
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1971

A hardware and software interface between a graphics terminal A hardware and software interface between a graphics terminal

and the SCC 650 computer and the SCC 650 computer

George Irvin Rhine Jr.

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Rhine, George Irvin Jr., "A hardware and software interface between a graphics terminal and the SCC 650
computer" (1971). Masters Theses. 5508.
https://scholarsmine.mst.edu/masters_theses/5508

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5508?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

...

.. ,~G

A HARDWARE AND SOFTWARE INTERFACE BETWEEN A

GRAPHICS TERMINAL AND THE SCC 650 COMPUTER

BY

GEORGE IRVIN RHINE, JR., 1942-

A THESIS

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

1971

T2580
78 pages
c.l

ii

ABSTRACT

This paper describes the design of a digital interface between

a graphic terminal and the SCC-650 computer. The graphic terminal­

computer combination can be used as a stand alone system for small

applications or can be used as a satellite processor for a larger

system such as the IBM System 360,

The interface is designed utilizing DTL NAND type integrated

circuits. Its primary functions may be divided into three main

categories: (1) to give level conversion. (2) control, and (3) data

manipulation,

All requests for data transfers are initiated by the computer,

The interface then assumes a control mode which handles the data

transfer to or from the graphics terminal, Once the transfer is

complete, the computer is notified that it may initiate another

request, Data is converted from bit serial to parallel word form by the

interface during the data transfer. A function keyboard has been

implemented which may transfer any one of 2048 different command

words to the computer.

A software package was written in SCC-650 Assembler which will

utilize the graphics terminal as an input/output processor for an

electronic circuit design program such as ECAP or CIRCUS, This

program will allow a user to draw the exact circuit to be analyzed on

the graphics terminal and then ask for specific results to be displayed

in either numerical or graphical form, The circuit may then be

changed by adding or deleting elements and re-analyzed.

iii

ACKNOWLEDGEMENT&

The author wishes to thank Dr, James H, Tracey· for h.is guidance

and support during this: project. Thanks are als:o extended to my

wife, Jamie, for her patience during this period and to Linda Giem

for typing the manuscript,

ABSTRACT

ACKNOWLEDGEMENT

LIST OF ILLUSTRATIONS

LIST OF TABLES ...

I. INTRODUCTION.

TABLE OF CONTENTS

II. A REVIEW OF COMPUTER GRAPHICS .

A. Refresh Display Terminals ..

B. Direct View Storage Tube Terminals

C. Graphic Input Devices ..

D. Implementation of Two Systems.

III. HARDWARE INTERFACE.

A. Description of the Hardware System

B. Instruction Set for Graphics System ..

IV. PROGRAM CIRCUITS

A. Objectives of the Program.

B. Description of CIRCUITS.

V. AN EXAMPLE PROBLEM.

iv

Page

ii

. iii

v

vi

1

4

4

8

10

15

17

17

32

38

38

40

52

BIBLIOGRAPHY. 58

VITA. 60

APPENDIX A - FORMAL DESCRIPTION OF THE ARDS-SCC 650 INTERFACE 61

APPENDIX B - EXAMPLE INPUT/OUTPUT ROUTINES. 69

LIST OF ILLUSTRATIONS

Figures

1. Typical Random Scan Graphics Terminal .

2. Direct View Storage Tube Terminal .

3. Typical Characters Generated by Dot Matrix Techniques

4. ARDS Graphical Data Structure .

5. The Sequence 011010 Coded in NRZ and RZ Codes

6. Two Characters in Asynchronous Communication.

7. Block Diagram of Graphics System.

8. Block Diagram of Interface Control.

9. Block Diagram of Program Circuits

10. CIRCUITS Data Structure

11. Dictionary for CIRCUITS .

12. An Example Circuit. .

v

Page

7

9

14

20

23

25

26

27

43

47

50

53

LIST OF TABLES

Table

I Properties of Different Graphics Terminals

II Status Word

III Graphic Interface Card Assignment.

IV Standard Elements for CIRCUITS

V List of Function for CIRCUITS.

VI Note Table for Circuit Shown in Figure 12.

VII Element Table for Circuit Shown in Figure 12

Page

5

31

33

41

46

56

57

vi

l

I, INTRODUCTION

The main objective of this research project was to design an

integrated hardware/software system for the support of interactive

graphics[l], The hardware system incorporated a small computer and

direct view storage CRT graphics terminal and associated interface

electronics, The computer used was a Scientific Control Corporation

SCC-650, with 4,096 12-.bit words of memory[2].

The graphics terminal is a Computer Displays, Incorporate~

ARDS lOOA[3], This terminal uses a bistable storage tube for the

display of alphanumeric and graphical data, The screen size is

8-l/411 x 6-3/8" with the long axis oriented vertically,

The interface electronics acts as a series/parallel converter for

reformating the data transferred between the computer and graphics

terminal, Parity checkers are incorporated to indicate any bit errors

and several computer controllable functions are implemented in the

interface, A function keyboard was designed and interfaced to the

computer for use with the graphics terminal,

The total hardware configuration was designed to allow the

small computer to act as a stand alone system or as a satellite

processor to a more powerful computer such as an IBM System 360/50,

The stand alone system could then be used for small scale problems, or

the terminal could emulate a console typewriter. The minicomputer can

also communicate to a central processor over voice grade telephone

lines. This allows the larger program and data base of the large system

to be concentrated on the solution of a problem while the satellite

processor handles data transmission and certain local operations,

2

The software for this project was centered in the area of computer

aided circuit analysis. Several programs exist for analyzing

electronic circuits, however, most of these are designed to run in a

batch mode environment. It was decided to write a preprocessor for

an analysis program, such as ECAP, that would allow the user to draw

a circuit using conventional circuit elements and then call for an

analysis. This preprocessor program would be implemented on the

minicomputer. This has the advantage of allowing the user to draw the

circuit and make all necessary changes before the large processor

enters into the problem.

The preprocessor program, CIRCUITS, has two parts 1) circuit

construction, and 2) circuit analysis. The second of these, circuit

analysis, was not attempted at this time, but is nearing completion

under a separate project. A synopsis of the objectives of this part

will be presented with the description of CIRCUITS.

CIRCUITS was written with three primary objectives. The first of

these is that the user input to the program be in a free form and

lend itself to the action of a person drawing a circuit. This was

accomplished by using the graphic input device to show the position

of an element and the function keyboard to define the element type.

Problems of pattern recognition of user drawn elements are thus avoided.

The second objective is that the circuit can be changed at will.

The action of the user to specify a change should be no more than

that required to draw an element. Since the output media is a storage

tube, this necessitates the requirement that the program be able to

redraw the circuit at any time with no additional input.

3

The last objective is that the completed circuit should be stored,

at the users request, on some permanent storage medium. A circuit

that has been stored should be able to be reconstructed at a later

time. This was accomplished by placing a description of the circuit

on punched paper tape. The program can then read this paper tape

and construct the original circuit.

II. A REVIEW OF COMPUTER GRAPHICS

A. Refresh Display Terminals

Graphics terminals can be divided into two classes depending

on the method of presenting the display; these are the refresh and

storage tube terminals[4]. The refresh terminal constantly presents

a new picture on the screen of the CRT. As its name implies, the

storage terminal presents the data once and relies on the ability of

the storage tube to maintain the display. Refresh terminals can be

further subdivided into two types 1) sequential scan and 2) random

scan. Table I lists some of the attributes of all three of these

types.

The sequential or raster scan terminal is the least expensive

output device since the full benefit of television technology can

4

be utilized. Its use for computer graphics is limited almost entirely

to alphanumeric and simple graphical displays. The display must

first be converted to a television raster scan. This space to time

translation is both time consuming and expensive. One method of

accomplishing this is to place the data on a small storage tube and

then use a flying spot scanner to convert the display. Sequential

scan terminals are only practical when the terminal is located near

the computer since this system requires very high video bandwidths.

The quality of the sequential scan is probably the lowest of the three

types of terminals. Linearity is no better than fifteen percent

and resolution and information density are equally poor. However,

the display itself can be a reasonable size and has excellent brightness.

These displays are flicker free since the frame rate is fixed.

PARAMETER

Refresh memory

Driver circuitry

Signal Bandwith

Source memory
Requirement

Information
density

Resolution

Brightness

Size

Interactive devices

Response

TABLE I

PROPERTIES OF DIFFERENT GRAPHICS TERMINALS

RAND0/1
SCAN

High speed random

Very high speed
high accuracy

High

Large

t1oderate

Very good

Good

Up to 18 in. sq.

Any

Immediate

SEQUENTIAL
SCAN

High speed bulk

High speed
Low accuracy

Very high

Very large

t1oderate

Poor

Good

Up to 18 in. sq.

Cursor or light
pen

Intermediate1:

'"Depends on processor speed.

DIRECT VIEW
STORAGE TUBE

None

Low speed
High accuracy

Low

Low

Very high

Good

Low

6-l/4 x 8-1/2 in.

Cursor

Several
seconds

(.!'

6

The random scan CRT terminal is the one used most commonly

in computer graphics systems. The scanning method differs from the

sequential scan in that the beam is moved only over the area where the

pattern is to appear. With random scan systems, the advantages of

brightness and linearity are offset by flicker. Flicker results from

the varying time required to complete a display. This variation is a

function of the amount of information being presented at the face of

the terminal. High information densities are possible with a random

scan terminal by using hardware· vector and character generators.

