecules.

With these five assumptions satisfied, it can be shown that the equation of state is of the form

$$\frac{P}{P_c} = u \left(\frac{T}{T_c}, \frac{v}{v_c}, Z_c \right)$$
(14)
where $Z_c = P_c V_c / RT_c$

where u is a universal. but complicated function. The above expression is the general expression of the principle of corresponding states.

Examining some characteristics of fluids which obey the principle of corresponding states, it is noticed that of the critical compressibility factor of argon, krypton, nitrogen, oxygen, carbon monoxide and methane all are within 1.5% of 0.292. Another interesting characteristic is the temperature where change of sign of second virial coefficient occurs called the Boyle point (where the virial equation of state is $\frac{P_V}{RT} = 1 + \frac{B(t)}{v} + \frac{C(t)}{v^2}$). When the Boyle point is divided by the critical temperature for neon, argon and oxygen, the values agree within 1%; for nitrogen, carbon monoxide and methane, it agrees within 5 to 8%. The second virial coefficient divided by the critical volume plotted against the reduced temperature ratio has approximately the same shape for all these gases. This property means that physical properties of corresponding states fluids can be expressed as functions of the reduced temperature and the reduced pressure or the reduced volume. Thodos (10, 19, 27) has done considerable work in predicting thermal conductivity, viscosity, surface tension and coefficients of thermal expansion in this manner.

In film boiling studies with corresponding states (luids, the properties of interest seem to be: density of the vapor, viscosity, thermal conductivity, specific heat, and latent heat of vaporization. These properties for any of the corresponding states fluids then can be evaluated by an equation, which is a function only of the reduced temperature and pressure. If saturation conditions are defined, the equation will only be a function of reduced temperature. With this result, the data of this investigation should be able to be correlated as a function of the reduced temperature, reduced pressure and the diameter of the heat transfer element. The equation should be of the form given below:

h =
$$f(T_r, P_r, D)$$

or:
h = $f(T_r)$ if D and P_r are constant (15)

CHAFTER VI

RESULTS

During the course of taking the experimental data a radial temperature difference was noticed between the three thermocoupler spaced 90° apart. Similar gradients were also noticed by Park (21) and Sciance (26). The data for the 0.95° and the 0.75° heaters were completely duplicated. All the data for a given pressure run were fitted using a least squares program. This program gave the local best polynomial fit of the experimental data. The program finds the best fit by minimizing the standard deviation. The experimental data for one representative sample run are whost to Figure 4

The best fit for the data in Figure 4 is a straight line with an average deviation of 8,98% and a maximum deviation of 26.27. This figure not only gives an example of the data taken, but points out the device of reproducibility of the results. The data taken in all the runs are shown in appendix A. The average of the average deviation for all the data are 3.60% and the maximum average deviation for any set of data was 10.05% which was the data for argon at 655 psig using the 0.95 inch reader. The least square fits for all data taken for the three different besters in argon and nicrogen are shown in Figures 5 through 10. It should be pointed out that the data are plotted as the heat flux versus the temperature difference. This is not the standard procedure in boiling heat transfer. Typically the plots are made with the logarithm of the temperature difference versus the logarithm of the heat flux. This procedure of plotring the logarithms tends to disguise the scatter of the data.

(1)

Figure 4 Film Boiling Results for Argon at 56 psig, 0.95 in Diameter Heater

Figure 5 Film Boiling Results for Nitrogen, 0.55 in. Diameter Heater

Figure 6 Film Boiling Results for Nitrogen, 0.75 in. Diameter Heater

Figure 7 Film Boiling Results for Nitrogen, 0.95 in. Diameter Heater

Figure 8 Film Boiling Results for Argon, 0.55 in. Diameter Heater

Figure 9 Film Boiling Results for Argon, 0.75 in. Diameter Heater

ν.

Figure 10 Film Boiling Results for Argon, 0.95 in. Diameter Heater

CHAPTER VIL

DISCUSSION OF RESULTS

The curves for argon at 655 psig for all heaters point out a decrease in the heat flux when operating close to the critical pressure, but this phenomenon is questionable in the nitrogen data. A decrease is noticed in the data for 0.95 inch diameter heater, but for the other two heaters. a decrease is not present over the complete range of temperatures. Park (21) reported this decrease in heat flux for both nitrogen and methane, but Sciance (26) did not find it to exist in his continuation of Park's work, however, Sciance and Park's pressure ranges are not the same. In all of the data, crossing of the constant pressure curves can either be seen or extrapolation of the curves would yield the crossing. This indicates that an increase in heat flux with pressure does not occur over the entire AT range. Instead, the increase or decrease of heat flux with pressure is a function of the absolute value of the temperature difference and also the closeness to the critical point in some cases. Excluding the behavior near the critical point it can be seen that at low temperature difference, a decrease in heat flux is experienced with increasing temperature and at high temperature differences an increase is experienced. The point of crossing seems to be somewhere between 75°F and 150°F which is approximately 200°F lower than the value predicted bv Park

The experimental data were compared with Browley's predicted curve (equation 3) in Figures 11 and 12. The plots clearly show that there would be a large error if Bromley's equation (equation 3) is used to predict heat transfer coefficients in this range of temperature differences and for these pressures. The equation could be modified by changing the constant

Figure 12 Comparison of Argon Film Boiling Data with Equation 3

در ب in order to obtain a curve which would pass through the center of the data. But this modification still would not yield a satisfactory relation, and the increase in the constant would be difficult to justify.

The experimental data were also compared to the predicted curve of Breen and Westwater, $^{(3)}$ Figures 13 and 14. The only restriction placed on the predicted curves was that the diameter of the heater does not equal "the most dangerous wave length". This wave length varied from 0.00187 ft. at 655 pounds per square inch to 0.0291 ft. at 56 pounds per square inch for argon and from 0.00306 ft. at 453 pounds per square inch to 0.0332 ft. at atmospheric pressure for nitrogen. The diameters of the heaters were 0.0458, 0.0625, and 0.0792 ft. which are above the value of "the most dangerous wave length". With "the most dangerous wave length" requirement satisfied, these data should be a test of the generality of the predicted curve. The comparison of the data obtained with Breen and Westwater's equation is shown in Figures 13 and 14. In both cases, the data show that equation (12) is not general. A relation could be made by passing a modified curve through the data. The difficulty in doing this is that, in each run, the data tends to all be plotted at a constant value of $\lambda_{\rm c}/D$ for each different pressure.

The real difficulty in this type of relation is in using the quantity F as defined by Bromley (4). The properties that define F are found at the mean film temperature and then F is found by taking the fourth root of $\frac{k^3 \rho_v (\rho_1 - \rho_v) \lambda'}{\Delta T \mu}$. Taking the fourth root of this quantity tends to remove or smooth the variation due to temperature. Also, the values used in defining F can be very difficult to obtain. The difficulty in finding data or physical properties becomes especially apparent when the pressures

Figure 13 Comparison of Nitrogen Film Boiling Data with Equation 12

Figure 14 Comparison of Argon Film Boiling Data with Equation 12

approach the critical pressure. In this study, the thermal conductivity, viscosity and surface tension at high pressures were found by using the values predicted by Park ⁽²¹⁾ for nitrogen. For argon, the generalized compressibility charts (13) were used to obtain the density, specific heat, and latent heat of vaporization. Viscosity and surface tension were predicted as discussed in Appendix C. Tables (16,22) were available for the other properties. With this difficulty in defining the properties, it is hard to evaluate the validity of a relation.

Another interesting phenomenon was noticed in the plot of the Breen and Westwater relation: the results for high temperature differences were always closer to the predicted curve and results for the low temperature difference were always farther away. This phenomenon was also reported by Park (21).

The difficulty in evaluating the properties in Bromley's and Breen and Westwater's relations makes a correlation like the one of Branchero, Barker and Boll (2),

h =
$$a_2(\frac{1}{D} + c)P^{\frac{1}{4}}$$
, (16)

shown in Figure 15 and 16 especially attractive. The only problem is that the values for a_2 were evaluated for oxygen. Assuming that the values of a_2 for oxygen are correct for nitrogen and argon, the data are compared to the correlation in Figure 15 and 16. It can be seen that the correlation is not satisfactory, but there are some interesting aspects to be discussed. The appearance of the equation is very similar to what was predicted in the theory section for corresponding states fluids. The heat transfer coefficient is given as a function of temperature difference, pressure and diameter.

Considering this approach, the values of a2 were modified by taking

Figure 15 Comparison of Nitrogen Film Boiling with Equation 16

 ω_{γ}

a ratio of the critical temperatures raised to a power and the ratio of the critical pressures raised to the one fourth power. This relation for nitrogen is shown in Figure 17. The ratio of critical temperatures was raised to 1.25 power and multiplied by a_2 . The relation seems to fit the nitrogen data well, but it would be expected that this same ratio should produce a satisfactory correlation for the argon data. This relation was compared to the argon data in Figure 18. It is noticed that the deviation is large. In order to obtain a satisfactory fit for the argon data, the power of the ratio was increased to 9.4. The results are shown in figure 19. Even though the variation of a_2 cannot be justified in terms of corresponding states, it is pointed out that a correlation can be found for the data just by varying a_2 . This means that the diameter change can be accounted for by the factor (1/D + C) where C = 36.5 in.⁻¹ and that the effect of changing pressure is a function of $p^{\frac{1}{2}}$.

With the function known for the change in diameter and the change in pressure, an equation of the form:

$$h = {}^{\circ} 2(\frac{1}{D} + C)P_r^{\frac{1}{2}}$$
 where $C = 36.5$ in.⁻¹ (17)

will be assumed. The changes made in the Banchero, Barker, and Boll relation are: instead of the absolute pressure raised to the one fourth power the reduced pressure ratio is substituted. And, α_2 will be expressed as a function of the mean film reduced temperature ratio. This equation is truly a corresponding states equation and is of the form predicted in the theory section.

The variation of α_2 was found by dividing the experimental heat transfer coefficient by the diameter and pressure factor and recorded at the value of the mean film reduced temperature ratio. The values of α_2 were calculated for all the nitrogen and argon data of this investi-

Figure 17 Comparison of Nitrogen Film Boiling Data with Modified Equation 16

Figure 18 Comparison of Argon File, Boiling Data with Modified Equation 16

Figure 19 Comparison of the Argon Film Boiling Data with Modified Equation 16

gation and for the data of Park (21) and Eanchero, Burker and Boli (2).

Values of α_{L}^{*} versus mean film critical temperature ratio were then fitted with a least squares program. The least squares fit was a third degree polynomial and the data were fitted with an average deviation of 18.71%. The polynomial least squares fit was:

$$a_2 = 8.49 - 8.24T_r + 2.97T_r^2 - 0.267T_r^3$$

Using this α_2 and equation (<u>17</u>), the predicted values of h were calculated and plotted in Figure 20.

Referring to Figure 20, most of the data fall within the 20% deviation lines plotted on the graph, except for some of the low temperature difference argon data and the data of Park. The data of Park do not seem to vary in any given relation, but seems to be scattered over the entire curve. The Banchero, Barker, and Boll data were lower than the predicted curve, but within 20% of it in most cases. It might be pointed out that the average deviation of Figure 20 is the same as the deviation of a_2 .

The α_2 versus mean reduced temperature ratio was also fitted using only the data of this experiment. The least square fit again was a third degree polynomial. The polynomial was given as:

$$a_2 = 13.38 - 15.53T_r + 6.14T_c^2 - 0.588T_r^3$$

This polynomial fitted the data of this investigation with an average deviation of 14.54%. The predicted values of n for this investigation were calculated using the equation above and plotted in Figure 20. It is noted again that at some of the higher values of h for the argon, considerable disagreement occurred.

Figure 20 Comparison of Film Boiling Data with Equation 17

1

t

Figure 21 Comparison of the Argon and Nitrogen Film Boiling Data with Equation 17

It should be pointed out that the disagreement of the α_2 's is not as large as it might seem by examining the two polynomials. The values are almost equivalent at the lower values of h, but vary at the higher values. Corresponding states theory would predict that the polynomials would be equivalent.

A restriction must be placed on a_2 in these relations; it should be noted that the range of data was from a mean film reduced temperature ratio of 1.7 to approximately 0.8 and any extrapolation could be in error. This is especially true for the results at low values of this ratio.

It should also be pointed out that in the figures not all the data were plotted, but only a representative sample. Selection was always made to include the entire temperature range of the data.

While taking the data for this investigation, an interesting phenomenon was observed which might have some effect on further film boiling work. It was noticed that the bubbles physical characteristics were different while the equipment was at steady state as compared to the transient state involved in changing steady state operating points. The bubbles were large and of varied spacing at steady state but were small and fairly evenly spaced during transients. This phenomenon would question the validity of using transient data for steady state conditions or vice-versa.

It was also noticed during the course of the investigation that surface effects did not affect the heat transfer. The initial runs were made in February and the final runs in May and June. The heaters were left exposed to the atmosphere, and surface conditions changed considerably due to oxidation over this period. Even with this change in surface conditions, there did not seem to be any difficulty in reproducing the data.

CHAPTER VIII

DISCUSSION OF ERROR IN MEASUREMENT

Park (21) discussed in detail the inherent error associated with nucleate and film boiling; therefore, error analysis will not be discussed in great detail here.

The current could be read accurately within $\frac{1}{2}$ 0.125 amps and the voltage, when less than 30 volts, could be read accurately within $\frac{1}{2}$ 0.075 volts. The product of these errors is less than 1 percent.

The thermocouples could be read accurately to \pm 0.005 millivolts which corresponds to \pm 0.25°F. The thermocouples were calibrated by placing the reference junction in liquid nitrogen and the three heaters in a liquid nitrogen bath in a solid - liquid, acetone bath and an ice water bath. The fixed temperature of the three baths allowed the calculation of the deviation from standard tables (N. B. S. Circular 561). The calibration for the thermocouples in the heater was only possible for thermocouple number 2 and 4. The thermocouple lead in the flange for the number 1 thermocouple was broken during operation. The deviations for the two thermocouples of the three heaters and the bath thermocouple are given in Table I.

The locations of the thermocouples during each run should also be pointed out. Thermocouple number 1 was on top of the heater, thermocouple number 2 was spaced 90° from 1 on the side of the heater, and number 4 was on the bottom. During the first set of runs for the 0.75 and 0.95 inch heaters, the thermocouples were attached to the heater as described by Cobb (8). Considerable temperature variation was recorded, so the thermocouple mounting was then changed by filling the wells with molten solder

TABLE I

Deviation of Thermocouples from Standard Tables

0.55 in. Heater

TEMPERATURE °C	THERMOCOUPLE	DEVIATION MILLIVOLTS		
-196.18	2	-0,000		
	4	-0.000		
	Bath	-0.085		
-94.6	2	0.024		
	4	0.026		
	Bath	-0.043		
0.0	2	.057		
	4	.050		
	Bath	0.00		
	0.75 in. Heater			
-196.18	2	0.00		
	4	0.00		
-94.6	2	0.025		
	4	0.02/		
0.0	2	0.054		
	ζ.	0.031		
	0.95 in. Heater			
-196 18	2	0.00		
* > 0 * 1 0	4	0.00		
-94,6	2	0.026		
	4	0.025		
0.0	2	0.053		
	4	0.052		

and inserting the thermocouples. The temperature variation was reduced considerably. Insertion of thermocouples in wells filled with solder is considered a much better method of thermocouple mounting.

The magnitudes of heat lost from the end of the cylinders can be calculated for the cylinders if the equation q = -kAdt/dx is written in the form $q = \frac{kA\Delta T}{\Delta x}$ and if temperature measurements are made axially along the cylinder. Park (20) did this in his investigation and found that the maximum heat loss for film boiling was 4.8%. Banchero, Baker and Boll (2) with a cylindrical heater having an L/D of 0.375 reported that axial temperature gradient were virtually eliminated. Park's heaters had an L/D of 0.547 and the heaters used in this investigation had L/D of 0.316, 0.40 and 0.546. Therefore, temperature gradients would be expected to be in the range of Park's and Banchero's copper heaters, since all heaters were fabricated of copper. Thus the heat loss would be in the range reported by Park.

CHAPTER IX

CONCLUSIONS

- Film boiling heat transfer of corresponding states fluids can be correlated using the principle of corresponding states with less than 20% average deviation.
- 2. The variation of the heat transfer coefficient in film boiling with cylindrical heaters due to a change of diameter is a function of the reciprocal of the diameter of the heat transfer element.
- 3. The change of the heat transfer coefficient due to a change of pressure is a function of the pressure raised to the one fourth power.
- 4. The decrease in film boiling heat flux at a given temperature difference as the critical pressure is approached as stated by Park (20) is questionable. More work in this area is needed before a conclusive statement can be made.
- 5. It is questionable whether surface chemistry affects the film boiling heat flux.
- It is questionable whether transient film boiling data can be used for steady state design applications.

```
A - Area. ft^2
   a - constant in equation 2,
   a_2 - constant in equation 16, \frac{Btu in}{hr ft^2 \circ_F} (psia),
  C - constant in equation 2, inches<sup>-1</sup>,
  c_{p} - Heat Capacity, Btu/lb°F,
  D - Diameter, Ft,
  E - Potential, volts
 F = \frac{k^{3} \rho_{v} (\rho_{1} - \rho_{v}) g \lambda'}{\Delta T \mu} \stackrel{\frac{1}{2}}{\text{hr ft}^{2} \circ F},
g = Acceleration due to gravity, ft/sec<sup>2</sup>
 g_{c} - Gravitational Constant, \frac{1b_{m} ft}{1b_{f} sec^{2}},
 Gr* - Generalized Grashof Number,
 h - Heat Transfer coefficient, Btu/hr ft<sup>2</sup> °F,
 I - Current, amp,
 k - Thermal Conductivity, Btu/hr ft<sup>2</sup>°F/ft,
 L - Length, ft,
 M - Molecular Weight, 1b/1b-mole,
 Nu* - Generalized Nusselt Number,
 P - Pressure, psi,
Pr - Prandtl Number,
Pr* - Generalized Prandtl Number,
Q - Rate of heat transfer, Btu/hr,
T - Temperature, °R,
^{\Delta}T - Temperature Difference (T<sub>surface</sub> - T<sub>wall</sub>), °F or °R,
v - Specific volume, ft<sup>3</sup>/1b,
W - Maximum vapor mass flow rate, 1b<sub>m</sub>/sec,
```

Greek Symbols

$$\sigma - Surface Tension, lb/ft,$$

$$\lambda - \frac{g \sigma}{g_c (o_1 - o_v)}^{\frac{1}{2}}, ft,$$

$$u - Viscosity, lb/ft hr,$$

$$\rho - Density, lb/ft^3,$$

$$\alpha - Equivalent Thermal Diffusivity, ft^2/hr,$$

$$\gamma - Kinematic Viscosity, ft^2/hr,$$

$$\lambda - Latent Heat of Vaporization Btu/lb_m,$$

$$\theta - Temperature difference, °R$$

Subscripts

c refers to the critical point,

v refers to the vapor,

1 refers to the liquid,

r refers to reduced property, $({\rm T}/{\rm T}_{\rm c}^{},~{\rm etc.})$

BIBLIOGRAPHY

- 1. Berenson, P. J., "Film Boiling Heat Transfer from a Horizontal Surface", J. Heat Transfer, Vol. 83, 1961, P. 351.
- 2. Banchero, J. T, Barker, G. E., and Boll, R. H., "Stable Film Boiling of Liquid Oxygen Outside Single Horizontal Tubes and Wires", Heat Transfer. <u>Chemical Engineering Progress, Symposium Series</u>, Vol. 51, No. 17, American Institute of Chemical Engineers, New York, 1965. P. 21.
- 3. Breen, B. P. and Westwater, J. W., "Effect of Diameter of Horizontal Tubes on Film Boiling Heat Transfer", Chem. Eng. Prog., Vol. 58, July 1962, P. 67.
- Bromley, L. A., "Heat Transfer in Stable Film Boiling" <u>Chem Eng. Prog.</u>, Vol. 46, May 1950, P. 221.
- Bromley, L. A., "Effect of Heat Capacity of Condensate", <u>Industrial and</u> <u>Engineering Chemistry</u>, Vol. 44, December 1952, P. 2966.
- 6. Chang, Y. P., "A Theoretical Analysis of Heat Transfer in Natural Convection and in Boiling", <u>Trans. A. S. M. E.</u>, Vol. 79, 1957, P. 1501.
- 7. Chang, Y. P., "Wave Theory of Heat Transfer", J. Heat Transfer. Vol. 1. January 1959, P. 1.
- Cobb, C. B., "A Study of Surface and Geometric Effects on the Nucleate Boiling of Liquid Nitrogen and Liquid Argon from Atmospheric to the Critical Pressure", Ph.D. Thesis, University of Missouri at Rolla, 1967.
- 9. Colburn, A. P., ibid. 26, 432 (1934)
- Damasius, G., and Thodos, G., "Coefficient of Thermal Expansion: Reduced State Correlation for the Gaseous and Liquid States of Pure Substances Having Simple Molecular Structure", <u>Chemical Engineering Progress Sym-</u> posium Series, Vol. 59, No. 14, P. 42.
- Farber, E. A. and Scorah, R. L., "Heat Transfer to Water Boiling Under Pressure", <u>Trans. Am. Soc, Mech. Eng.</u>, May 1948, P. 369.
- 12. Guggenheim, E. A.., <u>Thermodynamics</u>, North-Holland Publishing Co., Amsterdam, 1959.
- Hougen, O. A., Watson, K. M. and Ragatz, R. A., <u>Chemical Process</u> <u>Principles</u>, Part II., John Wiley & Sons, Inc., New York, 1959.
- 14. Hsu, Y. Y. and Westwater, J. W., "Film Boiling From Vertical Tubes". <u>A. I. Ch. E. J.</u>, Vol. 4, No. 1, March 1958, P.58.
- Hsu, Y. Y. and Westwater, J. W., "Approximate Theory for Film Boiling on Vertical Surfaces". <u>Chemical Engineering Progress Symposium Series</u>, No. 30, Vol. 5, 6, P. 15.

