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The development atomic with accompanying production 

of waste fission products J:>.as produced a large number of problei!ls. 

The fission products are radioactive and e.'!Uit, large qua..."lti ties of 

beta and gamma are able to cause or molecules 

to 

directly. 

the 

as 

essentially 

areas 

excited, e:i.ther directly or i.n­

to chen1ical changes, 

bonds, 

protective coatings 

that will usually be used in 

are being 

Organic solids ~~dergo complicated reactions 

as a result of absorption of radiation. These 

reactions are not understood in eva.."l the simple poly-

mers. classes of reactions haye been recognized, however, 

which can account. for 1nost of observed changes in the physical 

polymers.. Tb:e reactions are: (l) Clea-vage or properties of 

scission, and ) cleavage reaction breaks the 

polymer 

causes the ,.,...,, ....... ,.,..,£ 

is 

impart 

Pigments are used 

crosslinking reaction 

bound together a 

runount that 

in the normal. field use that 

to 

-r.:Mn1"k" whose ex­

tal-coo place .. 

may 

coatings. 

to color and opacity, but they also 
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affect other physical properties of coatings. In general, inorga.rdc 

pigments contribute to the hardness and firmness of coatings. Plate-

1ike pigments decrease permeability, but bulky pigments tend to make 

the coating spongy or porous. 11any pigments are nodular in shape, but 

some are needle-like and tend to physically reinforce the coating. 

Basic pigments will react with free fatty acids, found in ~ film 

formers or formed during oxidation, to form soaps that may tend to 

harden or soften the film, depending on the pigment. other pigments 

may impart such special properties as protection against ultra-violet 

light, mildew, and certain corrosive atmospheres; give the film sell­

cleaning properties; or simpl.y add bulk to more expensive pigments. 

The purpose of this investigation was to prepare pigmented and 

non-pigmented organic protective coatings and to irradiate them with 

gamma rays. The coatings received a constant radiation dose of eight 

million rads. Seven tests were performed on the various coatings. 

The data from the tests were tabulated so that a direct comparison 

could be made as to the e££ect of the radiation on the coatings. The 

data from the tests also enabled comparisons to be made to determine 

if the various pigments had imparted any specific properties that 

would be desirable in coatings being exposed to radiations. 
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II. LITERATURE REVIEW' 

This review is presented in t.hree parts: (1) The interaction 

of gamma rays with matter, (2) the reactions of polymers resulting 

from absorption o£ high energy radiations, and (3) the effect o£ 

gamma radiation on organic protective coatings. 

Gamma Rays 

(11) 
Gamma rays are electromagnetic radiations similar to x-rays. 

They are highly penetrating and have short wavelengths, usually 10-9 

to lo-11 centimeters. They include all electromagnetic radiation of 

nuclear orgin. The energy of gamma rays is emitted as photons. These 

photons may be regarded as particles o£ radiation. The energy of the 

photon is equal to the difference in energy between the two energy 

states (excited and ground) involved in the transition of a nucleus. 

-« -Y' 
Radioactive Parent -Excited State ---Ground State 

-4 

Gamma radiation is described in terms o£ its photon energy, that is, 

one Mev (million electron-volts) gamma rays refer to gamma photons 

with one Mev of energy. 
(12) 

Interaction of Ga.m:ma Rays with Matter. All electromagnetic 

radiations of high energy (0.01 to 100 Mev) interact with matter in 

a similar manner. This includes gamma rays, x-rays, bremsstrahllU'lg, 

and ann:ihilation radiation. Gamma rays interact in several different 
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ways with an absorbing medium. The ways to be considered in this 

review are: (1) Photoelectric effect, (2) Compton effect, and 

(3) pair production. 
(12) 

Photoelectric Effect. A gamma photon which has 

energy greater than the binding energy of an orbital alec-

tron of an atom will interact with an electron in such a 

manner that the entire photon energy is transferred to the 

electron. The ejected electron is called a photoelectron, 

and has a kinetic energy equal to the difference between 

the photon energy and the electron binding energy. The 

photoelectron then behaves as a beta particle in its pas-

sage through matter. Photoelectric interaction is depen­

dent on the energy of the gamma radiation (E), and the 

number of electrons present, which is the same as the atomic 

number (Z) of the absorbing material. 

Probability o£ Photo-} 
electric Interaction 

zn 
= constant x EJ 

This equation is a rough approximation. The 11n" varies 

(1) 

:from three :for low-energy ga.mmB. photons to :five :for high-

energy gamma photons. In actual practice, photoelectric 

absorption is important £or gamma rays with energies less 

than one Mev and then only for absorbers o£ high atomic 

number. When the. photoelectrons are ej ectad £rom an inner 

orbit, an outer electron will take its place, with emission 

o£ characteristic x-r~s. These x-ray photons :frequentlY 



-5-

eject an outer electron (Auger electron) with the photon 

losing all ~ts energy. In this w~er, the photoelectric 

effect may cause complete absorption of gamma pttotons. 
(13) 

Compton Effec.!• In this process, a garrrma photon 

makes an elastic collision ~nth an outer electron of an 

atom of absorbing material. The electron is so loosely 

bound that it acts as i..f were completely free. Both 

momentum and 

photon energy transferred to the electron. 'I'he photon 

deflected or from its 

tions can be expressed as: 

i 
E 
E 

0.51 = 'li"'E..,.("~"l---c-o ... s;........,Q~)~+-"!'llO-."="~'!l."'l (2) 

where: E = energy of inc~dent photon,. Mev. 

E1 :, energy of' deflected photon, 

Q = scattering angle. 

As an interaction between a photon and an electron is 

involved in Compton effect, the probability of' its 

occura:nce is on the number of orbital electrons, 

or atomic nmnber ) of absorber. An approximation 

of o:f a Compton interaction is by the 

following equation. 

Probability } 
Compton Interaction 

z = consta.n t x 'I ) 



In this interaction, the energy of the photon is merely 

decreased and the photon will ultimately escape from the 

medium if it is not absorbed by a photoelectric interac-

tion, which becomes more probable as the photon energy is 

decreased. 
(14) 

Pair Production. When a gamma-ray photon passes 

through the strong electrical field near a nucleus, the 

photon can be annihilated with the formation of an electron-

positron pair. The energy eq~ivalent of the mass of the 

electron-positron pair is 1.02 Mev, therefore, this is the 

minimum energy necessary for pair production. Photon energy 

in excess of 1.02 Mev appears mainly as kinetic energy of 

the pair, with a small part transferred to the atomic 

nucleus. The probability of pair production is dependent 

on the energy (E) of the photon and the atomic number (Z) 

of the absorbing nucleus. 

Probability of } 
Pair Production - constant X z2(E - 1.02) (4) 

Pair production becomes the dominate type of interaction 

for gamma rays at high energies (above five Hev). The prob-

ability of this interaction increases with increasing photon 

energy while the probability of both the photoelectric 

effect and the Compton effect decreases with increasing pho-

ton energy. Pair production results in the complete absorp-

tion of the gamma-ray photon similar to the photoelectric 
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effect. some of ·the electrons positrons may 

come to annihilation radiations (two 0.51 

Mev ) , the propox·tion continuing in the .forward 

direction i.s very sa"'llll because the radiation has an iso-

tropic distribution. There::fore, m.any practical pur-

poses, it is assu.rned that photons are completely absorbed 

ir1 pair production. 
(15) 

Absorpt:i..?l) of a collimated beau of gamma-

matter, has been that a fairly 

the of of 

gamma-ray beam is versus the the absorber trav-

ersed .. it shown that: 

d(ln I) oc- (5) 

(6) 

where: I = intensity, photons (or Hev) 
centLueter second. 

/'(..,.linear 
centimeter. 

coefficient, per 

Equation (6) 

~ "' Io 

.. .. 

X:: 

, to 

e -/'ix 

"" intensity of 
absorber. 

Io ... intensity of 
absorber .. 

,. . 

by the 

.from 

the 

(7) 
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This shows that the intensity o.f gamma rays falls off in an exponen-

tial. manner in their passage through matter, and that, although the 

amount of radiation absorbed b,y a specified material is proportional 

to the intensity, the .fraction of the radiation absorbed is indepen­

dent of the intensity. Also, the equation shows that, theoretically, 

to absorb gamma radiation completely, an infinite thickness o.f 

absorber must be used. 
{16) 

Absorption Coefficients. The linear absorption coefficient 

in equation {7) may be evaluated by measuring the intensity o.f a col-

limated beam of monoenergetic gamma rays before and after passing 

through a known thickness of absorber. This will be the total. absorp-

tion coe.f.ficient and is the summation of the contributions made by 

the photoelectric effect, the Compton effect, and pair production • 

.A.s seen previously, the mode of interaction of gamma rays is energy 

dependent, so that the linear absorption coef.ficient will vary with 

the energy of the gamma rays. Also, it will be observed that the 

value of the linear absorption coefficient varies over a wide range 

for different materials. However, if we define a mass absorption 

coefficient of an absorber as its linear absorption coefficient 

divided by its density, it will be seen that for gamma rays of a 

specified energy this ratio is approximately constant for most mate-

rials. This fact may be used to estimate absorption coefficients 

when appropriate data are unavailable. 
(4, 1, 17) 

Dosage Units. As we have seen in the preceeding sec-

tions, the end result o.f the absorption o.f gamma rays is the production 
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of energetic electrons in matter, a net effect of ionization 

excitation of molecules.. The amou .. nt of in 

a substance :is to express the dose of radiation that sub-

stance has received. One such \U'li t o.f dosage is the roentge.'>l which 

is defined as ttthat quantity of X- or ga'11m.a radiation such that the 

associated COl"'puscular emission centL~eter of dry air at 

standard ta~perature and pressure, produces, :i..n air, carry"i.ng 

one electrostatic u.nit of either sign.n 

1'his is equivalent to an energy eighty-three per 

was the 

sents one per by particles to 

the at the of interest .. 

Rea.qtions of Polymers Caused bl Abs.o}'ption of Ilif!;h E.."'..e:r:,~ Radiatio~ 

(2, 3, , 40) 

degradation, discoloration due 

double :formation, radical formation, 

meriz.ation. "i'wo :from group, and 

been most of obser\red 

• 

are 

i.fied on the pol;ymers as 

as a result of 

(35) 

are cross-

liberat.ion_. 

and poly­

have 

in the 

are 

class-
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endJ.inking, and cyclization. Cross1inld.ng is the chemical. binding by 

which two mo1ecules are combined at their side bonds:. vi th the mo1e­

cules ultimateJ.y being bound together in a network similar to a ge1. 

Scission or c1eavage of molecular main chains results in degradation. 

Endlinking is the combination of molecular ends:~ newly produced by 

scission, with other mol.ecules at the side bonds. Links formed between 

monomers of the same mo1ecul.e are cal1ed oycl.ization. Upon being 

irradiated, pol.~ers may suffer al.l of these effects at the same time, 

with the overal.l effect being the one that predominates. 
(40) 

Wal.1 has reported that cross1inking and scission can be 

rel.ated with the heats of polymerization. In genera1, crosslinking 

with l.ow monomer yiel.d was found to be associated with po~ers that 

have high heats of polymerization, and degradation to be associated 

with polymers with the l.ower heats of pol.ymerization. The results of 

this work is shown in Table I, page 11. Low heats of pol.ym.erization 

are usuall.y associated with high steric repul.sion between side groups 

on the polymer chain. This effect would favor scission and would also 

operate against recombination in case of a main chain rupture. This 

is in agreement with Wal.l 1 s report. 
{38) 

Sisman and Bopp have pictured the crossl.inking, unsa.turation, 

and gas production reactions with a very simp1e mol.eoule as shown in 

Figure 1, page 12. The creation of free radical.s by the release of 

hydrogen from the po~er chains by the radiation is the start of the 

reaction. I£ the l.ife time of the free radicals is sufficientl.y l.ong, 

some may combine with each other to form crosslinked mol.ecules. The 
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TABLE I 

Correlation £! PolYmer Properties ~ Irradiation Effects 

Heat of 
Direction of Polymerization, Monomer 
Irradiation kcal/mole Yield, 

Effect Polymer ?1onomer Wt.% 

Crosslink Ethylene 22 0.025 

do. Propylene 16.5 2 

do. Methyl acrylate 19 2 

do. Acrylic acid 18.5 -
do. Styrene 17 40 

Degrade Methacrylic acid 15.8 --
do. Isobutylene 13 20 

do. Methyl methacrylate 13 100 

do. !X -Methyl styrene 9 100 

Wall, Leo A.: Degradation of Polymers by Radiation, Papers Pre­
sented at the New York Meeting, The American Chemical Society, 
Division of Paint, Plastics, and Printing Ink Chemistry, 17, 
P• 300 (Sept. 1957). -
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crosslinking is considerably enhanced by the fact that the hydrogen 

atom may abstract a hydrogen atom from a nearby molecule J.eaving two 

free radicals close together and in a good position for crossJ.inking. 

The release of hydrogen gas accompanies this reaction. 

It is not so easy to picture the cJ.eavage reaction~ and this 

mechanism has been the subject of many confJ.icting theories. Most 

agree that crosslinking is the J.ogical reaction and that cleavage 
{38) 

will occur only when conditions are right. One such theory for 

the reaction is pictured in Figure 2, page 14. This reaction involves 

a molecuJ.e that will tend to absorb a hydrogen atom at the site of a 

strained bond and cause the molecule to break into two smaller frag-

ments. One of the fragments is a free radical and may join with 

another radical, or became unsaturated with the reJ.ease of a hydrogen 

atom. Less gas is produced by materials that cleave than those which 

crosslink, though both may suffer the formation of a considerable 

amount of unsaturation. 

The stability against cleavage of the basic chemical structures 

of many of the pJ.astics and elastomers have been studied. A few are 

listed in order of stabiJ.i ty in Figure 3, page 15. The order is an 

approximate one and the resistance to cleavage may not be much differ-

ent for structures lying close together, but for structures ranked 

far apart, there is aJ.ways a large difference. 

The basic unit of polystyrene is the highest ranking structure. 

It is predaminantJ.y crosslinked by irradiation as its resistance to 

cleavage is ver.y high, although its rate of crosslinking is very low. 
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Crosslinking proceeds at a relatively fast rate in the repeating 

unit of polyethylene. There is no evidence of cleavage. The ethylene 

structure has about the same resistance to cleavage, but is ranked 

below the polyethylene unit because it was thought the unsaturation 

would impart some added stability. 

