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ABSTRACT 

Many nonlinear systems display self-sustained 

oscillations which are often undesirable. The stabilizing 

effect of a high frequency input signal on an oscillating 

system with one nonlinearity is determined by the character-

istics of the nonlinear element in the system, the linear 

portion of the system and the amplitude of the signal. 

This investigation has been concerned with the effect 

of a triangular wave stabilizing signal on these self 

oscillations. The equivalent gains for several common 

nonlinearities are derived. The pseudo describing function 

. d d b ld b d 10 ,ll f . . d 1 1ntro uce y 0 en urger an Boyer or s1nuso1 a 

stabilization has been extended to the triangular wave 

case, and it is shown that the pseudo describing function 

for an odd nonlinearity is real. 

The pseudo describing function is used in an analysis 

similar to describing function analysis in order to predict 

the existence and amplitude of the self oscillation of a 

triangular wave stabilized, closed loop, nonlinear system. 

The experimental results are in close agreement with the 

predictions of the theory. 
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I. INTRODUCTION 

It is frequently observed that an external periodic 

excitation with frequency w not in any rational ratio to 

the frequency of the existing oscillation extinguishes, or 

quenches, the existing oscillation. In some other cases, 

however, a potentially possible, but not yet existing 

oscillation is excited by providing such an asynchronous 

1 2 
frequency. ' The term asynchronous merely emphasizes the 

lack of any rational ratio between the frequencies of the 

self oscillation and the externally applied signal. 

It is obvious that these phenomena differ essentially 

from the phenomenon of subharmonic resonance in which the 

existence of a rational ratio between the two frequencies 

is essential. 

As far as known these effects were observed for the 

first time by Groszkowski 3 , but their theory was developed 

later by the Russian physicists L. Mandelstorm and N. 

1 
Papalexi, and still later by Kobsareff and others . 

The theory of the Russian authors uses the so-called 

1 

"equivalent parameters" introduced in the theory of equiva-

lent linearization, and, in fact, is a further extension of 

this thoery when there are two frequencies present instead 

of one. Minorsky 2 traced out these effects directly from 

the differential equations without making use of the some-

what artificial tool of equivalent linearization. 
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A similar phenomenon occuring in relay systems was 

. . d b . 4 5 1nvest1gate y J. c. Loz1er and L. A. MacColl. 

One method of treating this problem is the use of the 

two sinusoidal input describing function. An early approach 

for calculating the two sinusoidal input describing function 

was based on the use of the double Fourier series. This 

6 7 
work was done by Bennett , and Kalb and Bennett. West, 

Dousce, and Livesly8 used a similar approach to describe 

the sinusoidal input-output relationship of some nonlinear 

elements when the input to the nonlinear element is the 

sum of two sinusoidal signals with different integer fre-

quencies and a phase shift between the two signals. In 

this case, single Fourier integrals can be used, but two 

additional parameters, the ratio of the two frequencies and 

the phase shift, are introduced. 

In their analysis of signal stabilized systems, 

Oldenburger and Liu9 defined an equivalent gain as the 

limit of the ratio of the average value of the output 

to the average value of the input, as the average value 

of the input goes to zero~ In this case the input to the 

nonlinear element is the sum of a sinusoidal signal and a 

constant (de) bias. They proposed that analysis of signal 

stabilized systems be accomplished by replacing the non-

linear element by its equivalent gain. 
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The concept of equivalent gain introduced by Olden­

burger and Liu was extended by Olderburger and Boyer.lO,ll 

In this extension they did not assume that the bias 

approached zero. The same concept was also used by Gibson12 

The calculation of the two sinusoidal input describing 

function by integral representation was introduced by 

Gibson and Sridhar13 for the case of non-harmonically-

related input sinusoids, using techniques of random 

process theory. The same problem has been studied by 

14 Gelb, and Vander Velde. They suggested a power-series 

expansion as a solution. 

Another approach for this problem is given by Hsu and 

15 Meyer. Their approach involves both linear and nonlinear 

characteristics of the system. This approach is more 

10 11 
exact than that of Oldenburger and Boyer. ' However, 

Gibson and Sridhar13 checked Boyer's approximation and 

showed that it is a reasonable approximation under the 

assumption of widely differing frequencies. 

In order to analyze the effect of the extra signal, a 

nonlinear element with the extra signal is replaced by an 

equivalent nonlinear element without the extra signal. 