- 16. Johnson, V. J., <u>A Compendium of the Properties of Materials at Low</u> <u>Temperatures</u>, WADD Technical Report, Part I, 1960.
- Jossi, J. A., Stiel, L. I., and Thodos, G., "The Viscosities of Pure Substances in the Dense Gaseous and Liquid Phases" <u>A. I. Ch. E. J.</u>, Vol. 8, March 1962, P. 59.
- 18. Nukiyama, S. J., Soc. Mech. Engr's. (Japan), Vol. 37, 1931, P. 367.
- 19. Owens, E. J. and Thodos, G., "Thermal Conductivity Reduced State Correlation for the Inert Gases", <u>A. I. Ch. E. J.</u>, Vol. 3, 1957, P. 454.
- Pai, V. K. and Bankoff, S. G., "Film Boiling of Nitrogen with Suction on an Electrically Heated Horizontal Porous Plate: Effect of Flow Control Element Porosity and Thickness", <u>A. I. Ch. E. J.</u>, Vol. 11, No. 1, 1965, P. 65.
- Park, E. L., Jr. "Nucleate and Film Boiling Heat Transfer to Methane and Nitrogen from Atmospheric to the Critical Pressure", Ph.D. Thesis University of Oklahoma, 1965.
- Perry, J. H., <u>Chemical Engineer's Handbook</u>, McGraw-Hill Company, Inc. New York, 1950, PP. 272-273.
- Pifzer, K. S., "Corresponding States for Perfect Liquids", J. Chemical Phys., Vol. 7, Aug. 1939, P. 583.
- Prutton, C. F. and Marion. S. H., <u>Fundamental Principles of Physical</u> <u>Chemistry</u>, The MacMillian Co. New York, 1951.
- 25. Rohsenow, W. M., Webber, J. H. and Ling, A. T., <u>Trans. Am. Soc. Mech.</u> Engrs. 78, 1637, (1956).
- 26. Sciance, C. T, Ph.D. Thesis, University of Oklahoma, 1966.
- 27. Steil, L. I. and Thodos, G., <u>A. I. Ch. E. J</u>., Vol. 7, 1961, P. 611.
- 28. Tachibana, F. and Fukui, S., "Heat Transfer in Film Boiling to Subcooled Liquids". Journal
- Wayner, P. C., Jr. and Bankoff, S. G. "Film Boiling of Nitrogen with Suction on an Electrically Heated Porous Plate", <u>A. I. Ch. E. J.</u>, Vol. 11, No. 1, 1965, P. 59.
- 30. Zuber, N., Trans. A. S. M. E., Vol. 80, 1958, P. 711.

APPENDIX A

EXPERIMENTAL DATA

NITROGEN ATM 0.55

LEAST SQUARES POLY COEFF. ARE:

Δ(()) =	0.98204840E 04
Δ(1)=	-0.28091880E 01
Α (2)=	0.91176740E-01

DELTA T	HEAT FLUX	CALC. HEAT F	LUX % DEVIATION	H
0.37750000E 03 0.33600000E 03 0.30100000E 03 0.27000000E 03 0.24200000E 03 0.19230000E 03	0.21600000E 0.19600000E 0.16900000E 0.15800000E 0.14400000E 0.12700000E	05 0.21666470E 05 0.19307310E 05 0.17304580E 05 0.15651120E 05 0.14346960F 05 0.12723480E	$\begin{array}{cccc} 0.5 & -0.3078 \\ 0.5 & 1.4933 \\ 0.5 & -2.3940 \\ 0.5 & 0.9422 \\ 0.5 & 0.3683 \\ 0.5 & -0.1849 \end{array}$	57.2195 59.3333 55.1462 58.5185 59.5041 66.0426
AVERAGE DE	VIATION =	0.94842650 %	DEGREE = 2	

NITROGEN 34 0.55

LEAST SQUARES POLY COEFF. ARE:

	$\begin{array}{rcl} A(&0)=&0.222\\ A(&1)=&-0.121\\ A(&2)=&0.482\\ A(&3)=&-0.508 \end{array}$	61530E 05 34400E 03 99990E 00 45040E-03		
DELTA T	HEAT FLUX	CALC. HEAT FLUX	3 DEVIATION	U
0.40530000E 03 0 0.40580000E 03 0 0.36580000E 03 0 0.36680000E 03 0 0.35180000E 03 0 0.35180000E 03 0 0.30780000E 03 0 0.28430000E 03 0 0.28580000E 03 0 0.28580000E 03 0 0.23780000E 03 0 0.21230000E 03 0 0.21230000E 03 0 0.16430000E 03 0 0.16730000E 03 0 0.35180000E 03 0 0.35180000E 03 0 0.36580000E 03 0 0.30430000E 03 0 0.30430000E 03 0 0.30430000E 03 0 0.30430000E 03 0 0.30430000E 03 0 0.21680000E 03 0 0.21830000E 03 0 0.21840000E 0 0.21840000E 0	•18500000E 05 •17350000E 05 •17350000E 05 •17350000E 05 •16700000E 05 •15550000E 05 •15550000E 05 •15200000E 05 •15200000E 05 •13780000E 05 •13780000E 05 •13300000E 05 •13100000E 05 •13100000E 05 •13100000E 05 •13400000E 05 •13400000E 05 •135600000E 05 •13750000E 05 •137500000E 05 •13750000E 05 •13750000E 05 •137500000E 05 •13750000E 05 •1375000E 05 •137500E 05 •137500E 05 •137500E 05 •150	0.18478620E 05 0.18483000E 05 0.17705200E 05 0.17733110E 05 0.17270300E 05 0.17286100E 05 0.15802280E 05 0.15836170F 05 0.15084310E 05 0.13824580E 05 0.13824580E 05 0.13844170E 05 0.13844170E 05 0.13844170E 05 0.13432800E 05 0.13432800E 05 0.1343180F 05 0.13129600F 05 0.13133180F 05 0.13684300E 05 0.13684300E 05 0.15684300E 05 0.15684300E 05 0.15684300E 05 0.15650820F 05 0.13492000F 05	$\begin{array}{c} 0.1155\\ 0.0919\\ -2.0473\\ -2.2081\\ -3.4150\\ -3.5096\\ -1.6224\\ -1.8404\\ 1.0666\\ 0.7611\\ -0.3236\\ -0.4657\\ -0.9985\\ -1.1422\\ -0.2260\\ -0.2533\\ 6.0538\\ 5.9682\\ -0.5404\\ -0.3258\\ 1.8764\\ 1.7236\end{array}$	$\begin{array}{r} 4\\ 45 \cdot 6452\\ 45 \cdot 5889\\ 47 \cdot 4303\\ 47 \cdot 3010\\ 47 \cdot 5377\\ 47 \cdot 4701\\ 50 \cdot 5198\\ 50 \cdot 3562\\ 53 \cdot 4646\\ 53 \cdot 1840\\ 58 \cdot 1926\\ 57 \cdot 9478\\ 62 \cdot 6472\\ 62 \cdot 2077\\ 79 \cdot 3024\\ 52 \cdot 3024\\ 52 \cdot 3024\\ 52 \cdot 3024\\ 52 \cdot 3024\\ 51 \cdot 2652\\ 51 \cdot 4342\\ 63 \cdot 425\\ 63 \cdot 9867\\ \end{array}$
AVERAGE DEVIA	TION = 1.6625	51600 ¥ DEG	REE = 3	

A-2

LEAST SQUARES POLY COEFF. ARE:

Δ (0)=	0.22630340E 05
Α(1)=	-0.11237550E 03
Α (2)=	0.52812000F 00
Δ (3)=	-0.59797210E-03

DELTA T	HEAT FLUX	CALC. HEAT FI	UX Y DEVIATION	h-4
0.31100000E 03 0.31400000E 03 0.33800000E 03 0.33850000E 03 0.29050000E 03 0.29200000E 03 0.25950000E 03 0.21850000E 03 0.21850000E 03 0.22200000E 03 0.15950000E 03 0.15950000E 03	0.20950000E 0.20950000E 0.21900000F 0.21900000F 0.19710000E 0.19710000E 0.18680000F 0.18680000E 0.17100000E 0.17100000E 0.15710000F 0.15710000F	05 0.20767000E 05 0.20897240E 05 0.21905750E 05 0.19972570E 05 0.19937780E 05 0.18510360E 05 0.18570190E 05 0.17096170E 05 0.17096170E 05 0.17096170E 05 0.17096170E 05 0.17096170E 05 0.17096170E 05 0.17097300E 05 0.15596670E 05 0.15713000E 05 0.15713000E 0.15713000E 05 0.5751500E 0.575150E 0.575150E 0.575	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67.3633 66.7197 64.7029 64.6972 67.8485 67.5000 72.4031 71.98469 78.2609 77.0270 98.4953 97.8816
AVERAGE D	EVIATION =	0.45830370 %	DEGREE = 3	

A-3

NITROGEN 231 0.55

LEAST SQUARES POLY COEFF. ARE:

Δ (0)=	0.10144540E	05
Δ (1)=	0.15044990E	04
Δ (2)=	0.76283370F	03

DELTA T	HEAT FLUX	CALC. HEAT FLUX	* DEVIATION	H
0.29499970E 03 0.29399970E 03 0.30949970E 03 0.31149970E 03 0.26749970E 03 0.26949970E 03 0.26949970E 03 0.24549990E 03 0.21599990E 03 0.21599990E 03 0.21749990E 03	0.21150000F 05 0.21150000F 05 0.22200000E 05 0.19600000E 05 0.19600000E 05 0.19600000E 05 0.18450000F 05 0.18450000E 05 0.18450000E 05 0.17050000E 05 0.17050000E 05 0.14600000E 05	0.21791560E 05 0.21790430E 05 0.21342750E 05 0.21276680E 05 0.20608870E 05 0.20608870E 05 0.18494310E 05 0.18546250E 05 0.15604680E 05 0.156735000E 05 0.15735000E 05	-3.0334 -3.0281 3.8615 4.1591 -5.1473 -5.9238 -0.2402 -0.5217 8.4769 7.7126 -3.9109	71.6950 71.9388 71.7286 71.4976 73.2711 72.7273 75.3061 75.1527 78.9352 78.3908 90.1235
0.16399990F 03	0.14600000F 05	0.14975290F 05	-2.5705	89.0244

AVERAGE DEVIATION = 4.04881700 % DEGREE = 2

NITROGEN 370 0.55

LEAST SQUAPES POLY COEFF. ARE:

		Δ { Δ { Δ {	0) = 1) = 2) =	0.7984 0.2259 0.7050	48000E 96610E 07610E	04 04 03				
DELTA T		HE,	AT FLUX		CALC.	HEAT	FLUX	% DEVIAT	IUN	н
0.32249970F 0.32349970E 0.30999970E 0.29049970F 0.29049970F 0.27999970F 0.2334990F 0.2334990E 0.2014990E 0.2014990E 0.2014990F 0.1549990F	03 03 03 03 03 03 03 03 03 03 03 03 03 0	0.23 0.23 0.21 0.19 0.19 0.17 0.15 0.15 0.15 0.13 0.13	000000E 630000E 630000E 200000E 200000E 450000E 450000E 61000E 610000E 610000E	00000000000000000000000000000000000000	0.236 0.239 0.211 0.213 0.187 0.181 0.173 0.173 0.169 0.169 0.123 0.123	69500F 90370F 55810F 55810F 91870F 62000F 62000F 62000F 62000F 62000F 62000F 62000F 62510F 42510F 42510F	05 05 05 05 05 05 05 05 05 05 05 05	-2.91 -3.87 2.19 1.46 5.10 5.25 0.50 -8.62 -8.74 5.01	109 712 923 530 516 507 043 047 323 540 576 576	71.3179 71.0974 70.0000 69.7742 68.4492 68.5715 74.7324 74.7324 74.5727 77.85554 77.6617 83.8710 83.8710

AVERAGE DEVIATION = 4.10748600 % DEGREE = 2

NITROGEN 429 0.55

LEAST SQUARES POLY COEFF. ARE:

	A(0) = - A(1) = - A(2) = - A(3) = -	0.18035440E 05 0.16611750E 03 0.11551430E 01 0.18763630E-02		
DELTA T	HEAT FLUX	CALC. HEAT FLUX	* DEVIATION	<u>j.</u> 4
0.29900000E 03 0.29900000E 03 0.27300000E 03 0.27150000E 03 0.24050000E 03 0.24050000E 03 0.20850000E 03 0.20750000E 03 0.17000000E 03 0.16900000E 03 0.14000000E 03	0.2160000E 0.2160000E 0.2020000E 0.1920000F 0.1920000F 0.1640000E 0.1640000E 0.13900000E 0.13900000E 0.13900000E 0.12300000E 0.12300000F	050.21488530F05050.21488530E05050.20587300E05050.20518750E05050.18792980E05050.16617650E05050.16546960E05050.13965610E05050.13901530E05050.12265640E05050.12265640E05	$\begin{array}{c} 0.5160\\ 0.5160\\ -1.9174\\ -1.5780\\ 2.1199\\ 2.2854\\ -1.3271\\ -0.8961\\ -0.4721\\ -0.0110\\ 0.2793\\ 0.2793\\ 0.2793\end{array}$	72 • 2408 73 • 9927 74 • 4015 79 • 8337 80 • 0000 78 • 6571 79 • 0361 81 • 7647 82 • 2485 87 • 8571 87 • 8571
AVERAGE D	EVIATION =	1.01647000 %	DEGREE = 3	

LEAST SQUARES POLY COEFF. ARE:

Δ (0)=	0.34605270E 0	14
A	1)=	0.64340190F C	12

DELTA T	HEAT FLUX		CALC. HEAT FI	LUX	# DEVIATION	н
0.30150000E 03 0.30150000E 03 0.27900000E 03 0.27900000E 03 0.24000000E 03 0.23900000E 03 0.21050000E 03 0.21050000E 03 0.17050000E 03 0.13700000E 03 0.13650000E 03 0.22800000E 03 0.22600000E 03	0.22900000E 0.22900000E 0.21200000E 0.21200000E 0.18900000E 0.18900000E 0.16800000E 0.16800000E 0.16800000E 0.14300000E 0.12300000E 0.12300000E 0.18500000E 0.18500000E	05555555555555555555555555555555555555	0.22821740E 0.22821740E 0.21405020E 0.21405020E 0.18926000E 0.18862050E 0.17031170E 0.16998910E 0.14434830E 0.14467480E 0.12236420E 0.12203440E 0.12203440E 0.18157270E 0.18028870E	055555555555555555555555555555555555555	$\begin{array}{c} 0 & 3417 \\ 0 & 3417 \\ -0 & 9671 \\ -0 & 9671 \\ -0 & 1376 \\ 0 & 2008 \\ -1 & 3760 \\ -1 & 1840 \\ -0 & 9429 \\ -1 & 1712 \\ 0 & 5169 \\ 0 & 7850 \\ 1 & 8526 \\ 2 & 5466 \end{array}$	75.9536 75.9536 75.9857 75.9857 79.7500 79.0795 79.8100 83.8710 83.8710 89.7810 90.1099 81.1404 81.8594
AVERAGE	DEVIATION =	0.95	222830 %		DEGREE = 1	

A**-**7

NITROGEN ATM 0.75

LEAST SQUARES POLY COEFF. ARE:

	$\begin{array}{c} A(\ 0) = \ 0.61 \\ A(\ 1) = \ -0.21 \\ A(\ 2) = \ 0.15 \\ A(\ 3) = \ -0.16 \end{array}$	795780E 04 204390E 02 225240E 00 442010E-03		
DELTA T	HEAT FLUX	CALC. HEAT FLUX	% DEVIATION	Н
0.39200000E 03 0.38550000E 03 0.39650000E 03 0.34050000E 03 0.34500000E 03 0.34500000E 03 0.27750000E 03 0.27750000E 03 0.280500000E 03 0.301500000E 03 0.29600000E 03 0.22300000E 03 0.22300000E 03 0.22500000E 03 0.22500000E 03 0.1950000E 03 0.1950000E 03 0.19350000E 03	0.11350000F 05 0.11350000E 05 0.10150000E 05 0.10150000E 05 0.10150000E 05 0.10150000E 05 0.85200000E 04 0.85200000E 04 0.90300000E 04 0.90300000E 04 0.90300000E 04 0.72000000E 04 0.72000000E 04 0.72000000E 04 0.55000000E 04 0.65000000E 04	0.11353690F 05 0.11216400E 05 0.11444920E 05 0.10136730F 05 0.99948160F 04 0.10251810E 05 0.84954800F 04 0.83813390E 04 0.85720850F 04 0.91170030E 04 0.92088160F 04 0.92088160F 04 0.70999840F 04 0.72411090E 04 0.65339960F 04 0.653913120F 04	$\begin{array}{c} -0.0326\\ 1.1770\\ -0.8364\\ 0.1307\\ 1.5289\\ -1.0031\\ 0.2878\\ 1.6275\\ -0.6113\\ -0.9635\\ 0.6298\\ -1.9802\\ 0.0374\\ 1.3891\\ -0.5710\\ -0.5730\\ 0.9192\\ -1.4048 \end{array}$	28.9541 29.4423 28.6254 29.8091 30.2985 30.2985 30.7027 31.2039 30.5067 32.9502 32.00067 32.9510 32.9510 32.9510 32.00067 32.9510 32.0000 34.1207 35.0404 33.5917

AVERAGE DEVIATION = 0.86962600 % DEGREE = 3

LEAST SQUARES POLY COFFE. ARE:

Δ (Δ (Δ ($\begin{array}{rcl} 0) = & 0.206\\ 1) = & 0.110\\ 2) = & -0.863\\ 3) = & 0.325\\ 4) = & -0.404 \end{array}$	09760E 04 88970E 05 40000E 04 60710E 04 55320E 03		
DELTA T HE	AT FLUX	CALC. HEAT FU		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5000000F 05 5000000F 05 5000000F 05 3000000F 05 3000000F 05 300000F 05 300000F 05 300000F 05 300000F 04 8300000F 04 8300000F 04 8300000F 04 8300000F 04 8000000F 05 900000F 04 900000F 05 900000F	0.12523420E 09 0.12667360E 09 0.12413650E 09 0.13598620E 09 0.13598620E 09 0.13598620E 09 0.13623230E 09 0.10761970F 09 0.11018700E 09 0.11018700E 09 0.11224060F 09 0.11224060F 09 0.95724800F 04 0.96915030F 04 0.96915030F 04 0.96915030F 04 0.96915030F 04 0.96915030F 04 0.96915030F 04 0.96915030F 04 0.98420310F 04 0.72014250F 04 0.72014250F 04 0.72014250F 04 0.14055610F 05 0.13204190F 05 0.13204190F 05 0.113204190F 05 0.113200F 05 0.113200F 05 0.113200F 05 0.113200F 05 0.113200F 05 0.113200F 05 0.113200F 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H 42.6185 42.0451 43.0589 45.6432 43.65977 43.9708 42.7556 41.8470 45.8868 43.6060 51.5561 50.2289 48.6264 81.1124 75.9397 38.0900 475.9397 38.0900 48.1626 81.1124 75.9397 38.0900 47.124 75.9397 38.0900 47.124 75.9397 38.0900 47.124 75.9397 38.0900 47.124 75.9397 38.0900 47.124 75.9397 39.7702 44.3468 43.7352 42.1864 43.7352 42.1864 45.1875 43.6110 54.4711
AVERAGE DEVIATIO	NI = 2.211	72800 *	DEGDEE = 4	DC•7700

A-9

NITROGEN 133 0.75

LEAST SQUARES POLY CHEFF. ARE:

	A(0) = A(1) = A(2) = A(2) = A(3) = 0	0.697 0.818 0.113 -0.137	49430E 04 15330E 01 91620E 00 91570E-03		
VELIA I	ΗΕΔΤ ΕΕΟΧ		CALC. HEAT EL	IIX P DENTATIO	
0.31600000E 03 0.32500000E 03 0.24450000E 03 0.25500000E 03 0.255500000E 03 0.205500000E 03 0.205500000E 03 0.205500000E 03 0.21350000E 03 0.173000000E 03 0.17600000E 03 0.13900000E 03 0.145000000E 03 0.145000000E 03 0.145000000E 03 0.145000000E 03 0.145000000E 03 0.145000000E 03 0.339500000E 03 0.339500000E 03 0.339500000E 03 0.304500000E 03 0.304500000E 03 0.305500000E 03 0.26500000E 03 0.3000000E 03 0.30000000E 03 0.300000000E 03 0.30000000E 03 0.1500000E 03 0.30000000E 03 0.30000000E 03 0.3000000000E 03 0.30000000E 03 0.30000000E 03 0.30000000E 03 0.300000000E 03 0.3000000000000000000000000000000000	0.17400000F 0.17400000F 0.17400000F 0.14250000F 0.14250000F 0.14250000F 0.12590000F 0.12590000F 0.12590000F 0.12590000F 0.11000000F 0.11000000F 0.11000000F 0.99100000F 0.78000000F 0.7800000F 0.7800000F 0.7800000F 0.7800000F 0.15800000F 0.15800000F 0.15800000F 0.15800000F 0.12920000F 0.12920000F 0.12920000F 0.12920000F 0.12920000F 0.12920000F 0.12920000F 0.12920000F	00000000005544444555555555555555555555	0.16620760E 0 0.16747060F 0 0.16747060F 0 0.13763250F 0 0.13987670F 0 0.13987670F 0 0.12229560F 0 0.122361650F 0 0.12361650F 0 0.12361650F 0 0.12361650F 0 0.11070330E 0 0.11171970E 0 0.11171970E 0 0.11171970E 0 0.11174890F 0 0.10174890F 0 0.10174890F 0 0.17352430F 0 0.17352430F 0 0.17352430F 0 0.16776690F 0 0.1777690F 0 0.16776690F 0 0.16776690F 0 0.16776690F 0 0.16776690F 0 0.1777690F 0 0.177777690F 0 0.1777690F 0 0.17777690F 0 0.1777690F 0 0.1777690F 0 0.1777690F 0 0.1777690F 0 0.1777690F 0 0.1777777777777777777777777777777777777	$ \begin{array}{c} 0x \\ \bullet \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} 1 \\ 55 \cdot 0.633 \\ 54 \cdot 4501 \\ 53 \cdot 5395 \\ 53 \cdot 2395 \\ 53 \cdot 2395 \\ 57 \cdot 2395 \\ 57 \cdot 2395 \\ 57 \cdot 2395 \\ 61 \cdot 2659 \\ 59 \cdot 9839 \\ 62 \cdot 5000 \\ 61 \cdot 1111 \\ 71 \cdot 2950 \\ 70 \cdot 7857 \\ 63 \cdot 3449 \\ 2957 \\ 141 \cdot 8131 \\ 121 \cdot 8750 \\ 50 \cdot 3794 \\ 50 \cdot 3794 \\ 51 \cdot 5497 \\ 53 \cdot 5323 \\ 57 \cdot 5497 \\ 51 \cdot 5497 \\ 53 \cdot 5323 \\ 57 \cdot 5497 \\ 51 \cdot 5497 \\ 53 \cdot 5323 \\ 57 \cdot 5497 \\ 51 \cdot 5497 \\ 53 \cdot 5323 \\ 57 \cdot 5497 \\ 51 \cdot 5497 \\ 53 \cdot 5323 \\ 57 \cdot 5497 \\ 51 \cdot 5497$
AVERAGE DE	VIATION =	2.077	14309 ×)EGREE = 3	7 1.145 a

NITROGEN 231 0.75

LEAST SQUARES POLY COFFE. ARE:

A(0) = A(1) = 0.46007500E 04 0.41732920E 02

n		-		_
	- 1		Λ .	т
	L 8		A .	