The next structure is that of the phenol formaldenyde polymer. 

It is thought that the presence of the benzene ring in the main chain 

increases cleavage since unfilled phenolic crlli~bles for exposures 

which do not decrease the strength of polyethylene. This is in con­

trast with the polystyrene structure which has the benzene ring as 

a side group. 

The remaining structures suffer from increasing susceptibility 

to cleavage. Some polyester materials have been so£tened by radia­

tion with a f~1 being subseq~ently hardened after an initial soften­

ing. Greatly increased tensile strength is found in some of these 

materials for moderate exposures. 

Polyvinyl chloride is predominantly cleaved. It is softened and 

hydrogen chloride is produced. Very marked changes are observed at 

radiation exposures that do not cause much change in any of the pre­

vious structures. 

Polymers having q~aternary carbon atoms as shown in the last 

structure of Figure 3, page 1$, are depicted as being the most easily 

cleaved. However, very rigid materials of this nature have high radi­

ation stability that is attributed as an inherent function of their 

rigidity. 
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Effect qf Gamma R~diation on Organic Protective Coatings 

A very li~ted amount of information is available in the litera-

ture about the effect of radiation on organic protective coatings. 

However, some of the information available as pertains to plastics 

should also be applicable to protective coatings as both may be 

formed from si111ilar polymers. 
(38) 

Sisman and Bopp have reported that phenolic polymers may be 

protected from radiation effects by the addition of inorganic fillers. 

A paper and an asbestos filler was used in their work. The paper-

filled plastic was not appreciably better than the unfilled material 

but the asbestos-filled material had greatly improved radiation 

stability .. 
(37) 

Sisman reports that materials which harden under irradiation 

often show an increase in tensile strength and a decrease in impact 

strength. Materials which show an initial increase in tensile 

strength will show a decrease under prolonged irradiation. The 

decrease is due to cleavage that becomes predominant with longer 

irradiation. r:Jaterials that soften under irradiation will decrease 

in tensile strength but may retain their impact strengtho 
(37) 

Sisman also states that the aunosphere in which a material 

is irradiated is very i111portant as there may be some radiation-induced 

reaction in the atmosphere. If oxygen is present, oxidation is usu-

ally increased. Oxygen is converted to ozone by radiation, so ozone 

damage may be very severe. Nitric acid may be formed by nitrogen and 

oxygen in the air combining with water vapor that is present. \-later 
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absorption for many materials is increased when they are irradiated~ 

causing them to suffer a larger effect when moisture is present. Most 

of these effects are surface effects and may be the controlling fac-

tor £or thin specimens. 
(18) 

Horrocks reports that as a result of gamma irradiation, pol-

ymers usually exhibit an increase or decrease in molecular weight and 

either become embrittled or more fluid. He also reports that the 

gamma radiation resistance of polymers is increased by increasing 

electron mobility and/or oxidation stabilit.Y; that in general~ the 

molecules in an aromatic system are comparatively stable because of 

high electron mobility; and that in same cases a pigment may protect 

a polymer by increasing its oxidation stability. 
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III. EXPERTI1ENTAL 

Purpose of Investigation 

The purpose of this investigation was to prepare pigmented and 

non-pigmented organic protective coatings and to irradiate them with 

g~~a rays. The coatings received a constant irradiation dose of 

eight million rads. Seven tests were performed on the various coat-

ings. The data from the tests were tabulated so that a direct com-

parison could be made as to the effect of the radiation on the coat-

ings. The data from the tests also enabled comparisons to be made to 

determine if the various pigments had imparted any specific properties 

that would be desirable in coatings being exposed to radiations. 

Plan of ExPerimentation 

The resins used for this investigation were film formers that 

are com."'lonly used in the paint industry. They were: (l) A vinyl 

chloride copolymer resin, (2) a phenolic resin modified with tung 

and linseed oil, and (3) an alkyd resin modified with soya oil. 
(28, 34) 

Vinyl Chloride Copolyrner Resin. This resin 

is a patented invention in which vinyl chloride, 55 to 75 

per cent, is copolymerized with (1) a dihydrogen male-

ate, chloromaleate, or fumarate, or mixture of esters of 

this type, 14 to 35 per cent, (2) a monohydrogen 
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monoalkyl maleate~ chloromaleate~ £urmarate~ or mixture 

of esters of this type~ 5 to 10 per cent~ and (3) tri­

chloroethylene~ 1.5 to 6.5 per cent. These resins have 

good solubility in hydrocarbon sol vents~ are compatible 

with alkyd resins~ and have good adhesion to metals. 

They also have good hardness~ good resistance to aging, 

and are particularly applicable to coatings such as paints 

for outdoor-exposed metal eq~pment. 

Modified Phenolic Resin. This resin was obtained in 
-----------------------

a spar varnish. It was a trade sales product that was 

ready for use. The film former consisted o£ a phenolic 

resin~ 11.0 per cent; modified with linseed oil, 14.7 per 

cent; and tung oil~ 29.3 per cent. A drier was present 

and mineral spirits were used as the solvent. The spar 
(6) 

varnish is recommended for use to protect woodwork 

exposed to weather, excessive moisture~ or strong, direct 

sunlight; or interior surfaces subjected to abnormal heat, 

light~ or moisture. 
(27) 

Al~ Resin. Soya oil, 63 parts~ and glycerine, 

1.5 parts, were first reacted to £orm a monoglyceride in the 

manufacture o£ this resin. The monoglyceride vTas reacted 

with phthalic acid~ 25 parts, and rr~eic acid~ 1.5 parts, 

until an acid value of 6 to 10 was reached. This is a 

general purpose resin and can be used £or baking or air­

drying enamels. 
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The pigments used in conjunction with the above resins were: 

(1) Titanium dioxide, (2) zinc oxide, and (3) lead carbonate. 

J.J.:uminum paste and carbon black were also used as pigments with the 

spar varnish to see if they might be of any special significance to 

a film that is being irradiated. Titanium dioxide., zinc oxide, and 

lead carbonate as pigments are commonly used in coatings., but are 

usually used as a part of a combination of pigments. However., in 

this investigation., they were used separately so as to isolate any 

special property that they might give the film. 
(21) 

Titanium Dioxide. This is a brilliant white pig-

ment that is acid and a.lkali resistant, and is inert to 

all paint., varnish, and lacquer ingredients. It is exten-

sively used in paints, finishes, coatings, lacquers, and 

enamels. 
(20) 

Zinc Oxide. This pigment consists of very fine 

particles with a wide range of shapes. It is one of the 

whitest pigments, will not yellow, is opaque to ultra-

violet light, is not discolored by sulphur gases, and is 

used as a preventive for mildewing. It is also used to 

harden paint films, and to control chalking, checking, and 

dirt retention. 
(19) 

Lead Carbonate. This is a reactive pigment that 

forms an opaque white film having excellent durability and 

water resistance. It reacts with the vehicle breakdown 
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components in the film to form lead soaps that stabilize 

the film. 
(5, 22) 

Aluminum Paste. Aluminu~ pigments consist of 

extremely small, thin flakes of highly polished metal. 

They are made by ball milling atomized aluminum in such a 

way as to forge or hammer the grains of the powder into 

minute leaflike particles. 

A combination of several properties make aluminum 

pigments valuable. Their lamellar structure and coating 

of an adherent organic film due to the method of manufac­

ture causes the pigment particles to lie horizontally and 

concentrate in the outer part of the film. This 11leafing11 

action lengthens the path that moisture must traverse to 

get through the film. In addition~ ala~um pigments 

excludes ultra-violet light. Aluminum is usually used as 

a pigment in paints that are to be applied over a primer 

coat. 
(5) 

Carbon Black. This pigment has a laminar structure 

that is valuable for increasing moisture impermeability and 

to ease local mechanical stresses. It is usually made from 

petroleum products and is known as 11larnpblack11 • One impor-

tant property of·la~pblack is its fine particle size which 

is responsible for its intense blackness. Special proper­

ties may be given the lampblack by varying its volatile 

content (combined oxygen and hydrogen) to control its pH. 
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Each of the previously mentioned resins was used as the film 

former for a test series of protective coatings. Each series con­

sisted of a clear varnish, an enamel pigmented with titanium dioxide, 

an enamel pigmented vdth zinc oxide, and an enamel pigmented with 

lead carbonate. The coatings were brushed on tin-plated sheet-steel 

test panels. 

A portion of each series of coatings was irradiated with gamma 

rays, then tests performed on both the irradiated and non-irradiated 

panels. The non-irradiated panels were used for control, as a basis 

of comparison for the irradiated panels. 

Seven tests were performed on the irradiated and non-irradiated 

coatings. The tests were: (1) Light reflectivity before and after 

irradiation, (2) alkali resistance, (3) acid resistance, (4) 

flexibility, (5) abrasion resistance, (6) scratch hardness, and 

(7) impact resistance. The panels used for the impact test were 

also used to rate the adhesion of the coating to the panel. These 

tests are all standard performance tests that are used to evaluate 

protective coatings. 

The results of these tests were compared to determine the effect 

of the irradiation on the coatings and the effect of the different 

pigments on the radiation resistance of the coatings. 



Materials 

The following materials were used in this investigation. The 

specifications for use or purchase, the manufacturer or supplier, 

and the use of the material is listed. 

Acetate, n-Butyl. Commercial grade, 90 to 92~; boiling range, 

ll8°C (initial), l28°C (dry); median specific gravity at 20/20°0, 

0.875. Hanufactured by Carbide and :;arbon Chemicals Co., New York, 

H. Y. Used as a solvent for Exon 470. 

Acetone. Commercial grade; boiling range, 56°C (L~itial), 57°C 

(dry); median specific gravity at 20/20°C, 0. 792. Hanufactured by 

Carbide and Carbon Chemicals Co.,, New York, N. Y. Used as a solvent 

for Exon 470 and to clean paint brushes. 

Alu.rnirnun Pigptent. Standard Paste, No. 205. Specifications: 

Nonvolatile content, ave. 65.55~, max. 66J{,; average mesh size, 99.5% 

through 325; water covering value, max. 18,000 sq cm/gm; moisture con-

tent, normal 0.07%, max. 0.10%; approximate specific gravity, 1.47; 

bulking value, 0.0820 gallons per pound; average leafing value, 80% 

(3 .. 5 gm sa'nple), 65;6 (1.5 gm sample). Hanufactured by Aluminum Co. 

of A~erica, Pittsblrrg, Pa. Used as a pigment for one group of the 

test panels in the spar varnish series. 

Carbonate of . USP, blocks, 2 x 4 x 0.5 in. Nanufac-

tured for Wheeler and Huisking, Ltd., London, England. Used as color 

st&Ldards for the GE Recording Spectrometer. 

Drier. Oronite, cobalt naphthenate, 6% cobalt. Manufactured by 

!Jaftone, Inc., Net-t York, H. Y. Used as a drier for the alkyd resin. 
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Hydrochloric Acid. Neets ACS specifications, lot No. 90065; 

assay 36.5 to 38.0% HCl; specific gravity at 60/60°F, 1.185 to 1.192; 

residue after ignition, 0.0004%; sulfate (S04), 0.0001%; sulfite 

(so3), 0.0001%; free chlorine (Cl), o.oool%; ammonium (NH4), 0.0003%; 

arsenic (As), 0.000001%; heavy metals (as Pb), O.OOOJ.%; iron (Fe), 

0.00001%. Hanufactured and distributed by J. T. Baker Chemical Co., 

Phillipsburg, N. J. Used for the acid resistance test on the coated 

test panels. 

Ketone, !•lethy:l Isobut;y·l. Commercial grade; boiling range, 114°0 

(initial), 117°0 (dry); median specific gravity at 20/20°0, 0.802. 

!1anufactured by Carbide and Carbon Chemicals Co., New York, N. Y. 

Used as a solvent for Exon 470. 

Lampblack. Germantown, Eagle Brand. :Hanufactured by L. Hartin 

Co., Inc., New York, N. Y. Used as a pigment for one group of the 

test panels in the spar varnish series. 

Lead Carbonate. Powder, analytical reagent, meets ACS specifi-

cations. Nax:L:mm limits of iJn.purities: Chloride (Cl), 0.002/b; insol­

uble in acetic acid, 0.02%; iron (Fe), o.oo5%; nitrate (No3), o.oo5%; 

substances not ppted by H2S (as sulfate), 0.20%;. sulfate (so4), 

0.005%; zinc and cadmium (as Zn), 0.005;~; catalogue No. 5709. 

Obtained from !-1a1linckrodt Che.!'11ical \-lorks, St. Louis, Ho. Used as 

a pigment in one group of each of the resin series. 

Hineral Spirits. Bronoco Hineral Spirits--WR, boiling range, 

315 to 400°F. }!anufactured by R .. J. Brown Co., St. Louis, !'Io. Used 

as a solvent for the alkyd resin and to clean paint brushes. 
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Resin, A.J..!cyd. No. 1155. Specifications: Viscosity, Y to Z; 

weight per gallon, 7.95 to 8.05 lbs.; color, 7 to 9; solids, 69 to 

71%, (63 parts soya oil, lS parts glycerine, 25 parts phthalic acid, 

1.5 parts maleic acid); acid value of solids, 6 to 10; solvent, min­

eral spirits. Manufactured by Price Varnish Co., Valley Park, !·1o. 

Used as the film former for one series of' test panels. 

Resin, Vinyl Chloride Copolymer. Exon 470. Specifications: 

1ihite granular powder; specific gravity, 1.31; bulk density, 0.8 

gms/cc (dry), 0.091 gal/lb (solution); relative viscosity, 1.35 (1% 

in cyclohexane). Manufactured by Firestone Tire and Rubber Co., 

Akron, Ohio. Used as a film former for two series of test panels. 

Sodium Hydroxide. Certified Reagent, electrolytic pellets, lot 

No. 771325; assay 98.3% NaOH; iron (Fe), 0.0002%; sodium carbonate 

{Na2co3), 0.3%; chloride (Cl), o.oool%; sulfate (so4), o.ooo%; phos­

phate (P04), 0.0000%; ammonium hydroxide ppt, 0.01~~; heavy metals (as 

Ag), o.oooo%; Potassium (K), o.ooo%; nitrogen compounds (N), o.oo2%. 