This will also reduce the size of the memory needed to support the

terminal. Figure l is a block diagram of a typical random scan

terminal.

The second advantage of the random scan terminal is its ability

to convey real time motion to the observer. This ability is lost in

the raster scan and storage tube terminals because of the time spent

in reformating the display. The best that can be accomplished is a

series of "still pictures" at fixed time intervals.

Both types of refresh terminals require extensive supporting

hardware. Some form of memory must accompany the terminal to store

the display data. Currently, magnetic cores and discs, delay lin~s,

and flying spot scanners are used as memory elements. This memory

and associated control circuitry adds to the complexity and cost of

the terminal. Most terminals in this class sell for $50,000 and up[S].

Highly interactive graphic communications which require either rapid

response or flexible graphic input are the most likely applications

for the random scan refresh system.

REMOTE OR

LOCAL

PROCESSOR

/

H

COMMUNICATION
AND

CONTROL

.---------~4 +~--------~ .,

,.
INPUT

CONTROL

t

GRAPHIC

REFRESH

MEMORY

,,
GRAPHICS

DISPLAY

VECTOR/
~----~~~ CHARACTER

GENERATOR

--

INPUT KEYBOARD
DEVICE

Figure l. Typical Random Scan Graphics Terminal.

7

8

B. Direct View Storage Tube Terminals

The direct view storage tube has the ability to store a visual

image as it is written. This eliminates the need for an associated

refresh memory and also greatly reduces the necessary information rate

to the terminal. These two facts are responsible for the inherent low

cost of the Direct View Storage Tube (D.V.S.T.) display system.

A graphics terminal utilizing a bistable storage tube can be purchased

for under $10,000[4]. This drastic reduction in price has made

computer graphics attractive in many new and diversified areas.

Figure 2 presents one form of a computer graphics system built

around a D.V.S.T terminal. In this system, a small general purpose

computer operates on line with the terminal. All control functions

originate in the computer under command of the input devices.

The D.V.S.T. is driven from an analog function generator con­

trolled by the computer. The use of these function generators is

the key to low system cost. The second key to low cost is the heavy

use of software, as opposed to hardware, to do nearly all data for-

mating and data control functions. It is the relatively slow speed

requirements of the D.V.S.T. which allows the use of software in

this manner.

All of the D.V.S.T. systems have similar performance character­

istics except for response speed. The display itself does not flicker,

but contrast and brightness are less than that achievable with refresh

systems, although adequate. No existing refresh system can match

the information density of the D.V.S.T., and it is in this area the

terminal is superior.

,,
INPUT

CONTROL

KEYBOARD

LOCAL
COMPUTER

GRAPHICS
CONTROLLER

GRAPHIC
INPUT

DIRECT VIEW
STORAGE TUBE

.,
FUNCTION

KEYBOARD

Figure 2. Direct View Storage Tube Terminal.

9

10

Certain applications do not lend themselves to the use of a

D.V.S.T. terminal. These include real time systems or where fast

response is required. Also the D.V.S.T. terminal lacks the ability

of selective erase; any changes in the display means that the entire

frame must be rewritten.

C. Graphic Input Devices

In order to make full use of a graphics terminal there must

exist some means of inputting graphical information. There are cur­

rently several techniques for accomplishing this purpose. Some of

these techniques are applicable only to a certain type of terminal

while others are general enough to be used with any terminal. The

various input schemes that will be considered are:

2) cursor, and 3) tablet.

1) the light pen,

The light pen is a photosensitive detector housed in a case

resembling a large fountain pen. It is used almost exclusively with

refresh CRT terminals. When the computer refreshes the area the

light pen is pointing to, the pen senses the flash as the phosphor

glow is renewed. If the vertical and horizontal deflection voltages

are digitized at this time, the address of the light pen can then

be sent to the computer. The user may draw on the CRT face by

using the light pen. This is usually accomplished by indicating

by some means that a drawing will be started and then placing the

light pen against the screen. Once the computer has sensed that the

light pen is positioned, it will track it across the face of the

CRT intensifying points along the path.

11

Another type of graphic input device employs a cursor to show the

position of the electron beam. This is used primarily with storage

tubes as a substitute for a light pen. The cursor is usually a small

spot of light with the intensity set low enough so that it will not

store on the CRT yet bright enough to be visible. One manufacturer

uses a set of full screen crosshairs to define a point. In either

case, the cursor is designed to follow a mechanical device as it is

moved through a 2-space. The usual devices employed are a joystick

or mouse.

The joystick is a small box with a protruding handle. As it is

moved by the user in a lateral and/or longitudinal direction, it

transmits to the graphics terminal a pair of analog voltages equal to

the x and y displacements from the center line. These voltages then

form the deflection voltage for the cursor. The mouse is a device

that fits in the palm of the hand with two orthogonal wheels on the

bottom. As the mouse is moved across a hard surface, it causes the

cursor to follow.

In addition to the two analog inputs, these two devices must

provide control signals to the terminal. There are generally at

least two such signals required, point and line. Once the user has

the cursor at a required position on the screen he must press a button

which will digitize the output of the graphic input device and send

the address of the point to the computer. Once two such points have

been defined, another button can be depressed which signals the

terminal and computer to draw a line between the points. Spotting,

12

or pointing to a position on the screen with this type of graphic

input device is relatively simple, but drawing any complicated figure

is extremely difficult.

Tablets such as the RAND or sonic pen tablet[6] are another form

of graphic input device. These can be used with any type graphics

terminal. There are different principles involved in the construction

of these tablets, but they all achieve the same result. A pen-like

device is tracked as it moves across a plane by either electrostatic

or electromagnetic sensors, or timing the propagation of a sonic

wavefront. The position of the pen is then sent to the computer which

plots its position on the graphics terminal. Accuracies on the order

of l mm on a twelve inch square surface can be obtained. Tablets are

useful for tracing a curve or the outline of an object that is to be

displayed on a graphics terminal. Since the action of the pen on the

tablet closely resembles the natural act of writing, these devices

are very effective.

Most graphics terminals operate in two modes l) text mode and

2) graphics mode. In the text mode, alphanumeric characters are

displayed on the screen of the terminal. The action will resemble

that of a typewriter. In graphics mode, the beam can be either

positioned to a point on the screen, or displaced from a point causing

a line to appear.

In the text mode, the alphanumeric characters are usually generated

within the terminal. This decreases the amount of data the computer

must transmit, but increases the complexity of the terminal. One

popular method of generating characters involves using a seven by

13

nine or five by seven dot matrix. The characters. are created by

intensifying different combinations of dots. Figure 3 shows two

characters generated by this method. Other methods of character

generation include shaping the beam into the character shape by

shadow mask techniques, or generating the character by using analog

methods to produce the different strokes. The dot matrix is becoming

more popular with the decreased cost of read only memories. All of

the data necessary to draw the characters can be stored in a relatively

small ROM. This has an additional advantage since different fonts

can be used by simply selecting one of several ROM's.

Graphic modes involve at least two submodes 1) positioning, and

2) vector generation. Positioning the beam requires placing the

terminal in a POSITION mode and then sending the new address to the

terminal. The address may be either absolute or relative. Absolute

addresses are with respect to some fixed origin on the graphics

screen. Relative address are usually with respect to the current

beam position.

Vectors are usually generated by placing the terminal in a

VECTOR mode and then transmitting the data necessary for the vector.

There are two methods of specifying vectors as there are with

positions. Some terminals draw all vectors relative to the current

position, in which case the data is actually an x andy displacement.

In an absolute vector mode, the beam is left in an intensified state

and moved to an absolute address specified by the data.

14

Figure 3. Typical Characters Generated by Dot Matrix Techniques.

15

D. Implementation of Two Systems

One approach to using a D.V.S.T. display as a remote graphics

terminal is described by Pardee[7]. This approach utilizes a PDP 8/L

minicomputer and a D.V.S.T. as a remote terminal. The D.V.S.T.

display is simply the CRT and associated deflection circuits. The

computer performs all the functions of a graphics controller.

Software techniques are used to generate all characters and vectors.

Two 10-bit digital to analog converters with a Z-axis control form

the interface to the CRT display.

Since the control unit for the terminal is a programmable computer,

several functions are available with this terminal that are not

usually found on a low cost system. These functions include, among

others, rotation of bodies and characters, and graphical subroutining[8].

Rotation of bodies is possible since the data for the display is

stored in the memory of the minicomputer. All characters are generated

as a dot matrix by a software routine so that it is a simple matter

to rotate the characters.

Graphical subroutining allows the central processor to transmit

data for one or more subpictures and then position the subpicture

as many times as needed and whenever needed to complete the display.

This technique increases the information rate between the central

processor and remote terminal. Updating a display could then be as

simple as redefining a basic subpicture.

The major drawback of this system is that it is not an inter-

active terminal. The user can not input alphanumeric or graphical

information to the display unit.

l6

An interactive graphic program is presented by Thornhill[9].

This program, named GRAPHSYS, allows a user to construct an electrical

circuit composed of resistors, capacitors, wires, and nodes on a

direct view storage tube terminal. The user can modify the circuit

by adding or deleting elements and nodes. Once the circuit is properly

constructed it can be named and used as a "black box" in constructing

other circuits.