	EUX	9	DEVI	ΑT	ION	
--	-----	---	------	----	-----	--

DELTA T HEAT FLUX	CALC. HEAT FILLY	9 DEVILTION	
0.2760000E 03 0.28350000F 03 0.17450000F 0.24500000E 03 0.174500000E 0.2490000E 03 0.15900000E 0.21250000E 03 0.14100000E 0.21750000E 03 0.14100000E 0.21750000E 03 0.14100000E 0.16900000E 03 0.11800000E 0.16900000E 03 0.11800000E 0.1690000E 03 0.11800000E 0.17300000E 03 0.11800000E 0.101800000E 0.13200000E 03 0.101800000E 0.13200000E 03 0.101800000E 0.13689990E 03 0.101800000E 0.13689990E 03 0.101800000E 0.13689990E 03 0.101800000E 0.13689990E 03 0.101800000E 0.166500000E 0.13689990E 03 0.14800000E 0.30689990E 03 0.14800000E 0.30689990E 03 0.14800000E 0.30689990E 03 0.14800000E 0.30689990E 03 0.166500000E 0.30689990E 03 0.166500000E 0.30689990E 03 0.166500000E 0.30689990E 03 0.16650000E 0.30689990E 03 0.16650000E 0.10580000E 0.10580000E 0.10580000E 0.10580000E 0.10580000E 0.10580000E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$7 \cdot 6230$ $7 \cdot 6230$ $5 \cdot 9043$ $4 \cdot 9759$ $6 \cdot 5032$ $5 \cdot 4783$ $4 \cdot 4556$ $4 \cdot 7384$ $4 \cdot 9519$ $2 \cdot 5818$ $1 \cdot 1914$ $0 \cdot 8314$ $-0 \cdot 6071$ $0 \cdot 6397$ $-1 \cdot 4421$ $-2 \cdot 9033$ $4 \cdot 9635$ $1 \cdot 7444$ $-1 \cdot 6780$ $-2 \cdot 4275$ $-4 \cdot 1915$ $-4 \cdot 7828$ $-3 \cdot 8515$ $-4 \cdot 6780$ $-5 \cdot 7317$ $-6 \cdot 6607$ $-6 \cdot 9710$ $-6 \cdot 970$	$\begin{array}{c} H\\ 63 & \circ 246\\ 570030\\ 64 & 550030\\ 64 & 63704\\ 64 & 63704\\ 64 & 63704\\ 64 & 63704\\ 64 & 635230\\ 64 & 635230\\ 677 & 14220\\ 64 & 23230\\ 777 & 12120\\ 69 & 22021\\ 777 & 13640400\\ 1104 & 0057520\\ 533 & 635230\\ 553 & 635230\\ 553 & 55355200\\ 55334 & 55355200\\ 55334 & 55355200\\ 55334 & 55355200\\ 55334 & 55355200\\ 55334 & 55355200\\ 55334 & 55355200\\ 55334 & 5535200\\ 55334 & 5535200\\ 55334 & 5535200\\ 55334 & 5535200\\ 55334 & 5535200\\ 55334 & 5535200\\ 55334 & 5535200\\ 55334 & 5532000\\ 55334 & 55320000\\ 55334 & 553200000000000000000000000000000000000$

DECEFF = 1
NITPOGEN 379 0.75

LEAST SQUARES POLY COEFF. ARE:

Α(Α(Λ(0) = 1) = 2) =	0.29985270F 04 0.57798110E 02
74.4	()=	-9.18930230F-01

DELTA T		HEAT FLUX		CALC. HEAT P	⊂†11X αν	DEVIATION
0.2620000E 0.27350000E 0.27350000E 0.22700000E 0.23100000E 0.23100000E 0.17700000E 0.1800000E 0.18100000E 0.18100000E 0.13100000E 0.13100000E 0.93000000E 0.9400000E 0.9400000E 0.9400000E 0.9400000E 0.73000000E 0.73000000E 0.73000000E 0.32300000E 0.32300000E 0.28050000E 0.28050000E 0.28050000E 0.28050000E 0.28050000E 0.28150000E 0.28150000E 0.221950000E 0.221950000E 0.221950000E 0.13700000E	00000000000000000000000000000000000000	0.17700000E 0.17700000F 0.15800000F 0.15800000F 0.15800000F 0.12950000F 0.12950000F 0.12950000F 0.12950000F 0.12950000F 0.10750000F 0.10750000F 0.10750000F 0.10750000F 0.10750000F 0.1060000F 0.19600000F 0.19600000F 0.19600000F 0.19600000F 0.15500000F 0.15500000F 0.15500000F 0.15500000F 0.15500000F 0.15500000F 0.15500000F 0.15500000F 0.15500000F 0.15500000F 0.12700000F 0.1270000F 0.12700000F 0.1270000F 0.1270000F 0.1270000F 0.1270000F 0.1270000F 0.1270000F 0.1270000F	0000000000000000000000000000000000000	0.16800360E 0.17041710E 0.17355980E 0.15112750F 0.15305980E 0.15402520E 0.12812250E 0.12812250E 0.12862040E 0.1046110E 0.10458250E 0.10458250E 0.82185150E 0.82751320E 0.82751320E 0.82751320E 0.82751320E 0.82751320E 0.70621710F 0.10458280E 0.10537900F 0.1785330F 0.16125580E 0.16294210E	05 05 05 05 05 05 05 05 05 05 05 05 05 0	$\begin{array}{c} 0 \in V \ \ A \mid 1 \ \ 0 \\ 5 \cdot 0 \otimes 27 \\ 3 \cdot 7191 \\ 1 \cdot 9436 \\ 4 \cdot 3497 \\ 3 \cdot 1267 \\ 2 \cdot 5156 \\ 7 \cdot 25156 \\ 2 \cdot 2195 \\ 1 \cdot 5792 \\ 5 \cdot 6733 \\ 4 \cdot 1902 \\ 2 \cdot 7139 \\ 4 \cdot 1902 \\ 2 \cdot 7139 \\ - 2 \cdot 6478 \\ - 3 \cdot 6594 \\ - 2 \cdot 6478 \\ - 3 \cdot 6594 \\ - 2 \cdot 6478 \\ - 2 \cdot 6$

AVERAGE DEVIATION = 2.90112400 *

) L U D L L = J

H

67.5573 66.2921 64.7165 69.6035 67.9112 73.1634 71.9444 71.5470 23.9844

82.0611 P0.2239 P1.7582

89.7849 89 9270 96.2238 94.2466 94.2466

61.6352 61.6107

62.5000

61 6302 64 7380

64. 1701

69.6494 67.3740 73.7004

72.6/12

NITROGEN 429 0.75

LEAST SQUARES POLY COEFF. ARE:

	A(0) = A(1) = A(2) = A(3) = A(4) =	-0.497 0.271 -0.197 0.765 -0.106	26950E 04 38590E 03 86130E 01 98330E-02 64560E-04			
DELTA T	HEAT FLUX		CALC. HEAT			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.18200000F 0.18200000E 0.18200000E 0.16250000F 0.16250000E 0.16250000E 0.14380000E 0.14380000E 0.14380000E 0.12310000E 0.12310000F 0.12310000F 0.105800000F 0.10580000F 0.10580000F 0.10580000F 0.10580000F 0.10580000F 0.16300000F 0.18780000F 0.18780000F 0.18300000F 0.18300000F 0.18300000F 0.16300000F 0.16300000F 0.16300000F 0.16300000F 0.16300000F 0.16300000F 0.16300000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F	00000000000000000000000000000000000000	0.17620390E 0.17912310F 0.17912310F 0.15738190E 0.15738190E 0.15968290E 0.16982610F 0.13716619E 0.13716619E 0.13830130E 0.13972610F 0.13972610F 0.12174960F 0.10285370F 0.10285370F 0.10311580F 0.97127260F 0.97127260F 0.97127260F 0.987411830F 0.987411830F 0.987411830F 0.9874130F 0.9874130F 0.9874130F 0.9874130F 0.9874130F 0.9874130F 0.18628140F 0.1983730F 0.19934490F	FLUX % 0.055	$\begin{array}{c} \text{DEVIATION} \\ 3.1846 \\ 2.1796 \\ 1.5807 \\ 3.1495 \\ 1.7336 \\ 1.0301 \\ 4.6133 \\ 3.8238 \\ 2.8330 \\ 3.2606 \\ 2.8293 \\ 1.0970 \\ 2.7847 \\ 2.5370 \\ 1.0970 \\ 2.7847 \\ 7.5370 \\ 1.0970 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\ 2.7847 \\ 1.0970 \\$	H 77.5426 69.4656 77.4659 77.5660 77.5660 75.69 76.419 76.97 76.97 76.97 76.97 84.97 87.77 87.77 77.77 77.77 77.77 77.77 77.77 77.77 77.77 77.77 77.777 77.777 77.777 77.7777 77.777777
AVERAGE DEV	TATION =	2.7390	R1300 %	0500re	= 4	, ن • () ^ب () .

0.142849205 35

0.14433170F 05

0.14551577E 05 0.15404970E 05 0.15521990E 05

0.15502640F 15

0.10053650F 15 0.20110063F 15 0.10063F 15

1.190096995 95

1.1726540HE 15

7.173077415 15

0.152544706 15

1.154040701 05 0.120101205 05

1,100,200,11 15 0,100,200,11 15

1.104200001 15

LEAST SQUARES POLY COFFE. ARE:

∧(O)= 0.35421520E 04

0.19950000F 05

0.20600000F 05

0.20600000E 05 0.20600000E 05

0.1700000F 05

0.17000000F 05

0.1700000F 05

0.14500000F 05

0.145000005 05

0.14500000F 05 0.12500000F 05

0.12500000E 05

0.12500000F 05

0.10890000F 05

0.10990000E 05

0.10990000F 05

0.119000005 05

0.11900000F 05

0.11800000F 05

0.14700000F 05

C.14700000F 05

0.14700000F 05

0.15900000F 05

0.15800000F 05

CIERCOCODE CE

0.194000005 05

1.194000005 05

1.19200000F 05

0.19200000F 05

0.16750000F 05

1.15750000F 05

0.14400000 ns

1.144000000 05

1.1, 2000 JE 05

111111111111

0.14000000 ng

C. 74810000F 04

	(1) =	(1.595694405	02	
DELTA T	HEAT FLUX	CALC.	HEAT FLUX	
0.25300000E 03	0.189500005	0.5		1

	<i></i>	
HEAT FLUX	CALC. HEAT FLUX	* DEVIATION
0.18950000E 05 0.19950000E 05	0.183542005 05	3,1013

0 18366 2000	0.5		
0 10/2055	25	5 1015	7/ 0010
V-18420559E	75	2 7020	14.0001
1. 19545530F	25	1 (0/7	14.5062
0.199536516	ÓÉ	しょちりたて	73.4496
0 2011 204 05	07	3.1376	73 170/
	115	2.3351	72
0.10201487E	05	1 0 2 4 5	11.4977
0.16278450E	05	1.07.40	- 25°0580
0.16423115E	05	4 . 2444	79,5219
0 166800005	22	5 • 3035	77 6264
0 1/31/5005	12.2	3,0535	77 7757
V-149145901	0.5	1.2786	11.11/1
1.14492390F	05	0.0577	19.2350
0.14540270F	15	0.0774	77.9570
0.123336716	0.5	-0.9574	76, 2231
0.123640205	ΩÉ	1.3306	22,2322
0 126 26 71 05	05	1.0877	97 164E
0.167647195	0.5	0.6022	
V+10213510E	$^{\circ}5$	6.2120	27+2982
U+10213510F	05	6 2120	94.7857
0.10368830E	0.5		94.7957
0.116937305	ń ś	4.7857	92,2391
0.117762105	or.	C.3006	94 5770
0 11795//05	15	0.5414	94 7057
	0.5	0.1234	0 1 • (1 1)
11.14/849206	35	2 0 2 2	

2.0236

1.8152

1.1097

2.5001

1.2040

-2.45 in -3.7051

-3.4804

-4.4480

-2.1070

-3.9701

-5.7616

- 4 . 07 . 1

-4.2046

-5.4452 -0.3755 -10.3354

1.7

81.5470

70.4595

79.4110 77.4413 77.0732

42.0155

62.1900

 60.44556

 60.44556

 63.2001

 71.5010

 70.744

 70.3610

71.4641

77.3410

74.2751

141.4301 70:11,20

AVERACE DEVIATION R. 2020 DO P

0.25400000E 03

0.25900000E 03

0.28150000E 03

0.29450000F 03

0.286000006 03

0.21650000E 03

0.21900000E 03

0.22000000E 03

0.18300000E 03

0.18500000E 03

0.1895000E 03

0.1500000000 03

0.15050000E 03

0.15150000F 03

0.11550000E 03

0.11550000E 03

0.11802000E 03

0.13950000E 03

0.14000000F 03

0.14100000F 03

0.192500006 13

0.13500000E 03 0.19700000E 03

0.20150000F 03

1.20350000F 63

0.20500000F 03

0.29150000F 03

1.29450000E 03

1.26200000F 13

1.26450000F 01

1.234000005 03

0.236000000 03

1.1900000jE 13

0.201500005 03

0.15800330F 33

0.15honnar ha

0.11400000 MA

D. Hononir or

DE1212 - 1

NTTROGEN ATM 0.05

LEAST SQUARES POLY COFFE. ARE:

$\begin{array}{ccc} A(1) = & 0.17151630E & 03\\ A(2) = & -0.10327240E & 01\\ A(3) = & 0.30372680E & 02\\ \end{array}$	
$\begin{array}{cccc} A(2) = & -0.10327240 \pm 0.3 \\ A(3) = & 0.30372680 \pm 0.2 \\ \end{array}$	
$A(3) = 0.30372680E_02$	
41 1/F U_30372680F_02	
AL 41= -0.37233460E-05	