Distributed by Fisher Scientific Co., Fair Lawn, N. J. Used to make 

5% solution for the alkali resistance test on coated test panels • 

.:!:2• Scotch, 3/4 in., transparent cellophane. Nanufactured 

by l-::innesota Nining and Hanu.facturing Co., Saint Paul, Hinn. Used 

to secure bundles of test panels during shipment to and from, and 

1 during irradiation by Argonne National Laboratory. 

Titanium Dioxide. Titanox-RA, rutile. Specifications: Titan-

ium dioxide, 97% (min.); specific gravity, 4.2; bulking value, 0.0286 

gallon per pound; particle size, o.4 micron (ave. dia.); tinting 
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strength, 1550; oil absorption, 19-20. I~ufactured by Titanium Pig­

ment Corp., New York, N. Y. Used as a pigment in one group of each 

of the resin series. 

Toothpicks. Flat, -vih.ite birch. Eanufactured by Diamond Hatch 

Co., New York, N. Y. Used as spacers between the wrapped test panels 

during shipment to and i'rom, and during irradiation by Argonne 

National Laboratory. 

Varnish. Spar, 11 6111 •. Composition: Phenolic Resin, 11.0}~; lin­

seed oil, 14. V~; tung oil, 29.35b; drier ar1d :rrdneral spirits, 4.5.o;t. 

!1anui'actured by Pratt and Larrbert, Inc., Bui'falo, N. Y. Used as the 

fi~m former for one series of test panels~ 

1.1J'ater, Distilled. Obtained from distilled 1-rater tap, Organic 

Laboratory, Room 106, Chemical Engineering Building, l'iissouri School 

of Hines and Hetallurgy, Rolla, Nissouri. Used to make 5% sodiu.m 

hydroxide solutions for alkali resistance tests. 

Wrap. Saran, l-1/2 in. x 25 ft. Eanufactured by Dow Cha"1lical 

Co., T··iidland, ::ichigan. Used as a wrap for individual test panels 

during shipment to and from, and during irradiation by Argonne 

National Laboratory. 

Zinc Oxide. Powder, CP. Specii'ications: Insoluble in HCl; Hn, 

11nil 11 ; Fe, 0.0005%; Cd and p;), present; G'u, "nil"; Cl, 0.0230%; Loss 

on ignition, 0.175;&. Hanufactured by Baker and Adamson Chemical Co., 

Easton, Pa. Used as a pigm.ent in one croup of each of the resin 

series. 
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Apparatus 

The following apparatus was used in this investigation. The 

specification for use or purchase~ the ~anufacturer or supplier, and 

the use of the apparatus is listed. 

Abrasion Tester. Available in !13!-f paint laboratory. Consists 

of a platform on which test panels can be mounted horizontally and a 

driving mechanism that causes a brush to be scrubbed back and forth 

across the coated surface of the panels. The brush had a face area 

of 1.25 x 3.25 in., contained 60 tufts, and weighed 62 grams. A 

counter is incorporated with the drive mechanism that counts each 

cycle of the brush (two trips across the panels by the brush). The 

driving mechanism is powered by an electric motor, type NSl-33 R, 

110 v, ac, 60 cy, single phase, 0.010 hp, 37.5 rpm. Manufactured by 

Bodine Electric Co., Chicago, Ill. Used in performing an abrasion 

test on the coated test panels. 

Balance. Analytical, chainomatic, IviS!-1 property No. 12656, weigh­

ing range, 0 to 100 gm, to nearest 0.1 mg. Hanufactured by Christian 

Becker, Inc., New York~ N. Y. Used to weigh test panels before and 

after application of the protective coatings, and before and after 

the abrasion test. 

Balance. Triple beam, r·~Si-: property No. 13990, weighing range, 

0 to 111 gm to nearest 0.01 gm. Obtained from Welch Scientific Co., 

Chicago, Ill. Used for weighing resin, pigment, and solvent. 
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Brush. Paint, 1 in., K-V 185 flagged tynex nylon bristles. 

Obtained from Ben .i?ranklin Variety Store, Rolla, Eo. Used to brush 

coatings on test panels. 

~· Paint, 1/2 pt, D. T., code 51, No. 146. ll!:anufactured by 

American Can Co., North Kansas City, }'Jo. Used for storage of varnish 

and enamel. 

Can. Paint, 1/8 gal, D. T., code 51, No. 167. Hanufactured by 

American Can Co., North Kansas City, No. Used for storage of varnish 

and enamel. 

Can. Paint, 1 qt, D. 'l'., code 51, No. 170. Nanufactured by 

American Can Co., North Kansas City, l'Io. Used for storage of resin. 

Dissolver. Cowles, type lVT, serial No. 0329553, 115 v, ac, 

10.8 amp, 60 cy, single phase, 3450 rpm. Nanufactured by Cowles Co., 

Cayuga, N. Y. Used to put the Exon 470 resin into solution. 

Impact Tester. Variable impact, range of 2 to 30 in.-lb, 2 in.­

lb graduations, catalogue No. 1660. Obtained from Gardner Laboratory, 

Inc., Bethesda, Hd. Used to determine the impact resistance of the 

dry protective coatings on the metal test panels. 

Handrel Set. Set of nine steel mandrels, diameters of 1, 3/4, 

1/2, 7/16, 3/8, 5/16, 1/4, 3/16, and 1/8 inch, with rigid frame, cata­

logue No. 1610. Obtained from Garclner Laboratory, Inc., Bethesda, 

Nd. Used to determine t.he flexibility of the dry protective coatings 

on the metal test panels. 

Hill. Horehouse, model A-200, serial No. 125, 115 v, ac, 14 amp, 

60 cy, single phase, 3600 rpm. Hanufactured by Horehouse Industries, 
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Los Angeles, Calif. Used to disperse the pigments in the varnish or 

resin solutions. 

Oven. Forced air drying, model OV530, serial No. JN 943, regu­

lated temperature range, 100 to 650~, 230 v, ac, 50/60 cy, 3.6 kw, 

single phase. Hanuf'actured by Blue H Electric Co., Blue Island, Ill. 

Used to dry the coated test panels after an initial period of' drying 

at room temperature. 

Scratch Tester. Hoffman, range of 0 to 2400 gm, 25 gm gradua­

tions, catalogue No. 1750. Obtained :from Gardner Laboratory, Inc., 

Bethesda, l-id. Used to determine the scratch hardness of the dry 

protective coatings on the metal test panels. 

Spectrometer. Recording, No. 2649773, 115 v, ac, 60 cy. Manu­

factured by General Electric Co., Schenectady, N. Y. Used to measure 

the light reflectance of the protective coatings on the test panels 

before and after irradiation. 

Test Panels. Bright dry finish, coke tin plate, 30 to 31 gage, 

2-3/8 x 8 in., catalogue No. 6345. Obtained from Gardner Laboratory, 

Inc., Bethesda, Hd. Used as a substrate on which the protective 

coatings were applied f'or irradiation and testing. 

Vials. Shell, 15 x 45 nnn, short style. :Hanufactured by Kimble 

Glass Co., Toledo, Ohio. Used as covers on drops of reagent placed 

on test panels during the alkali and acid test. 
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Irradiation Facility 

The coatings prepared for this investigation were sent to the 
(1) 

High Level Gamma Irradiation Facility , Argonne National Laboratory, 

Lemont, Illinois, for irradiation. 

The source of the gamma radiation for the facility is spent 

reactor fuel elements from the Hateria1s Testing Reactor. Twelve of 

these elements are placed in an irradiation rack located on the floor 

of a canal and covered by sufficient water to protect personnel from 

the radiation. The water is maintained at a temperature of seventy-

five degrees Fahrenheit. The rack is designed to provide irradiation 

sites in the spaces between the elements. Samples located within the 

rack are rotated slowly at two revolutions per minute to insure sym-

metrical exposure to the gamma rays. 

Samples are sealed in thin-walled aluminum sample urns to prevent 

their contact with the canal water. 

A minimum gamma flux of one million roentgens per hour is main-

tained at the interior irradiation sites of the facility. The impor­

tant gamma energies range from 0.22 to 2.5 r-:ev, with an average energy 
(39) 

of about o. 15 ~fev. The intensity of the source and the dosage 

received by samples are measured ~nth a Fricke (ferrous sulfate) 

dosimeter. A change in the spectral characteristics of the chemical 

indicates the dosage it has received. The dosimeter is enclosed in 

a polystyrene cell when it is used in the facility. 
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Hethod o£ Procedure 

The method o£ procedure for this investigation has been divided 

into eight general steps. They are: (1) Preparation of varnish, 

{2) preparation of ena~els, (3) preparation of test panels for 

coating, (4) coating the test panels, (5) preparation of test 

panels for shipment and irradiation, (6) irradiation of test panels, 

(7) unwrapping the irradiated test panels, and {8) testing the 

panels. Each general step has been subdivided as necessary for com-

plete presentation of the procedure. Unless otherwise specified, the 

steps of the procedure are applicable for each of the three test 

series of coatings. 

Preparation of Varnish. Each of the varnishes used in this 

investigation was prepared in a different manner, so they will be 

discussed separately. 

Vinyl Chloride Copolymer Varnish. The vinyl cluoride 

copolymer resin was put into solution using the following 

amounts of solvent and resin: 

Vinyl chloride copolymer resin 200 grams 

Acetone 100 grams 

Nethyl isobutyl ketone 100 grams 

Butyl acetate 200 grams 

This proportion was found by reference to a sales service 
{8) 

bulletin and experimentation with different solutions 
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for one with desirable brushability, leveling character­

istics, and drying rate. 

The resin was put into solution with the aid of the 

Cowles' dissolver. The methyl isobutyl ketone and butyl 

acetate were first transferred to a one-quart paint can. 

The mixer was lowered into the can ru1d the dissolver 

started. The resin was added slowly over a period of 

about five minutes. The acetone was then added with mix­

ing continuing for about three to five minutes until the 

resin was dissolved. The acetone was added last to cut 

down on its loss during mixing by evaporation. The result­

ing solution or varnish was allowed to set overnight before 

it was used so that the air bubbles caused by the mixing 

could escape. 

This solution was reactive with the paint cans and 

would form dark spots on the inside of the cans after sev­

eral days contact. For this reason, the solution was not 

used if' it had been stored in the can for over ten or 

twelve days. 

Spar Varnish. The spar varnish was a trade-sales prod­

uct that crune ready for use. It was used exactly as it was 

obtained in one-gallon cans. A portion of the varnish was 

usually transferred to a one-pint paint can for use as it 

skinned readily after being exposed to the air several times. 
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This prevented small. jelled particles from being formed in 

the entire supply of the varnish. 

AlkYd Varnish. The alkyd resin was available in a con­

centrated, viscous solution. A varnish was made by using 

the following amounts of concentrated resin solution, sol­

vent, and drier: 

AJ.kyd resin solution 

11ineral spirits 

Cobalt drier 

300 milliliters 

150 milliliters 

2.2 milliliters 

This proportion was found by experimentation with different 

solutions for one With desirable brushability, leveling 

characteristics, and drying rate. 

The varnish was made by transferring the concentrated 

alkyd solution into a one-quart paint can. Two-thirds of 

the mineral spirits were mixed l'dth the resin solution. A 

solution was made with the remaining one-third of the min­

eral spirits and the drier, and was added slowly to the 

resin solution with constant stirring with a stirring rod. 

No skinning was noticed in this varnish during its use. 

Preparation of Enamels. Some of the ena~els used in this inves­

tigation were prepared in a slightly different manner or with a dif­

·rerent resin solids-pigment ratio, so the preparation of each enamel 

is presented separately. 
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V~nyl Chloride Copol~er Enamel with Titanium Dioxide 

P. ... :J..gm,env. This enanel was the vinyl chloride copolymer var-

nish pigmented l-Tith titaniwn dioxide. The weight ratio o:f 

resin solids to the pigment t-ras nineteen to twelve. The 

following amounts of varnish and pigment were used to make 

the enamel. 

Vinyl chloride copolymer varnish 253.9 gra"ns 

Titanium dioxide pigment 53.5 grams 

The pigment was dispersed in the varnish by placing the 

varnish in a beaker and slowly adding the titanium dioxide 

"Lvith constant stirring. The pigment was mixed thoroughly 

with the varnish 1dth a stirring rod, then the mixture was 

run once throu~h the Horehouse mill. This dispersed the 

pigment adequately so that a smooth textured enamel was 

obtained. 

This enamel was stored in a paint can :for two or three 

weeks during the time o:f its use. No reaction with the can 

or skinning was noticed. The pigment stayed fairly well. 

dispersed and the enamel could be made ready for use with 

a small. anount of stirring. 

Vinyl Chloride Copolymer Ena'llel. with Zinc Oxide Pig­

~·· This enamel. was the vinyl. chloride copolymer varnish 

pigmented with zinc oxide. The weight ratio of resin solids 
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to pigment was nineteen to twelve. The following a~ounts 

of varnish and pigment were used to make the ena~el. 

Vinyl chloride copolymer varnish 

Zinc oxide pigment 

125 grams 

26.3 gra'11s 

The pigment was dispersed in the varnish in the same manner 

as in the vinyl chloride copol;ymer enamel pigmented with 

titani~'TI dioxide, page 35. 

The zinc oxide pigmen-t reacted with the resin, causing 

a firm, jelly-like substance to be formed a.fter a few hours. 

It was necessary to apply the enamel immediately to the 

panels as the reaction made it unfit for use within a period 

of two hours after the t~ne of mixing. 

Vinll Chloride Copolymer Ena'11el with Lead Carbonate 

Pigment. This enamel was the vinyl chloride copolymer var­

nish pigmented with lead carbonate. The weight ratio of 

resin solids to pigment was nineteen to twelve. The fol­

lowing amounts of varnish and pigment were used to make the 

enamel. 

Vinyl chloride copolymer varnish 

Lead carbonate 

125 grams 

26.3 grams 

The pigment was dispersed in the varnish in the same manner 

as the vinyl chloride copolymer ena~el pigmented with titan­

ium dioxide, page 35. 



-37-

The lead carbonate pigment also reacted with the resin, 

causing a jelly-like substance to be formed, although not 

to the same extent as the zinc oxide pigment. However, it 

was still necessary to apply the ena~el immediately to the 

panels as it became unfit for use in a few hours after it 

was mixed. 