This program is designed primarily as a teaching vehicle and is

not very useful as a circuit design tool. Many of the techniques

and ideas it incorporates are applicable to a large design program

and some were incorporated in CIRCUITS.

Graphics terminals, utilizing one or more graphic input devices,

have proved themselves to be a very effective man machine interface.

The graphical display provides the most flexiable and adaptable

means of giving information to, and receiving information from, a

computer. It has not yet fulfilled its potential because it probably

is the most complicated single peripheral to be interfaced to a

computer. The continuing research on hardware and software systems

and their applications inspire an stmosphere of confident anticipation

for the future of computer graphics. It appears to be generally

accepted that the present trend toward decreasing terminal cost and

increased flexability will be maintained and probably accelerated.

III. HARDWARE INTERFACE

A. Description of the Hardware System

The computer graphics system located at the University of

Missouri-Rolla, Department of Electrical Engineering, incorporates

17

a Scientific Control Corporation SCC-650 digital computer and a

Computer Displays, Inc. ARDS lOOA graphics terminal. The SCC-650,

considered to be in the minicomputer class, is equipped with 4,096

12-bit words of memory and has a basic cycle time of 2 microseconds.

All arithmetic and logical operations, together with high speed data

transfers between memory and the various registers, are fully parallel.

The central processor is equipped with a single accumulator and one

hardware index register. All input/output data must be directed

through the accumulator. One interrupt channel is provided at the

I/0 buss. Using this facility, the computer can be interrupted and

control transferred to the appropriate subroutine. Four addressing

modes provide increased flexibility in obtaining data from the memory.

In addition to the graphics terminal,an ASR-35 teletype equipped

with a paper tape reader and punch is available for input and output.

A Kennedy model 1400R digital tape system is on-line for higher

speed data transfers.

The ARDS graphics terminal is logically and physically composed

of three units, the keyboard, the controller, and the display unit.

In normal operation the keyboard provides alphanumeric information

to the computer and the ARDS. It contains keys for generating all

18

128 possible codes of ASCII. Patterned after a normal typewriter,

it contains a pair of shift keys and a shift lock. Depressing a key

causes the character to be echoed on the screen of the display unit.

The controller contains all of the digital logic of the system.

This includes the logic for code conversion and the analog signal

generators, and vector generators which permit maximum utilization of a

low speed data link. The controller also contains the logic necessary

for formating and transmitting the data from the keyboard and graphic

input device.

The display unit contains a direct view storage CRT. The surface

of the display acts as the memory for the graphics terminal and the

viewing screen. Once data is written on the surface of the CRT it

remains visible for up to fifteen minutes without serious degradation.

The viewing area measures 8-l/4~1 x 6-3/8" with the long axis oriented

vertical in the manner of a page of text. With the excellent

resolution of a D.V.S.T., over 4,000 easily legible symbols can be

plotted. For graphics applications the screen is defined to contain

1081 x 1415 addressable points. The point 0, 0 is the origin and is

located in the center of the screen. The display unit can draw

vectors at the rate of one half inch per millisecond and characters

can be plotted in one or two milliseconds.

The data format of the ARDS is compatible with ASCII; the symbol

set contains the ninty six printable ASCII symbols. To accommodate

graphic input and output, the ARDS operates under mode control. The

ARDS is placed into the symbol mode by any of the ASCII control

characters (bit 6= bit 7 = zero) with the exception of the three

that are reserved for graphic mode.

19

Since ASCII does not have any provision for transmitting graphic

information, an extens.ion of this code has been adopted. This extension

provides for a number of graphic commands each of which interpret

characters as binary information. Binary characters are those with

bit 7 = One, thus the problems of the ARDS interpreting data as

graphic commands are eliminated. This leavessix bits per character

available for information.

The graphic modes the ARDS responds to are set point, long

vector, and short vector. Set point mode positions the beam to any

absolute address on the screen. This mode is entered by control

character GS (octal 35). While in this submode, the next four char­

acters are interpreted as an absolute binary address.

The long vector mode will draw a relative vector any length up

to 1023 increments long in both x andy. The vector may be visible

or invisible, solid or dotted. Long vector is entered by control

character RS (octal 36). While in this submode, the next four

characters are interpreted as an x and y displacement from the

current point.

The short vector mode will draw a relative vector any length

up to 31 increments in x and y. A short vector is always solid and

visible. The short vector submode is entered by the control character

US (octal 37). While in this submode, the ARDS will interpret the

next two characters as an x and y displacement from the current point.

This mode reduces the amount of data transmitted since detailed

drawing will have a large number of short solid lines. Figure 4

summarizes the different graphic modes.

20

CHARACTER bl h7

I 24x I 2 3x 122x I 21x I 2°x I
SIGN

I
l l X

2 l '"J': 29x I 28x I 2 7x I 26x I 2 5x I
I SET

POINT

I I 2ly 1 I S~GN 3 l 24y 23y 22y 2oy

4 l ~': 29y 28y
I

27y 1 26y 25y

~'•UNUSED

l l

I
4

2 t:.x 123M 12 2 bX 121 bX I 0
2 t:.x I SI~N

2 l I I 129bx 128M 12'MI26bxl25bx I LONG VECTOR
I=l=INVISIBLE
I=O=VISIBLE

3 l 124oy 123 Oy 1220y 1210y 2ot:.y I S~GN

4 l I D 1290y 12sby 12 70y 126by 1250y

l l 124bx 12 3,x 12 2bx 12\x 12°ox I SI~N
SHORT VECTOR

2 l 124by 123bY 12 2bY 121oy l2ooy I SI~N

Figure 4. ARDS Graphical Data Structure.

The ARDS is equipped with a "mouse" as a graphic input device.

Three switches located on the mouse enable the user to send graphic

data to the ARDS and computer. As the mouse is moved across a hard

surface, it will cause the cursor to follow in the same direction.

Depressing the POINT (center) switch causes the ARDS to define the

cursor position as the current point. This information is sent to

21

the computer by transmitting the SET POINT character (GS) and four

characters of address data. Depressing the LINE (left) switch, causes

a solid visible line to be drawn on the graphics screen between the

current cursor position and the last defined SET POINT. This infor­

mation is transmitted to the computer by the LONG VECTOR (RS)

character and four characters of displacement. The end of the line

is then defined as the current point in the graphics terminal. The

third switch is used for special applications.

Other options on the graphics terminal control echo mode and

the keyboard bell. The echo mode allows data to be transmitted from

the ARDS graphic input device and keyboard without having this data

displayed on the screen. If ECHO is on, the ARDS will print on the

screen all data that is input from the keyboard and will respond to

all graphics data from the mouse. If ECHO is off, the display unit

will not respond to any data generated by the ARDS. However, all

data is transmitted to the computer and the ARDS will respond to all

data received from the computer. The bell can be activated by the

character BEL (octal 7) and is used to signal the operator of some

event under control of the program.

Electrically the ARDS is designed to communicate with a device that

meets EIA RS-232 standards. Several control signals are provided

22

or recognized by the ARDS controller so that it may operate in a full

or half duplex mode of operation. Since the control necessary for

full duplex operation is somewhat simpler, this mode was chosen as

the operating mode for the graphics terminal.

The ARDS - 650 interface[lO] directs the flow of information and

control between the graphics terminal and the CPU. The interface

accepts signals from both the ARDS and the computer to control both

the type and direction of data flow. All data that is transferred

between the interface and CPU is in bit-parallel form, that is, all

12 bits are transferred simultaneously. Data transferred between

the ARDS and the interface is in bit-serial, NRZ, asynchronous form.

Each character, 7-bits plus parity, is preceded by a start bit and

followed by a stop bit.

Under normal conditions, the data line is held in the MARK or

"l" state when there is no activity on the line. The start bit is

always a SPACE or "O" and last for one bit time. The data is

formated in a NRZ, Non-Return to Zero, code. The difference between

a non-return to zero and a return to zero code is best illustrated

by an example. Figure 5 shows the sequence "011010" coded in both a

NRZ and RZ code. As the illustration shows, the signal stays in the

appropriate mark or space state for the entire bit time in NRZ coding.

In an RZ coding scheme, the bit is always in the SPACE or "O" state

and changes to the "1" state only briefly at each appropriate bit

time.

23

NON-RETURN TO ZERO (NRZ)

MARK

t

SPACE I I

't
I 3

MARK

I
I I

SPACE+-------~~----~--L---~1--------L__L ____ ~I ____________ __

t
RETURN TO ZERO (RZ)

Figure 5. The Sequence 011010 Coded in NRZ and RZ Codes.

24

The stop bit which follows each character lS always a MARK and

must last at least one bit time. In the ARDS, and its interface,

the stop bit is 2 bit-times in duration.

The asynchronous communication method is the simpliest method of

bit serial data transmission. Since the data line is always left in a

known state (MARK) and the first bit (the start bit) is the other

state~ then the change of state can be used to signify that data is

present on the line. Since the bit time and number of bits are

always known, the detection of data is relatively straight forward.

Figure 6 shows the characters "a" and "U" as they would appear in

start-stop format.

The graphics interface is composed of four main sections:

1) the parallel/serial data converter,

2) control section,

3) command decoders, and

4) data buffers.

The interface accepts data from the graphics terminal, function

keyboard, and computer, and directs it along the proper data path,

and in the proper format. Figure 7 is a block diagram of the graphics

system and Figure 8 is a block diagram of the interface controller.