DELLAT HEAT FLUX CALC. HEAT FLUX POEVIATION H 0.3720000000 0.11170000000 0.11147764300 0.1147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.4000000 1.147764300 1.40000000 1.147764300 1.40000000 1.147764300 1.40000000 1.147764300 1.40000000 1.147764300 1.40000000 1.147764300 1.40000000 1.147764300 1.4477643000000000000000000000000000000000	DE1 =				
0.373000000E 0.11700000E 05 0.114704000E 05 0.114704000E 05 0.372000000E 0.3 0.11700000E 05 0.11470600E 1.47763E 1.9033 11.4472 0.31600000E 0.3 0.114700000E 05 0.1147763E 1.9005 11.4472 0.31600000E 0.10420000E 05 0.1147763E 1.9005 11.227747 0.31600000E 0.10420000E 05 0.11771704E 7.92463 32.97767 0.26150000E 0.3 0.4060000E 0.40476010E 7.4777 34.4463 0.27550000E 0.3 0.9060000E 0.4 0.94476010E 7.4777 34.4463 0.27550000E 0.3 0.9600000E 0.4 0.94476010E 7.4 -1.72558 34.4463 0.27550000E 03 0.86300000E 04 0.94476010E 7.4 -1.73777 34.4463 0.135650000E 03 0.77000000F 04 0.94476010E 7.4 -1.73777 34.4463 0.135650000E 03 0.77000000F 04 9.94637104F -1.42558 4.4771	DELTA T	HEAT FLUX			
0.31200000E 03 0.11700000E 05 0.11478490E 05 1.9030 0.31200000E 03 0.11700000E 05 0.11478490E 05 1.9030 0.31600000E 03 0.10420000E 05 0.11721700E 05 2.90453 11.651 0.31600000E 03 0.10420000E 05 0.10721700E 05 2.90453 11.651 0.31600000E 03 0.10420000E 05 0.10721700E 05 2.90453 11.554 0.27150000E 03 0.9060000E 04 0.94476010E 04 2.47702 34 0.271500000E 03 0.9060000E 04 0.94476010E 04 2.47702 34 0.27550000E 03 0.9060000E 04 0.94476010E 04 2.47702 34 0.47560000E 03 0.7700000E 04 0.94476010E 04 2.47702 34 0.46650000E 03 0.77700000E 04 0.94476010E 04 2.47837130E 04 2.5781 0.19560000E 03 0.777000000E 04 0.9476010E 04 2.47837130E 04 2.58851 34 0.47550000E 03 0.77000000E 04 0.94745010E 04 2.48651 4.7784 0.19560000E 03 0.77000000E 04 0.7720056000 4.298651 4.47784 0.19560000E 03 0.77000000E 04 0.772005600 4.298651 4.47784 0.19560000E 03 0.77000000E 04 0.772005600 4.298651 4.47784 0.19560000E 03 0.77000000E 04 0.772005600 4.298651 4.47784 0.19550000E 03 0.777000000E 04 0.772005600 4.297365 0.044707 3.771111 0.19550000E 03 0.777000000E 04 0.772005600 4.297365 0.044707 3.771111 0.19550000E 03 0.117700000E 04 0.772005600 4.297365 0.044707 3.771111 0.19550000E 03 0.117700000E 04 0.772005600 4.297365 0.044707 3.7711111 0.19550000E 03 0.117700000E 04 0.772005600 4.2973		COLOX	CALC. HEAT FLUX	9 DEVEATION	
0.377000000F 03 0.117700000F 05 0.114774490F 05 1.9003 31.4474 0.37600000F 03 0.117700000F 05 0.114776430F 05 1.9003 31.4514 0.31600000F 03 0.117700000F 05 0.114776430F 05 1.9003 31.2514 0.31600000F 03 0.10420000F 05 0.10771799F 05 1.9003 32.7767 0.20150000F 03 0.90600000F 04 0.107743170F 05 1.31016 32.7767 0.20150000F 03 0.90600000F 04 0.94476010F 04 1.4.7782 33.4.463 0.20550000F 03 0.95300000F 04 0.94531010F 04 1.2.5558 33.7.711 0.1950000F 03 0.77000000F 04 0.8633101F 04 1.2.5558 33.7.647 0.1950000F 03 0.77000000F 04 0.8043300F 04 1.2.9531 33.4.463 0.1950000F 03 0.77000000F 04 0.8043300F 04 1.2.9531 33.4.464 0.1950000F 03 0.777000000F 04 0.8043300F 04 1.2.9531 33.4.464 0.1950000F 03 0.77700000F 04 0.87043300F 04 1.2.9531 33.4.867 0.1950000F 03 0.77700000F 04 0.87043300F 04 1.2.9531 33.4.867 0.1950000F 03 0.77700000F 04 0.8704300F 04 1.2.9531 33.4.867 0.1950000F 03 0.77700000F 04 0.77005580F 04 1.2.4698 0.19550000F 03 0.77700000F 04 0.77005580F 04 1.2.4698 0.19750000F 03 0.77700000F 04 0.77205580F 04 1.2.4698 0.1935000F 03 0.77700000F 04 0.77205580F 04 1.2.4698 0.1935000F 03 0.77700000F 04 0.77205580F 04 1.2.4698 0.19350000F 03 0.77700000F 04 0.77205580F 04 1.2.46985 0.19350000F 03 0.77700000F 04 0.77205580F 04 1.2.46985 0.19350000F 03 0.77700000F 04 0.77205580F 04 1.2.46985 0.19350000F 03 0.77700000F 04 0.7720575F 05 1.2.46851 0.23400000F 03 0.77700000F 04 0.7720575F 04 1.2.46861 3.2.1175 0.2446400000F	0.37300000F 03	0 117000000			14
0.37200000E 03 0.11700000F 05 0.114772376 05 1.9005 31.4616 0.3160000F 03 0.10470000F 05 0.1077179F 05 -2.9063 32.2767 0.26150000F 03 0.10420000F 05 0.1077179F 05 -2.9063 32.27767 0.26150000F 03 0.10420000F 04 0.34476010F 04 -4.27797 34.4643 0.27550000F 03 0.9660000F 04 0.94476010F 04 -4.27797 34.4643 0.22550000F 03 0.9660000F 04 0.94476010F 04 -4.27797 34.4643 0.22550000F 03 0.95300000F 04 0.94476010F 04 -4.27797 34.4643 0.22550000F 03 0.95300000F 04 0.94476010F 04 -4.27797 34.4643 0.22550000F 03 0.95300000F 04 0.94476010F 04 -4.27797 34.4643 0.22550000F 03 0.7500000F 04 0.94476010F 04 -4.27797 34.4643 0.22550000F 03 0.77000000F 04 0.94476010F 04 -1.2796 32.2551 0.1050000F 03 0.77000000F 04 0.94476010F 04 -1.2796 32.2551 0.1050000F 03 0.77000000F 04 0.9765010F 04 -1.2596 32.2571 34.4643 32.2571 34.4643 32.2571 34.4643 0.22550000F 03 0.77000000F 04 0.94476010F 04 -1.2596 32.2571 34.4643 32.2571 34.4643 32.2571 34.4643 32.2571 34.4643 32.2571 34.4643 0.7750000F 03 0.77000000F 04 0.97637070F 04 -1.2596 32.2571 34.4643 0.7750000F 03 0.77000000F 04 0.976370F 04 -1.2596 32.2571 34.4643 0.7750000F 03 0.77000000F 04 0.976370F 04 -1.2596 32.2571 34.4643 32.2571 34.4643 0.7750000F 03 0.77000000F 04 0.976370F 04 -1.2596 32.2571 34.4643 32.2571 34.4643 0.7750000F 03 0.77000000F 04 0.7765570F 04 -1.2596 34.4651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.7784 -1.9651 44.76457 -1.9784 -1.9	0.372000005 00	- <u>Nelitionooe</u> (0.11479490F OF		
0.314000000E 03 0.117000006 05 0.11477430E 05 1.9003 31.4516 0.31500000E 03 0.10420000F 05 0.1077170F 05 -2.9063 312.5747 0.26150000E 03 0.10420000F 05 0.1077170F 05 -3.1015 372.7747 0.26150000E 03 0.9060000F 04 0.94476010F 04 -4.7792 34.4463 0.22550000E 03 0.77000000F 04 0.94476010F 04 -1.7558 37.9777 0.1650000E 03 0.77000000F 04 0.94676010F 04 -1.9558 37.9777 0.1650000E 03 0.77000000F 04 0.9473900F 04 -1.95511 37.4463 0.1950000E 03 0.77000000F 04 0.9703390F 04 -1.95531 37.911 0.1950000E 03 0.77000000F 04 0.97045390F 04 -1.95531 37.911 0.1950000E 03 0.77000000F 04 0.9705590F 04 -2.96531 37.917 0.15650000E 03 0.77000000F 04 0.9705590F 04 -2.96531 37.917 0.15650000E 03 0.77000000F 04 0.97205590F 04 -2.96651 47.7284 0.15350000F 03 0.777000000F 04 0.97205590F 04 -2.96531 37.917 0.15650000F 03 0.777000000F 04 0.97205590F 04 -2.96651 47.7284 0.15350000F 03 0.777000000F 04 0.77205590F 04 -2.96651 47.7284 0.15350000F 03 0.777000000F 04 0.77205590F 04 -2.96651 47.7284 0.15350000F 03 0.777000000F 04 0.77205590F 04 -2.96651 47.7284 0.15350000F 03 0.77700000F 04 0.77205590F 04 -2.96651 47.7284 0.1630000F 03 0.77700000F 04 0.77205590F 04 -2.96651 47.7284 0.1630000F 03 0.77700000F 04 0.77205590F 04 -2.96651 47.7284 0.1630000F 03 0.77700000F 05 0.101724895F 05 -0.96742 34.9651 47.7284 0.1630000F 03 0.77700000F 04 0.77205590F 04 -2.9651 47.9745 0.29400000F 03 0.77700000F 04 0.77205590F 04 -2.9651 47.9745 0.29400000F 03 0.77700000F 05 0.101724895F 05 -0.96742 34.9755 1.97442 34.97757 0.27450000F 03 0.1200000F 05 0.101724895F 05 -0.72842 34.9757 1.9745000F 03 0.1200000F 05 0.11174895F 05 -0.72842 34.9757 1.9745000F 03 0.1200000F 05 0.11174895F 05 -0.72842 34.9757 1.9745000F 03 0.1200000F 05 0.11174895F 05 -0.72842 34.9757 1.9745000F 03 0.1200000F 05 0.11174497F 05 -0.738455 37.7777 1.7745000F		0.11700000F (1,9933	21
9.41600000E 03 0.10420000F 05 0.10721790F 05 1.20063 312.5767 0.31600000E 03 0.10420000F 05 0.10721790F 05 -2.0063 372.7767 0.20150000E 03 0.00420000F 05 0.10721790F 05 -2.0063 372.7767 0.20150000E 03 0.00600000F 04 0.10743170F 05 -3.10115 372.7767 0.20150000E 03 0.00600000F 04 0.04476010F 04 -4.7782 34.4663 0.22300000E 03 0.00600000F 04 0.04476010F 04 -4.7782 34.4663 0.22300000E 03 0.055300000F 04 0.04476010F 04 -4.7782 34.4663 0.22300000E 03 0.77000000F 04 0.04476010F 04 -4.7782 34.4663 0.22550000E 03 0.770000000F 04 0.04476010F 04 -4.7782 34.4663 0.22550000E 03 0.770000000F 04 0.04633700F 04 -1.25528 37.5111 0.1950000E 03 0.770000000F 04 0.0803300F 04 -1.26538 37.5111 0.1950000E 03 0.77000000F 04 0.07045300F 04 -1.26538 37.5111 0.1950000E 03 0.77000000F 04 0.07045300F 04 -1.26537 32.4677 0.15550000E 03 0.77000000F 04 0.07045300F 04 -1.26537 32.4677 0.15550000E 03 0.77000000F 04 0.07045300F 04 -1.26537 32.4877 0.15650000E 03 0.777000000F 04 0.07045500F 04 -2.46651 32.0000 0.19700000E 03 0.777000000F 04 0.07205500F 04 -2.46651 32.0000 0.19700000E 03 0.777000000F 04 0.07205500F 04 -2.46651 42.7784 0.19700000F 03 0.777000000F 04 0.07205500F 04 -2.46651 42.7786 0.19700000F 03 0.777700000F 04 0.07205500F 04 -2.46651 42.7786 0.19750000E 03 0.777000000F 04 0.07205500F 04 -2.46651 42.7786 0.19750000E 03 0.77700000F 04 0.07205500F 04 -2.46651 42.7786 0.19750000F 03 0.077700000F 04 0.07205500F 04 -2.4651 42.1667 0.24000000F 03 0.777700000F 04 0.07205500F 04 -2.4651 42.1667 0.24000000F 03 0.077700000F 04 0.0720570F 05 -0.27676 41.4005 0.24000000F 03 0.077700000F 05 0.111776000F 04 -2.4650 42.17751 0.33450000F 03 0.026000F 05 0.111776400F 05 -0.27613 32.07751 0.33450000F 03 0.02600F 05 0.11177640F 05 -0.27613 32.07751 0.33450000F 03 0.02600F 05 0.11177640F 05 -0.27613 32.07751 0.33450000F 03 0.0100F 05 0.11177640F 05 -0.276153 32.1716 0.3	8+2140000F 03	0-117000006	名言 - 岩・ままた(アカベロト のち	1 9005	1.4673
0 31600000F 03 0 10420300F 05 0 10721799F 05 - 0 40673 32 7767 0 226550000F 03 0 40600000F 05 0 10721799F 05 - 0 40673 32 7767 0 226550000F 03 0 40600000F 04 0 10743179F 05 - 0 40673 32 7717 0 226550000F 03 0 40600000F 04 0 24476010F 04 - 4 27792 33 6463 0 27350000F 03 0 49600000F 04 0 24476010F 04 - 4 27792 33 6463 0 72300000F 03 0 49600000F 04 0 4476010F 04 - 4 27792 33 6463 0 72300000F 03 0 495300000F 04 0 48637020F 04 - 1 2555P 34 6463 0 72300000F 03 0 77000000F 04 0 4863703F 04 - 0 65266 33 62770 0 14950000F 03 0 77000000F 04 0 4863703F 04 - 1 1302 36 7270 0 14950000F 03 0 77000000F 04 0 4863703F 04 - 0 65266 33 62770 0 14950000F 03 0 77000000F 04 0 4863703F 04 - 0 65266 33 62770 0 14950000F 03 0 77000000F 04 0 4863703F 04 - 0 43931 36 6473 0 15650000F 03 0 77000000F 04 0 4863703F 04 - 0 49331 36 6473 0 15650000F 03 0 77000000F 04 0 722055807F 04 - 2 4651 44 7284 0 1555000F 03 0 777000000F 04 0 772405580F 04 - 2 4651 44 7284 0 1555000F 03 0 777000000F 04 0 772402556 F 04 - 2 4651 44 7284 0 1555000F 03 0 777000000F 04 0 76492570F 04 - 2 4651 44 7284 0 1755000F 03 0 777000000F 04 0 76492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 76492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 76492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 772492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 772492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 772492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 772492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 772492570F 04 - 2 4651 44 7284 0 1490000F 03 0 777000000F 04 0 772492570F 04 - 2 4651 44 7275 0 34400000F 03 0 19000F 05 0 10072487255 F 04 - 2 4650 41 1055 0 3400000F 03 0 19000F 05 0 10072487255 F 04 - 2 4650 41 1055 0 3400000F 03 0 19000F 05 0 10072487255 F 04 - 2 4550 41 1055 0 3400000F 03 0 19000F 05 0 10072487255 F 04 - 2 4550 41 1055 0 3400000F 03 0 19000F 05 0 10072487255 F 04 - 2 4550 41 1055 0 3400000F 03 0 10000F 05 0 10000F 05 0 10000F 05 0 1000F 05 0 10000F	V. 11600000E 03	0 104300005	22 U.LI478830E 05	1 0000	31.4514
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.31600000F 63		15 0.10721790E 05	1. 8. 11. 1	21,2034
0 221 SONDAG 23 0.10420000F 05 0.10744177F 12 -2.934A3 32.4743 0 261 SONDAG 23 0.90600000F 04 0.94476010F 14 -4.2702 34.4463 0.22550000F 03 0.90600000F 04 0.94476010F 14 -4.2702 34.4463 0.22550000F 03 0.9600000F 04 0.94476010F 14 -4.2702 34.4463 0.22550000F 03 0.95300000F 04 0.94537030F 04 -1.1302 37.7000000F 03 0.77000000F 04 0.86264100F 04 -1.1302 37.7011 0.1950000F 03 0.77000000F 04 0.8026400F 04 -3.9531 30.4877 0.1950000F 03 0.77000000F 04 0.80266010F 04 -3.9531 30.4877 1.1565000F 03 0.777000000F 04 0.8043007F 04 -3.9531 30.4877 1.1565000F 03 0.777000000F 04 0.8043007F 04 -3.9531 30.4877 1.1565000F 03 0.777000000F 04 0.7200550F 04 -2.8651 44.4007 30.0965 1.19700000F 03 0.77700000F 04 0.7200550F 04 -2.8651 44.7284 0.1895000F 03 0.77700000F 04 0.7240550F 04 -2.8651 44.7284 0.1895000F 03 0.77700000F 04 0.7240550F 04 -2.8651 44.7284 0.1895000F 03 0.77700000F 04 0.72407550F 04 -2.8651 44.7284 0.1895000F 03 0.777700000F 04 0.72407550F 04 -2.8651 44.7284 0.1895000F 03 0.77700000F 04 0.72407570F 04 -2.8651 44.7284 0.1895000F 03 0.777700000F 04 0.74247250F 04 -2.8651 44.7284 0.1895000F 03 0.9840000F 04 0.865370F 04 -2.8651 44.7284 0.1955000F 03 0.9840000F 05 0.1017770F 05 -0.9874 3730000F 03 0.9840000F 05 0.1017770F 05 -0.9874 3730000F 03 0.9840000F 05 0.1017770F 05 -0.9874 3730000F 03 0.9440000F 05 0.1017770F 05 -0.9874 3745000F 03 0.1955000F 05 0.10177570F 15 -0.9874 3745000F 03 0.1955000F	0.317000005 03	- <u>V+L9420000E</u> (0.107217005 05	-2.8963	77 77 7
0 20120000E 03 0.90600000E 04 0.94476010E 04 -4.27822 34.4443 0 26150000E 03 0.90600000E 04 0.94476010E 04 -4.27822 34.4443 0 26150000E 03 0.90600000E 04 0.94476010E 04 -4.27822 34.6463 0 26150000E 03 0.965300000E 04 -4.47822 34.6463 0 26150000E 03 0.95300000E 04 -4.47822 34.6463 0 26150000E 03 0.9700000E 04 -1.1302 37.7111 0 1960000E 03 0.77000000E 04 -77005640E 04 -3.6531 34.4477 1 1970000E 03 0.7700000E 04 0.77005640E 04 -3.6651 34.4477 1 1950000E 03 0.7700000E 04 0.77005640E 04 -3.4651 34.47782 1 19650000E 03 0.7700000E 04 0.77005640E 04 -3.4651 34.47782	0 261 500005 00	- 9.10420000F (-2.8963	22.07.7
$ \begin{array}{c} 0 & 221 100000 \\ 0 & 201 100000 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	0.2010000E 03	0.90600000E	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-3.1015	21+141
0.261500006 03 0.302000000 04 0.344760106 04 -2.3785 34.4453 0.273500006 03 0.453000000 04 0.344760106 04 -1.3568 34.6463 0.273500006 03 0.453000000 04 0.344760106 04 -1.3568 34.6463 0.275500006 03 0.453000000 04 0.344760106 04 -1.1300 35.2511 0.135000006 03 0.470000000 04 0.362641004 0.4 -1.36531 37.2511 0.135000006 03 0.470000000 04 0.304501106 04 -3.36531 37.311 37.4477 0.136500006 03 0.470000006 04 0.304501106 04 -3.4651 44.7284 0.136500006 03 0.470000006 04 0.304501106 04 -3.4651 44.7284 0.136500006 03 0.470000006 04 0.472055301 04 -4.46801 -2.4651 44.7284 0.136500006 03 0.470000006 04 0.72055301 04 -2.4651 44.7284 -2.4651 44.7284 0.136500006 03 0.470000006 04 0.72055301 04 -2.4651 44.7284 -2.4651 44.7284 0.136000006 03 0.477000006 04 0.72055301 04 -2.4651 44.7284 -2.46651 <	X+35150000E 03	0.90600006	(7 - 9+34415010E 04 -	- 6 2702	12.27.77
$\begin{array}{c} 0.222500000 \mbox{6} 0.3 \mbox{6} 0.4 \mbox{6} 0.94476010 \mbox{6} 0.4 \mbox{7} 1210 \mbox{6} 0.4 \mbox{7} 1210 \mbox{6} 0.4 \mbox{7} 1210 \mbox{7} 0.4 \m$	V.26150000E 03	0 206000000	4 0.94476010F 04	7 * / 1 2 /	34.5462
$\begin{array}{c} 0.223000000 {\rm E} 0.4 & 0.4437121 {\rm E} 0.4 & -4.2782 & 4.6763 \\ 0.22500000 {\rm E} 0.1 & 0.85300000 {\rm E} 0.4 & 0.8637030 {\rm E} 0.4 & -1.2558 & 37 & 0270 \\ 0.1950000 {\rm E} 0.3 & 0.77000000 {\rm E} 0.4 & 0.86264100 {\rm E} 0.4 & -3.9531 & 37 & 111 \\ 0.1950000 {\rm E} 0.3 & 0.77000000 {\rm E} 0.4 & 0.804300 {\rm E} 0.4 & -3.9531 & 37 & 4877 \\ 0.1950000 {\rm E} 0.3 & 0.77000000 {\rm E} 0.4 & 0.804300 {\rm E} 0.4 & -3.9531 & 37 & 4877 \\ 0.1565000 {\rm E} 0.3 & 0.7700000 {\rm E} 0.4 & 0.72005580 {\rm E} 0.4 & -2.8651 & 44.7284 \\ 0.1850000 {\rm E} 0.3 & 0.7700000 {\rm E} 0.4 & 0.77205580 {\rm E} 0.4 & -2.8651 & 44.7284 \\ 0.1800000 {\rm E} 0.3 & 0.7700000 {\rm E} 0.4 & 0.77205580 {\rm E} 0.4 & -2.8651 & 44.7284 \\ 0.1800000 {\rm E} 0.3 & 0.7700000 {\rm E} 0.4 & 0.77265590 {\rm E} 0.4 & -2.8551 & 44.7284 \\ 0.1800000 {\rm E} 0.3 & 0.77700000 {\rm E} 0.4 & 0.7666600 {\rm E} 0.4 & 0.9105 & 43.1667 \\ 0.2800000 {\rm E} 0.3 & 0.77700000 {\rm E} 0.4 & 0.7696670 {\rm E} 0.4 & 0.9105 & 44.1667 \\ 0.1800000 {\rm E} 0.3 & 0.77700000 {\rm E} 0.4 & 0.7696670 {\rm E} 0.4 & 0.9105 & 44.1667 \\ 0.2330000 {\rm E} 0.3 & 0.777700000 {\rm E} 0.4 & 0.892570 {\rm E} 0.4 & 0.9105 & 44.1667 \\ 0.24800000 {\rm E} 0.3 & 0.777700000 {\rm E} 0.4 & 0.892570 {\rm E} 0.4 & 0.9105 & 44.1667 \\ 0.23300000 {\rm E} 0.3 & 0.98660000 {\rm E} 0.4 & 0.892570 {\rm E} 0.4 & 0.9105 & 44.1667 \\ 0.24800000 {\rm E} 0.3 & 0.9866000 {\rm E} 0.4 & 0.89997867 {\rm E} 0.4 & 0.9105 & 44.1667 \\ 0.24800000 {\rm E} 0.3 & 0.9866000 {\rm E} 0.5 & 0.110788873 & 55 & 0.18774 & 34.955 \\ 0.23800000 {\rm E} 0.3 & 0.9866000 {\rm E} 0.5 & 0.111638576 & 51 & 0.9874 & 34.955 \\ 0.34400000 {\rm E} 0.3 & 0.1956000 {\rm E} 0.5 & 0.111780995 & 55 & 0.16377 & 3.9771 \\ 0.37300000 {\rm E} 0.3 & 0.1956000 {\rm E} 0.5 & 0.111780995 & 55 & 0.1667 & 3.97715 \\ 0.37450000 {\rm E} 0.3 & 0.1956000 {\rm E} 0.5 & 0.1114794995 & 55 & 0.16561 & 3.97715 \\ 0.37450000 {\rm E} 0.3 & 0.1956000 {\rm E} 0.5 & 0.1114794995 & 55 & 0.164750 & 3.97715 \\ 0.37450000 {\rm E} 0.3 & 0.1956000 {\rm E} 0.5 & 0.11147949375 & 55 & 0.16561 & 3.97715 \\ 0.37450000 {\rm E} 0.3 & 0.1956000 {\rm E} 0.5 & 0.11147949375 & 55 & 0.114794835 &$	0.22550000E nã		14 0.94476010E 04	-4 • 2 <u>1</u> 8 2	34-5463
0 - 225600000E 03 0 - 453000000E 04 0 - 463537635 031 - 2558 37 - 335 0 - 19500000E 03 0 - 770000000F 04 0 - 86264100F 041 - 1302 3 - 3 - 4871 0 - 19700000 = 03 0 - 77000000F 04 0 - 80434000E 043 - 9631 3 - 0 - 4477 1 - 15660000E 03 0 - 770000000F 04 0 - 90450110F 04 - 4 - 4997 3 - 0 - 44877 1 - 15660000E 03 0 - 770000000F 04 0 - 9705589F 042 - 8651 4 - 2 - 8651 4 - 77000000F 04 0 - 7705589F 042 - 8651 4 - 17550000F 03 0 - 777000000F 04 0 - 774692570F 042 - 8651 4 - 17550000F 03 0 - 777000000F 04 0 - 774692570F 042 - 8651 4 - 17550000F 03 0 - 777000000F 04 0 - 774692570F 042 - 8651 4 - 17550000F 03 0 - 777000000F 04 0 - 774692570F 042 - 8651 4 - 17550000F 03 0 - 777000000F 04 0 - 774692570F 042 - 8651 4 - 17550000F 03 0 - 777000000F 04 0 - 774692570F 042 - 8651 4 - 175552 - 8775 0 - 23400000F 03 0 - 98600000F 04 0 - 8962570F 042 - 8651 - 2 - 8650 0 - 100558 00 - 04 0 - 8962570F 042 - 8651 - 2 - 8650 - 1 - 2 - 2	0.22300000 05	C+2300000E C	4 0.863712105 07	-4.2782	36 6165
0 16500000E 0.3 0.35300000F 0.4 0.46324000F 0.4 -1.13002 37.2111 0 197000000F 0.4 0.4439000F 0.4 -1.43002 37.2111 1 197000000F 0.4 0.4439000F 0.4 -1.43002 37.2111 1 197000000F 0.4 0.44439000F 0.4 -1.44972 30.44772 0.15560000F 0.3 0.70000000F 0.4 0.7005590F 1.4 -4.49907 30.34477 0.15560000F 0.3 0.70000000F 0.4 0.770005590F 1.4 -2.8651 44.7784 0.17500000F 0.3 0.77700000F 0.4 0.774005590F 0.4 -3.4989 44.7584 0.17500000F 0.3 0.77700000F 0.4 0.7467650F 0.4 -4.4989 44.7584 0.17500000F 0.3 0.77700000F 0.4 0.7467650F 0.4 -4.9105 44.7647 0.17500000F 0.4 0.7467650F 0.4 -94105 44.7647 1.6577 0.23400000F 0.3 0.777000000F 0.4	0.225000005 05	<u> </u>	14 0.959370305 04	-1.2558	37 0370
0 19300000E 03 0.77000000F 04 -1 1307 37.7111 0.19700000F 03 0.77000000F 04 0.80043000F 04 -1 9531 30.4472 0.1950000F 03 0.7000000F 04 0.8004300F 04 -2 9631 30.4472 1.15650000F 03 0.7000000F 04 0.77005590F 04 -2 9661 34.77284 0.15650000F 03 0.7000000F 04 0.772005590F 04 -3 46961 44.7784 0.18050000F 03 0.77700000F 04 0.774692570F 04 -3 46961 44.7784 0.18000000F 03 0.77700000F 04 0.776962570F 04 -3 1052 43.1667 1.8000000F 03 0.77700000F 04 0.7666601F 04 -13550 -57316 41.42826 0.24800000F 03 0.94600000F 04 0.80543123F 0.77316 41.4286 41.4286 0.24800000F 03 0.94560000F 04 0.80797960F <	0 105000005 01	0.85300000E C	A CONTRACTOR	-0-5296	2
0 - 9500000 03 0 7700000 04 0 - 34473 0 - 19700000 03 0 77000000 04 0 - 30450110 04 - 34473 0 - 15650000 03 0 77000000 04 0 - 72005580 04 - 244077 3 - 24651 3 - 24472 0 - 15650000 03 0 7000000 04 0 - 72005580 04 - 24651 44.7784 0 - 19700000 03 0 77700000 04 0 - 72005580 04 - 24680 44.1744 0 - 19700000 03 0 77700000 04 0 - 72005580 04 - 24680 44.1744 0 - 19700000 03 0 77700000 04 0 - 72005580 04 - 24680 44.1744 0 - 19700000 03 0 - 77700000 04 0 - 7240250 04 - 24680 44.1744 0 - 19700000 03 0 - 77700000 04 0 - 74692570 04 - 24680 44.1744 0 - 19700000 03 0 - 77700000 04 0 - 74692570 04 - 24080 44.1744 0 - 19800000 03 0 - 77700000 04 0 - 47692570 04 - 24080 44.1744 0 - 19800000 03 0 - 77700000 04 0 - 40900790 04 - 24080 - 24000000 03 0 - 98600000 04 0 - 40900790 04 0 - 40355 441.3933 0 - 288000000 03 0 - 98600000 05 04 0 - 40900790 04 - 24055 441.3933 0 - 288000000 03 0 - 10050000 05 0 - 101768800 04 - 0 - 1855 441.3933 0 - 288000000 03 0 - 10050000 05 0 - 101768800 05 - 0 - 5246 - 34.77551 0 - 338500000 03 0 - 112200000 05 0 - 101768800 05 - 0 - 0.8874 - 34.9255 - 43.4655 0 - 338500000 03 0 - 112200000 05 0 - 101768800 05 - 0 - 0.8874 - 34.9255 - 0.4120 0 - 373000000 03 0 - 112200000 05 0 - 10126510 05 - 0 - 0.8874 - 34.9555 0 - 338500000 03 0 - 112200000 05 0 - 10126510 05 - 0 - 0.5874 - 34.9555 0 - 338500000 03 0 - 112200000 05 0 - 1011768800 05 - 0 - 0.5874 - 34.9555 - 0.4120 0 - 373000000 03 0 - 112000000 05 0 - 0.11178800 05 - 0 - 0.5874 - 34.9555 - 0.4120 0 - 37400000 03 0 - 112000000 05 0 - 0.11178400 05 - 0 - 0.5874 - 34.9555 - 0.4120 0 - 37400000 03 0 - 112000000 05 0 - 0.11178400 05 - 0 - 0.555 - 0 - 0.7483 - 30.1716 0 - 314500000 03 0 - 120000000 05 0 - 0.11178400 05 - 0 - 7483 - 30.1716 0 - 314500000 03 0 - 120000000 05 0 - 0.11178400 05 - 0 - 7483 - 30.1716 0 - 314500000 03 0 - 120000000 05 0 - 0.11178400 05 - 0 - 7483 - 30.1716 0 - 314500000 03 0 - 120000000 05 0 - 0.11178400 05 - 0 - 7483 - 30.1716 0 - 314500000 03 0 - 120000000 05 0 - 0.11178000 05 - 0 - 7483 - 30.1716 0	X+13200000E 03	0.77000005	(Z V•20204100E 04	-1 1202	28,2511
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19200000E 03	0 770000005	(* <u><u><u></u></u>.<u>80</u>743900E 04</u>	-2 05 2 2	1110.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.19700000E 03		24 0.80043900E d4		39.4975
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.15650000E 03	- 3. 7.00000F C	94 0.80450116E 64	- 2. 95 41	39 4975
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.156500005 03	- X• Thennouve C	0.720055005 07	-4.4907	30 0020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.158500005 05	0000000F r	14 0 720055005 01	-2.9651	44 3 3 3 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1000000 03	- 0.70000000 c	14 0 77((D) 14	-2.8651	44 • 1284
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.135566666	0.7770000čě č	C S+1/449/50E 04	-7.4980	44.7284
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1 1220000F 03	0.777000005	U. 16992570F 04	0.0105	44.1640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.18000000F 03	0.77700000	(4 0-76066600E 04	7.105	43.1667
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2400000F 03	0.000000	14 0.76992570E ñá	6 • 1 V / 2	44.2735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2390000E 02	- <u>6•37600000</u> 0	14 0.995431205 04	C.9105	43.1667
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.242000006 01	0.444900000E C	4 0.90097960E 07	9.1855	41 1923
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.283000005 03	- 7•4400000E C	14 0.399907905 04	9.6359	41 4 2 3 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 288000005 03	<u> </u>	5 0 101027705 05	P.7315	40 7/20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 20000000 m	0,10050000s č	15 0 100 700005 05	-0.5246	7 / • / 4 1 /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.54000001 03	C.100500006 6	2 <u>2.100788805</u> 05	-0-2876	24 . 7 (51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7. 23220000E 03	0.11200000F 0	↓ 2.4 11 26510E 06	-0.7613	24.2252
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2•3400000E 03	0.112000005	(2 - 2•11153950E 05	0 6120	34.5552
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.34100000F 03	0 112000005	12 0.11178090E 05		33.0071
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.37300000E 03		0.11103921E 15	1.1055	32.0413
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.37300000E 03	- ··· · · · · · · · · · · · · · · · · ·	15 0.114794805 05	0.0551	37 - 446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.374500005 03	- <u>N*13000000</u> E c	15 0.11479690E OF	4.3459	32 1716
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 291500005 03		15 0.11479770C oc	4,3450	32 171
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.279000005	0.968303046 C	4 0 272361525	4.3435	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.21050000F 04	0.96300000F 0	4 0 0 2 2 0 7 2 4 1 4	-2.5157	2/ 2020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2+ <u>27350000</u> 03	0.958000000 0	A 0.007544014 14	-1.5501	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2+31(50000E 03	0.10610000 C	CE 2.48756400E 04	-2.0211	14 - (2011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.51450000F 03	0.11/100000	(2 (.) 175 (a)) (-) 5 (-)	~1 3555	19.6333
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3150000000 033	0 1 24 10 20 21 0	[] ()•1)20030)E)E	-0.7/03	22.4172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.392530035 03	0.1.2000.1.200	1. 0.1.070074 JE JE	-0.1606	33.7261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9.39600000F 03		0.11357500r og	-11.05.11	72,4076
1 2233500000F 0.1 0.1000000 0.6 0.10000600 0.10000000 0.100000000 0.10	0.398000005 02		15 0.113061606 06	-4 . [1 0]	77 7777
1.23100000F 0.33700000F 0.43700000F 0.44700000F	1 2295000ar as		15 0 112686616 16	- 3. 7077	27 5252
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 231000005 01		9 9 973173736 3	- 3 - 3 - 1 - 2	77 706 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• < > C > C > C > C > C > C > C > C > C >	- 7,33700070E N	4 0.27553555	1.0.77	40.01
1+1/100001F 0.75300000 1.75300000 1.7530000 1.7530000 1.7530000 1.7530000 1.7530000 1.7510000 1.7510000 1.7510000 1.7510000 1.75100000 1.7510000000 1.75100000000000000000000000000000000000	1. 2.21 CODODE 23	- 1.01700 nak o	• • • • • • • • • • • • • • • • • • •	1,2051	7 7 7 7 7 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.17100001E 413	C. 753000000 0	7 J. 175577501 04	1 2261	5 C + 5 2 - 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	צר אריירטל 7 הנ	0.75201221	(*) • <u>25 3336036 _</u>) 4	1 2016	4 ° 8 J ° 8
$\frac{46}{4} \frac{1}{1} 1$	די ארייינייניו ויי	74 0.00000	14 1 7 4 1 7 1 7 0 1 C 1 4		4+++512
AVEQ ALLE CONVERTING AND A DECEMBER OF A DECEMBER		• · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		66 . 1 7 h. h.
	AVED ALL DE			· · · · · ·	ない。ドラック