Spar Enamel with 1'itanium Dioxide Pig,ment. This 

enamel was the spar varnish pi&mented with titaninm dioxide. 

The weight ratio of resin solids to pigment was nineteen 

to twelve. The follovTing amounts of varnish and pigment 

were used to make the enamel. 

Spar varnish 

Titanium dioxide 

500 grams 

173.7 grams 

The pigment was dispersed in the varnish by placing the var­

nish in a beaker, then adding the titanium dioxide slowly 

with constant stirring. The pigment was mixed thoroughly 

with the varnish with a stirring rod, then the mixture was 

run once through the Norehouse mill. This dispersed the 

pigment adequately so that a smooth textured enamel was 

obtained. 

This enamel was stored in a paint can for two or three 

weeks during the time of its use. It skinned rather badly, 

but the skin was tough and could be removed without intro­

ducing many particles of the skin into the enamel. The 
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pigment stayed very v.rell dispersed and the ena'llel could oe 

made ready for use with a small amount of stirring. 

Spar ?namel with Zinc Oxide Pigment. This en&~el was 

the spar varnish pigmented with zinc oxide. The weight 

ratio of resin solids to pigment was nineteen to twelve. 

The following amounts of varnish and pigment were used to 

m~~e the enamel. 

Spar varnish 

Zinc oxide 

300 grams 

104.3 grams 

The pigment was dispersed in the varnish in the same manner 

as the spar enamel 1>Vi th titanium dioxide pigment, page 37. 

A skin was :formed on this enamel during storage, but 

the skin was tough and easily removed. The pigment stayed 

dispersed very nell. 

Spar Enamel with Lead Carbonate Pigmento This enamel 

was the spar varnish pigmented with lead carbonate. The 

·weight ratio of resin solids to pigment was nineteen to 

twelve. The following amounts of varnish and pig:rnent were 

used to make the enamel. 

Spar varnish 

Lead carbonate 

300 grams 

104.3 gra.1"US 

The pigment was dispersed in the varnish in the same manner 

as the spar enamel with titanium dioxide pigment, page 37. 
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A skin was formed on this enamel during storage, but 

the skin was tough and easily removed. The pigment settled 

rather rapidly and had to be stirred vigorously before and 

during use. 

Spar Enamel trith Alu.minu.m Pigment. This enamel was 

the spar varnish pigmented with aluminum paste. The weight 

ratio of resin solids to paste tvas thirty-three to ten. 

Due to the large oulk of this pigment, it was not possible 

to use the srune resin solids to paste ratio as in the other 

enamels. The ratio used gave an adequately pigmented film. 

The following amounts of varnish and paste were used to make 

the enamel. 

Spar varnish 

Aluminum paste 

300 grams 

50 grams 

The paste was dispersed in the varnish in the same manner 

as the spar enamel with titani~~ dioxide pigment, page 37. 

A skin was formed on this en~~el during storage, but 

the skin was tough and easily removed. The pigment remained 

dispersed very well. 

Spar Enamel with Lcu11pblack Pigment. This enamel was 

the spar varnish pigmented '•lith lampblack. The weight ratio 

of resin solids to pigment was thirty-three to ten. Due to 

the large bulk of this piement, it was not possible to use 

the same resin solids to pigment ratio as in the other 
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enamels. The ratio used gave an adequately pigmented film. 

The follolv.ing amounts of varnish and pigment were used to 

make the enamel. 

Spar varnish 

Lampblack 

300 grams 

5o grams 

The pigment was dispersed in the varnish in the same manner 

as the spar enamel with titanium dioxide pigment, page 37. 

A skin was formed on this enamel during storage, but 

the skin was tough and easily removed. Tne pigment r~~ained 

dispersed very well. 

Alkyd Enamel with Ti taniu.'11 Dioxide Pigtl!ent. This 

enamel was the alkyd varnish pigmented with titanium dioxide. 

The weight ratio of resin solids to pigment was nineteen to 

twelve. The following ~'1lounts of materials were used to 

make the enamel. 

Alkyd resin solution 

l'!ineral spirits 

Cobalt drier 

Titanium dioxide 

250 milliliters 

125 milliliters 

1.85 milliliters 

106 grams 

A varnish was made by combining the alkyd resin solution, 

mineral spirits, and drier in a si~ilar manner as described 

for the alkyd varnish on page 34. The titanium dioxide was 

added to the varnish slowly vrlth constant stirring. The 
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pigment was mixed thoroughly id th the varnish with a stir­

ring rod, then the mixture vras run once through the Here­

house mill. This dispersed the pigment adequately so that 

a smooth-textured enamel was obtained. 

This enamel was stored in a paint can for tvro or three 

weeks during the ti1ne of its use. It skinned rather badly 

and the skin was very we ale and difficult to remove without 

introducing small particles of the skin into the enamel. 

It was necessary to strain the enamel several times during 

its use to ra>nove these particles. 

Alk:yd Enamel wi. t~ ~inc Oxide Pi~men.t. This enamel was 

the alkyd varnish pigmented with zinc oxide. The weight 

ratio of resin solids to pigment was nineteen to twelve. 

The following amounts of materials were used to make the 

enamel. 

Alkyd resin solution 

Nineral spiri 1~s 

Cobalt drier 

Zinc o:r..ide 

250 milliliters 

125 milliliters 

1.85 milliliters 

106 grams 

The enamel was made in the same manner as the alkyd enamel 

pigmented vli th ti tanimn dioxide, page 40. 

This enamel skin.ned rather badly, and the skin was 

difficult to remove. It was necessary to strain the enamel 



-42-

several times during its use to remove small particles of 

the skin. 

Alkyd Enarnel with Lead Carbonate Pigment. This enamel 

was the alkyd varnish pigmented with lead carbonate. The 

weight ratio of resir solids to pigment was nineteen to 

twelve. The following amounts of materials were used to 

make the enamel. 

Alkyd resin solution 250 milliliters 

~-:ineral spirits 125 milliliters 

Cobalt drier 1.85 milliliters 

Lead car bonate 106 grams 

The enamel was made in the same manner as the alkyd enamel 

pigmented with titanium dioxide, page 40. 

This enamel skinned rather badly, and the skin was 

difficult to remove. It was necessary to strain the enamel 

several ti~es during its use to ra~ove small particles of 

the skin. 

Preparation of Test Panels for Coatin~. It was necessary to do 

the following items of work on the test panels to prepare them for 

coating. The i terns are listed in the sequence in l'Thich they were 

performed. 

(1) One hole, one-fourth inch in diameter, was 

drilled in each panel. The hole was centered between the 

sides and was one-hal~ inch from an end of the panel. The 
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panels were hung on nails through these holes when they 

were not in use. 

(2) The panels were examined individually for sharp 

projection of the edges. These were ground smooth with an 

emery grinder. 

(3) A different number was sta~ped on each panel with 

metal dies. This number was located in the upper right 

corner of the panels (adjacent to the drilled hole in the 

panel). The numbers on the panels for this investigation 

ran consecutively from 25 to 300. 

(4) Straight lines were scratched on both sides of 

the panels to serve as upper boundary lines for the coat­

ing. These lines were parallel to the ends and were six 

inches from the end opposite the hole that was drilled in 

the panel. 

(5) The panels were wiped clean with a cloth dampened 

in acetone. After this, care was taken to handle the panels 

in the area around the holes and above the coating boundary 

line. 

( 6) The panels were hung individually on a line to 

let all traces of the acetone evaporate from them. 

(7) The panels were weighed on the chainomatic balance 

to the nearest milligram and the weight recorded. 

Coating the Test Panels. It was decided at the beginning of this 

investigation that the thickness of the coatings used for the study 
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would be five mils. This is a normal film thickness specified for 

most protective coatings. 

The coating was applied with a brush to both sides of the panels. 

The upper boundar.y line on the panels served as a guide so that equal 

areas on all the panels were coated. 

The freshly coated panels were placed in a horizontal position 

to dry for approximately twelve hours. This allowed the coating to 

dry with a uniform thickness. The panels were then hung in a verticle 

position on a line with clot.hespins to dry for a varying length of 

time, depending on the coating. After a short period of drying in 

the oven, the panels were ready for another brush application of the 

coating. 

The approximate average film thickness per brush application was 

one mil. It was found that thicker applications would cause the film 

to build up at the panel edges and either prolong the drying time of 

the film or cause it to wrinkle. 

A s'WIU'llary of the painting schedule for the panels is shown in 

Table II, page 45. 

Preparation of Test Panels for Shipment and Irradiation. The 

total thickness of the coatings on the test panels varied somewhat 

due to the method of application. This was taken into consideration 

when the panels were being chosen .for irradiation and for control so 

that the tests to be performed later would be on panels with an 

approximate equal film thickness. The first step in choosing the 

panels was to calculate the film thickness on each panel. The panels 



TABLE II 

Sunmtcgy 21. Paintin!$ Schedule 

Hinimum Drying Oven Drying Number of Brush 
'Time Oven 

FilJr1 Former Pigment Between Coats Time Applications 
Horizontal Vertical Temp 
Position Position Between Coats for 5 mil Thickness 

hr hr hr '7 
I 

Vinyl Chloride none 12 0 1-2 125 2 G 
Copolymer Ti02 12 0 1-2 125 4 I 

ZnO 12 0 1-2 125 4 
PbCOJ 12 0 1-2 125 3 

Spar Varnish none 12 6o 2-4 100 4 
'!'' 0 12 60 2-4 100 5 .J. 2 
ZnO 12 (/J 2-4 100 5 
Pbco3 12 6o 2-4 100 6 
A1 12 60 2-4 100 4 
c 12 6o 2-4 100 3 

Alkyd Resin Clear 12 6o 4--6 100 5 
Ti02 12 6o 4-6 100 6 
ZnO 12 60 4-6 100 7 
PbCOJ 12 60 4-6 100 6 



were divided into two groups. The panels in each group were given a 

number designation to indicate the group to which they belonged, and 

a letter designation to indicate a comparative film thickness. The 

letter was assigned on the basis of the weight of coating on the panel 

which was directlY proportional to the film thickness. (The weight 

of the coating was a better basis, as the film thickness was calcu­

lated for only two significant figures.) Thus a panel designated 

A-1 belonged in group-one and would have an approximate equal film 

thickness to panel A-2 wluch belonged in group-two. Reference to 

Table III, page 47, will help to clarify this procedure. It may be 

seen from columns four and six that panels A-1 and A-2 have the heavi­

est coatings, B-1 and B-2, the next-heaviest coatings, and so forth. 

Also, it may be noted that the panel number (column one) on a group­

one panel is always less than the number on the corresponding group­

two panel. This made it convenient to differentiate between irradi­

ated and non-irradiated panels during testing. The test that was 

performed on the panels is indicated in column seven. 

The panels with each of the types of coatings in the different 

test series were grouped in this manner. One group of the panels were 

kept for control and the other group was sent for irradiation. 

It was anticipated that during the irradiation of the test panels, 

the air atmosphere present could absorb radiation, undergo chemical 

changes {oxygen to ozone or nitrogen, oxygen, and water vapor to 

nitric acid) and cause effects that might later be thought due to the 
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TABLE III 

!!!!!! Thickness, Panel Designation, !!:!!.<.! ~ Performed .£!! ~ Panels 

Coated !!!:,h Spar Enamel ~ Titanium Dioxide Pigment 

Panel ~veight of Panel \-Ieight Film Panel Test 
of 

No. w/Enamel we/Enamel Enamel Thickness Designation Performed 

gm gm gm mil 

1 2 3 4 5 6 7 

139 29.967 24.950 5.02 4.9 J-1 none 
140 30.086 24.961 5.12 4.9 H-1 none 

141 29.550 24.555· 4.99 4.8 J-2 none 
142a 30.094 24.968 5.13 4.9 G-1 none 

143 30.617 25.036 5.58 5.4 A-1 al.kali 
lh4a 30.470 24.927 5.54 5.3 B-1 acid 

145 30.524 25.078 5.45 5.3 C-1 abrasion 
146 30.352 24.683 5.67 5.5 A-2 alkali 

147a. 30.602 25.1.57 5.44 5.2 D-1 flexibility 
148a 30.458 25.224 .5.23 5.0 G-2 none 

149 30.510 25.114 5.40 5.2 E-1 scratch 
150 30.542 25.185 5.36 5.2 E-2 scratch 

151 30.321 25.225 5.10 4.9 H-2 none 
152a 30.548 25.138 5.41 ,5 .• 2 D-2 flexibility 

153 30.633 25.119 5.51 5.3 C-2 abrasion 
154 30.413 25.052 5.36 .5.2 F-1 impact 

155 30.341 25.018 5.32 5.1 F-2 impact 
156a 30.694 25.133 5.56 5.4 B-2 acid 

aPanels on which light reflectivity tests were made. 
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radiation. To prevent any such products from reaching the coatings, 

the panels to be irradiated were wrapped individually in saran wrap. 

The protection given the panels by the saran wrap was checked by 

including an extra group in the first test panel series for irradia­

tion. This extra group was irradiated in the same manner as the other 

groups except that it was in an inert (argon) atmosphere during irra­

diation. It was then possible to compare the radiation effect on the 

panels irradiated in the air atmosphere with the ones irradiated in 

the argon atmosphere. 

The saran wrap also kept the panels from sticking together in 

case the coatings softened during irradiation or from heating that 

might be caused by the irradiation. Toothpick spacers were included 

between the panels to allow any heat generated to be easily dissipated. 

Twenty-seven to thirty-six panels were bound together in bundles 

for irradiation. The bundles were fastened securely with scotch tape. 

The thickness of the bundles was limited to a size that would fit into 

a number-two can {three inches in diameter). 

The panels were packed carefully in a corrugated cardboard box 

to prevent them from being damaged during shipment to and from the 

gamma irradiation facility. 

Irradiation of Test Panels. The coated test panels were sent 

for irradiation to the High Level Gamma Irradiation Facility, Argonne 

National Laboratory, Lemont, Illinois. 