The parallel to serial converter used in the interface is a 10-

bit shift register. Outgoing data is placed into bits two through

eight in a parallel transfer and the data is sent to the ARDS by

shifting to the right one bit each bit time. Shift register bits

one and ten are the start and stop bits respectively, and bit nine

is the parity bit. Data coming from the ARDS is shifted into the

25

II II a

MARK

I I I
I I

t

I I
I I
I
I I
1 I

SPACE
I I

I I

I I I

START 1 bl p STOP

I I I I I I I

I I I I I I I

MARK

t

SPACE

IIU II

Figure 6. Two Characters in Asynchronous Communication.

ARDS FUNCTION I-------,
KEYS

I
ALPHANUMERIC

I I KEYBOARD
I ' I -,.

r I CONTROL
I - CIRCUITS -

~I -- CONTROLLER .. - -t-1 - ~ j
" j

ll' j ~~ I' ~L
~ I .. , r r I I , , ,. 1 lr , r r , • r

I
CRT L_. PARALLEL/SERIAL

DISPLAY I CO};'VERTER 1--

I
,

L _____ _j PARITY
CHECKER

I
MOUSE I/0

BUSS
TO

COMPUTER

Figure 7. Block Diagram of Graphics System.

...
-

rv
O'l

TO
CPU -..

F'UNCTION
KEYS

t::J
!l>
1-3
!l>

tJ:j
c
1-rj
1-rj
trJ :;:o

- FUNCTION ..
CONTROL

, t -- MODE --..
...-- TRANSFER CONTROL - CONTROL -

~~ I ~

I lir -- --SHIFT - CLOCK
1-1- CONTROL --

) PARALLEL DATA IN

10 1 ; 1

SERIAL DATA If! SERIAL DATA QUT .. SHIFT REGISTER ,..

Figure 8, Block Diagram of Interface Control.

DATA
TERMINAL

READY

r

H

L..-
!l> z: 0
t:1

0
:;:o 0
trJ ::;::
.0 ::;::
c !l>
trJ z:
C/) t::J
>-j C/)
C/) -..

---- CPU

CPU

rv
-.J

shift register one bit at a time and then bits two through eight

form the parallel output. All data enters the shift register under

the direction of the SHIFT CONTROL circuitry.

28

In the transmit mode, this section accepts the parallel data from

the computer, clears the shift register, and then loads the data.

The clock is then started and twelve clock pulses are counted.

AFter the twelfth shift, the data is out of the shift register, the

clock is stopped, and the control section is notified that the

transfer is complete.

In the receive mode, the start bit from the ARDS is sensed

(the line changes from MARK to SPACE) and the clock is started.

At each clock pulse, a new bit is shifted into the shift register.

After ten clock pulses the clock is stopped, the data is ready to be

transferred to the computer, and the CONTROL SECTION is advised that

data is ready. Once the computer requests the data, the CONTROL

SECTION transters it and the SHIFT CONTROL circuitry resets itself

for the next transfer.

A parity checker is used to ensure that the transmitted serial

data is always even parity and that the received serial data is

correct parity. As the data is transmitted to the graphics terminal,

the number of ONE's in the data are counted and the parity bit is

set to make the sum of the bits that are ONE even. As data is received

from the ARDS, the parity of the data is computed and if it is not

even, the CONTROL SECTION notifies the computer that an error exists

in the character.

The CONTROL SECTION is divided into two parts 1) mode control,

and 2) transfer control. MODE CONTROL sets the interface into either

29

a transmit or receive mode. (All data directions are with respect to

the computer, e.g., transmitted data is from the computer to the

ARDS.) The interface is normally in the receive mode. It is placed

into the transmit mode only when the computer requests that data be

transmitted to the ARDS, and stays in this mode until the transfer

is complete.

The transfer control circuitry determines when data is transferred

to and from the computer. In addition, it determines which data

word is sent to the computer. It accepts inputs from all other

sections of the interface and produces essentially three outputs to

the computer. The first output (IDRDY) informs the CPU that the

requested action is complete. The second output is an interrupt

signal (EXTINT) which informs the CPU that some action is required.

The last output signal (IOE) informs the computer that a character

from the graphics terminal is in error. Several other signals are

also generated for internal control of the interface. These provide

timing information for functions such as clearing the shift register,

and starting the clock.

The COMMAND DECODER section interprets all of the commands that

apply to the graphics interface. The input for this circuitry

originates at the input/output buss of the computer and the graphics

terminal. The graphics terminal provides a signal (DTR) whenever

the terminal is connected to the interface and is ready to operate.

The computer provides several I/0 instructions which have been decoded

in the computer, and the instruction register so that the interface

may decode the additional I/0 instructions. In addition, all of the

30

CPU timing signals are provided to the interface so that it may

synchronize itself with the computer. All of the inputs to this

circuitry are buffered so that any anomaly in the graphics interface

will not affect another periphral device. In a similar manner, all of

the control outputs to both the graphics terminal and computer are

brought to this section for buffering.

The DATA BUFFER accepts three parallel words as input and

gates one of these, determined by the TRANSFER CONTROL circuitry, to

the computer. The input words are 1) data from the shift register,

2) data from the function keyboard, and 3) the Status word. The

data from the shift register represents the character received from

the ARDS. The function word is the input from the function keyboard,

and the status word is a collection of the state of various control

signals within the interface. The status word can be input to the

computer so that the precise state of the interface is known. Table II

describes the various signals in the status word.

The function keyboard that was added to the graphics facility

consists of keyboard and control circuitry. The keyboard is a set

of switches located on a console near the graphics user. It consists

of eleven function switches, a CLEAR switch and a TRANSFER switch.

The function switches are numbered 1-11 and correspond to accumulator

bits 11-1 respectively. There are 2,048 different combinations of

the function switches and these are entered by concatenating

different switches. Function 23, for example, would be entered by

depressing switches two and three. The control circuitry consists of

INPUT

0

1

2

3

4

5

6

7

8

9

10

11

BIT

TABLE II

STATUS WORD

MNEMONIC

Not used

INT

AFCN

ECHO

SRF

SIP

AXINT

ARINT

MODE

DTR

IDL

ACT

STATUS

Not used

Interrupt is Pending

Function Keyboard Armed

Echo Mode is Set

Shift Register is Full

Shift in Progress

Xmit Interrupt Armed

Rec Interrupt Armed

l for Rec, 0 for Xmit

Data Terminal Ready

Interface Idle

Interface Active

31

32

the function flip-flops and associated control. Depressing the

CLEAR switch on the function keyboard clears the function flip-flops,

and initializes the control. Depressing any combination of the

function switches causes the corresponding flip--flops to be set.

When the transfer switch is depressed, and if the function keyboard

is armed, the TRANSFER CONTROL section is notified that data is

ready. The function word will then be transferred to the CPU at the

next read request.

A detailed formal description of the interface can be found in

APPENDIX A.

Physically the graphic interface occupies one card file in

the System Interface Cabinet. The electronics was implemented by

utilizing digital integrated logic packages. DTL (diode transistor

logic) and TTL (transistor transistor logic) NAND logic packages

were chosen since both are readily obtainable. The logic for the

interface is mounted on 17 printed circuit boards mounted in slots

one thru 17 in the card file. Slot number 0 contains level converters

for interfacing the IC logic with the ARDS. Slot number 18 contains

the clock for determining the serial data shift rate. Table III sum­

marizes the card assignment.

B. Instruction Set for Graphics System

The instruction set necessary for efficient communications with

the ARDS terminal consists of six instructions. All of these in­

structions have the form of a mneumonic plus a device code. The

device code informs the interface that the instruction concerns

SLOT

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

TABLE III

GRAPHIC INTERFACE CARD ASSIGNMENT

FUNCTION

Level converters

Data Buffer (bits 8-11, 0)

Data buffer (bits 4--7)

Data buffer (bits 1--3)

Command decode #1

Command decode #2

Transfer control #1

Transfer control #2

Transfer control #3

Shift register (bits 5-10)

Shift register

Shift control

Clock control

Clock decoder

(bits 1-4)

Function keys (bits 1-8)

Function keys (bits 9-11)

Function control

Parity generator

Clock

33

34

the graphics terminal. The graphics interface is assigned device

number 11. Since instructions are represented in octal in Assembler

notation, the device code will be shown as '13 where the apostrophe

designates an octal number.

SELECT. The instruction SEL 1 13 performs the function of

electrically connecting the interface and CPU. This instruction is

conditioned on the ARDS being connected to the interface and

operative (DTR=l). If this condition is met, the ACTIVE flip-flop

in the interface is set. At this point, the interface will respond

to any command from the computer.

READ. This instruction is represented as TTA '13. It will

transfer data to the accumulator if there is data ready. If the

transfer is accomplished, the CPU will execute the next sequential

instruction. The CPU will skip the next instruction if the data

is not ready. The data that is input by this instruction is either

the character in the shift register or the function word. If it is

the data from the shift register, the character will be in bits 5-11

of the accumulator with bits 0-4 set equal to zero. If the function

word was the data that was input, it will be in accumulator bits 1-11,

and bit zero will be a one. Since bit zero is also the sign bit in

two-complement notation, a negative number will result when the

function word is input and a positive number will result for a

character. Testing the input data for a positive or negative sign

will be able to differentiate between the two types of data. This

provides a simple method for inputting data from two devices using

the same instruction.