AVED ALE SEVIENTESS 2.7103475 P. SE SEC.

7-15

NITROGEN 34 0.95

LEAST SOUARES POLY COEFF. ARE:

	$\begin{array}{c} A \left(\begin{array}{c} O \right) = \\ A \left(\begin{array}{c} 1 \end{array} \right) = \end{array}$	0.55527260E 04 0.27753370E 02	
	HEAT FLUX	CALC. HEAT FLUX	
03 03	0.13320000E 0.13320000E	05 0.14607160E 05	-9.6634

0 22/200005 00			in a new prover	· CO	NOTATION STATION	14
1 1	0 - 1 3 320000 0 - 1 3 320000 0 - 1 3 320000 0 - 1 0 520000 0 - 7 0 500000 0 - 9 6000000 0 - 9 6000000 0 - 9 6000000 0 - 9 6000000 0 - 1 220000 0 - 1 1220000 0 - 1 5 70000 0 - 1 5 700000 0 - 1	00000000000000000000000000000000000000	$\begin{array}{l} 0.146971607210766\\ 0.13749732006\\ 0.13749732006\\ 0.1273376076\\ 0.113376676\\ 0.113376676\\ 0.96765319700\\ 0.96765319700\\ 0.96765319700\\ 0.96765319700\\ 0.977127125006\\ 0.977127125006\\ 0.971251970\\ 0.902374192006\\ 0.971251970\\ 0.9023742100\\ 0.9023742100\\ 0.9023742100\\ 0.9023742100\\ 0.974541900\\ 0.1369942100\\ 0.1369942100\\ 0.13269030\\ 0.112269237006\\ 0.13269942100\\ 0.112269237006\\ 0.112269237006\\ 0.112269237006\\ 0.112269227706\\ 0.1122573006\\ 0.1122573006\\ 0.1122573006\\ 0.1122573006\\ 0.1122572006\\ 0.1122573006\\ 0.1122573006\\ 0.1122539006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.112255006\\ 0.11255006\\ 0.11255006\\ 0.11255006\\ 0.11255006\\ 0.112550$	<u> </u>	$\begin{array}{c} -9 \cdot 6634 \\ -3 \cdot 1923 \\ -7 \cdot 2627 \\ -7 \cdot 2745 \\ -7 \cdot 7245 \\ -7 \cdot 7245 \\ -7 \cdot 7245 \\ -7 \cdot 7253 \\ 0 \cdot 0560 \\ -12 \cdot 5079 \\ -7 \cdot 4211 \\ -0 \cdot 9201 \\ -5 \cdot 2660 \\ -6 \cdot 0929 \\ 17 \cdot 4325 \\ 10 \cdot 5372 \\ -9 \cdot 22660 \\ -6 \cdot 0929 \\ 17 \cdot 4325 \\ 10 \cdot 5372 \\ -9 \cdot 22660 \\ -6 \cdot 9261 \\ -7 \cdot 2533 \\ -4 \cdot 5269 \\ -10 \cdot 5309 \\ -7 \cdot 4793 \\ -7 \cdot 2533 \\ -4 \cdot 5269 \\ -10 \cdot 5309 \\ -7 \cdot 4793 \\ -11 \cdot 6057 \\ -7 \cdot 9291 \\ -7 \cdot 9$	$\begin{array}{c} 41 \\ -5 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7$

DELTA T

)FODEE = 1

14

LFAST SQUARES POLY COEFF. ARE:

Δ (0)=	0.36561750F	04
A (1)=	0.67612380E	02
AL	2)=	-0.528267605-	01

DELTA T	HEAT FLUX		CALC. HEAT ELU	K % DEVIATI	ии н
$\begin{array}{c} 0.31850000E 03\\ 0.26200000E 03\\ 0.26450000E 03\\ 0.2800000E 03\\ 0.2300000E 03\\ 0.23000000E 03\\ 0.23000000E 03\\ 0.17900000E 03\\ 0.18450000E 03\\ 0.18450000E 03\\ 0.13950000E 03\\ 0.13150000E 03\\ 0.13150000E 03\\ 0.13150000E 03\\ 0.13150000E 03\\ 0.13150000E 03\\ 0.13150000E 03\\ 0.3950000E 03\\ 0.3950000E 03\\ 0.3950000E 03\\ 0.32050000E 03\\ 0.32050000E 03\\ 0.32050000E 03\\ 0.32050000E 03\\ 0.32050000E 03\\ 0.27850000E 03\\ 0.27850000E 03\\ 0.22750000E 03\\ 0.22750000E 03\\ 0.22510000E 03\\ 0.25300000E 03\\ 0.250000E 03\\ 0.2500000E 03\\ 0.2500000E 03\\ 0.2500000E 03\\ 0.250000E 03\\ 0.2500000E 03\\ 0.2500000E 03\\ 0$	0.1920000E 0.1920000E 0.1920000E 0.1710000E 0.1710000E 0.1710000E 0.1710000E 0.14310000E 0.14310000E 0.14310000E 0.12580000E 0.12580000E 0.12580000E 0.12580000E 0.12580000E 0.12580000E 0.12580000E 0.12580000E 0.71000000E 0.71000000E 0.71000000E 0.71000000E 0.21100000E 0.21100000E 0.21100000E 0.21100000E 0.21100000E 0.21100000E 0.13300000E 0.18300000E 0.16500000E 0.17400000E 0.15600000E 0.15600000E	00000000000000000000000000000000000000	0.19888930E 05 0.17875830E 05 0.17978520E 05 0.18589250E 05 0.16283510E 05 0.16283510E 05 0.16470020E 05 0.13953100E 05 0.13953100E 05 0.14236910E 05 0.14236910E 05 0.14236910E 05 0.11617150E 05 0.11617150E 05 0.11617150E 05 0.11859760E 05 0.11428140E 05 0.97506520E 04 0.72308940E 04 0.69225070E 04 0.69225070E 04 0.69225070E 04 0.69225070E 04 0.20878040E 05 0.19947040E 05 0.19989980E 05 0.18508190E 05 0.18508190E 05 0.18508190E 05 0.18508190E 05 0.18508190E 05 0.16446830E 05 0.16446830E 05 0.16446830E 05 0.17411070E 05 0.17497090E 05 0.14922020E 05	$\begin{array}{c} -3.589\\ 6.3610\\ -8.709\\ 4.774\\ 3.008\\ -15.094\\ 0.510\\ -10.296\\ 7.653\\ 5.725\\ -19.791\\ -0.2268\\ -2.208\\ -1.843\\ 2.499\\ 2.499\\ 1.81\\ 1.051\\ 0.264\\ -1.6846\\ 0.322\\ -0.556\\ -1.6846\\ 0.322\\ -0.556\\ 4.987\\ 4.342\end{array}$	$\begin{array}{c} 60.2924\\ 73.2924\\ 73.2924\\ 1.61.0714\\ 8.75.6637\\ 9.73.5484\\ 5.6637\\ 9.9441\\ 7.73.5484\\ 0.779.9441\\ 7.77.5484\\ 0.777.5484\\ 0.779.9441\\ 7.77.5484\\ 0.79.9441\\ 7.77.5475\\ 9.9441\\ 0.777.5475\\ 1.6379\\ 9.72.5475\\ 1.6382\\ 9.90.1797\\ 9.72.5475\\ 1.6382\\ 9.90.151.0638\\ 9.9554\\ 1.51.0638\\ 3.65611\\ 9.9554\\ 1.51.095\\ 1.51$
AVERAGE D	EVIATION =	4.0?	824600 X	DEGREE = ?	

NITROGEN 231 0.95

LEAST SQUARES POLY COEFF. ARE:

А (())=	0.321078005 04	
Α(1) =	0 75/580205 04	
ΔĊ	21-	02 · 12428930F 02	
	<i>c_ / -</i>	-U. 55/49330E-01	

DELTA T	HEAT FLUX	CALC. HEAT E		
0.29800000E 0.265500000E 0.26500000E 0.23400000E 0.23400000E 0.23500000E 0.18200000E 0.18600000E 0.18600000E 0.13050000E 0.13400000E 0.13400000E 0.13400000E 0.13400000E 0.13400000E 0.26500000E 0.289500000E 0.289500000E 0.289500000E 0.289500000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.26750000E 0.2650000E 0.2650000E 0.26500000E 0.2750000E 0.265500000E 0.26500000E 0.14500000E 0.26500000E 0.26500000E 0.130000E 0.2750000E 0.26500000E 0.26500000E 0.130000E 0.130000E 0.2750000E 0.26500000E 0.2750000E 0.2750000E 0.2650000E 0.13050000E 0.13000000E 0.1300000E 0.130000E 0.130000E 0.130000E 0.130000E 0.1300000E 0.130000E 0.1300000E 0.1300000E 0.275500000E 0.275500000E 0.27550000E 0.26500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.27500000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E 0.2750000E	03 0.19900000F 03 0.19900000F 03 0.19900000F 03 0.18250000F 03 0.18250000F 03 0.15320000F 03 0.15320000F 03 0.15320000F 03 0.15320000F 03 0.12250000F 03 0.12550000F 03 0.194550000F 03 0.1530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530000F 03 0.15530	05 0.20732420F 05 0.19548870F 05 0.19346560F 05 0.19323890F 05 0.17844450F 05 0.17894330E 05 0.16944680F 05 0.15076980F 05 0.15076980F 05 0.15076980F 05 0.12060620E 05 0.122606620E 04 0.98995190F 04 0.87703820E 04 0.87703820E 04 0.87703820E 05 0.12272600F 05 0.21272600F 05 0.21365250E 05 0.21366570F 05 0.19504190F 05 0.16179420F 05 0.16179420F 05 0.164280390F 05 0.164280390F 05 0.14280390F 05 0.14452710F 05 0.1445457710F 05 0.144545	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H $66 \cdot 7785$ $73 \cdot 7037$ $74 \cdot 9579$ $77 \cdot 95196$ $77 \cdot 95196$ $70 \cdot 7948$ $82 \cdot 3655$ $93 \cdot 7173$ $126 \cdot 9734$ $120 \cdot 3497$ $91 \cdot 4179$ $77 \cdot 55807$ $91 \cdot 4173$ $126 \cdot 9734$ $77 \cdot 7103$ $77 \cdot 7103$ $77 \cdot 31043$ $77 \cdot 97065$ $76 \cdot 56730$ $71 \cdot 3263$ $77 \cdot 30065$ $76 \cdot 3263$ $71 \cdot 3263$ $71 \cdot 37173$ $72 \cdot 30043$ $77 \cdot 30065$ $76 \cdot 4737$ $91 \cdot 3263$ $91 \cdot 9714$ $92 \cdot 4737$

LEAST SQUARES POLY COEFF. ARE:

Δ(0)=	0.30884370E	04
Α (1)=	0.75418410F	02
Λ (2)=	-0.47661710E-	

DELTA T

~

0+19450000E 03 0+15700000E 05 0+15354460E 05 -1+4366 76+0187 0+15350000E 03 0+14400000E 05 0+15354460E 05 -1+6200 90+7100 0+17050000E 03 0+14400000E 05 0+14473746E 05 -0+5121 94+0557 AVERAGE DEVIATION = 2 7100000E 05 -0+9312 94+4575	DELTA T HEAT FLUX 0.29300000E 0.3 0.21560000E 0.28100000E 0.3 0.21560000E 0.2800000E 0.3 0.21560000E 0.2800000E 0.3 0.21560000E 0.2360000E 0.3 0.18600000E 0.2360000E 0.3 0.18600000E 0.2360000E 0.3 0.18600000E 0.2360000E 0.3 0.18600000E 0.2360000E 0.3 0.16360000F 0.2360000E 0.3 0.16360000F 0.1940000E 0.3 0.16360000F 0.1940000E 0.3 0.16360000F 0.1940000E 0.3 0.13200000F 0.13200000F 0.3 0.13200000F 0.13200000F 0.2 0.89900000F 0.13200000F 0.2 0.89900000F 0.3100000F 0.2 0.54400000F 0.3100000F 0.2 0.54400000F 0.30350000F 0.3 0.2020000F 0.29950000F 0.3 0.20200000F 0.2470	CALC. HEAT FLUX 05 0.21110280F 05 0.20548480F 05 05 0.20500750E 05 05 0.18928830F 05 05 0.18270070E 05 0.18270070E 05 0.18270070E 05 0.18270070E 05 0.16071290F 05 0.16070290F 05 0.12591900E 05 0.12591900E 05 0.12780360F 05 0.12780360F 05 0.12780360F 05 0.4 0.87606790F 05 0.4 0.87606790F 05 0.4 0.877606790F 05 0.23276620F 05 0.23276620F 05 0.23276620F 05 0.23276620F 05 0.21848770F 05 0.20785030F 04 0.4 0.51495030F 05 0.20785030F 05 0.20785030F 05 0.20785030F 05 0.21848770F 05 0.20785030F 05 0.21848770F 05 0.20785030F 05 0.21848770F 05 0.20785030F 05 0.18902850F 05 0.18902850F 05 0.17233450F 05 0.17233450F 05 0.17455110F	<pre></pre>	H 73 \cdot 5836 76 \cdot 7260 77 \cdot 9000 74 \cdot 3491 78 \cdot 8136 79 \cdot 9339 83 \cdot 9136 79 \cdot 9338 84 \cdot 3290 92 \cdot 9540 92 \cdot 9540 94 \cdot 9640 92 \cdot 9547 100 \cdot 4465 113 \cdot 9817 152 \cdot 2394 175 \cdot 49640 73 \cdot 6670 73 \cdot 6670 73 \cdot 6670 74 \cdot 5060 77 \cdot 4102
	0.24800000E 03 0.135000000E 0.21700000E 03 0.185000000E 0.22100000E 03 0.16800000E 0.1940000E 03 0.15700000E 0.1940000E 03 0.15700000E 0.19450000E 03 0.15700000E 0.19450000E 03 0.15700000E 0.19450000E 03 0.1570000E 0.19450000E 03 0.1570000E 0.19450000E 03 0.14400000E 0.17050000E 03 0.14400000E	05 0.19902850F 05 0.18902850F 05 0.17233450F 05 0.17455110F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.1453400F 05 0.1453400F 05 0.1453400F 05 0.1453400F 05 0.1453400F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.15254460F 05 0.152554660F 05 0.15255460F 05 0.5 0.15255460F 05 0.5 0.5 0.5 0.5 0.5 0.5 0.5	-1.9962 -1.9962 -2.1776 -2.5801 -3.8995 -1.4360 -1.6200 -0.5121 -0.9312	67.4457 74.0033 74.5060 77.4133 76.0131 30.0270 91.7100 94.0557 94.4575

LEAST SQUARES POLY CHEEF. ARE:

	$ \begin{array}{c} \Delta \{ & 0 \} = \\ \Delta \{ & 1 \} = \\ \Delta \{ & 2 \} = \\ \Delta \{ & 3 \} = \\ \Delta \{ & 4 \} = \\ \end{array} $	0.251) 0.1060 -0.5365 0.2750 -0.4716	10780E 04 04650E 03 0500E 00 01750E-02 08890E-05		
DELTA T	HEAT FLUX		CALC. HEAT FU		
0.23700000E 03 0.21550000E 03 0.23550000E 03 0.24800000E 03 0.24800000E 03 0.24800000E 03 0.17650000E 03 0.15750000E 03 0.17650000E 03 0.13100000E 03 0.13100000E 03 0.13100000E 03 0.13100000E 03 0.13100000E 03 0.13100000E 03 0.13100000E 03 0.13100000E 03 0.13100000E 03 0.29200000E 03 0.29200000E 03 0.29200000E 03 0.29200000E 03 0.29200000E 03 0.25150000E 03 0.25150000E 03 0.25150000E 03 0.25150000E 03 0.25150000E 03 0.22400000E 03 0.22400000E 03 0.18700000E 03 0.18700000E 03 0.18700000E 03	0.19200000F 0.19200000F 0.21400000E 0.21400000F 0.21400000F 0.15000000F 0.15000000F 0.15000000F 0.15000000F 0.11800000F 0.11800000F 0.11800000F 0.11800000F 0.90200000E 0.90200000E 0.90200000F 0.90200000F 0.90200000F 0.90200000F 0.90200000F 0.90200000F 0.90200000F 0.90200000F 0.22200000F 0.67900000F 0.67900000F 0.22200000F 0.22200000F 0.21200000F 0.21200000F 0.1940000F 0.1950000F 0.15350000F 0.15350000F 0.1360000F 0.1360000F	0000000000000000000000000000000000000	0.19223030E 05 0.17751000E 05 0.19123520F 05 0.20978960E 05 0.20978960E 05 0.20978960E 05 0.19929030E 05 0.15028110E 05 0.15028110E 05 0.15028110F 05 0.15028110F 05 0.12099060F 05 0.12099060F 05 0.12035540E 05 0.12035540E 05 0.12035540E 04 0.93826210E 04 0.93826210E 04 0.93826210E 04 0.93826210E 04 0.94466750E 04 0.94466750E 04 0.921948550F 05 0.21948550F 05 0.21948550F 05 0.21948550F 05 0.21948550F 05 0.21948550F 05 0.21948550F 05 0.21948550F 05 0.219578940F 05 0.15578940F 05 0.15752380F 05 0.1575280F 05 0.1575280F 05 0.1575280F 05 0.1575780F 05 0.1575780F 05 0.1575780	$\begin{array}{c} & & & & & & \\ & & & & \\ & & & & & \\ & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AVERAGE DEV	INTION =	3.4904	3500 0	DECREE - 4	******

DECREF = 4

NITROGEN 453 0.95

LEAST SQUARES POLY COFFF. ARE:

A(()) =0.16668590E 04 Δ((1) =0.70208060E 02

DELTA T HEAT FLUX CALC. HEAT FLUX % DEVIATION 0.25519990F 03 0.19420000E 05 0.23869990E 0.19597200F 05 03 0.19420000F -0.912505 0.25319990E 0.18467150F 05 03 0.19420000F 05 4.9065 0.23019990F 0.19460680E 03 05 0.17400000Ē 05 -0.2095 0.17881660F 0.21119990Ē 03 0.17400000E 05 -2.7682 05 0.21719990F 0.16564689F 03 05 0.17400000E 05 4-8006 0.20069990F 0.16981800F 05 03 0.14900000F 2.4034 0.19019990Ë 05 0.15832000F 05 03 0.149000005 05 -6.2551 0-20319990F 0.15095850F 05 03 0.14900000E 0.16006770E -1.3145 0.16719990F 05 03 05 0.12600000F -7.4280 05 0.14519990F 0.13471210F 03 0.12600000E 05 05 -6.9144 0.11901610F 0.16519990F 75.3588 03 05 0.1260000F 5.5427 05 0.13329150F 05 0.12219990F 86.7769 03 0.95900000F -5.7869 04 0.11419990F 0.10244380F 05 76.2712 03 0.95900000E 04 -6.8236 0.11969990F 0.96640500F 04 03 78.4770 0.95900000F -0.7722 04 0.80599990F 0.10063240F 05 83.9755 0.2 0.69500000F -4.9347 04 0.721201508 04 0.666999990 80.1170 02 0.69500000F -3.7700 04 0.77199990F 02 0.61768160F 04 86.1214 ∩.69500000E 11.1249 04 0.31769990F 0.69537960F 104.1978 03 0.23000000E 04 05 -0.0546 0.30069990F 0.23799970F 90.0250 03 05 0.23000000E -3.4782 05 0.22669000F 0.30069990E 72.3053 03 05 0.22500000F 05 1.4391 0.22669000F 05 0.29019090E 76.4992 03 0.22500000F -0.751105 0.27969990F 03 0.21965900F 05 74.8254 0.21200000E 2.3737 05 0.21259340E 05 0.27669990E 03 77.5327 0.21200000F -0.2790 05 0.24219990F 03 75.7955

0.21756830F 05 0.18750000F 1.6753 05 0.197075805 15 0.243699907 03 0.18750000F 0.2262 05 0.18810500E 25 0.20310000E 03 ∩.16550000F -0.3227 05 0.16006770F 05 0.20469990E 03 0.16550000F 3.2823 05 0.15111530F 05 0.16769990F 03 0.14250000F 2.6493 05 0.13506700F 05 0.16019900E 03 0.14250000F 5.2161 05 1.13613140F 15 4.4691

AVERAGE DEVIATION =

3.39619100 2

DECOEF = 1

7 Ň

H

76-0972

81.3573

76.6983

75.5864

82.3864

90.1105

74.2402

78.3386

73.3269

76.6173

77.4154

76. 7382

81.4460

<u>คลั คร่ล</u>ัง

84.9732

R4.214R

LEAST SQUARES POLY COEFF. ARE:

0.89713780E 04 0.23826960F 02 A (0) = A (1) =

DELTA T		HEAT FLUX		CALC. HEAT FL	_UX	% D	EVIATION	н	
0.31150000E 0.27750000E 0.24400000E 0.19900000E 0.13100000E 0.35550000E 0.34000000E 0.29950000E 0.26400000E 0.17500000E	03 03 03 03 03 03 03 03 03 03	0.17520000E 0.16300000F 0.14950000F 0.13750000E 0.12800000E 0.17520000F 0.17150000F 0.15150000F 0.15150000F 0.14200000F	05 05 05 05 05 05 05 05 05 05 05 05	0.16365390F 0.15419730E 0.14580720E 0.13598570F 0.12429570F 0.17762800E 0.17231130E 0.16020800E 0.15070550E 0.13160720E	05 05 05 05 05 05 05 05 05 05		6.5902 5.4004 2.4701 1.1013 2.8940 -1.3859 -1.0624 -5.7479 -6.1307	56 58 61 69 40 50 50 50 50	2440 7387 2705 0955 1470 1470 5873 454 454 454 454 454 454 454 454 454 45
AVERA	GE	DEVIATION =	3.8	9175000 %		DEGREE	= 1		

LEAST SQUARES POLY COEFF. ARE:

AL	() =	0.92109060E	04
AL	1)=	0.43743830F	02

DELTA T		HEAT FLUX		CALC. HEAT F	Füx	2 DEVIATION	14
0.23700000E 0.32650000E 0.30900000F 0.21950000E 0.1720000E 0.13150000E	03 03 03 03 03 03	0.20830000E 0.23100000F 0.22800000E 0.18100000F 0.16600000E 0.14880000F	05 05 05 05 05 05	0.19810640E 0.23299750E 0.22678890E 0.19037220E 0.16787600E 0.14695930E	05 05 05 05 05 05	4 • 2937 -0 • 8648 0 • 5312 -5 • 1780 -1 • 1301 1 • 2370	e7.e99a 71.7504 73.7964 92.4691 96.5116 113.1553
AVERA	GE DEV	IATION =	2.30	579500 %	r	EGPFE = 1	

ARGON 338 0.55

LEAST SQUARES POLY COEFF. ARE:

Δ ()	0.89130890E 04 L)= 0.55544180E 02		
DELTA T HEAT	T FLUX CALC. HEAT	FEUX & DEVIATION	Ц
0.27900000E 03 0.2380 0.23700000E 03 0.2270 0.22300000E 03 0.2170 0.20300000E 03 0.2030 0.17750000E 03 0.191 0.12000000E 03 0.156	00000E 05 0.2413542 00000E 05 0.2212873 00000E 05 0.2140136 00000E 05 0.2132503 00000E 05 0.1388923 20000E 05 0.1539023	0F 05 -1.4093 0F 05 2.5166 0F 05 1.3762 0F 05 -0.1233 0F 05 -4.0727 0F 05 1.4709	25.6115 95.7806 97.3094 109.0000 102.2535 130.1666
AVERAGE DEVIATION	= 1.82818900 %	$ \mathbf{D} \mathbf{E} \mathbf{C} \mathbf{S} \mathbf{E} \mathbf{E} = \mathbf{I} $	

ARGON 550 0.55

LEAST SQUARES POLY CHEFF. ARE:

	$\begin{array}{ccc} A(& 0) = & 0 \\ A(& 1) = & -0 \\ A(& 2) = & 0 \\ A(& 3) = & -0 \\ \end{array}$	15857940E 05 +9471860E 02 78960620E 00 15981320E-02		
DELTA T	HEAT FLUX	CALC. HEAT FLU)	X 7 DEVIATION	Ц
0.21100000E 03 0.19200000E 03 0.18600000E 03 0.14600000E 03 0.11600000E 03 0.35150000E 03	0.2560000E 05 0.24500000E 05 0.23200000E 05 0.20650000E 05 0.18200000E 05 0.26620000E 05	0.25573260E 05 0.241488905 05 0.23679960E 05 0.20495300E 05 0.18251500E 05 0.26621100E 05	0.1044 1.4331 -2.0689 0.7491 -0.2830 -0.0041	121.2270 127.6041 124.7311 141.4383 156.8365 75.7326
AVERAGE DEV	IATION = 0.7	77376680 %	DEGREF = 3	

ARGON 620 0.55

	LEAST SQUARES A(0)= A(1)=	POLY CHEFF. ARE: 0.31991480E 04 0.57039700E 02	
DELTA T 0.32650000E 03 0.30450000E 03 0.24950000E 03 0.20650000E 03 0.17350000E 03 0.10350000E 03 0.10350000F 03 AVERAGE DE	HEAT FLUX 0.22100000F 0.20300000F 0.17350000F 0.15100000F 0.12850000F 0.92400000F	CALC. HEAT FLUX & DEVIATION 05 0.21913950F 05 0.8418 05 0.20591480F 05 -1.4359 05 0.17294400F 05 0.3204 05 0.14886800F 05 1.4119 05 0.92190740F 04 0.2265 0.94516990 * DEC2EE - 1	Ч 67.6876 66.6667 60.9100 73.1235 74.0634 89.2754

ARGON 655 0.55

LEAST SQUARES POLY COEFF. ARE:

At	0)=	0.64635190E 04
Δ(1)=	-0.69865600E 02
Δ (2)=	0.17493620E 01
Al	3)=	-0.84832570E-02
A (4)=	0.13192640F-04

DELTA T	HEAT FLUX	CALC. HEAT FLUX	% DEVIATION	н
0.27950000E 03 0.26450000E 03 0.20450000E 03 0.18000000E 03 0.13100000E 03 0.10150000E 03	0.18850000F 0.17900000E 0.15900000E 0.14930000E 0.12120000E 0.99400000E	05 0.18858420E 05 05 0.17889560E 05 05 0.17889560E 05 05 0.15881000E 05 05 0.14970620E 05 05 0.12087750E 05 04 0.99526360E 04	$ \begin{array}{r} -0.0447 \\ 0.0583 \\ 0.1194 \\ -0.2721 \\ 0.2660 \\ -0.1271 \end{array} $	67.6840 67.6749 77.7506 82.9444 92.5191 97.9310
AVERAGE DE	EVIATION =	0.14795320 %	DEGREE = 4	

-

APGON 56 0.75

LEAST SQUARES POLY COEFF. ARE:

DELTA T	HEAT FLUX		CALC. HEAT	FLUX 9		
0.31200000E 03 0.3300000E 03 0.29200000E 03 0.29200000E 03 0.26300000E 03 0.26300000E 03 0.26300000E 03 0.21200000E 03 0.21200000E 03 0.21200000E 03 0.22350000E 03 0.15150000E 03 0.15150000E 03 0.16600000E 03 0.16600000E 03 0.88000000E 03 0.88000000E 03 0.88000000E 03 0.23100000E 03 0.25550000E 03 0.30550000E 03 0.35550000E 03 0.35550000E 03 0.35550000E 03 0.35550000E 03 0.25550000E 03 0.25550000E 03 0.25550000E 03 0.25550000E 03 0.25550000E 03 0.25550000E 03 0.25550000E 03 0.10700000E 03 0.1070000E 03 0.10700000E 03 0.10700000E 03 0.10700000E 03 0.10700000E 03 0.10700000E 03 0.10700000E 03 0.1070000E 03 0.100000E 03 0.10000E 03 0.100000E 03 0.100000E 03 0.100000E 03 0.100000E 03 0.100000E 03 0.100000E 03 0.10000E 03 0.100000E 03 0.0000E 03	0.13350000F 0.13850000F 0.12400000F 0.12400000F 0.12400000F 0.12400000F 0.11650000F 0.11650000F 0.11650000F 0.10000000E 0.10000000F 0.10000000F 0.887000000F 0.887000000F 0.887000000F 0.887000000F 0.887000000F 0.81000000F 0.81000000F 0.11500000F 0.11500000F 0.10730000F 0.10730000F 0.10730000F 0.10150000F 0.96500000F 0.96500000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.12720000F 0.127500000F 0.1075000F 0.1075000F 0.1075000F 0.1075000F 0.1075000F 0.10	00000000000000000000000000000000000000	0.12491510F 0.12759720F 0.13290370F 0.11760650F 0.11990770F 0.12313820F 0.11990770F 0.1123050F 0.1022050F 0.1022050F 0.1022050F 0.10457380F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.92144100F 0.9477010F 0.1051640F 0.1051640F 0.1051640F 0.13361540F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.13564770F 0.11564770F 0.13564770F 0.13564770F 0.13564770F 0.11564770F 0.13564770F 0.11564770F 0.11564770F 0.11564770F 0.11564770F 0.11564770F 0.13564770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F 0.1157770F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \circ \mathbf{v}_{1} \mathbf{A}_{1} \mathbf{I}_{1} \mathbf{v}_{1} \\ \circ \mathbf{v}_{2} \mathbf{g}_{2} \mathbf{g}_{3} \\ \mathbf{a}_{2} \mathbf{g}_{2} \mathbf{g}_{3} \\ \mathbf{a}_{3} \mathbf{e}_{1} \mathbf{g}_{2} \mathbf{g}_{3} \\ \mathbf{a}_{3} \mathbf{e}_{1} \mathbf{g}_{2} \mathbf{g}_{3} \\ \mathbf{a}_{3} \mathbf{e}_{1} \mathbf{g}_{2} \mathbf{g}_{3} \\ \mathbf{e}_{3} \mathbf{e}_{3} \mathbf{e}_{1} \mathbf{g}_{3} \mathbf{e}_{1} \\ \mathbf{e}_{3} \mathbf{e}_{1} \mathbf{g}_{2} \mathbf{g}_{3} \\ \mathbf{e}_{3} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{g}_{2} \\ \mathbf{e}_{3} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \\ \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \\ \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{1} \\ \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{1} \\ \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{1} \\ \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{1} \\ \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \\ \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{2} \mathbf{e}_{1} \mathbf{e}_{1} \mathbf{e}_{2} \mathbf$	$\begin{array}{l} \mu \\ 440, 17, 149, 170, 140, 170, 170, 170, 170, 170, 170, 170, 17$
		• · · ·		가는 승규 돈 돈	~ 7	

ARGON 111 0.75

LEAST SQUARES POLY COFFE. ARE:

	A(0) = A(1) = A(2) =	0.99] 0.337 0.407	140540F 04 258050E 00 793440E-01		
DELTA T	HEAT FL	JX	CALC. HEAT ELL	JX % DEVIATION	L į
0.29900000E 0.32000000E 0.25500000E 0.27600000E 0.19700000E 0.19700000E 0.16000000E 0.16000000E 0.17850000E 0.17850000E 0.10300000E 0.10300000E 0.12300000E 0.14100000E	3 0.1400000 3 0.1400000 3 0.1291000 3 0.1291000 3 0.1161000 3 0.1161000 3 0.1161000 3 0.116000 3 0.116000 3 0.1120000 3 0.1030000 0 0.1030000 0 0.1070000	0E 05 0F 05 0E 05 0E 05 0E 05 0E 05 0E 05 0E 05 0E 05 0E 05 0E 05	0.13663860F 05 0.14173410E 05 0.12672290E 05 0.13131550E 06 0.11561740F 05 0.11934640E 06 0.10996330E 06 0.10298000E 05 0.10426680E 06 0.10561820E 06 0.10755820E 05	$\begin{array}{c} 2.4010 \\ -1.2387 \\ 1.8413 \\ -1.7161 \\ 0.4157 \\ -2.7962 \\ 1.8184 \\ 50.5588 \\ 0.0193 \\ -1.2300 \\ 1.2914 \\ -0.5218 \end{array}$	46.0007 43.7500 50.4274 46.7754 58.9340 53.0550 70.0000 62.7451 14.4444 25.3704 86.9910 75.8865
AVERAGE	E DEVIATION =	1.3?	155200 %	DEGREE = 2	

ARGON 197 0.75

LEAST SQUARES POLY COEFF. ARE:

A (0) =	0.8265871CE 04
A (1) =	0.11905700E 02
A (2) =	0.44593140E-01

D. E						
DELTA T	HEAT FLUX		CALC. HEAT EL	IIX wr		
0.27400000E 0 0.2910000F 0 0.29950000E 0 0.25300000E 0 0.25900000E 0 0.27200000E 0 0.20800000E 0 0.20800000E 0 0.21700000E 0 0.16200000E 0 0.16300000E 0 0.16300000E 0 0.10850000E 0 0.10850000E 0 0.11950000E 0 0.27750000E 0 0.25700000E 0 0.25700000E 0 0.25700000E 0 0.2550000E 0 0.22550000E 0 0.22550000E 0 0.22550000E 0 0.15350000E 0 0.15350000E 0 0.15350000E 0 0.15350000E 0 0.15350000E 0 0.11850000E 0 0.11850000E 0 0.11850000E 0 0.11850000E 0 0.11850000E 0 0.11850000E 0 0.11850000E 0 0.11850000E 0	3 0.15600000F 0.15600000F 0.15600000F 0.14480000E 0.14480000E 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.12310000F 0.11100000F 0.110030000F 0.10030000F 0.10030000F 0.10030000F 0.10030000F 0.12500000F 0.13250000F 0.1110000F 0.1110000F 0.1110000F 0.1110000F 0.11250000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.111000F 0.11100F 0.11100F 0.11100F 0.11100F 0.11100F 0.11100F 0.11100F 0.11100F 0.11100F 0.11	00000000000000000000000000000000000000	0.14871100F 0 0.15930870F 0 0.15930870F 0 0.14088300F 0 0.14088300F 0 0.14304290E 0 0.14773230F 0 0.12638000E 0 0.12638000E 0 0.12638000E 0 0.12638000E 0 0.1395420E 0 0.11345370F 0 0.11345370F 0 0.101238690F 0 0.10377120F 0 0.93679250F 0 0.93679250F 0 0.93679250F 0 0.93679250F 0 0.13280150F 0 0.10762940F 0 00	555555555555555555555555555555555555555	$\begin{array}{c} 4.6724\\ 0.2348\\ -2.1210\\ 2.7051\\ 1.2134\\ -2.1632\\ -2.6646\\ -2.6646\\ -2.6646\\ -4.8452\\ -2.6615\\ -2.2106\\ -4.0291\\ -2.0807\\ -0.9357\\ -3.4608\\ 0.9054\\ -1.8303\\ 2.8557\\ -2.4515\\ -0.2276\\ 0.4900\\ 3.8439\\ -0.52162\\ 1.1625\\ 6.8047\\ 3.1238\end{array}$	H 56.0347 57.0267 57.0267 57.0267 57.0277 56.7231 69.1827 56.7231 69.1827 56.7231 69.3700 83.0373 57.4230 135.8039 135.8039 57.4243 135.8039 57.4293 135.8039 57.4293 135.8039 57.4293 135.8039 57.4293 57.532 91.44912
				- 기가 반온 슈퍼 =	: 7	

ARGON 338 0.75

LEAST SQUARES POLY COEFF. ARE:

A(0) = A(1) = A(2) =	0.71669450E 04 0.22096740E 02 0.39600960E-01
----------------------	--

DELTA T							
		HEAT FLUX		CALC. HEAT E	LUX 9	DEVIATION	
0.24500000E 0.25700000E 0.26450000F 0.22950000E 0.23300000E 0.23300000E 0.20600000E 0.20700000E 0.20700000E 0.20700000E 0.16800000E 0.16800000E 0.16800000E 0.13850000E 0.13850000E 0.13850000E 0.13850000F 0.13850000E 0.22650000F 0.22650000E 0.22650000E 0.22650000E 0.22650000E 0.22650000E 0.22650000E 0.22650000E 0.22650000E 0.22650000E 0.22650000E 0.2650000E 0.15650000E 0.12650000E 0.12650000E 0.12650000E 0.12650000E	03 03 03 03 03 03 03 03 03 03	<pre>15650000E 15650000E 15650000E 15200000E 15200000E 15200000E 13480000E 13480000E 13480000E 13480000E 12110000E 12110000E 12110000E 12110000E 10550000E 10550000E 10550000E 10550000E 10550000E 14810000E 14810000E 14810000E 14810000E 14810000E 14810000E 14810000E 14810000E 12900000E 12900000E 12900000E 12900000E 12900000E 12900000E 12900000E 12900000E 1200000E 10870000E 10870000E 11300000E 111300000E 111300000E 111300000E 110000E 110000E 110000E 110000E 110000E 110000E 110000E 110000E 110000E 11000E 110000E 11000E 110000E 110000E 110000E 11000E 110000E 110000E 110000E 11000E 11000E 110000E 110000E 11000E 1100E 11000E 11000E 11000E 1100E 11000E 11000E 1100E 11</pre>	00000000000000000000000000000000000000	0.14960730F 0.15435290E 0.15731000E 0.14347840F 0.14486050E 0.14842000F 0.13427250E 0.1346050F 0.134699710E 0.13699710E 0.11993140E 0.119956750F 0.12250120E 0.10875980E 0.10875980E 0.10875980E 0.10977040E 0.1097303000E 0.93573120F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.14980520F 0.12812690E 0.13427250F 0.12812690E 0.13427250F 0.10565320F 0.10565320F 0.10565320F 0.11579920F 0.11579920F 0.12121150F	05 05 05 05 05 05 05 05 05 05 05 05 05 0	$\begin{array}{c} 4.4042 \\ 1.3719 \\ -0.5176 \\ 5.6063 \\ 4.6970 \\ 2.3552 \\ 0.3913 \\ 0.1034 \\ -1.6300 \\ 0.9650 \\ 1.2654 \\ -1.1571 \\ -3.0861 \\ -3.8770 \\ -4.9957 \\ -0.3294 \\ -1.7099 \\ -2.9926 \\ -1.1514 \\ -4.7553 \\ -1.6396 \\ -5.7316 \\ 0.6768 \\ -5.7316 \\ 0.6768 \\ -4.0872 \\ 7.6913 \\ 2.5006 \\ 7.3660 \\ 2.8029 \\ -2.4773 \\ -7.2668 \\ -2.2 \end{array}$	H $A^3 \cdot 8775$ 59.9947 59.1687 65.2360 65.2360 65.4208 72.0833 72.5150 74.208 72.0950 77.5735 76.1733 74.2050 108.2352 115.0000 108.2352 61.8102 57.1810 57.8913 61.8102 61.8102 61.8102 61.8102 61.8102 61.8102 61.8102 61.8102 61.80214 84.5070 72.9345 61.8924 61.8024 83.924 61.8024 84.5070 72.9345 65.3892

ARGON 550 0.75

	LEAST SQUARES POL	LY COEFF. ARE:		
	$\begin{array}{c} A(0) = & 0.22 \\ A(1) = & -0.22 \\ A(2) = & 0.22 \\ A(3) = & -0.22 \\ A(3) = & -0.22 \\ A(4) = & 0.22 \\ A(4)$	22166360E 05 35816600E 03 30832030E 01 3647390E-02 25635920E-05		
DELTA T	HEAT FLUX	CALC. HEAT FLUY		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.16300000F 05 0.16300000F 05 0.16300000F 05 0.14550000F 05 0.14550000F 05 0.14550000F 05 0.13310000F 05 0.13310000F 05 0.13310000F 05 0.13310000F 05 0.11400000F 05 0.11400000F 05 0.11400000F 05 0.11400000F 05 0.10000000F 05 0.10000000F 05 0.16600000F 05 0.1660000F 05 0.10000F 05 0.10000F 05 0.1000F 05 0.10000F 05 0.1000F 05 0.1000F 05 0.1000F 05 0.1000F 05 0.1000F 05 0.1000F 05 0.1000F 05 0.1000F 05 0.100F 0	0.14919850E 05 0.15856790F 05 0.16042170F 05 0.14237920E 05 0.14538670F 05 0.14538670F 05 0.14771440F 05 0.12654940E 05 0.12853280F 05 0.12853280F 05 0.13113970F 05 0.10788250F 05 0.10788250F 05 0.10142571F 05 0.10142571F 05 0.10142571F 05 0.997711910F 04 0.97735930F 05 0.16389400F 05 0.15477940F 05 0.15477940F 05 0.154871940F 05 0.154871940F 05 0.14821530F 05 0.14831550F 05 0.19734510F 05 0.19734550F 05 0.19734550F 05 0.19734550F 05 0.19734550F 05 0.19734550F 05 0.19734550F 05 0.1974510F 05 0.197570F 05 0.197570F 05 0.197770F 05 0.197770F 05	$ \begin{array}{c} x & \text{DEVIATION} \\ & & \text{R} \cdot 4671 \\ & & 2 \cdot 7190 \\ & 1 \cdot 5817 \\ & & 2 \cdot 1448 \\ & & 0 \cdot 0778 \\ & & -1 \cdot 5220 \\ & & 4 \cdot 9216 \\ & & 3 \cdot 4313 \\ & 1 \cdot 4728 \\ & & 6 \cdot 4804 \\ & & 5 \cdot 3662 \\ & & 2 \cdot 8081 \\ & & -1 \cdot 4257 \\ & & 0 \cdot 2881 \\ & & 2 \cdot 2641 \\ & & 1 \cdot 2747 \\ & & -0 \cdot 2787 \\ & & & -1 \cdot 4287 \\ & & & -1 \cdot 4287 \\ & & & -4 \cdot 5126 \\ & & & -8 \cdot 5827 \\ & & & -5 \cdot 5827 \\ & & & & -5 \cdot 5277 \\ & & & & -5 \cdot 5603 \\ & & & & -1 \cdot 4759 \end{array} $	H 76.7059 69.3617 77.93753 70.93753 70.93754 76.497512 75.19376 75.19770 75.19770 75.16670 75.49750 163.49150 165.49150 165.49150 165.47300 65.75300 65.75300 65.75300 65.75300 65.75300 67.75300 74.3500 74.3500 74.3500 74.3500 74.3500 74.5500
AALB VUE D	JEALVIL 3" 5	24, 2.2. J.A. P		77.74,71
			Ŧ	

3-7()

ARGON 620 0.75

LEAST SQUARES POLY COFFF. ARE:

A (A (A (0)= 1)= 2)= 3)=	0.80396670E -0.56465190E 0.80603480E -0.17606840E-	04 02 00 02
-------------------	--------------------------	---	----------------------

DELTA T HEAT

HEAT FLU	X CALC. HEAT E		
0.24300000E 03 0.17300000 0.24850000E 03 0.17300000 0.19900000E 03 0.16180000 0.21950000E 03 0.16180000 0.21950000E 03 0.16180000 0.18450000E 03 0.16180000 0.18450000E 03 0.14600000 0.19200000E 03 0.14600000 0.19200000E 03 0.12950000 0.15700000E 03 0.12950000 0.16200000E 03 0.12950000 0.16200000E 03 0.12950000 0.12900000E 03 0.12950000 0.12200000E 03 0.10770000 0.248500000E 03 0.16650000 0.221500000E 03 0.15100000 0.221500000E 03 0.15100000 0.248500000E 03 </td <td>F05016635170E05016770270E05015770270E05015826680E05015826680E05014016760E05014224500F0501442551330E05012318330F05012585040F05010377800E05010377800E050167289040F05010377800E05016728900F05016728900F05016728900F05016728900F05016728900F05016728900F05016728900F05016728900F050123486280F05016728900F05016728900F05016728900F05016728900F05012349730F05012585040F04097129290F05012680F04095219680F04095219680F04095219680F05016680F04095219680F05016680F04095219680F05016680F04095219680F05016680F04095219680F050<!--</td--><td>$\begin{array}{c} \text{LOX} & \text{PEVIATION} \\ 05 & 3.9420 \\ 05 & 3.9620 \\ 05 & 9.2659 \\ 05 & 3.1161 \\ 05 & 2.1836 \\ 05 & 2.1836 \\ 05 & 2.5710 \\ 0.5 & 2.5710 \\ 0$</td><td>H $71 \cdot 1 \circ 34$ $69 \cdot 6177$ $91 \cdot 3065$ $74 \cdot 9074$ $73 \cdot 7130$ $79 \cdot 1329$ $77 \cdot 6596$ $76 \cdot 0417$ $82 \cdot 4841$ $81 \cdot 9620$ $79 \cdot 9383$ $92 \cdot 8548$ $83 \cdot 4884$ $98 \cdot 2559$ $96 \cdot 6571$ $67 \cdot 6027$ $96 \cdot 8574$ $87 \cdot 167$ $67 \cdot 6027$ $96 \cdot 8574$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $97 \cdot 3659$ $96 \cdot 8574$ $71 \cdot 3043$ $48 \cdot 3333$ $74 \cdot 6757$ $70 \cdot 9375$ $70 \cdot 9383$ $74 \cdot 6757$ $70 \cdot 9375$ $70 \cdot 9776$ $74 \cdot 3713$ $72 \cdot 6093$ $75 \cdot 9247$ $9 \cdot 5153$</td></td>	F05016635170E05016770270E05015770270E05015826680E05015826680E05014016760E05014224500F0501442551330E05012318330F05012585040F05010377800E05010377800E050167289040F05010377800E05016728900F05016728900F05016728900F05016728900F05016728900F05016728900F05016728900F05016728900F050123486280F05016728900F05016728900F05016728900F05016728900F05012349730F05012585040F04097129290F05012680F04095219680F04095219680F04095219680F05016680F04095219680F05016680F04095219680F05016680F04095219680F05016680F04095219680F050 </td <td>$\begin{array}{c} \text{LOX} & \text{PEVIATION} \\ 05 & 3.9420 \\ 05 & 3.9620 \\ 05 & 9.2659 \\ 05 & 3.1161 \\ 05 & 2.1836 \\ 05 & 2.1836 \\ 05 & 2.5710 \\ 0.5 & 2.5710 \\ 0$</td> <td>H $71 \cdot 1 \circ 34$ $69 \cdot 6177$ $91 \cdot 3065$ $74 \cdot 9074$ $73 \cdot 7130$ $79 \cdot 1329$ $77 \cdot 6596$ $76 \cdot 0417$ $82 \cdot 4841$ $81 \cdot 9620$ $79 \cdot 9383$ $92 \cdot 8548$ $83 \cdot 4884$ $98 \cdot 2559$ $96 \cdot 6571$ $67 \cdot 6027$ $96 \cdot 8574$ $87 \cdot 167$ $67 \cdot 6027$ $96 \cdot 8574$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $97 \cdot 3659$ $96 \cdot 8574$ $71 \cdot 3043$ $48 \cdot 3333$ $74 \cdot 6757$ $70 \cdot 9375$ $70 \cdot 9383$ $74 \cdot 6757$ $70 \cdot 9375$ $70 \cdot 9776$ $74 \cdot 3713$ $72 \cdot 6093$ $75 \cdot 9247$ $9 \cdot 5153$</td>	$\begin{array}{c} \text{LOX} & \text{PEVIATION} \\ 05 & 3.9420 \\ 05 & 3.9620 \\ 05 & 9.2659 \\ 05 & 3.1161 \\ 05 & 2.1836 \\ 05 & 2.1836 \\ 05 & 2.5710 \\ 05 & 2.5710 \\ 05 & 2.5710 \\ 05 & 2.5710 \\ 05 & 2.5710 \\ 0.5 & 2.5710 \\ 0$	H $71 \cdot 1 \circ 34$ $69 \cdot 6177$ $91 \cdot 3065$ $74 \cdot 9074$ $73 \cdot 7130$ $79 \cdot 1329$ $77 \cdot 6596$ $76 \cdot 0417$ $82 \cdot 4841$ $81 \cdot 9620$ $79 \cdot 9383$ $92 \cdot 8548$ $83 \cdot 4884$ $98 \cdot 2559$ $96 \cdot 6571$ $67 \cdot 6027$ $96 \cdot 8574$ $87 \cdot 167$ $67 \cdot 6027$ $96 \cdot 8574$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $96 \cdot 8571$ $67 \cdot 6027$ $97 \cdot 3659$ $96 \cdot 8574$ $71 \cdot 3043$ $48 \cdot 3333$ $74 \cdot 6757$ $70 \cdot 9375$ $70 \cdot 9383$ $74 \cdot 6757$ $70 \cdot 9375$ $70 \cdot 9776$ $74 \cdot 3713$ $72 \cdot 6093$ $75 \cdot 9247$ $9 \cdot 5153$

ARGON 655 0.75

LEAST SQUARES POLY COEFF. ARE:

Δ(0)=	0.18617710E 05
A (1)=	-0.24545120E 03
Δ (2)=	0.19178260E 01
Δſ	3)=	-0.40268450E-02

DELTA T	HEAT FLUX	CALC. HEAT FLUX	% DEVIATION	4
$\begin{array}{c} 0.23300000E & 03\\ 0.23750000F & 03\\ 0.18400000E & 03\\ 0.19900000E & 03\\ 0.1990000E & 03\\ 0.21400000E & 03\\ 0.17250000E & 03\\ 0.1760000E & 03\\ 0.1760000E & 03\\ 0.14300000E & 03\\ 0.14300000E & 03\\ 0.14450000E & 03\\ 0.14450000E & 03\\ 0.14450000E & 03\\ 0.11400000E & 03\\ 0.11650000E & 03\\ 0.11650000E & 03\\ 0.11650000E & 03\\ 0.25650000E & 03\\ 0.25650000E & 03\\ 0.23350000E & 03\\ 0.23350000E & 03\\ 0.23350000E & 03\\ 0.20250000E & 03\\ 0.17500000E & 03\\ 0.17500000E & 03\\ 0.12200000E & 03\\ 0.12600000E & 03\\ 0.1260000E & 03\\ 0.126000E & 03\\ 0.126000E & 03\\ 0.126000E & 03\\ 0.1260000E & 03\\ 0.1260000E & 03\\ 0.126000E & 03\\ 0.126000E & 03\\ 0.126000E & 03\\ 0.126000E & 03\\ 0.1260000E & 03\\ 0.1260000E & 03\\ 0.1260000E & 03\\ 0.126000E & 03\\ 0.126$	0.17100000E 05 0.17100000E 05 0.15980000E 05 0.15980000E 05 0.15980000E 05 0.14500000E 05 0.14500000E 05 0.14500000E 05 0.12410000E 05 0.12410000E 05 0.12410000E 05 0.12410000E 05 0.10520000E 05 0.10520000E 05 0.10520000E 04 0.92000000E 04 0.92000000E 04 0.92000000E 04 0.13550000E 05 0.12610000E 05 0.12610000E 05 0.12610000E 05 0.12610000E 05 0.12610000E 05 0.12610000E 05 0.12610000E 05 0.10970000E 04 0.96200000E 04 0.96200000E 04 0.96200000E 04 0.96200000E 04	0.14678120E 05 0.14620210E 05 0.13261200E 05 0.13983520E 05 0.13983520E 05 0.12626600E 05 0.12626600E 05 0.12824320E 05 0.10956370E 05 0.10956370E 05 0.10956370E 05 0.11172770E 05 0.96123320E 04 0.96469250E 04 0.97369720E 04 0.90922650E 04 0.90922650E 04 0.90922650E 04 0.90922650E 04 0.91237690E 04 0.91237690E 04 0.13571360E 05 0.136773830E 05 0.14673830E 05 0.14611020E 05 0.14611020E 05 0.12768140E 05 0.12768140E 05 0.12768140E 05	$14 \cdot 1630$ $14 \cdot 5016$ $17 \cdot 0137$ $12 \cdot 4936$ $9 \cdot 2798$ $12 \cdot 9199$ $11 \cdot 5564$ $10 \cdot 0284$ $11 \cdot 7134$ $11 \cdot 0652$ $9 \cdot 9696$ $8 \cdot 6280$ $8 \cdot 2992$ $7 \cdot 4432$ $1 \cdot 1710$ $1 \cdot 1710$ $0 \cdot 3286$ $-2 \cdot 0543$ $-0 \cdot 1577$ $-16 \cdot 36666$ $-15 \cdot 8686$ $-26 \cdot 6824$ $-28 \cdot 7677$ $-32 \cdot 7250$ $-35 \cdot 0418$ $-41 \cdot 9721$ $-44 \cdot 4041$	73.3905 72.0000 96.9478 74.0580 80.5580 82.3864 80.5582 84.0973 92.2807 90.3000 100.0000 97.8265 52.823 52.825 54.1723 52.825 54.9713 52.825 54.9713 52.825 54.9713 52.825 54.9713 52.825 54.9713 52.825 54.9713 52.825 54.9713 52.825 55.634 57.6590 55.634

AVERAGE DEVIATION = 15.04760000 ° DEGREE = 3

Server.