Table IV, page 49, shows the irradiation time and dosages received 

by the coated test panels sent to the facility for irradiation. The 
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TABLE IV 

Irradiation Data on Panels Irradiated ------- --------
at Argonne National Laboratory; 
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TABLE IV 

Panel. DesQ1"'j_,pt:Lon Number Irrad:i.at:ion 

o:£ Rate Dosage 

G:rou.p F:O..m Former P:L~t Panel. a Date Top Bot term 'l'i.me Top Bottom 

:rad/m:in m::i.n :r&d 

No .. l. Vi..nyl. cbl.or:i.de none 8 4-8-SB 3 .. 07 X :w4 3.08 X 104 200 7 .. 98 X 1.06 a ... o1. X 1.06 

oopol.;yme;r TiO:! a " " tt tl " n 

ZnO 8 " ft• "' tt n • 
Pb003 8 " lit "' n tt tt 

No. 2a V:lnyl. cbl.or:Lde none 8 4-9-!)8 2 .. 98 X 1.04 2 .. 99 X :1.04 268 7.99 X ::to6 8 .. 01 X 1.06 

oopol.;ymer Tj:02 8 " n tt tt tt tt 

Z:nO 8 n n " tt tt " 
PbC03 8 • " • tt " " 

No. 3 Spar varni.sh none 9 5-2o-58 2 .. 23 X l.Oh 2 .. 27 X 104 356 7 .. 94 X 1.06 a.oa X :to6· 

T:i~ 9 It tt n n tt 1t 

ZnO 9 tt n w ., 
" 

tt 

No. 4 Spar varni.sh PbC03 9 5-21-58 2 .. 2.3 X 104 2 .. :n X J.Oh 356 7-94 X 1.06 e.oe X ].06 

AJ.. 9 It " " " n n 

c 9 n " " " " • 

No,. 5 Al.kyd rea:i:n none 9 6-4-58 0 .. 79 X 104 0.77 X l.04 1538 8 .. 1 X l.06 7 .. 9 X ].06 

T:L~ 9 " n n It n ft' 

No .. 6 llk;yd resin ZnO 9 6-4-58 0 .. 79 X 1.04 0 .. 77 X :to4 1538 8 .. 1 X :1.06 1·9 X 106 

J>bC03 9 " n " "' " 
.. 

~el. Group :i.rre.d:iated :1.n i.nert (argon) a:t:moephere .. 
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panels were too long to be enclosed in one number-two can, so they 

occupied a position normally used for the irradiation of two different 

samples. Because of this, each end of the panels received a slightly 

different dosage of gamma rays. 

Unwrapping the Test Panels. When the panels were returned from 

being irradiated, they were unwrapped and inspected closely. Each 

group was compared individual~ with its corresponding non-irradiated 

group to detect any visible damage or color chanee in the film. 

Testing th~ Panels. Seven tests were performed on the irradiated 

and non-irradiated test panels. The tests were: (1) Light reflec­

tivity before and after irradiation, (2) alkali resistance, (3) 

acid resistance, (4) flexibility, {5) abrasion resistance, (6) 

scratch hardness, and (7) impact resistance. The procedure for each 

of the tests is discussed separately. A short description of the test 

and apparatus is included with the procedure. Each test was performed 

on one irradiated and one non-irradiated test panel from each type of 

coating in the three film former series, unless otherwise stated. 

Reference to Table III, page 47, will show the order in which the 

panels were chosen for the tests in the titanium dioxide group of the 

spar varnish series. The same order was followed throughout the entire 

investigation. 
(33) 

Light Reflectivity. The recording spectrometer 

was used for making spectral-reflectance measurements of 

irradiated and non-irradiated protective coatings on the 

test panels. The device consists essentially of a 
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double-prism monochromator equipped with an automatic slit 

adjustment for a ten-milli.micron wavelength band; a polari­

zation-type photoelectric photoneter; and a recording mech-

ani sm. 

The wavelength range of the light for the test was 400 

to 700 millimicrons. The results of the test were obtained 

in the form of a graphic record. 

'fue general operation procedure was to place two car­

bonate-of-magnesia standards in the sample and standard 

positions on the spectrometer. A sheet of graph paper man­

ufactured for use with the machine was placed on the record­

ing cylinder. The power switch for the machine and the 

light source was turned on, then after about a minute had 

elapsed, the balance motor was turned on. The graph paper, 

recorder, and monochromator were all set so that the record­

ing pen rested on the graph paper at the point, 400 milli­

microns wavelength and 100 per cent reflectance. 

The carbonate-of magnesia standard at the srunple posi­

tion was replaced with a coated test panel •. The recording 

mechanism was then started. This set the machine into oper­

ation so that the entire wavelength range was covered and 

the per cent reflectance recorded in two ru1d one-half 

minutes. 

The reader is referred to the instruction manual used 

as a reference at the beginning of this procedure if more 
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detailed information about the operation of the spectrometer 

is desired. 

Six panels (see Table III, page 47) were chosen from 

each type of coating in the three test series for the light-

reflectance tests. Three of these panels were for control, 

and three were for irradiation. Tests were made on the six 

panels before and after tPxee of the group were irradiated. 

These tests showed the amount that the light reflectivity 

of the control panels had changed during the time that 

elapsed between the tests as well as the light reflectance 

change in the panels that were irradiated. This made it 

possible to determine if the change in the reflectance of 

the panels was due to aging or irradiation. 

Reproductions of the reflectance tests representing 

each type of coating in the test series were made and are 

presented on pages 60 to 91. A better idea of this test 

may be had by referring to these figures. 
(32) 

Alkali Resistance. The alkali-resistance test is 

frequently required for varnishes and may be used for pig-

mented coatings. The test is made with solutions of sodium 

hydroxide ranging from 0.5 to 10 per cent concentration. 

The test has many acceptable variations. 

The alkali test for this investigation was made with 

approximately five per cent sodium hydroxide solution. 

The solution was made by weighing out 50.00 grams of sodium 



-53-

hydroxide, placing it in a one-liter volumetric flask, and 

filling the flask to the one-liter mark with distilled 

water. 

The test was made by placing a drop of the alkali on 

the coated panels at specified time intervals. One dram 

shell vials were used. to cover the drops of alkali to pre-

vent them from evaporating and from spreading over the 

panel. At the end of a specified period, all the drops of 

alkali were washed off. The panels were allowed to dry for 

two hours. The visible effect of the alkali on the coat-

ing for the different time intervals was given a numerical 

rating. Two panels, one irradiated and one non-irradiated 

of each coating type, were tested and rated at the same 

time so that they could be compared. 

The time interval and test periods for the various 

types of coatings may be seen by referring to Table V, page 

54. 
(10) 

Acid Resistance. Concentrated mineral-acid tests 

are frequently specified for coatings vlhen it is desired 

to kno-vr the resistance of a coatins to various reagents. 

Sulfuric, nitric, or hydrochloric acids may be used. 

The acid test for this investigation was made with 

approximately twelve-normal hydrochloric acid solution. 

This concentration of acid was obtained directly from the 

bottle in Which it was purchased. 
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TABLE V 

Time Interval and Test Period for Alkali and Acid Test - -- - ~--

Alkali Test Acid Test 

F'ilm Former Pigment Interval Period Interval Period 

min hr min hr 

Vinyl Chloride none 60 8.00 60 8.00 
Copol~er Ti02 II II tl II 

ZnO It tt 11 It 

Pbco3 It tl 11 " 
Spar Varnish none 15 2.25 15 3.25 

Ti02 It tt II II 

ZnO It 11 II II 

PbC03 II 2.00 II 3.00 
AJ. II II II 1t 

c II II II II 

Alkyd Resin none 15 2.50 15 2.50 
Ti02 It II II II 

ZnO II II It II 

PbC03 II II " II 
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The test was made by placing drops of the acid on the 

panels in a manner similar to the alkali resistance test 

described on page 53. Reference may be made to Table V, 

page 54, for the tL~e interval and test period for the acid 

resistance test. 

Two panels, one irradiated and one non-irradiated of 

each coating type, were tested and rated at the same time 

so that they could be compared. 
(29) 

Flexibility. 1'he flexibility of a coating may be 

measured by bending a coated metal panel over a mandrel, 

and noting the size of the mandrel at which the coating 

begins to crack. 

Flexibility tests for this investigation were made 

with a mandrel set consistin8 of nine mandrels, ranging 

from one-eighth to one inch in diameter. Nost of the fil.rns 

tested had good flexibility, so the test panels were first 

tested with the smallest (one-eighth inch) mandrel. The 

coating was L~mediately inspected for any cracking. The 

first test was performed toward one end of the coating so 

that other areas of the coat.ing could be used for further 

tests. If the coatine; had cracked at any place along the 

bend, tests were continued with successively larger mandrels 

until the coating did not crack. 

The data for this test 1-1ere recorded as the smallest 

size mandrel over lvhich the coating could be bent rrithout 



-56-

any cracking appearinG in the fiL~. If more than one panel 

was needed for the test, others were used that have 11none11 

listed as the test performed on them as in column seven, 

Table III, page 47. 
(31) 

Abrasion Resistance. Abrasion resistance is a 

measure of the toughness of a coating or its resistance to 

wear. Extremely hard coatings usually have less resistance 

to wear than softer, rubbery coatings. 

The abrasion tester used in this investigation con-

sisted of an apparatus that caused a brush to be rubbed 

back and forth across the coated surfaces of the test pan­

els. The brush weighed 62 grams. It was rubbed back and 

forth across the panel at 37.5 cycles per minute in a semi­

circular path approxLmately two feet in diameter. Panels 

were placed perpendicular to the path so that each would 

have the same area exposed to the path. 

Two panels with one type of coating, one irradiated 

and one non-irradiated, were tested concurrently. The 

panels were weighed to the nearest one-tenth of a milligram 

before and after the test. The weight loss of the panel 

and the number of cycles of abrasion to which it had been 

subjected was recorded. 

The majority of the panels were subjected to about 

14,500 abrasion cycles. Some Goatings with high abrasion 
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resistance were subjected to many more than this in order 

that a significant weight difference might be obtained. 
(9) 

Scratch Hardness. Scratch hardness is a measure 

of the physical hardness or mar resistance of a coating. 

The Hoffman scratch hardness tester was used to deter-

mine the hardness of the films. The tester is a small port-

able device. It consists of a carriage, riding on four 

wheels, that has an extension on one end on which a scratch-

ing tool is arranged. The tool is fixed to one end of a 

beam that is fulcrumed to the extension. The scratching 

tool rests on the test surface when the four wheels of the 

carriage are pressed against the surface. The load on the 

tool is adjusted by means of a rider on a beam. 

The tests were made on the panels by using a constant 

load on the bemn and notinG the difference in the type of 

scratch that was made on the coatings. The scratch was 

examined with a reading glass, and a description of the 

scratch and the beam load were recordedo The beam load was 

determined by trial and error so that different types of 

scratches were made on a series of panels. 
(30) 

Impact Resistance. The L~pact resistance test 

measures a combination of toughness and adhesion of coatings. 

The L~pact tester used in this investigation was the fall-

ing-weight type. It consisted essentially of a weight that 

could be dropped on the panels from different heights, the 
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height of the drop corresponding to the amount of impact. 

The falling weight causes the side of the panel to bulge 

out at the point of impact. The height is adjusted until 

the coating fails, the failure indicated by cracks radiat­

ing from the point of impact. 

The tests were made to determine the L~pact for which 

the coating on the panels failed. The least L~pact that 

would cause failure was recorded. 

An indication of the relative adhesion of the coating 

to the panels was obtained by noting the ease with which 

the coating could be removed from the bulged-out area on 

the panel with a knife. 

Data and Results 

The data and results obtained by this investigation for the dif­

ferent types of coatings have been grouped according to the test per­

formed on the coating, and are presented under that heading. 

Light Reflectivity~ The panels to be irradiated were tested 

before and after irradiation. The test panels used for control were 

tested at the same time. 

The results of the light reflectivity tests are presented in 

Figures 4 to 35, pages 60 to 91. These are copies of the graphs that 

were obtained from the recording spectrophotometer. The curves show 

the per cent reflectance of the coatings. 
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The figures are presented in groups so that they may be observed 

more easily. The tests for one certain type of coating are presented 

consecutively. For example, Figures 4, 5, and 6, pages 60, 61, and 

62, are the light reflectance tests on the clear vinyl chloride var­

nish. The first figure in this group {Figure 4) is the light reflec­

tance test on the control panel. The solid curve represents the 

reflectance of the coating when the panel was first tested. The dottE 

curve represents the reflectance of the same coating after it had age< 

until the other panels in the group had been irradiated. The second 

figure in the group {Figure 5) is the light reflectance test on the 

coating that was irradiated in an air atmosphere. The solid curve 

represents the reflectance of the coating before irradiation, and the 

dotted curve represents the reflectance of the same coating after it 

was irradiated. The last figure in the group (Figure 6) is the light 

reflectance test on the coating that was irradiated in an argon atmos· 

phere. The solid curve represents the reflectance of the coating 

before irradiation, and the dotted curve represents the reflectance 

of the same coating after it was irradiated. 

The tests for the other types of coatings follow in the same 

order. The vinyl chloride copolymer series was the only one in which 

an inert atmosphere was used. 
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Alkali Resistance. The results of the alkali tests on the coat­

ings are presented in Table VI, :page 93, and Figures 36 to 47, pages 

95 to 106. 

The overall effect of the alkali attack on the panels may be seen 

by referring to Table VI. The test was limited to any visible changes 

that could be observed. The changes fall into two types: (1) Dis­

coloration to the fiLm, and (2) damage that caused a physical change 

in the film other than color, such as wrinkling, blistering, or 

softening. 

In the cases where positive results were obtained from the tests, 

figures have been drawn that show the time variation of the relative 

effect of the alkali on the irradiated and non-irradiated panels. 

Reference is made to these figures in Table VI opposite the coating 

they represent. 

The relative effect is meant only for comparing the irradiated 

and non-irradiated panels with the same type of coating. Different 

colors, color intensities, and types of physical changes made it 

impossible to rate all the coatings on the same scale. 

The irradiated and non-irradiated panels of one type of coating 

were rated at the same time. The test spot on either panel that had 

the most severe discoloration or other physical change was given a 

number rating of ten. Other test spots on both the panels were then 

given comparative number ratings from zero to ten. A zero rating indi­

cated there was no visible effect. Other proportional ratings between 

zero and ten were given as the magnitude of the discoloration or other 
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TABLE VI 

Results £! Alkali ~ ~ Irradiated ~ Non-Irradiated Coatings 

Visible Effect Relative Effect on 

on Irradiated and 

Film Former Pigment Panels Non-irradiated Panels 

Vinyl Chloride none FCa. Se6 Figure 36~ page 95. 
Copolymer Ti02 none 

ZnO none 
PbC03 FC See Figure 37, page 96. 