35

The WRITE instruction (TFA '13) transfers data from the

accumulator to the shift register. Accumulator bits 5-11 will be

considered to have the character to be transmitted. This instruction

is conditioned on the interface being able to accept the data. If

the interface is not ready, the next sequential instruction will be

skipped. If the interface is ready for the data (IDL = 1), the data

will be transferred and the CPU will execute the next sequential

instruction.

The TEST (IOT) instruction is used to check on the validity

of a received character. An IOT command following a READ will cause

the CPU to skip an instruction if the character just received had

correct parity. If the parity was incorrect, the next instruction

will be executed. An IOT instruction following a WRITE command is

meaningless.

EXECUTE. There are several EXU '13 instructions. These are

used to control certain functions of the interface. Upon receipt of

an EXECUTE command, the interface looks to the accumulator to

determine which function is to be performed. These auxillary

functions are:

AlO = All = 0 Disarm interrupt system

All = 1, AlO = 0 Arm receive interrupt system

All = 1, AlO = 1 Arm transmit interrupt system

A7 = o, A6 = 1 Disarm Function Keyboard

A7 = 1, A6 = 0 Arm Function Keyboard

AB = 1, A9 = 0 Disarm Echo Mode

AB = o, A9 = 1 Arm Echo Mode

36

The interrupt system allows the computer to read or write

data without having to wait for the graphics terminal. With the

Receive Interrupt System armed, the interface will interrupt the CPU

only when data is ready to be transferred to the computer. If the

Transmit Interrupt System is armed, the interface will interrupt

the CPU only when the last character has been sent to the ARDS and

the interface is idle. With both of these systems armed, the inter­

face will interrupt whenever it requires action by the CPU.

The Function Keyboard can be enabled by the program using the

appropriate Execute command. This allows the program to disregard

this as an input device.

Echo mode, for the present time, is always enabled when the

interface is active. The Echo Off mode is used only for special

application such as the later addition of a hard copy unit connected

to the graphics system.

TERMINATE. The TMR '13 command performs the reverse action of

the SELECT command. This instruction places the interface in a

state (ACT = 0) where it will not respond to further commands.

STATUS. The DST '13 instruction causes the interface status

word to be read into the accumulator. This instruction is uncon­

ditional and is not dependent on the interface being previously

selected. As long as the interface is cabled to the computer and

the interface power is on, the status word can be read. This is

useful for determining the exact state of the interface.

37

These instructions compose the entire set neces.sary to

communicate with the ARDS. Because of the small number of instructions,

the instruction set is simple. The instructions are powerful

enough, however, to effect an efficient means of communication.

Appendix B presents some sample routines for communicating with the

graphics terminal.

38

IV. PROGRAM CIRCUITS

A. Objectives of the Program

There are currently many large scale circuit analysis programs

such as ELECTRONIC CIRCUIT ANALYSIS PROGRAM (ECAP), CIRCUIS and

SPECTER[ll]. These are designed to run in a batch mode environment.

The input is typically a tabular description of the interconnections

of the elements and their values. The generated output is typically

a tabular description of some selected voltage or current at specified

frequency increments. Several of these programs incorporate plotting

facilities which are either an on-line plotter, or a print-plot

technique. Most of these programs are designed to run on a medium

to large computer with a memory of at least lSOK bytes.

Several versions of these programs have been designed to run

in a semi-interactive environment. Usually this means that the

user can access the program from a remote teleprocessing terminal.

The input is again a tabular description of the circuit and the

output will be the same. If an on-line plotter is utilized, the

resulting plot will have to be mailed to the user.

The next step in this chain is to have an analysis program that

has graphical input and output. With this goal in mind, CIRCUITS

was developed.

CIRCUITS[l2] is a program that resides on an SCC-650 computer

located with the ARDS graphics terminal. It interactively converts

user input specifications into a schematic diagram of an electronic

39

circuit which is then drawn on the graphics terminal. This computer

then acts as a satellite processor to an IBM 360/50 which hosts the

analysis program[l3]. Communications between the two computers is

via a dial up telephone line.

There were three main reasons which prompted the decision to

use a satellite processor. The first of these is that all analysis

programs are insensitive to the physical layout of a circuit. They

require only a description of the interconnection and element values.

The simplest method to achieve this is utilizing a preprocessor for

the analysis program. The preprocessor can then handle all of the

details of drawing a circuit, and pass the analysis routines and the

circuit description in the required form.

The second reason that prompted this decision is that the cost

of computation time on a large machine can be significant. One way

to minimize this cost was to decrease the amount of data transferred

between the graphics terminal and central processor. The satellite

processor acts to reformat the graphical data into a compressed form.

For example, in order to draw a resistor from node 1 to node 2 would

require the graphics terminal to send the address of nodes 1 and 2

(10 characters) and some code for resistor (2 characters). The

computer would respond with approximately 42 characters necessary to

draw and label the resistor. The satellite processor could convey

the same information by the six character sequence "NlN2R3". This

results in a 9:1 reduction in data.

The last reason for the satellite processor involves the

environment this program will be used in. The satellite processor

40

allows the formation of the circuit under study to take place

independently of the large central processor. The description of the

circuit can then be prepared "off-line" and all corrections made

before the services of the central computer are required.

CIRCUITS has two primary functions. One, it acts interactively

with the user to draw a schematic diagram on the face of the graphics

terminal and, at the same time, constructs a dictionary which

defines all of the interconnections. The second function is to

present this dictionary, at the users request, to the analysis program

and convey the output of the analysis program to the graphics terminal.

The first of these functions has been completed under this research

project while the second is currently nearing completion as a second

project. The description of the program in this thesis will be of

the completed section and a synopsis of the objectives of the analysis

portion.

B. Description of CIRCUITS

CIRCUITS is capable of drawing a schematic diagram of any

electronic circuit composed of the elements shown in Table IV. These

elements are drawn by using the "mouse" to define the position of the

element and the function keyboard to define the type of element

desired.

In order to have the circuit drawn by a set of standard sub­

routines, several restrictions were imposed on the user. The

first of these restrictions is that all two terminal elements must

be drawn between a pair of nodes which are located on a vertical or

41

TABLE IV

STANDARD ELEMENTS FOR CIRCUITS

ELEMENT NAME SYMBOL

NODE N *
RESISTOR R ~

CAPACITOR c ---i ~

INDUCTOR L

WIRE w

RIGHT/DOWN DIODE D ---t:t--
LEFT /UP DIODE E ---f<}--

SOURCE s -<>-
BATTERY B -ill~
MINUS BATTERY A ----111 ~

NPN-TRANSISTOR Q --<
PNP-TRANSISTOR p -<

42

horizontal grid, and that no more than four elements. may be connected

to any node. Since any practical circuit, and most analysis programs,

do not impose this restriction, the concept of a wire was introduced.

A wire is a zero resistance connection between two nodes located

at different physical points on the screen. Most analysis programs,

however, do not allow a zero resistance connection between nodes,

so that during the transmission of the dictionary to the central

processor all nodes connected by wires will be assigned the same

node number. This element does, however, allow the satellite

processor to distinguish between two nodes located at different points.

Another restriction is that the node which will be at ground

potential must be the first node specified by the user. This will

insure, for the analysis program, that all node voltages can be

referenced to the lowest node.

Basically CIRCUITS is composed of four main sections as shown

in Figure 9. These sections are input/output and error handler,

device and function handler, dictionary entry and modification handler,

and analysis interface. The first section handles all input and out­

put to the graphic terminal and handles error conditions. The

input/output section will decide whether the input is valid graphical

information and decode it into x andy screen coordinates. All

inputs from the function keyboard are decoded and control is directed

to the proper routine. Output data is converted to a form acceptable

to the graphics terminal depending on its class, that is text or

graphics. The error handler will create an appropriate error message

and display it on the screen for any error condition that may arise.

EXTERNAL------------~·~
INTERRUPT -

,,
2-TERMINAL

DEVICES

,,
NODES

, ,, ,, t

DICTIONARY
ENTRIES

I/0

MAIN

TO MAIN

--

--

,,
3-TERMINAL
DEVICES

t
DICTIONARY

CHANGES

43

ERROR

I
FROM ALL
ROUTINES

,,
SPECIAL

FUNCTIONS

Figure 9. Block Diagram of Program CIRCUITS.

44

The second section handles the circuit elements and special

functions and is composed of four subsections. The first of these

handles node definitions. When the user requests a node definitions

via the "mouse" and function keyboard, the symbol for a node is placed

on the screen along with the number of that node. An entry is then

made in the dictionary which defines the number of the node and its

x andy coordinates. The x andy coordinates of this node will also

be compared to the x and y coordinates of the last refenced node.

If either of these is within a specified range of the last nodes

the current node will have its coordinates modified so that it lies

on the same grid line as the last node. This will insure that all

elements lie on a grid line. If the x and y coordinates do not lie

within this range, then they are left alone. The program also keeps

track of two nodes called the last node and the current node. Whenever

a new node is requesteds it is entered as the current node and the

node that was the current node becomes the last node. It is between

these two nodes that all elements are drawn.

The second subsection handles all two terminal elements. Upon

entry into this routine the functions key input is matched against

an element name. This name is a single letter which is unique for

each element, for example, a left diode is named "E" while a right diode

is named "D". These names will then be used to make entries in the

dictionary so that the proper element and polarity can later be

reconstructed. Nexts the last node and current node are compared.