4-32

ARGON 56 0.95

LEAST SQUARES POLY COEFF. ARE:

A(0)= 0.59876210E 04 A(1)= 0.27805370E 02

DELTA T

DELTA T	HEAT CLUV					
0 304600005	PORT FLUX	CALC	C. HEAT FL	UX Y DEV	LATION	
0.30550000E 0.21700000E 0.23800000E 0.23800000E 0.2450000E 0.21450000E 0.25450000E 0.17600000E 0.16300000E 0.16300000E 0.16300000E 0.151000000E 0.15100000E 0.15100000E 0.15100000E 0.15500000E 0.15500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.12500000E 0.125000E 0.125000E 0.1250000E 0.1250000E 0.125000E 0.125000E 0.12500E 0.125000E 0.125000E	03 0.13100000 03 0.13100000 03 0.12280000 03 0.12280000 03 0.12280000 03 0.12280000 03 0.12280000 03 0.12280000 03 0.11400000 03 0.11400000 03 0.81200000 03 0.82500000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.101800000 03 0.100000000000000000000000000000000000	0.142 0.142 0.112 0.0112 0.000 0.000 0.000 0.0000000000	470040E 0 3600E 0 3640260E 0 9484250E 0 9484250E 0 9484250E 0 9484250E 0 931210E 0 931210E 0 931210E 0 9577780E 0 9577780E 0 9577780E 0 9570770E 0 974920E 0 9749200E 0 974920E 0 974	$\begin{array}{c} -107 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	-4584 -3584 -3581 -4900 -4900 -4900 -4900 -4900 -4900 -4071 -7354 -94071 -7354 -94071 -7354 -2600 -2320 -4071 -7354 -2600 -2324 -3008 -3877 -3507 -3507 -3507 -3507 -3507 -3536 -3556 -3556 -3556 -3566	$ \begin{array}{c} H \\ (4) (1, 2) (1, 2) (1, 2) (2, 2) $

ARGON 197 0.95

LEAST SQUARES POLY COEFF. ARE:

Δ (()) =	0.73203940F	04
MI	17=	0.38644400E	02

DELTAT			-				
UELIA T		HEAT FLUX		CALC. HEAT			
U - 281 00000E O - 201 00000E O - 21300000E O - 24750 COOE O - 17800000E O - 19250000E O - 19350000E O - 16550000E O - 16550000E O - 13150000E O - 13150000E O - 7800000E O - 7800000E O - 7800000E O - 29550000E O - 21200000E O - 21200000E O - 21200000E O - 21200000E O - 21200000E O - 21350000E O - 13150000E O - 13450000E O - 13150000E O - 13450000E O - 1345000E O - 1345000E O - 1345000E O - 1345000E O - 134500	03 03 03 03 03 03 03 03 03 03 03 03 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03 03 03	0.16300000F 0.16300000F 0.16300000F 0.14650000E 0.14650000E 0.14650000E 0.13300000E 0.13300000E 0.13300000E 0.13300000E 0.11500000F 0.10300000F 0.10300000F 0.10300000F 0.92800000F 0.92800000F 0.92800000F 0.92800000F 0.92800000F 0.92800000F 0.92800000F 0.92800000F 0.18900000F 0.18900000F 0.18900000F 0.18300000F 0.18300000F 0.18300000F 0.18300000F 0.18300000F 0.18300000F 0.18300000F 0.15500000F 0.15500000F 0.15500000F	05555555555555555555555555555555555555	0.17996790E 0.15315430E 0.15919010E 0.16895910E 0.14451530E 0.15002500E 0.15919010E 0.13471480E 0.13959210E 0.13959210E 0.14295740F 0.12009170F 0.12538850E 0.12120750E 0.12538850E 0.12120750E 0.10258540F 0.10258540F 0.10881800F 0.107539570E 0.17682740E 0.17783350E 0.17682740E 0.17783350E 0.17682740E 0.17783350E 0.17682740E 0.17783350E 0.17682740E 0.17783350E 0.17682740E 0.15709380F 0.15884330E 0.15884330E 0.14451530F 0.1667900E 0.15884530F 0.1667900E 0.15884530F 0.1588450F	05 05 05 05 05 05 05 05 05 05 05 05 05 0	$\begin{array}{r} -9.7963\\ 6.0403\\ 2.3373\\ -15.3305\\ 1.3547\\ -2.4061\\ -19.6919\\ -1.2893\\ -4.9565\\ -24.3108\\ -4.4276\\ -9.0335\\ -17.6772\\ 0.4025\\ -5.6486\\ -8.4405\\ 5.6686\\ -1.7507\\ 3.7022\\ 3.2050\\ 3.3730\\ 2.8232\\ 2.7722\\ 1.6573\\ 5.3652\\ 4.3112\\ 8.8231\\ 8.9231\\ 8.9227\\ 18.2647\\ 19.1041\\ = 1\end{array}$	H $5^{R} \cdot 0.071$ $81 \cdot 0.09455$ $5^{Q} \cdot 1.9194$ $74 \cdot 770.9$ $87 \cdot 3.039$ $76 \cdot 1.0392$ $87 \cdot 3.03919$ $87 \cdot 45252$ $109 \cdot 96 \cdot 23435$ $87 \cdot 45257$ $109 \cdot 96 \cdot 23435$ $87 \cdot 45257$ $109 \cdot 96 \cdot 23435$ $87 \cdot 45257$ $109 \cdot 9745$ $87 \cdot 45257$ $109 \cdot 9745$ $109 \cdot 974$

ARGIN 338 7.05

SOUARES POLY CORFE. ARE: LFAST 0.134543405 05 -0.230391305 02 0.237557805 02 -0.237557805 00 adad

	VEC0FE = 3	065361 C #	E^{+} = NLITAL	AVEP ACE D
57°2474	-D1598	0.19332760F 0F	ν. 93000000 05	0.24700005 13
119.6428	-0°2437	0.134324505 05	C.1340000E OF	0.11700005 73
121.2669	- C • C 6 6 2	0.13408970F 05	0.13400000F 05	0.117500005 03
05.3047	ר <u>, מהמה</u>	0.14375510F 0F	r.14500000 05	0.15200000F J3
93.9511	n.3461	0.14449810F 05	0.14500000F 05	0.15450000F 03
R5.7143	+0.6014	0.15103710F 75	C.1500000F 05	0.17500000F 03
06.0555	-0.1353	0.15020290E 05	0.15000000F 05	0.177500005 03
73.7577	-0.4234	0.171059805 05	0.1700000F 05	0.23050000F 03
74 . 735 8	-0° 2905	0.173493705 05	0.17000005 05	0.22900000F 33
70.6796	0.3137	0.181429105 05	0.19200000F 05	0.2575000F 33
71.3725	0.8501	0.18045280F 05	0.19200000F 05	0.75500r00E 03
67.2474	4071°U-	0.19332760F 95	P.19300000F 0F	0.2870000F 33
L1	NULIVIA &	CALC. HEAT FLUX	HEAT FLUX	DFLTA T

ARGON 550 0.95

LEAST SQUARES POLY COEFF. ARE:

Α(() = ()	0.38543080E 04
Δ (1) =	0.69499350E 02
Α(2)=	-0.59129100E-01

DELTA T	HEAT FLUX	CALC. HEAT FLUX	8 DEVIATION	Н
0.24050000E 03 0.2090000F 03 0.22150000E 03 0.2000000E 03 0.16700000E 03 0.19450000E 03 0.14500000E 03 0.14500000E 03 0.14100000E 02 0.79000000E 02 0.58000000E 02 0.58000000E 02 0.17300000E 03 0.17350000E 03 0.27150000E 03 0.24200000E 03 0.24200000E 03 0.21500000E 03 0.21500000E 03 0.15500000E 03 0.15500000E 03 0.15500000E 03 0.15500000E 03 0.12500000E 03 0.1250000E 03 0.125000E 03 0.125000E 03 0.125000E 03 0.125000E 03 0.125	0.17800000F 05 0.17800000E 05 0.17800000E 05 0.15230000E 05 0.15230000E 05 0.15230000E 05 0.12500000E 05 0.12500000E 05 0.12500000E 05 0.12500000E 04 0.98200000E 04 0.98200000E 04 0.98200000E 04 0.98200000E 04 0.71400000E 04 0.71400000E 04 0.71400000E 04 0.71400000E 04 0.71400000E 04 0.71400000E 04 0.14010000E 05 0.14010000E 05 0.14010000E 05 0.18250000E 05 0.16700000E 05 0.16700000E 05 0.16700000E 05 0.16320000E 05 0.15320000E 05 0.15320000E 05 0.15320000E 05 0.13700000E 05	0.17167460E 05 0.15836420F 05 0.16385380E 05 0.15425390F 05 0.13816410E 05 0.13816410E 05 0.12666180E 05 0.12666180E 05 0.12451280E 05 0.10107000E 05 0.10107000E 05 0.89463160E 04 0.99631950E 04 0.77072960E 04 0.776479140F 04 0.67542690E 04 0.76479140F 05 0.12666180F 05 0.12666180F 05 0.12666180F 05 0.14145100E 05 0.18293690F 05 0.18293690F 05 0.18293690F 05 0.18293690F 05 0.17226370F 05 0.16103190F 05 0.16103190F 05 0.14615480F 05 0.13195910E 05 0.13352669F 05 0.1335260F 05	$\begin{array}{c} 3.5536\\ 11.0313\\ 7.9473\\ -1.2816\\ 0.4069\\ -1.3295\\ 10.2907\\ 0.3897\\ -2.9226\\ 8.8970\\ -1.4582\\ -7.9453\\ 5.4024\\ -7.11366\\ -0.7852\\ 9.5918\\ -0.4202\\ -0.4204\\ -2.9171\\ -3.1519\\ -4.3914\\ -5.1122\\ -6.6924\\ -7.3947\\ -6.9495\\ -8.1196\\ -3.6038\\ -4.8381 \end{array}$	$74 \cdot 0125$ $85 \cdot 1674$ $80 \cdot 3612$ $76 \cdot 1500$ $91 \cdot 1976$ $78 \cdot 3039$ $105 \cdot 485259$ $99 \cdot 1976$ $123 \cdot 10306$ $1270 \cdot 26317$ $101 \cdot 26317$ $96 \cdot 6203$ $667 \cdot 21946$ $679 \cdot 009412$ $74 \cdot 0540$ $74 \cdot 0540$ 7

AVERAGE DEVIATION = 4.91340400.9 DEGREE = 2

LEAST SQUARES POLY COEFF. ARE:

A(0)= 0.33987690E 04 A(1)= 0.59037060E 02

DELTA T	HEAT FLUX	CALC. HEAT FLUX	3 DEVIATION	Н
0.23950000E 03 0.20650000E 03 0.24200000E 03 0.2100000E 03 0.17700000E 03 0.21500000E 03 0.17200000E 03 0.17500000E 03 0.12800000E 03 0.13050000E 03 0.13050000E 03 0.13050000E 03 0.13050000E 03 0.13050000E 03 0.13050000E 02 0.73000000E 02 0.96000000E 02 0.96000000E 02 0.62000000E 02 0.62000000E 03 0.27950000E 03 0.27950000E 03 0.22950000E 03 0.22950000E 03 0.22950000E 03 0.22950000E 03 0.22950000E 03 0.18950000E 03 0.18950000E 03 0.19100000E 03 0.19100000E 03 0.12800000E 03	0.15800000E 0.15800000E 0.1580000E 0.14500000E 0.14500000E 0.14500000E 0.14500000E 0.12300000E 0.12300000E 0.12300000E 0.10300000E 0.10300000E 0.10300000E 0.10300000E 0.81400000E 0.81400000E 0.81400000E 0.61400000E 0.61400000E 0.61400000E 0.61400000E 0.61400000E 0.61400000E 0.12200000E 0.12400000E 0.17900000E 0.17900000E 0.13400000E 0.13400000E 0.13400000E 0.13400000E 0.13400000E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -11 \cdot 0049 \\ 0 \cdot 8236 \\ -11 \cdot 89.2 \\ -9 \cdot 4513 \\ 3 \cdot 7438 \\ -11 \cdot 4207 \\ -11 \cdot 0807 \\ 2 \cdot 4861 \\ -12 \cdot 5171 \\ -7 \cdot 0351 \\ 7 \cdot 9006 \\ -8 \cdot 5134 \\ -7 \cdot 3428 \\ 6 \cdot 6021 \\ -11 \cdot 1842 \\ -8 \cdot 2309 \\ 5 \cdot 4155 \\ -12 \cdot 4044 \\ -1 \cdot 7707 \\ 6 \cdot 8983 \\ 3 \cdot 1724 \\ 5 \cdot 7267 \\ 5 \cdot 1526 \\ 4 \cdot 6250 \\ 5 \cdot 6250 \\ 5 \cdot 6250 \\ 4 \cdot 6250 \\ 5 \cdot 62$	$\begin{array}{c} 65 & 970 \\ 76 & 5133 \\ 65 & 2892 \\ 49 & 0476 \\ 81 & 9209 \\ 67 & 4418 \\ 71 & 5116 \\ 85 & 4257 \\ 80 & 9275 \\ 105 & 4600 \\ 78 & 9275 \\ 105 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 4600 \\ 78 & 5068 \\ 75 & 0435 \\ 75 & 0435 \\ 77 & 5088 \\ 80 & 6325 \\ 80 & 6325 \\ 80 & 6335 \\ 80 & 63555 \\ 80 & 6355 \\ 80 & 6355 \\ 80 & 6355 \\ 80 & 6355 \\ 80 & 6355$
AVERAGE D	EVINTION -	7.53991700 3	DFGOFF = 1	

ARGON 655.8 0.95

LEAST SQUARES POLY COEFF. ARE:

	$\begin{array}{rrrr} A(& 0) = & -0.14 \\ A(& 1) = & 0.91 \\ A(& 2) = & 0.15 \\ A(& 3) = & -0.24 \\ A(& 4) = & 0.59 \end{array}$	558320F 04 204800E 02 705710E 00 554800E-02 687570E-05		
DELTA T	HEAT FLUX	CALC. HEAT FLUX	% DEVIATION	Н
$\begin{array}{c} 0.24200000E 03\\ 0.22600000E 03\\ 0.24000000E 03\\ 0.20600000E 03\\ 0.2050000E 03\\ 0.18900000E 03\\ 0.16500000E 03\\ 0.16500000E 03\\ 0.15200000E 03\\ 0.16300000E 03\\ 0.12300000E 03\\ 0.12300000E 03\\ 0.12300000E 03\\ 0.12200000E 03\\ 0.12200000E 03\\ 0.12200000E 03\\ 0.249500000E 02\\ 0.4900000E 02\\ 0.4900000E 02\\ 0.4900000E 02\\ 0.4900000E 03\\ 0.26450000E 03\\ 0.2100000E 03\\ 0.18150000E 03\\ 0.15750000E 03\\ 0.1600000E 03\\ 0.1200000E 03\\ 0.120000E 03\\ 0.12000E 03\\ 0.120000E 03\\ $	0.12500000E 05 0.12500000E 05 0.12500000E 05 0.11100000E 05 0.11100000E 05 0.11100000E 05 0.95400000E 04 0.95400000E 04 0.95400000E 04 0.73500000E 04 0.73500000E 04 0.73500000E 04 0.73500000E 04 0.73500000E 04 0.557700000E 04 0.557700000E 04 0.557700000E 04 0.34000000E 04 0.34000000E 04 0.34000000E 04 0.34000000E 04 0.13800000E 04 0.13800000E 05 0.16050000E 05	0.15122040E 05 0.14182640E 05 0.14982830E 05 0.13344090E 05 0.13248870F 05 0.13248870F 05 0.13248870F 05 0.10839690E 05 0.10839690E 05 0.11474000F 05 0.88216640E 04 0.80392340E 04 0.80392340E 04 0.87448240E 04 0.58793280E 04 0.53434840F 04 0.538015620E 04 0.34237960F 04 0.34237960F 04 0.34237960F 04 0.34237960F 04 0.19765180E 05 0.16041830F 05 0.16041830F 05 0.15384660F 05 0.13517710F 05 0.13517710F 05 0.13498200F 05 0.13498200F 05 0.12372530F 05 0.11308740F 05	$\begin{array}{c} -20.9763 \\ -13.4611 \\ -19.8627 \\ -20.2170 \\ -0.0017 \\ -19.3593 \\ -21.3941 \\ -13.6236 \\ -20.0226 \\ -9.3773 \\ -18.9772 \\ -5.5535 \\ 4.0667 \\ -4.1573 \\ -1.4341 \\ 2.1496 \\ -0.6999 \\ -5.1340 \\ 7.6358 \\ 9.8773 \\ 13.5693 \\ 15.7775 \\ 15.88990 \\ 13.2719 \\ 12.8080 \\ 12.7610 \\ 11.6504 \\ 21.8116 \\ 15.2366 \end{array}$	51.659735 55.09351 55.09351 55.09351 55.309351 55.309351 55.309351 55.309351 55.309351 55.3095555 55.47.57.5525457 55.55555555555555 55.55555555555555

AVERAGE DEVIATION - 12.36793000 2 DEGREE - 4

APPENDIX B

SAMPLE CALCULATION

A. Sample Calculations for the first data point of 34 psig nitrogen

0.95 inch heater

Data: E = 16.0 volts
I = 15.2 amps

$$\Delta T_1$$
 = 324.3 °R
 ΔT_2 = 295.8 °R
 ΔT_4 = 313.8 °R
A = 6.21 (10)⁻² ft.²

1. Calculation of the heat flux

$$Q/A = (31413EI) = 13.32(10)^3$$
 B.t.u./hr. ft.²°F

2. Calculation of the heat transfer coefficient predicted

$$Q/A$$
 for 324.3°F = 14.61(10)³ B.t.u./hr. ft.²
h = $Q/(A \Delta T)$ = 41.0731

B. Sample Calculation for twentieth data point of 429 psig nitrop n 0.75 inch heater

Data:
$$h = 41.07 \text{ B.t.u./hr. ft.}^{2} \text{ }^{\text{F}}$$

 $T_{g} = 222 \text{ }^{\text{R}}$
 $\Delta T = 311.5 \text{ }^{\text{R}}$
 $T_{ave} = 377.55 \text{ }^{\text{R}}$
 $\rho_{1} = 28.3 \text{ }16./\text{ft.}^{3} \text{ from reference } \frac{22}{22} \text{ (Perrys)}$
 $\rho_{v} = 2.88 \text{ }16./\text{ft.}^{3} \text{ from reference } \frac{22}{22} \text{ (Perrys)}$
 $\sigma = 0.32 \text{ x } 10^{-5} \text{ }16/\text{ft. from reference } \frac{21}{21}$
 $K_{v}^{\text{T}} = 0.0125 \text{ B.t.u./hr. ft.}^{2} \text{ }^{\text{F}}/\text{ft. from reference } \frac{21}{21}$
 $\mu_{v} = 0.0346 \text{ }16/\text{ft. hr. from reference } \frac{21}{21}$
 $\lambda = 26.6 \text{ B.t.u./lb. from reference } \frac{22}{21}$
 $T_{c} = 227^{\circ}\text{R from reference } \frac{22}{22}$.

$$\lambda = 2\pi (g_c \sigma)/g (\rho_1 - \rho_v)^{\frac{1}{2}} = 19.15(10)^{-3}$$

2. Calculation of λ'

$$\lambda' = \lambda \ 1 + \left(\frac{.34c_{p}\Delta T}{\lambda}\right)^2 = 120 \text{ B.t.u./lb.}$$

3. Calculation of F $F = \begin{bmatrix} k_V^3 \rho_V (\rho_1 - \rho_V)g_{\lambda'} \end{bmatrix}^{\frac{1}{4}} = 27.3$

4. Calculation of $(h_{\lambda} \lambda_{c}^{\frac{1}{4}})/F$ h $\lambda_{c} \lambda_{c}^{\frac{1}{4}}/F = 0.56$

C. Sample Calculation for the first data point for 0.95 in heater at 550psig with argon.

h = 74.01 B.t.u./hr. ft.² °F

$$T_s = 43.5$$
 °F
 $T_c = 151.2$ °K from reference 12
 $T_{ave} = 383.25$ °R
 $T_r = 1.41$
 $P_r = .8$
 $Z = .923$ from reference 12
 $T_{r sat} = 0.967$ from reference 12
 $\left(\frac{H^{\star}-H}{T_c}\right)_v = 2.36 \frac{B.t.u.}{Mole \ ^{\circ}F}$ from reference 12
 $\left(\frac{H^{\star}-H}{T_c}\right)_1 = 8.28 \frac{B.t.u.}{Mole \ ^{\circ}F}$ from reference 12
 $\rho_c = 0.531 \text{ gm/cm}^3$
 $\rho_{r1} = 1.633$ from reference 12
 $P_c = 710psia$

$$C_{p}^{*} = 4.96 \frac{B.t.u.}{mole^{\circ}F} \text{ from reference 12}$$

$$R = 82.1 \text{ (cc) (atm) / (g - mole) (K^{\circ}) from reference 12}$$

$$\sigma = 4.1 \times 10^{-5} \text{ lb./ft. from Appendix C}$$

$$M = 39.95 \text{ lb./mole from reference 12}$$

$$\rho_{c} = .531 \text{ gm/cm}^{3}$$

1. Calculation of $_{\mbox{Pv}}$

$$\rho_{V} = \frac{P}{RT} = 0.0872 \text{ gm} / \text{cm}^{3}$$

2. Calculation of

$$\begin{bmatrix} \left(\frac{H^{*} - H}{Tc}\right)_{1} & - \left(\frac{H^{*} - H}{Tc}\right)_{v} \\ \hline & & \\ \end{bmatrix} \stackrel{T_{c}}{= 40.25 \text{ B.t.u}}$$

3. Calculation of ρ_1

$$\rho_1 = \rho_{r1}\rho_c = 0.868 \text{ gm} / \text{cm}^3$$

Calculation of c_p

$$C_{p} - C_{p}^{*} = 1.495$$

 $C_{p} = \frac{C_{p}}{M} = 0.1615 \frac{B.t.u.}{1b.°F}$

,

APPENDIX C

CALCULATED PHYSICAL PROPERTIES

- TABLE C-I ARGON SURFACE TENSION
- TABLE C-IIARGON VISCOSITY

Surface tension data was calculated by extrapolating low pressure data using the Mcleod equation as suggested by Prutton and Marion (23).

The viscosity data for argon was predicted using the method suggested by Jossi, Stiel and Thodos (25).

SURFACE TENSION FOR SATURATED LIQUID ARGON

TEMPERATURE °	R SURFACE TENSION (σ x 10 ⁵)1b/ft
192	59.1
222	38.0
243	15.32
263	4.1
268	3.08
270	1.03

TABLE C-II

VISCOSITY OF ARGON VAPOR

($\mu \times 10^5$) CENTIPOSES

PRESSURE		TEM	PERATURE	°R		
PSIA	250	300	350	400	450	
71	1151	1360	1570	1400	1970	
212	1200	1400	1600	1875	2010	
353	1240	1430	1630	1855	2030	
568	1255	1457	1660	1829	2050	
638	1260	1460	1670	1805	2075	
670	1300	1495	1690	1770	2110	

VITA

Virgil James Flanigan Jr., son of Mr. and Mrs. Virgil J. Flanigan was born at the Confederate Soldiers Home of Missouri, on December 31, 1938.

He attended Higginsville High School and graduated in May, 1956. In September, 1956, he enrolled in Missouri School of Mines and Metallurge and completed requirements for a Bachelor of Science degree in Mechanican Engineering in May of 1960. He spent the next year in industry and to U. S. Army. In September of 1961 he enrolled at Missouri School of Mater and Metallurgy as a graduate student in Mechanical Engineering. I elect pleted the requirements for Master of Science degree in Mechanical Engineering. I elect ineering in October of 1962. He spent the next two means on the fact of of Missouri School of Mines and was married to Miss Louise Both en June 13, 1964. He then accepted a position with the Both of Miss are t a research engineer. He returned to the University of Miss are t Rolla in September of 1965 and was admitted as a cantidate first of Docotor's degree in Mechanical Engineering.

He and his wife were blessed with the birth of a sone or a formation one year old at the time of this writing.