Spar Varnish none FO~ FFb See Figure 38, page 97. 
Ti02 FO, FF See Figure 39, page 98. 
ZnO FO, FF See Figure 40, page 99. 
PbC03 FC~ FF See Figure 41~ page 100. 
A1 FC,FF See Figure 42, page 101. 
0 FF See Figure 43~ page 102. 

Alkyd Resin none FC~ FF See Figure 44, page 103. 
Ti02 FC~ FF See Figure 45, page 104. 
ZnO FC~FF See Figure 46, page 105. 
PbC03 FC~ FF See Figure 47, page 106. 

aFC--Formation of colored reaction products at the spots where the 
drops of reagent were placed on the panel. 

bFF-Failure of the film by wrinkling, blistering, or softening at 
the spots where the drops of reagent were placed on the panel. 



physical change varied between none and the most severe. The film 

was said to have failed if it became wrinkled, blistered, of softened 

through to the metal substrate of the panel. 

Acid Resistance. The results of the acid tests on the coatings 

are presented in Table VII, page 107, and Figures 48 to .54, pages 108 

to 114. 

The overall effect of the acid attack on the panels may be seen 

by referring to Table VII. The test was limited to ~ visible changes 

that could be observed. The only change observed was a discoloration 

of the film at spots where the drops of acid were placed. 

In cases where positive results were obtained from the tests, 

figures have been drawn that show the time variation of the relative 

effect of the acid on the irradiated and non-irradiated panels. Ref­

erence is made to these figures in Table VII opposite the coating 

they represent. 

The results of this test were obtained by giving numerical 

ratings to the test spots on the panels in the same method used for 

the alkali test (see page 92). 

Fle:rlbili ty. The results of the fiexibili ty tests are shown in 

Table VIII, page ll5. The minimum diameter of the bend in the test 

panel that did not cause failure of the coating is tabulated opposite 

the coating it represents. The diameter of the bend corresponds to 

the size of mandrel used for the test. The smallest size mandrel 

available was one-eighth inch in diameter. 
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TABLE VII 

Results ££ ~ Test ~ Irradiated and Non-Irradiated Coatings 

Visible Effect Helative Effect on 

on Irradiated and 

Film Former Pigment Panels Non-irradiated Panels 

Vinyl Chloride none none 
Copol;ymer Ti02 none 

ZnO none 
PbCOJ none 

Spar Varnish none FCa See Figure 48, page 108 
Ti02 FC See Figure 49, page 109 
ZnO FC See Figure .50, page 110 
PbC03 none 
Al FC See Figure .51, page lll 
c none 

Alkyd Resin none FC See Figure .52, page 112 
Ti02 FC See Figure .53, page 113 
ZnO FC See Figure .54, page 114 
PbC03 none 

aFC--Formation of colored reaction products at the spots where the 
drops of reagent were placed on the panel. 
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TABLE VIn 

Fl.exibllity: ,2! Irradiated ,!2! Non-Irradiated Coatings 

Minimum Diameter of Bend without Failure of Coating 

Film Former Pi~ent Non-irradiated Irradiated in Air Irradiated in Argon 

inch inch inch 

Vinyl Chloride none 1/8 1/4 1./4 
Copolymer Tioz J/8 3/16 3/16 I 

ZnO l/8 l/8 l/8 a 
PbCO l/8 1/8 l/8 I 

3 

Spar Varnish none l./8 1/8 
Ti02 l/8 1/8 
ZnO 1/8 l/8 
Pb003 l/8 l/8· 
Al. i/8 J./8 
c 1/8 1/4 

.Al.kyd Resin none l/8 1/8 
Ti02. l./8 l/8 
ZnO '5/1.6 3/4 
Pb003 i/8 1/8 
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Abrasion Resistance. The data and results of the abrasion 

resistance tests are shown in Table II, page 117. 

The weight loss that the panels suffered in the abrasion test 

has been expressed as milligrams per ten-thousand test cycles. This 

places all the panels on an equal basis so that the entire group may 

be compared. 

The weight loss per ten-thousand cycles was calculated to be 

directly proportional to the total weight loss for the total number 

of test cycles. A sample calculation is shown on page 124. 

Scratch Hardness. The results of the scratch hardness tests are 

shown in Table X, page 118. A constant rider weight on the scratch 

hardness tester was used to test an entire series of panels. 

The effect of the scratching tool was described in Table X by 

the abbreviations, N. s., I. s., s. s., and D. s. The abbreviation 

N. s. (no scratch) was used to describe the condition when the tool 

slid along the surface of the coating, making a mark or indentation, 

but not penetrating the surface. The abbreviation I. s. (intermi tten 

scratch) was used when the tool made an indentation with an occa­

sional spot being scratched. A shallow, continuous scratch was des­

cribed by the abbreviation s. s. (slight scratch) and a deep continua 

scratch by D. s. (deep scratch). 

Impact Resistance. The results of the impact tests are show.n 

in Table XI, page 119. The maximum impact in inch-pounds that the 

panels could withstand without failure of the coating is shown opposi· 

the coating on which the test was performed. 



TABLE IX 

Weight ~ ~ Irradiated ~ Non-Irradiated Coatinss During Abrasion ~ 

- - - - - - - - - -Weight Loss of Coatings- - - - - - - - -
Total 

Film Former Pigment Number Non-irradiated Irradiated in Air Irradiated in Argon 
of 

Per 104 Per 104 Per 104 Test 
Cycles Total Cycles Total Cycles Total Cycles 

mg mg mg mg mg mg 
~ 
-J 

Vinyl Chloride none 15,292 0.9 o.6 2.5 1.6 2.3 1.5 ' Copolymer T~6 14,500 0.5 0.3 1.6 1.1 1.2 o.a 
14,535 9.8 6.7 9.7 6.7 9.5 6.5 

PbC03 14,436 10.9 7.6 4.7 3.3 5.6 3.9 

Spar Varnish none 14,500 o.e 0.6 1.5 1.0 
T~6 14,575 2.5 1.7 4.2 2.9 

136,450 8 .. 9 o.6.5 7.0 o • .51 
PbC~ 18,500 1.3 0.70 1o4 0.76 

34,700 2.3 0.66 1.6 o.lt.6 
c 32,850 ).0 0.91 5.1 1.6 

A.lkyd Resin none 14,500 3.2 2.2 4.7 3.2 
T~f, 14,700 6.1 4.1 6.3 4.3 

24.,443 7.7 3.1 11.3 4.6 
PbC03 14,500 7.7 5.3 8.2 5.7 



TABLE X 

Scratch Hardness £! Irradiated ~ Non-Irradiated Coat±nss 

Film Former Pigment Load 

Vinyl Chloride none 1,000 gm 
Copolymer Ti02 1,000 

ZnO 1,000 
PbC0.3 1,000 

Spar Varnish none 2,400 gm 
Ti02 2,.400 
ZnO 2,400 
Pb00.3 2,400 
.A.1 2,400 
c 2,400 

AJ..kyd Resin none 1,200 gm 
Ti02 1,200 
ZnO 1,200 
Pb00.3 1,200 

~· s.-Intermittent scratch. 
""lJ• s.-Deep scratch. 
~~· s.-Blight scratch. 
~. S.--No scratch. 

Effect of Scratching Tool on Coatings 

Non-irradiated Irradiated in Air Irradiated in Argon 

I. s.a D. s.b D. s •. 
I. s. I. s. I. s. 
I. s. I. s. I. s. 
s. s.c D. s. D. S. 

s. s.d D. s. 
N. s .• D. S. 
N. s. I. s. 
s. s. s. s. 
D. S. D. S. 
D. s. D. s. 
I. s. s. s .. 
N. s. I. s. 
I. s. D. S., 
N. S. N. s •. 

~ 
(X) 

' 



TABLE II 

Impact Resistance and A~~esion £! Irradiated ~ Non-Irradiated Coat!ags 

- - - - - - - - .Jviaximum Impact without Failure- .. - -- - - -

Non-irradiated Irradiated in Air Irradiated in Argon 

Film Former Pigment Impact Adhesion Impact Adhesion Impact Adhesion 

in.-lb in.-1b in.-lb 
I 

Vinyl Chloride none 1 Good <1 Very Poor <1 Very Poor ~ 
'-0 

Copolymer Ti02 16 Good 2 Poor 2 Poor I 

ZnO 12 Poor 1 Very Poor 1 Very Poor 
PbCo3 10 Good 2 Good 4 Good 

Spar Varnish none >30 Good > 30~ Good 
Ti02 >30 Fair >30 Fair 
ZnO 10 Poor 14 Poor 
Pb00.3 >30 Poor >30 Poor 
A1 6 Poor 6 Fair 
0 4 Poor 4 Poor 

Alkyd Resin none >30 Good > 30 Good 
Ti02 >30 Fair >30 .li''air 
ZnO < 1 Poor < 1 Very Poor 
PbCO 

3 >30 Fair >30 Fair 



-120-

The upper limit of the testing range was thirty inch-pounds. A 

number of the panels tested withstood the na.ximum impact without fail· 

ure. They are indicated in Table XI, page 119, by the symbol tt >301'. 

It was not possible to deterwine impact resistances less than 

one inch-pound. Panels which failed for the one inch-pound impact 

are indicated in Table XI by the symbol " <111 • 

The panels subjected to the impact test were also used to deter­

mine a very qualitative measure of the adhesion of the coating to the 

metal panel. The area that had been bulged out from an impact test 

was used for the determination. The adhesion ratings were: (1) 

Good--coating was adhered to the panel so that it had to be cut or 

scraped with a pen knife for removal; (2) fair--coating was adhered 

to the panel, but small areas could be removed by running the point 

of a knife under the film; (3) poor--the coating was not adhered to 

the area of the impact test, but was adhered to the panel around this 

area; and (4) very poor--the coating was not adhered to the area of 

the impact test and had been pulled away from the panel in the immedi­

ate area around the impact test. 

Sample Calculations 

Calculation of Weight of Pigment for Enamels. The calculations 

to determine the weight of pigment for the three series of enamels are 

presented separately. 

Vin71 Chloride Copolymer Enamel. The calculation shown 

here is for the enamel pigmented with titanium dioxide. The 
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calculations for the amount of pigment in the other enamels 

in this series were made in a similar manner. 

Basis: 253.9 gm vinyl chloride copolymer varnish. 
(page 35). 

Wei~ht resin solids 19 
Weight pigment = j]' 

&! resin 200 
gm varnish • b55 

(page 35) 

(page 32) 

• • gm resin gm pi§2!1en t 
gm. pl.gment = gm varm.sh x gm varnish x gm resin 

200 12 :: 253.9 X bOO X I9 

= 53.5 

Spar Enamel. The calculation show here is for the 

enamel pigmented with titanium dioxide. The calculations 

for the amount of pigment in the other enamels in this 

series were made in a similar manner. 

Basis: 500 gm spar varnish 

Weight resin solids 19 
Weight pigment = ~ 
Per cent solids = 55 

(page 37) 

(page 37) 

(page 27) 

• _ • gm solid gm pif{,ent 
gm p1gment - gm varn1sh x gm varnish x gm so:ids 

55 12 
= 500 X lOO X I"§ 

= 173.7 
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Alkyd Enamel. The calculation shown here is for the 

enamel pigmented with titanium dioxide. The calculations 

for the amount of pigment in the other enamels in this 

series were made in a similar manner. 

Basis: 250 m1 alkyd resin solution 

Weight resin solids = 19 
Weight pigment ~ 

(page 40) 

(page 40) 

Density of solution = 8.00 lbs/gal (page 26) 

Per cent solids 

• 0 .96o gm/ml 

= 70 (page 26) 

• • gm solution gm resin 
gm pl.gment = ml solutl.on x m1 solution x gm solution 

gm Pigment 
x gm resin 

= 250 X 0•960 X lQ... X !,g_ 1 100 19 

= 106 

Calculation of Film Thickness on Panels. The following equation 

was used to calculate the film thickness of the coatings on the test 

panels. 

T - 394 w - n I 
where, T = film thickness of coating, mils. 

W = weight of coatings on panel, gm. 

D = density of coating, gm/cc. 

(8) 



-123-

A = area of panel coated, sq em. 

394 =factor to convert em to mils. 

Coatings were applied to the same area on all the test panels 

used in this investigation. The area may be calculated by referring 

to the dimensions of the panels, page 30, and the portion of the 

panels that was coated, page 43. 

A = 2 x area of one side of coated panel 

• 2 X: 6 X 2-3/8 

= 28.5 sq in. 

== 184 sq em 

Substituting ~~s value in equation (8), page 122~ gives, 

2.14 w 
T = D • (9) 

The weight (W) of the coating for use in the above equation was 

obtained by weighing the test panels before and after the coating was 

applied. 

The density (D) of the coatings was calculated from the density 

of the resin solids and pigment. A sample calculation is shown for 

the vinyl chloride copolymer enamel pigmented with titanium dioxide. 

Specific gravity of Ti02 = 4.2 
Specific gravity of resin • 1.31 

Specific gravity = Density, gm/cc 

Weight resin 19 
Weight pigment = 11 

(page 26) 

(page 26) 

(page 35) 
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D = (weight-fraction resin x density resin) 

+· (weight-fraction pigment x density pigment) 

-~ (1.31) + ~ (4.2) 

= 2.43 

The densities of the other coatings were calculated in a similar 

manner. The calculated values are shown in Table XII, page 125. 

Calculation of the Weight Loss per Ten Thousand Cycles for 

Abrasion Resistance Test. The weight loss per ten thousand cycles 

was calculated to be directly proportional to the total weight loss 

for the total number of cycles. The following example is shown for 

the vinyl chloride copolymer varnish taken from Table IX, page 117. 

Weight loss per 104 cycles = weight loss per cycle x 104 

= total weight loss 104 
total cycles x 

- 0.6 mg 
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TABLE XII 

Densities ££ E!z Coatings Calculated ~Determining ~ Thickness 

Density of Coating with Indicated Pigment 

Film Former none TiO 2 ZnO PbC03 Al c 

gm./cc grn/cc gm/cc gm/cc grn/cc gm/cc 

Vinyl Chloride 
Copolymer 1.31 2.43 2.97 3.18 

Spar Varnish 0.97 2.22 2.77 2.97 1.02 1.19 

Alkyd Resin 0.96o 2.26 2.80 2.99 
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IV. DISCUSSION 

The discussion is presented in three sections; (1) Discussion 

of results, (2) recommendations, and (3) limitations. 