An error condition will be generated if the two nodes are the sames

or do not lie on a grid lines or are too close. If the nodes are

45

correctly positioned a flag will be set to indicate whether they are

oriented vertically or horizontally. At the same time, the node to

the left, or down in vertical orientation, will be designated as node

one and the other as node two. Starting at node one, the element

will be drawn by first drawing a lead from the node, then the element,

and then another lead connecting to node two.

Each element has associated with it an element definition

table. This table comprises all of the vectors necessary to draw

that element. Figure 10 shows the form of a typical element definition

table. The first word is the count of data words in the table. Each

data word is composed of up to three vectors which are interpreted

from right to left. Each vector entry comprises four bits with the

right most bit (T) indicating whether it is a long or short vector.

The short vector "0000" indicates the element is complete and the

other vectors to the left are ignored. This is used if a data word

holds less than three vectors. The long vector 2, -2 INV is an

invisible vector or beam displacement. The table number (T) will

determine which vector table will be used, and the vector number will

indicate which entry in that table. The vector tables hold the

characters which when sent to the graphics terminal will cause the

proper vector to be drawn. The short vector table holds two characters

per vector and the long vector table holds four. If the element

is oriented vertically, the data is taken from a second pair of

vector tables which essentially have the x and y coordinates of the

vectors interchanged. This method of data storage, while seeming

complicated, reduces the total amount of storage necessary for all

FUNCTION

FO

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FlO

Fll

FlF2

FlF3

FlF4

FlF5

FlF6

FlF7

FlF8

FlF9

F2F3

TABLE V

LIST OF FUNCTION FOR CIRCUITS

DESCRIPTION

Attention

Resistor

Capacitor

Right/Up Diode

Left/Down Diode

Wire

Inductor

Battery

Minus Battery

Source

Node

Restart

Transistor-PNP

Transistor-NPN

Redefine

Corner Point

Delete Element

Delete Node

Load Circuit

Save Circuit

Redraw

46

47

WORD 0 11

1 COUNT

2 DATA

3 DATA

4 DATA

TYPICAL ELEMENT
DEFINITION TABLE

1VECTOR

3 'Z

111
: I 31 TIVECTOR 21 T !VECTOR

DATA WORD

DECODE OF VECTOR FIELD

VECTOR i t:.X, t:.Y VECTOR i t:.X, t:.Y

000 RETURN 000 3 0

001 0,1 001 2,-2

010 o,-1 010 -2,-2

011 1,0 011 -2,2

100 1,1 100 0,-2

101 1,-1 101 0,2

110 -1 1 110 ? .? TNV

111 -1,-1 111 2,2

SHORT VECTOR LONG VECTOR

T=O T=1

Figure 10. CIRCUITS Data Structure.

4 '8

of the elements. For example, to draw all of the two terminal elements

would require 44 short vectors and 57 long vectors. Since each short

vector requires two characters and each long vector requires four

characters to be transmitted to the ARDS, it would require 316 words

of memory to store this data. Add to this the ability to rotate the

vectors and 632 words of memory are required for the two terminal

elements. The method used in CIRCUITS requires 59 words for the

element definition tables, 47 words for the normal and rotated vector

tables, and 102 words for the routine to do the translations, for a

total of 208 words for the same elements.

The next subsection handles three terminal elements or tran­

sistors. These are drawn in a manner similar to the two terminal

devices except that they are fixed in orientation and that only the

base node is specified. When the user requests a transistor, via

the function keyboard, it will be drawn with the base connected to

the current node. In the process of drawing the transistor, two new

nodes will be created, one at the collector, and one at the emitter.

Upon exit from this section the emitter node will be the current node.

The last subsection handles the special functions. The first

of these is RESTART. This function will erase the screen,

reinitialize the program and dictionary, and allow the user to begin

drawing a circuit diagram. REDRAW will redraw the circuit on the

screen from the dictionary. DELETE ELEMENT will delete the element

between the last node and current node from the dictionary. It will

automatically resequence all elements with the same name and a higher

number. DELETE NODE will delete the current node from the dictionary

49

if there are no elements connected to it. Also, all nodes higher than

the deleted one will be resequenced. REDEFINE will redefine the

referenced node as the current node without displaying the node symbol

or changing the dictionary entry. SAVE will punch the dictionary

description on paper tape so that is may be used at a later time.

LOAD will read a paper tape produced by the SAVE function and

construct a dictionary for that circuit. The circuit will then be

drawn on the screen and the user may then add to it, modify it,

or call for an analysis. CORNER will place a node on the screen at

the intersection of two grid lines extending horizontally from the

last node and vertically from the current node. ATTENTION will

stop all processing and return control to the user. This is part­

icularly useful when an error has been noticed during a REDRAW sequence.

Table V lists the various functions recognized by CIRCUITS and their

associated function codes.

The third major section of CIRCUITS is the dictionary handling

routine. This section will make entries into the dictionary from

data supplied to it by the node and element processors, or modify

the entries upon request of the delete processor~[l4],

The dictionary is actually composed of two tables, the NODE

TABLE and the ELEMENT TABLE. The node table illustrated in Figure 11

contains seven entries for each node. The first word is the node

number, and the second and third words are the node's x andy coord­

inates respectively. The next four words are reserved for the element

names and numbers which are connected to this node. If a fifth

entry is attempted under this node, an error condition will arise.

The element table consists of four words for each element. The first

50

LOCATION 0 11

n NODE 1

n+1 X~ADDRESS

n+2 Y-ADDRESS

n+3 ELEMENT #1

n+4 ELEMENT #2

n+S ELEMENT #3

n+6 ELEMENT #4

n+7 NODE 2

X-ADDRESS

Y~ADDRESS

F.T.F.MF.N'T' #il

NODE TABLE

0 5 6 1

m NAME I NUMBER

m+1 VALUE TABLE ADD.

m+2 NODE #1

m+3 NODE #i?

m+4 NAME I NUMBER

VAL{.J~ ___ IAI3.LE ADD

NODE #1

ELEMENT TABLE

Figure 11. Dictionary for CIRCUITS.

is the name and number of the element, and the next word is the address

of the value of the element in character form. The next two locations

in the element table are the first and second notes connected to the

element. Since transistors are completely specified by their base

node, these two entries would show the same node. Given these two

tables, the entire circuit can be reconstructed in either tabular form

for an analysis program, or redrawn in graphical form.

The last section of CIRCUITS is the analysis routines. When

the user requests an analysis of his circuit, he will be queried

as to the analysis program name. A dictionary search will then be

performed to insure that there are no elements which are unacceptable

to that program. Assuming no such elements, the values for the elements

will be requested and placed in the value table. Once this is

complete, the user may request that a tabular description of the

circuit be displayed or transmitted to the central processor.

The output from the analysis program will be directed to the

graphics terminal for display. Once the output is complete, the user

may modify his circuit by changing element values, or modify the

topology of the circuit, and then call for another analysis.

I. AN EXAMPLE PROBLEM

This next section will present the steps necessary to draw a

circuit on the ARDS. Figure 12 will be used as a typical circuit

that a user may wish to construct for study.

The first step that is taken is to initialize the program by

entering function number 11 (F 11) through the function keyboard.

This will erase the screen and draw a dotted line across the lower

portion of the screen. The user should refrain from entering into

this area since error messages will be displayed here.

Using the mouse and the middle button (set point), the user

would now point to the location on the screen where node #1 should

appear. Since most analysis programs consider the lowest numbered

52

node to be GROUND, this node should be entered first. Next FlO is

entered and the terminal will respond with the symbol for a node and

its number on the screen. Next the user points to the location

of node #2 and enters this via the mouse and function keys. Now

entering F9, the terminal will respond with the symbol for a signal

source between nodes one and two. Next node #3 is entered, and then

Fl is entered specifying a resistor. A resistor will then be drawn

from node two to three. Notice that only one new node was entered;

the element is always drawn from the last node to the current node.

After drawing the resistor, node #3 will become the last node.

This same process continues until R2 and Bl have been drawn.

6

2
Rl

3

R2

sl

Bl

I Wl 5

W3 W6

10

11

W4 12 W5

Figure 12. An Example Circuit.

14

--B
3

13

e- NODE

53

54

At this point, node #5 is the last node and we wish to draw

a wire to node one. By pointing the mouse to node one and entering

Fl4, node one is redefined as the current node but no output is

generated. After entering FS, a wire will be drawn between node one

and node 5. Using Fl4 again, node three is redefined as the current

node and then the user enters node six and resistor #3. Redefining

node three again, the user enters Fl3 and a NPN transistor is drawn

on the screen and two new nodes are created, node seven at the

collector, and node eight at the emitter. Node eight is also the

current node after the transistor is drawn. Entering node nine and

Fl will draw a resistor from the emitter to node nine. Redefining

node four and entering FS will draw W2.

In order to create node ten at the intersection of two grid

lines from node six and node seven, the user should first redefine

node six and then redefine node seven. Now, if FlS is entered, a

node will be created horizontally from the first redefined node

(node six) and vertically from the last redefined node (node seven).

If F5 is entered, W3 will be drawn. The rest of the elements and

nodes can now be drawn in a similar manner.