Discussion of Results 

The results of this investigation are discussed in the same order 

as the data and results were presented in the preceding section. 

Light Reflectivity. An observation of the light reflectance 

tests, Figures 4 to 3.5, pages 6o to 91, show that a def'inite change 

has taken place in some of the irradiated coatings. The magnitude of 

these changes as compared with the change of the corresponding non­

irradiated coating is such that the irradiation was undoubtedly 

responsible for the change. 

Several interesting points may be noted about the tests on the 

individual coatings. These are discussed in the following sections 

under the film former series to which the coating belonged. 

Vinyl Chloride Copol]!ner Series. The reflectance 

tests for this series are shown in Figures 4 to 15, pages 

60 to 71. All of the irradiated panels in this series 

showed a definite change in light reflectance. When com­

pared with the non-irradiated films, a slight color change 

could be readily detected qy eye in the clear and lead car­

bonate pigmented films. 
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Figures 11, 12, 14, and 15, tests for the films pig-

mented with zinc oxide and lead carbonate, show the change 

in reflectance was about the same for the coatings irradi-

ated in air and in argon. Figures 5, 6, 8, and 9, indicate 

a greater change in the light reflectance of the clear and 

titaniwn dioxide pigmented films irradiated in argon than 

those irradiated in air. These tests would give reason to 

believe that the saran wrap around the panels did not com-

pletely isolate them from the atmosphere in which they were 

irradiated. 

The reflectivity of the clear film may not have been 

changed as much as was indicated by the test. The polished 

surface of the tin substrate was badlY tarnished or etched 

when the panels were returned from irradiation. This would 

undoubtedly affect the reflectance of the clear film. The 

tin was probablY tarnished b.1 the release of hydrogen chlor-

ide from the vinyl chloride resin by the radiation. This 
{38) 

reaction has been reported by Sisman and Bopp. AJ.l the 

irradiated panels in the vinyl chloride copolymer series 

were tarnished while the panels in the other series were not. 

The light reflectance of the lead carbonate pigmented 

film probably changed the most if the effect of the tarn-

ished panel is taken into account for the clear film. This 

would be expected from the discussion of the mass absorption 

coefficient on page eight. Here, it was pointed out that 
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the linear absorption coefficient divided by the density 

was approximately constant for most materials. Reference 

to Table XII, page 125, shows the density of the lead car­

bonate pigmented film is greater than the others, there­

fore, its absorption coefficient should be greater and more 

gamma rays should be absorbed in the film. 

An interesting point that may be noticed in this and 

the following series is the maximum and minimum in the 

reflectance curve for the irradiated lead carbonate pig­

mented films. These appear in the reflectance tests for 

light with wavelengths of 600 to 650 millimicrons. 

Spar Varnish Series. The reflectance tests for this 

series are shown in Figures 16 to 27, pages 72 to 83. A 

slight color change was noticeable by eye in the films pig­

mented with titanium dioxide, zinc oxide, and lead. carbon­

ate when compared with the non-irradiated films. The 

reflectance tests show these were the only films for which 

there was a significant change in the reflectance. A very 

slight change was indicated for the clear and aluminum pig­

mented film, but no change at all was indicated for the 

film pigmented with lampblack. 

The lead carbonate and titanium dioxide pigmented films 

appear to have the largest change in reflectance due to 

irradiation. 
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Figure 20 shows that the reflectance of the non-irradi­

ated zinc oxide pigmented film changed significantly upon 

aging. 

A slight maximum and minimum. may be noted in the lead 

carbonate pigmented film in this series at the previously 

mentioned wavelength. 

~d Resin Series. The reflectance tests for this 

series are shown in Figures 28 to 35, pages 84 to 91. 

Figure 35 shows that the coating pigmented with lead 

carbonate is the only one that suffered much of a change in 

reflectance. The color change in this panel was detectable 

by eye when compared to a non-irradiated panel. 

The other figures show the clear, titanium dioxide pig­

mented, and zinc oxide pigmented films had small changes of 

the reflectance in certain wavelength ranges. 

The maximum. and minimum may again be noted in the re­

flectance curve for the film pigmented With lead carbonate. 

The reflectance tests have shown that the gamma radiation caused 

changes in some of the coatings which could be detected by the change 

in the light reflectance of the coating. However, this does not nec­

essarily mean the coatings wlrich did not show a reflectance change 

was not affected by the radiation. This will be shown by later tests. 

Alkali Resistance. The overall results of the alkali tests are 

sho;;m in Table VI, page 93. It may be noticed that the alkali tests 

gave positive results in the spar varnish and alkyd resin series. 
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It was this group in which some of the reflectance tests failed to 

show any effect of the radiation. The results of the alkali tests 

on each of the three coating series are discussed separately. 

Vinyl Chloride Copol,ymer Series. This series of coat­

ings showed the best overall resistance to alkali attack. 

It may be seen from Table VI, page 93, that both the irra­

diated and non-irradiated films pigmented with titanium 

dioxide and zinc oxide showed no effect of alkali attack 

during the eight-hour tests. The table also shows that 

discolored spots were the only effect of the alkali on the 

clear and lead carbonate pigmented films. 

The discoloration developed on the irradiated clear 

coatings during the test was very slight. Figure 36, page 

95, shows that the discoloration was developed and reached 

its maximum intensity during the fourth hour of the test. 

No difference was noted in the alkali resistance of the 

coatings which were irradiated in air and in argon. 

The discolorations were developed at different times 

on the irradiated and non-irradiated lead carbonate pig­

mented coatings. This is shown by Figure 37, page 96. In 

this case, the irradiated coatings were attacked first, 

with the coating irradiated in air showing the least 

resistance. 

Spar Varnish Series. It may be seen from Table VI, 

that all of the coatings in the spar series failed during 
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the alkali test. Discoloration of the films was usually 

a precursor of the failure. The relative effects of the 

alkali on the irradiated and non-irradiated coatings are 

shown in Figures 38 to 43, pages 97 to 102. These figures 

show that the alkali resistance of the coatings was in­

creased by the irradiation in every case. The affect of 

the alkali on the coatings was usually the same 1 but the 

non-irradiated coatings always failed first. 

The increase of the alkali resistance was more pro­

nounced in the clear, titanium pigmented, and lampblack 

pigmented coatings. Figures 38, 39, and 43 show that the 

initial rate of the alkali effect on these coatings was 

decreased. 

A;Ucyd Resin Series. Table VI"' page 93, shows the 

alkali test caused discoloration and failure of the alkyd 

resin films. Discoloration was usual.ly a forerunner to 

failure. Figures 44 to 47, pages 103 to 106, show the 

relative effect of the alkali on the irradiated and non­

irradiated coatings. 

No difference was noted in the aJkali resistance of 

the clear coatings. Both the irradiated and non-irradiated 

films failed through to the metal substrate in a very short 

time. 

A very striking difference was noted in the alkali 

resistance of the pigmented coatings. The rates of the 



alkali attack on the irradiated coatings were much lower 

than on the non-irradiated coatings. The effects of the 

alkali on the coatings at the end of the test were also 

less. 

Acid Resistance. The overall results or the acid test are shown 

in Table VII, page 107. It may be seen that none o£ the vinyl chlor­

ide copolymer coatings were affected by the tests. The results of 

the acid tests on the spar varnish and alkyd resin series are dis­

cussed separately in the following sections. 

~Varnish Series. Table VII shows that the films 

pigmented with lead carbonate and lampblack gave no reaction 

with the acid. The other films were discolored slightly' by 

the acid, but did not fail. 

Figures 48 to 51, pages 108 to lll, show the relative 

effect of' the acid on the irradiated and non-irradiated 

films that were affected by the acid. The general effect 

ot the irradiation was to decrease the acid resistance. 

Figure 48 shows that the initial time for the acid to 

react with the clear spar coating was decreased by the 

irradiation. Figures 49, 50, and 51 indicate that the rate 

of' the acid effect on the films pigmented with titanium 

dioxide, zinc oxide, and aluminum paste was increased by 

the irradiation. However, the film pigmented with zinc 

oxide was the only one in which the effect of the acid at 

the end of the test was greater for the irradiated panel. 
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A.lJ9'd Resin Series. The fiJJns in this series pigmented 

with lead carbonate were not affected by the acid. The 

other films were slightly discolored, but only the clear 

film showed any difference in the effect on the irradiated 

and non-irradiated film. The rate of the effect was in­

creased for the irradiated film.. 

The relative effect of the acid on the coatings in this 

series may be seen in Figures 52 to 54, pages 112 to l.].4. 

Flexibility. The flexibility tests were not very useful in making 

a comparison between the irradiated and non-irradiated panels. Posi­

tive results were obtained for only four coatings in the entire group. 

Table VIII, page ll5, shows the results of the flexibility tests. 

The coatings that gave positive results were: (1) The vinyl chlor­

ide copolymer varnish, (2) the vinyl chloride copolymer enamel pig­

mented with titanium dioxide, (.3) the spar varnish pigmented with 

lampblack, and (4) the alkyd resin pigmented with zinc oxide. In 

each case, the flexibility of the irradiated film was less than that 

of the corresponding non-irradiated film. The decrease in flexibility 

would suggest that the irradiated film had became more brittle. The 

increase in brittleness would be associated with increased crosslink­

ing in the film. It may also be noted that the different atmospheres 

made no apparent difference in the fiexibility of the irradiated films. 

The remainder of the coatings did not fail when tested with the 

smallest (one-eighth inch) mandrel. This indicated they all had good 
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flexibility, but gave no indication of a difference in flexibility of 

the irradiated and non-irradiated films. 

Abrasion Resistance. The results of the abrasion tests are shown 

in Table IX, page 117. 

High abrasion resistance is generally associated with flexible, 

rubber-like films and low abrasion resistance with hard, brittle 

films. The results of this test should generally substantiate the 

results of a flexibility test. This was found to be true in this 

investigation for the cases where the flexibility tests gave positive 

results. However, the abrasion tests indicated differences in the 

flexibilities of some of the coatings that were not indicated by the 

flexibility test. 

The results of the individual abrasion tests are grouped accord­

ing to the film former series for discussion. 

Vinyl Chloride Copol~er Series. A very noticeable 

decrease in abrasion resistance was shown by the clear and 

titanium dioxide pigmented films that were irradiated. 

This would indicate that the irradiation caused the films 

to become harder or more brittle. This was also indicated 

by the flexibility tests. 

Ver,ylittle change in abrasion resistance was shown 

by the film pigmented with zinc oxide. The lead carbonate 

pigmented fiJJn showed a distinct increase in abrasion 

resistance. This apparent decrease in hardness was not 

detected by the flexibility test. 
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No marked difference was noted in the abrasion resis­

tances of the panels irradiated in the different atmospheres. 

The film pigmented with titanium dioxide had the high­

est abrasion resistance of the series. 

Spar Varnish Series. The irradiated films pigmented 

with titanium dioxide and lampblack showed the largest 

decrease in abrasion resistance in this series. (The film 

pigmented with lampblack showed a decrease in flexibili t:r 

in the preceding test.) The clear and lead carbonate pig­

mented films showed a slight decrease in abrasion resistance. 

The films pigmented with aluminum paste and zinc oxide 

showed a slight increase in abrasion resistance. These 

films had the best overall abrasion resistance in the series. 

~Resin Series. ill of the irradiated films in 

this series showed a decrease in abrasion resistance. The 

decrease was slight in the films pigmented with titanium 

dioxide and lead carbonate, but more pronounced in the 

clear and zinc oxide pigmented films. 

The clear film had the best overall abrasion resistance, 

even though its resistance was decreased b,y the irradiation. 

The abrasion resistance of the three series may be compared by 

using Table IX, page 117. It shows that the spar varnish series hac 

the best overall resistance. The initial resistances were high, anc 

the,y were not changed much b.r the irradiation. 
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The vinyl chloride copolymer series contained two coatings (c 

and pigmented with titanium dioxide) thai{ had high initial abrasic 

resistances, but they were decreased considerably by the ir.radiati 

The a.llcyd resin series, as a group, had low initial abrasion 

resistance, and they were decreased even more by the irradiation. 

Scratch Hardness. The results of the scratch hardness are sh 

in Table X, page ll8. 

The tests on the individual coatings were very difficult to e 

uate, and probably should be used only as a comparison between the 

series rather than between the individual coating. 

Considering the load and e.f'fect, the spar varnish series had 

best scratch resistance. There was not much difference in the scr 

resistance of the alkyd resin and vinyl chloride copolymer series, 

the a.lkyd resin series appeared slightly the better. 

Table X indicates a general decrease in the scratch resistanc' 

of the coatings after irradiation. 

Impact Resistance. The results of the impact tests are shown 

in Table XI, page 119. The results are grouped according to film 

former series for discussion. 

V'!!ll Chloride Copolymer Series. The impact resis­

tance of all the pigmented coatings in this series was 

decreased considerably by the ll'radiation. The clear film 

had very poor impact resistance :initially, and it was 

decreased even further by the irradiation. 
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The adhesion of the films was decreased, except for 

the coating pigmented with lead carbonate. The adhesion 

of the clear film was affected the most. 

The atmosphere during the irradiation seemed to have 

a ver,y slight, if any, effect on the impact resistance and 

adhesion. 

Spar Varnish Series. The impact resistance of this 

series was very good. The initial impact resistance of the 

clear, titanium dioxide pigmented, and lead carbonate pig­

mented films was high, and was not decreased by irradiation 

to a point where it could be measured. The initial impact 

resistance of the film pigmented with zinc oxide compared 

favorably with the corresponding film of the vinyl chloride 

copolymer series. The resistance of this film was increased 

by the irradiation. 

The adhesion of' the coatings to the panels was not 

affected by the radiation enough to be noticeable. 

The impact resistance of' the films pigmented with 

aluminum paste and lampblack was lower than the other coat­

ings, but was not affected by the radiation. 

~Resin Series. Table II, page 119, shows all the 

~ resin coatings had good impact resistance except the 

one pigmented with zinc oxide. This coating was the only 

one in which the adhesion was affected by the irradiation. 

The impact resistances or the alkyd coatings were not 
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affected by the irradiation to an extent that was detectable 

with the impact tester. 

Recommendations 

There are numerous ways in which this investigation could be 

extended. The first way- would be to study the effect of different 

radiation doses on the coatings. Coatings are undergoing constant 

changes when they are radiated. A study confined to a constant radi­

ation dose, such as this one, will reveal only the effect present at 

that dose. Totally different effects might be found for larger or 

smaller doses • 

.Another possible extension would be to study coatings that have 

beeh given constant doses of radiation at different rates. It is 

possible that rate of irradiation would be a determining factor in 

the effect on the coating. 

A third extension might be to test mixtures of film formers or 

pigments to see if desirable qualities of the different components 

could be incorporated into one film. 

It would also be an item of interest to check the irradiated 

coatings pigmented with J.ead carbonate to determine if the pigment 

was changed by the irradiation. A. change in the pigment was indi­

cated in the reflectance curves. 

Many variations of this study could be made that would be usetul. 

in specif.ying coatings for use in radioactive areas. 
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Limitations 

There were four limitations in this investigation that could have 

an important bearing on the results. They are as follows: 

Control of Film Thickness. The panels for this investigation 

were coated by brushing. It was the only means available. There may 

have been enough variation in film thickness to give different results 

in the tests. 

Rate of Irradiation. An observation of Table r1, page 49, will 

show that the groups of panels were irradiated at different rates. 

This could have made a difference in the effect of the radiation on 

the coatings. The variation was caused by the radioactive decay of 

the gamma-ray source and could not be kept constant. 

Time Delaz.. Between Coatinf!, Irradiation, and Testing. Newly 

applied protective coatings are usually in a changing state due to 

curing and may exhibit different properties at different stages of 

the curing. The irradiation and testing should have been done at 

specified times after the coating was applied. This was not possible 

due to varying lengths of time for transportation to and from the 

irradiation facility, the irradiation schedule set up by the facility, 

and the varying time needed to test the panels when they were returned. 

Control of Relative Humiditl• Some of the performance tests that 

were·made on the coatings are very sensitive to the relative humidity 

of the atmosphere when they are tested. No facilities were available 

with which to control this factor. 
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V. CONCLUSIONS 

Protective coatings for this investigation were made with three 

fi~rn formers, (1) a vinyl chloride copolymer resin, (2) a spar 

varnish, and (3) an alkyd resin. Each film former was used to make 

a clear varnish, and to make enamels pigmented with (1) titanium 

dioxide, (2) zin-c oxide, and (3) lead carbonate. Enamels pig­

mented with aluminum paste and la~pblack were also made with the spar 

varnish. Test panels were prepared with these coatings and irradi­

ated with gamma rays whose average energy was about 0.75 Mev. The 

dosage received by the panels was eight million rads. Tests were 

performed on the coated panels. A comparison of the test results 

from the irradiated and non-irradiated test panels led to the follow­

ing conclusions: 

A. Vinyl chloride copolymer coatings. 

1. Light reflectance (400 to 700 millimicron wavelength}. 

a. The light reflectance of the pigmented and non­

pigmented coatings was decreased by the irradiation. 

b. The clear and lead carbonate pigmented films experi­

enced the greatest decrease in reflectance by the 

irradiation. 

2. Alkali resistance (5% NaOH}. 

a. The non-irradiated coatings had good alkali 

resistance. 
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b. The initial rate of alkali attack on the coating 

pigmented with lead carbonate was increased by the 

irradiation. 

c. The alkali resistance of the clear, titanium dioxide 

pigmented, and zinc oxide pigmented coatings was not 

appreciably affected b.r the irradiation. 

3. Acid resistance (12 N HOl). 

a. The non-irradiated coatings were not affected by an 

eight-hour exposure to the acid. 

b. The irradiated coatings were not affected by an 

eight-hour exposure to the acid. 

4. Flexibility. 

a. The irradiated and non-irradiated coatings pigmented 

with zinc oxide and lead carbonate did not fail when 

bent over a one-eighth inch mandrel. 

b. The flexibility of the clear and titanium dioxide 

pigmented coatings was decreased by the irradiation. 

5. Abrasion resistance. 

a. The abrasion resistance of the clear and titanium 

dioxide pigmented coatings was decreased b,y the 

irradiation. 

b. The abrasion resistance of the coating pigmented with 

zinc oxide was not affected by the irradiation. 

c. The abrasion resistance of the coating pigmented with 

lead carbonate was increased by the irradiation. 
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6. Scratch hardness. 

a. The scratch hardness of the clear and lead carbonate 

pigmented coatings was decreased by the irradiation. 

b. The scratch hardness of the coatings pigmented with 

titanium dioxide and zinc oxide was not appreciably 

affected by the irradiation. 

1. Impact resistance and adhesion. 

a. The impact resistance of the pigmented and non­

pigmented coatings was decreased by the irradiation. 

b. The adhesion of the clear, titanium dioxide pig­

mented, and zinc oxide pigmented coatings was 

decreased by the irradiation. 

c. The adhesion of the coating pigmented with lead car­

bonate was not appreciably affected by the irradiatior. 

B. Spar varnish coatings. 

1. Light reflectance {400 to 700 millimicron wavelength). 

a. The light reflectance of the coating pigmented with 

lampblack was not changed by the irradiation. 

b. The light reflectance of the clear and aluminum 

pigmented coatings was decreased slightly by the 

irradiation. 

c. The irradiated coatings pigmented with titanium diox­

ide, zinc oxide, and lead carbonate experienced a 

definite change in light reflectance. 
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2. Alka.li resistance (5% NaOH). 

a. The non-irradiated coatings had poor alkali resis­

tance. 

b. The alkali resistance of the coatings was slightlY 

improved by the irradiation. 

3. Acid resistance (12 N HCl). 

a. The irradiated and non-irradiated coatings pig­

mented with lead carbonate and lampblack were not 

affected by a three-hour exposure to the acid. 

b. The acid resistance of the clear, titanium dioxide 

pigmented, zinc oxide pigmented, and aluminum paste 

pigmented coatings was decreased by the irradiation. 

4. Flexibility. 

a. The irradiated and non-irradiated clear coating did 

not fail when bent over a one-eighth inch mandrel. 

b. The irradiated and non-irradiated coatings pigmented 

with titanium dioxide, zinc oxide, lead carbonate, 

and aluminum paste did not fail when bent over a one­

eighth inch mandrel. 

c. The flexibility of the coating pigmented with lamp­

black was decreased by the irradiation. 

5. Abrasion resistance. 

a. The abrasion resistance of the clear, titanium diox­

ide pigmented, and lampblack pigmented coatings was 

significantly decreased by the irradiation. 
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b. The abrasion resistance of the coating pigillented with 

lead CU"bonate as slight~ decreased by the irradia­

tion. 

c. The irradiation increased the abrasion resistance of 

the coatings pigmented with zinc oxide and aluminum 

paste. 

6. Scratch hardness. 

a. The scratch hardness of the clear 1 titanium. dioxide 

pigmented, and zinc oxide pigmented coatings was 

decreased b,y the irradiation. 

b. The scratch hardness of the coatings pigmented with 

lead carbonate, alumirmm paste, and lampblack was 

not appreciably affected by the ilTadiation. 

7. Impact resistance. 

a. The irradiated and non-irradiated clear coatings 

withstood an impact of thirty inch-pounds without 

failure. 

b. The irradiated and non-irradiated coatings pigmented 

vi th titanium dioxide and lead carbonate vi thstood 

an impact of thirty inch-pounds without failure. 

c. The impact resistance of the coatings pigmented with 

aluminum paste and J.ampblack was not affected by the 

irradiation. 

d. The impact resistance of the coating pigmented with 

zinc oxide was increased by the irradiation. 
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e. The adhesion of the coatings was not appreciably 

affected by the irradiat~on. 

c. Alkyd resin coatings. 

1. Light reflectance (400 to 700 millimicron wavelength). 

a. The light reflectance of the clear, titanium dioxide 

pigmented, and zinc oxide pigmented coatings was 

very slightly changed, if affected at all, by the 

irradiation. 

b. The light renectance of the coating pigmented with 

lead carbonate was definitely decreased by the irrad:i 

ation. 

2. Alkali resistance (5% NaOH). 

a. The non-irradiated coatings had very poor alkali 

resistance. 

b. The non-irradiated pigmented coatings had superior 

alkali resistance to the clear coating. 

c. The alkali resistance of the clear coating was not 

apparently affected by the irradiation. 

d. The alkali resistance of the pigmented coatings 

showed a marked increase after irradiation. 

3. Acid resistance (12 N HCl). 

a. The irradiated and non-irradiated coatings pigmented 

with lead carbonate were not affected by a two and 

one-half hour exposure to the acid. 
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b. 1be acid resistance of the clear coating was decreasE 

by the irradiation. 

c. The acid resistance of the coatings pigmented with 

titanium dioxide and zinc oxide were not affected by 

the irradiation. 

4. Flexibility. 

a. The irradiated and non-irradiated clear coatings did 

not fail when bent over a one-eighth inch mandrel. 

o. The irradiated and non-irradiated coatings pigmented 

with titanium dioxide and lead carbonate did not 

fail when bent over a one-eighth inch mandrel. 

c. The flexibility of the coating pigmented with zinc 

oxide was decreased by the irradiation. 

5. Abrasion resistance. 

a. The abrasion resistance of the clear and zinc oxide 

pigmented coatings was significantly decreased by thE 

irradiation. 

b. The abrasion resistance of the coatings pigmented 

with titanium dioxide a."ld lead carbonate was slightly 

decreased qy the irradiation. 

6. Scratch hardness. 

a. The scratch hardness of the clear, titanium dioxide 

pigmented, and zinc oxide pigmented coatings was 

decreased by the irradiation. 
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b. The scratch hardness of the coating pigmented with 

lead carbonate was not ai'fected by the irradiation. 

7. Impact resistance and adhesiono 

a. The irradiated and non-irradiated clear, titanium 

dioxide pigmented, and lead carbonate pigmented coat· 

L~s withstood an impact of thirty inch-pounds with­

out failure. 

b. The irradiated and non-irradiated coatings pigmented 

with zinc oxide failed for an L~pact of one inch­

pound. 

A few general conclusions for the coating series may be drawn 

from the preceding itemized conclusions. They are as foll<Ms: 

A. The alkali and acid resistance of the vinyl chloride copolymer 

coatings was superior to either the spar or alkyd resin coatings. 

B. The vinyl chloride copolymer coatings retained their superior 

alkali and acid resistance after receiving an eight million rad 

dose of gamma radiation. 

C. The impact resistance and adhesion of the spar and alkyd resin 

coatings (with the exception of the coating pigmented with zinc 

oxide) were superior to the vinyl chloride copolymer coatings. 
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D. The spar and alkyd resin coatings retained their superior impact 

resistance and adhesion after receiving an eight million rad 

dose of gamma radiation. 

E. The .following items were nated about the various coatings pig­

mented with lead carbonate. It was the only pigment used in this 

investigation that showed consistant behavior throughout a film 

former series. 

1. The irradiated coatings pigmented with lead carbonate 

exhibited a greater change in light reflectance than the 

clear, titanium dioxide pigmented, or zinc oxide pig­

mented coatings. 

2. The lead carbonate pigment improved the alkali and acid 

resistance of the irradiated and non-irradiated spar and 

alkyd resin coatings. 

3. The lead carbonate pigment decreased the alkali resistance 

of the irradiated and non-irradiated vinyl chloride copol­

ymer coatings. 



The purpose of this investigation was to prepare pigmented and 

non-pigmented organic protective coatings and to irradiate the:m with 

gamma rays. The irradiation dose received by the coatings was eight 

million rads. Tests were performed on the irradiated coatings and 

on similar non-irradiated coatings. The results of the tests were 

tabulated so comparisons could be made to determine the effect of 

the radiation on the coo tings. 

The film formers used in the coatings were: {1) A vinyl chlo­

ride copolymer resin, (2} a phenolic resin modified w.i.th tung and 

linseed oil, and (3) an alkyd resin modified with soya oil. The 

modified phenolic resin was obtained as a spar varnish. 

The coatings prepared With the fll"n formers were varnishes and 

enamels. The e.""lamels were pigmented with a single pigment. The pig­

ments used were: {1) Titaniu.vn dioxide, (2) zinc oxide, and 

(3) lead carbonate. Aluminum paste and lampblack were also i.."'lcluded 

as pigments 'ld th the spar varnish film former. 

The tests performed on the irradiated and non ... irradiated coat­

ings were: (1) Light reflectance before and after irradiation, 

(2) alkali resistance, (3) acid resistance, (4) flexibility, 

(5) abrasion resistance, (6) scratch hardness, and (7) impact 

resistance. 



The investigation led to the following conclusions about the 

coatings: 

1. The vinyl chloride copolymer coatings had superior alkali 

and acid resistance to either the spar or alkyd resin 

coatings and retained the superior resistance after receiv­

ing an eight million rad dose of gamma radiation. 

2. The alkali resistance of the vinyl chloride copolymer coat­

ings tended to be slightly decreased by the irradiation. 

It was slightly increased for the spar and alkyd resin 

coatings. 

3. The acid resistance of the vinyl chloride copolymer coat­

ings was not affected by the irradiation, but it was 

slightly lowered in the spar and alkyd resin coatings. 

4. The spar and alkyd resin coatings (with the exception of 

the coating pigmented with zinc oxide) had superior impact 

resistance and adhesi.on to the vinyl chloride copolymer 

coatings. They retained this superior impact resistance 

and adhesion after receiving an eight million rad dose of 

gamma radiation. 

5. The impact resistance and adhesion of the vinyl chloride 

copolymer coatings were drastically reduced by the irradi­

ation. They were not measurably affected in the spar and 

alkyd resin coatings. 
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The lead carbonate was the only pigment that was observed to 

show a consistant behavior in the coating series. The follmdng i te 

were noted: 

1. The irradiated coatings pigmented with lead carbonate con­

sistantly exhibited a large change in light reflectance. 

The change was much greater than in the other coatings. 

2. The lead carbonate pigment improved the alkali and acid 

resistance of the irradiated and non-irradiated spar and 

alkyd resin coatings. 

). The lead carbonate pigment decreased the alkali resistance 

of the irradiated and non-irradiated vinyl chloride copol­

ymer coatings. 
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