As an example of the deletion capabilities, assume that when the

diode was drawn F4 had been entered instead of F3. This would have

resulted in a diode pointing to the left. To correct this, nodes

seven and eleven are both redefined and Fl6 is entered. This will

delete the diode from the dictionary but not the screen. To see the

circuit without the element enter F23. Now redefining nodes seven and

eleven and entering F3 will cause the proper diode to be drawn.

Once the display is complete, entering Fl9 will cause the

dictionary which describes this circuit to be placed on paper tape.

This allows the user to redraw this circuit on the screen at a

later time merely by placing the tape in the reader and entering

Fl8. Once the dictionary is constructed from the tape, the circuit

will be drawn on the screen and control returned to the user. He

may then use any of the functions to change or add to the circuit.

Tables VI and VII illustrate the dictionary for this circuit.

55

56

TABLE VI

NODE TABLE* FOR CIRCUIT SHOWN IN FIGURE 12

LOCATION NODE X-ADD. Y-ADD. ELEMENT
#1 #2 #3 #4

n N 01 -200 -100 s 01 w 01

n+7 N 02 -200 150 s 01 R 01

N 03 -100 150 R 01 R 02 R 03 Q 01

N 04 -100 0 R 02 A 01 w 02

N 05 -100 -100 A 01 w 01 w 04

N 06 -100 300 R 03 w 03

N 07 -20 200 Q 01 R 05 D 01

N 08 -20 100 Q 01 R 04

N 09 -20 0 R 04 w 02

N 10 -20 300 R 05 w 03 w 06

N 11 80 200 D 01 B 02

N 12 80 -100 B 02 w 04 w 05

N 13 180 -100 w 05 B 03

n+91 N 14 180 300 B 03 w 06

*Refer to Figure 11 for Detailed Memory Map.

57

TABLE VII

ELEMENT TABLE;'~ FOR CIRCUI.T SHOWN IN FIGURE 12

LOCATION NAME NUMBER VALUE ADD. MODE #1 MODE #2

m s 01 01 02

m+4 R 01 02 03

R 02 03 04

A 01 04 05

w 01 05 01

R 03 03 06

Q 01 03 03

R 04 08 08

w 02 09 02

R 05 07 10

w 03 10 06

D 01 07 11

B 02 11 12

w 04 12 05

w 05 12 13

B 03 13 14

m+64 w 06 14 10

*Refer to Figure 11 for Detailed Memory Map.

BIBLIOGRAPHY

1. M. T. Cook (ed.), "Interactive Graphics in Data Processing,"
I.BM Systems Journal, vol. 7, 1968.

2. R. F. Crall and J. H. Tracey, "Operation of the SCC 650
Computer," Dept. of Electrical Engineering, University
of Missouri-Rolla, Technical Bulletin CRL68.1, August 1968.

3. Advanced Remote Display Station (ARDS lOOA) Reference Manual,
Computer Displays, Inc.

4. R. D. Parslow, R. W. Prowse, and R. E. Green (ed.),
Computer Graphics Techniques and Applications, London,
Plenum Press, 1969.

58

5. D. B. Brick and E. N. Chase, "Interactive CRT Display Terminals,"
Modern Data, vol. 3, July 1970, pp. 60-68.

6. A. E. Brenner and P. deBruyne, "A Sonic Pen: A Digital Stylus
System," IEEE Transactions on Computers, vol. C-19,
June 1970, pp. 546-548.

7. S. Pardee, P. E. Rosenfeld, and P. G. Dowd, "GlOl-A Remote
Time Sharing Terminal with Graphical OUtput Capabilities,"
available from the IEEE Computer Group Repository #R-70-162.

8. C. Machover, "The Intelligent Terminal," Pertinent Concepts
in Computer Graphics (Proceedings of the Second University of
Illinois Conference on Computer Graphics), ed. by
M. Faimand and J. Nievergelt, University of Illinois Press,
1969, pp. 179-199.

9. D. Thornhill, J. Brackett and others, "Case Study in Interactive
Programming: A Circuit Drawing and Editing Program for
Use with a Storage Tube Display Terminal," presented at
the Cybex Associate, Inc. Short Course on Computer Graphics
(Minneapolis), June 1969.

10. G. I. Rhine, "ARDS Interface: Logic Diagrams," Dept. of
Electrical Engineering, University of Missouri-Rolla,
Technical Report CRL71.2, April 1971.

11. D. F. Dawson, F. F. Kou, and W. G. Magnuson, "Computer-Aided
Design of Electronic Circuits a Users Viewpoint,"
Proceedings of the IEEE, vol. 55, pp. 146-1954, November 1967.

59

12. G. I. Rhine, "CIRCUITS: An Electroni.c Circuit Drawing Program,"
Dept. of Electrical Engineering, University of Missouri­
Rolla, Technical Report CRL7i.3, April 1971.

13. W. H. Sass, "Partitioning A Small Computing System for Computer­
Aided Design," Software Age, val. 5, pp. 10-12, February/
March 1971.

14. R. Williams, "A Survey of Data Structures for Computer Graphics
Systems," Computing~urveys, val. 3, pp. 1-21, March 1971.

15. Y. Chu, "An ALGOL-Like Computer Design Language," Communications
of the ACM, val. 8, pp. 607-615, October 1965.

16. H. J. Pottinger and J. H. Tracey, "Formal Description of the
SCC 650 Computer," Dept. of Electrical Engineering, Uni­
versity of Missouri-Rolla, Technical Report CRL68.1.
August 1968.

17. G. I. Rhine and R. F. Crall, "Notes on the Operation of the
SCC-650 Assembler," Dept. of Electrical Engineering,
University of Missouri-Rolla, Technical Bulletin CRL69.3,
December 1969.

60

VITA

George Irvin Rhine, Jr. was born on October 1, 1942, in

Washington, D.C., where he received his primary and secondary

education. He served in the United States Air Force for four years.

During this period, he attended Anchorage Community College, Anchorage,

Alaska. The remainder of his undergraduate training was at George

Washington University, Washington, D.C. and the University of

Missouri - Rolla. He received a Bachelor of Science in Electrical

Engineering in January, 1970.

Since that time, he has been enrolled in the Graduate School

of the University of Missouri - Rolla.

APPENDIX A

FORMAL DESCRIPTION OF THE

ARDS-SCC 650 INTERFACE

61

62

This appendix presents a formal description of the ARDS-SCC 650

interface. The language used in this des.cription is Computer Design

Language postulated by Chu[l5]. No attempt has been made to describe

the computer or ARDS except where absolutely necessary for under­

standing of this description. A formal description of the SCC 650

computer should be referred to if a detailed description is desired[l6].

All data directions in this description are with respect to

the computer. RCV, for example, refers to the computer receiving

data, and the ARDS transmitting.

Comment Begin The following flip-flops form the various

control flip-flops and registers used in the interface. END

register ACT; $ Active F/F

ARMFCN; $ Arm Function F/F $

ARMRCV; $ RCV Interrupt Armed F/F $

ARMXMIT; $ XMIT Interrupt Armed F/F $

CLK(l-4); $ Clock Counter $

ECHO; $ Echo F/F $

FCNl; $ Function Control #1 $

FCN2; $ Function Control #2 $

FF(l-11); $ Function F/F's $

IDL; $ Idle F/F $

IDRDY; $ Interface Ready F/F $

LOUT; $ Line Out F/F $

MODE; $ Mode F/F $

PRTY; $ Parity Counter $

SIP; $ Shift In Progress F/F $

SR(l-10);

SRF;

SINT;

$ Shift Register $

$ Shift Register Full $

$ XMIT Control F/F $

Comment Begin The following signal are logical combinations

of other signals. ~

Terminals ARDS=R7*RB*R9*RlO*Rll;

CLF=CLRSW+MSCLR+DRDY*FTR*T6;

DSTARDS=DST*ARDS;

DTATFR=IDL*SRF*TTARDS;

EXUARDS=EXU*ARDS;

FCN=FCNP.'ARMFCN;

$ Device code '13 $

$ Clear Function $

$ Display Status $

$ Data Transfer $

$ Function Active $

$ Function Transfer

$ Master Clear $

$

63

FTR=FCN *TTARD s~<:sRF ;

MSCLR=STCLR+DTR+TMRARDS;

RCVINT=(IDL*SRF)+FCN;

RCV=MODE;

$ Receive Interrupt Pending $

SEL=IOP*R4*R5*R6

SELARDS=SEL*ARDS;

ST7=CLKl~'CLK21'CLK3~''CLK4;

STlO=CLKl*CLK2*CLK3*CLK4;

ST12=CLKl*CLK2*CLK3*CLK4;

TFARDS=TFA~·'ARDS;

TMR=IOP*R4*R5*R6;

TMRARDS=TMR*ARDS;

TTARDS=TTA'''ARDS;

XMIT=MODE;

XTFR=XMIT*IDL*TFARDS;

$ REC Mode $

$ Select Command $

$ Shift Time 7 $

$ Shift Time 10 $

$ Shift Time 12 $

$ Transfer to ARDS $

$ Terminate Command $

$ Transfer from ARDS $

$ XMIT Mode $

$ XMIT Transfer $

input

64

Comment Begin The following signal are primary inputs from

the ARDS and the computer.

The R-register is the CPU instruction register. The

eight low order bits are inputs to the interface so that the

I/0 instructions and device codes can be decoded. The CPU

is executing an I/0 instruction when lOP is true. The CUP

decodes three instructions, TTA, TFA, and DST, and the inter-

face decodes the rest.

The computer will set DRDY=l at T3 if IDRDY is true.

This allows a "handshaking" to take place between the CPU

and peripheral interface before any transfers are accomplished.

DRDY is unconditionally cleared at T7. The accumulator outputs

are available from TO through T6. END

TTA,TFA,DST;

lOP;

R (4-11);

A(0-11);

T(0-7);

DRDY;

STCLR;

DTR;

LIN;

CLRSW;

TFRSW;

FSW(l-11);

$ Computer I/0 Commands $

$ Computer is executing an I/0
Command $

$ CPU Instruction Register $

$ CPU Accumulator Outputs $

$ CPU Timing Pulses $

$ CPU Ready F/F $

$ Start-Clear Switch on CPU $

$ Data Terminal Ready from ARDS $

$ Data Line in From ARDS $

$ Clear Function Switch $

$ Transfer Function Switch $

$ Function Switches $

Comment Begin The following signals are primary outputs to

the ARDS or computer.

Data will be gated into the accumulator at T5 if DRDY

is true. EXTINT is the external interrupt signal to the com­

puter. If this signal is true and the CPU interrupts are

enabled, the CPU will be interrupted and control transferred

to a service routine. If IOE is true, a flag will be set in

the CPU indicating an error during an I/0 sequence. This flag

can be tested by the IOT command. END

Output IN(0-11); $CPU Accumulator Inputs $

LOUT; $ ARDS Data Line $

EXTINT;

IOE;

$ External Interrupt to CPU $

$ Error Signal to CPU $

Comment Begin The following subregisters are defined. END

subregister DATA(l-7)=SR(2-8);

PARITY=SR(9);

START=SR(l);

STOP=SR(lO);

$ Data in Shift Register $

$ Shift Register Parity $

$ Start Bit $

$ Stop Bit $

Comment Begin The following section describes the

asynchronous mode of operation. END

MSCLR: ACT+O,ARMFCN+O, ARMREC+O,

ARMXMIT+O, ECHO+l, FCNl+O, FF(l-11)+0,

IDL+O, IDRDY+O, LOUT+l, MODE+O, PRTY+O,

SIP+O, SR(l-10)+0, SRF+O, XINT+O; $ This

initializes all the flip-flops$

65

SIP

DTR

SIP

SIP

CLK(l-4)+0; $ clears Clock. Counter $

if FSW(i) then FF(i)+-1; Sets Function F/F $

if DELFCN then DELFCN+O; $ 1-millisecond
monostable $

if TFRSW then DELFCN+-1;

if SELARDS then ACT+-1; $Sets Active $

if LIN+O then SIP+-1; $Starts Clock $

CLK=CLK count 1; $ Counts Clock Pulses $

SR=SR rshift 1; $ Shifts Register $

STOP+-1, LOUT+-START, if ST12 then SIP+O

and SRF+-1; $ SR fills with one's data goes

into LOUT and stops when complete $

STOP+-LIN, if STlO then SIP+O and SRF+-1;

$ Data goes into SR and stops when complete $

if ECHO then LOUT+-LIN; $ ECHO's Data $

Comment Begin This section describes the interface in the

transmit mode. END

T7

if TFARDS*IDL then MODE+l; $ Sets Mode for XMIT $

if XTFR then IDRDY+-1; $ Interface is Ready $

if XTFR then START+O, DATA(l-7)+0, PARITY+O,

STOP+l, PRTY+O; $ Clears Shift Register $

if DRDY;':XTFR then DATA(l-7)+-A(S-11);

$ Data goes into Shift Register $

if DRDY*XTFR then SIP+-1; $ Starts Clock $

IDRDY+O;

IDL = XMIT*SIP + SRF*SIP; $IDL = 1 when done $

66

Tl if XMIT*SIP then XINT+l; $ Shift complete $

T7 if XINT*SIP then MODE+O; $Resets to RCV $

if TFARDS + TTARDS then XINT+O;

ACT

XMIT~',SIP

XMIT~',ST7

if ARMXMIT*XINT*IDL then EXTINT+l; $ Interrupt $

if START then PRTY+PRTY; $ Counts ONE's out $

SR(2)+PRTY; $ Ensures Even Parity $

Comment Begin The next section describes the interface in

the receive mode. END

ACT

if RCV~''SRP''TTARDS then IDRDY+l; $Data is ready$

if DRDY~''TTARDS:':SRF then IN(5-ll)+DATA(l-7),

IOE+PRTY; $Data to computer and set Error if

Odd Parity $

T6 if DRDY*SRF*TTARDS then SRF+O, PRTY+O, START+O,

T7

ACT

SIP~'=RCV

STOP+l, DATA(l-7)+0; $Data has been transferred.

Clear Shift Register and SRF $

IDRDY+O;

if ARMRCV*RCV*RCVINT then EXTINT+l; $ INTERRUPT $

if LIN then PRTY+PRTY; $ Counts ONE's in $

Comment Begin The next section describes the various modes

that can be controlled by the use of the Execute Command. END

EXUARDS : if AB~''A9 then ECHO+O; $ Sets ECHO Off $

if AB~''A9 then ECHO+l; $ Sets ECHO On $

EXUARDS if Alo~''All then ARMXMIT+l; $ Arms Xmit Interrupt $

if Alo:'=All then ARMREC+l; $ Arms Rec Interrupt

67

68

EXUARDS

if ~':Aif then ARMXMIT+O,

ARMREC+O;

if A&~A7 then ARMFCN+l;

if A6~':7\7 then ARMFCN+O;

$ Disarms Interrupt System $

$ Arms Function Keys $

$ Disarms Function Keys $

Comment Begin This section describes the operation of the

Function Keyboard. END

if FSW(i) then FF(i)+l; $ Sets Function F/F $

if CLRSW then CLF+l, FCN2+1;

CLF FCNl+O, FF(l-11)+0; $Initializes Control $

TFRSW if FCN2 ~ FCNl+l, FCN2+0;

if TFRSW*DELFCN then FCN2+1; $ Doesn't allow another

transfer until switch is

FCN if SRF*TTARDS then IN(O)+l,

IN(l-ll)+FF(ll-1);

FCN if SRP':TTARDS'':DRDY'':T6

then CLF+l;

lifted $

$Function word goes to CPU $

$ Clears Control after

data is transferred $

69

APPENDIX B

EXAMPLE INPUT/OUTPUT ROUTINES

The following sample routines are to illustrate means of

communicating with the ARDS graphics terminal. They are wr±tten

in SCC--650 Assembler[l 7] and it is assumed the reader is familiar

with this language or some assembler language.

Example #1. This routine writes N characters stored starting

at BUF then reads a character and jumps to GO.

SEL

DST

ANL

SRA

HLT

LDA

SRA

STA

'13

'13

1

O,G

N

5

CNT

LDA BUF

STA

LDA~':

TFA

JMP

JMP

MIN

MIN

JMP

TTA

JMP

JMP

LOC

LOC

1 13

~·=- 2

LOC

CNT

-A

'13

Select ARDS interface

Get status wor>d

And with bit 1

Test if ACT = 1

No. halt. error

Get number

Convert to negative

Store as count

Pointer to Buf

Get character

Write

Ready

Not ready

LOC +1

CNT +1

Not done yet

Read character

Ready

Not ready yet

70

71

Example 1 Cont.

JMP GO Continue

CNT PAR 0 Count parameter

LOC PAR 0 Location parameter

N BSS 1 Number of characters

BUF BSS 1 Location of characters

Example #2. This routine will select the graphics terminal

and will enable the interrupt system and function keyboard.

DST 1 13 Read status

ANL 4 AND bit 9

SRA o,G Skip if DTR =1

HLT Error, Halt

SEL '13 Select ARDS

LDA CWl Control word 1

EXU 1 13 Arm XMIT interrupt and
function keys

LDA CW2 Control word 2

EXU 1 13 Arm REC interrupt

JMP GO Continue

CWl PAR '23 A6=0, A7=1, AlO=l, All=l

CW2 PAR 1 All=l, AlO=O

Example #3. This routine is an interrupt service routine.

Control will be transferred here if there is an external interrupt.

The routine will test to see if the ARDS caused the interrupt and if

72

not will go to SEV2. If the ARDS was the interrupting device~ a

test will be made to determine if the character at OUT should be

transmitted to the ARDS or if input is waiting. If input is waiting,

it will be stored at CHAR or FCN depending on whether it is a

character or function word.

SERVICE

CH

END

SA

BSS

STA

DST

AND

PAR

SRA

JMP

LDA

TFA

JMP

STA

TTA

SRA

2

SA

'13

~·:+l

'2000

O,G

SEV2

OUT

'13

END

OUT

'13

O~N

JMP CH

STA

JMP

STA

LDA

CLI

JRT

PAR

FCN

END

CHAR

SA

SERVICE

0

Linkage area

Save accumulator

Read status

AND with Al=l

To check interrupt

Skip if ARDS

Not ARDS

Get character

Try and write it

It went

Did not go, put it back

Read input

Skip if negative

Store as Function

Store as character

Restore accumulator

Clear interrupt

Return to program

Accumulator save area

	A hardware and software interface between a graphics terminal and the SCC 650 computer
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078