This concept was introduced by Oldenburger. 16 Since the 

injection of the extra signal has the effect of altering 

nonlinear characteristics in closed-loop systems, it is 

reasonable to expect that limit cycles in nonlinear systems 

can be turned on, altered, turned off, and, in general, 

controlled by proper choice of the extra signal. The use 



of the external signal, or "dither" 1 to quench limit cycles 

is referred to as signal stabilization. It has been 

extensively investigated by Oldenburger and his 

t d t 
9,10,11,16,17,18 . . 

s u en s, among the f1rst to d1scover this 

phenomenon experimentally and, subsequently, to provide 

analytical justification. The most practical approach 

seems to be the use of the equivalent gain concept as 

introduced by Oldenburger and Boyer. 10 • 11 The equivalent 

gain is used to derive an equivalent nonlinear element. 

When the input to the nonlinear element is the sum of two 

sinusoidal signals with greatly different frequencies 

the equivalent nonlinear characteristic can be used to 

approximate the low frequency sinusoidal input-output 

relationship of the nonlinear element. This approximation, 

called "pseudo describing function" by Oldenburger and 

BoyerlO,ll is used in stability analysis of nonlinear 

systems. 

A general signal stabilized system is shown in 

Figure 1.1. For simplicity it is assumed that the 

stabilizing signal is brought directly into the nonlinear 

element. The linear portions of the closed loop system are 

The output of the nonlinearity 

is m(t) and the output of the system is c(t). The input 

of the nonlinear element from the system is assumed to be 

of the form E sin wt and will be called the input 

4 



Stabilizing Signal 

!___;:. 

R=O ~ G1 (s) Nonlinear m ( t) G2 ( s) c ( t) - .... Element -... ... - .. 
-

G3 (s) 

Figure 1.1. Nonlinear System With Stabilizing Signal. 

lJl 



fundamental, since it has the same frequency w as the 

fundamental component of the output of the system c(t). 

It is also assumed that B is larger than w. 

The stabilizing signal can be a sinusoidal signal, 

t . l l t . 19 d . a r1angu ar wave, a pu se ra1n , ran om no1se, or 

other appropriate repetitive signals with a frequency 

greater than or equal to lOw or containing components of 

this size, and sufficient amplitude. A reasonable portion 

of the time must be spent away from saturation of the 

bounded element. Thus a square wave will not work. 17 

By the use of such signals the input-output character-

istics of nonlinear elements may often be transformed so 

that a given nonlinearity behaves as if it were quite 

different. In many cases the introduction of an extra 

signal is easily accomplished. This is especially true in 

electrical systems where one almost always has available 

power sources of frequency 60Hz or 400Hz. Also, noise 

is always present in physical systems, modifying the input-

output characteristics of nonlinearities so that they 

behave differently from what might otherwise be expected. 

The effect of undesired extra signals on the performance 

of a nonlinear system becomes particularly important when, 

as in the control of missles and satellites, one is 

concerned with threshold signals. 

6 



Physical systems always involve time lags. The 

systems to which the stabilization technique described 

here applies are systems with two or more lags, where one 

of the lags does not dominate the others, and at the same 

time the controller is based on the use of a linear control 

function. 

A great deal of work has been done by Oldenburger 

and his students for sinusoidal signal stabilization, 

but few results have been obtained for triangular wave 

signal stabilization. In this study, an effort will be 

made to extend the theory of signal stabilization to 

include the triangular dither signal. The following 

chapter will illustrate briefly the work which has been 

done concerning sinusoidal signal stabilization. 

7 
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II. SINUSOIDAL SIGNAL STABILIZATION 

A. Introduction 

Self-oscillation of some nonlinear systems can be 

reduced or eliminated by injecting an additional high 

frequency sinusoidal signal, as well as some other periodic 

signals, at the input to the nonlinear element. The 

additional signal is called the stabilizing signal because 

of its stabilizing effect on these systems. 

This chapter will be devoted to a review of sinusiodal 

signal stabilization in order that a basis is established 

for the consideration of triangular wave stabilization in 

Chapter III. The treatment follows that of Oldenburger 

and his students. 9 'lO,ll,l 6 ,l?,lB 

B. Equivalent Gain 

As was discussed in Chapter I, the calculation of 

an exact two sinusoidal input describing function is a 

difficult task involving double Fourier series methods or 

other rather difficult integral calculations. However, 

10 ll Oldenburger and Boyer ' have developed an approximate 

dual-input describing function that has been shown to be 

quite accurate when the frequency of the second signal is 

greater than ten times the frequency of the signal of 

interest. No harmonic relation is needed. The assumed 

form of the input signal to the nonlinearity is 



A -
0 wt 

Figure 2.1. A Control System With Asymmetrical Relay. 

9 



e = E sin wt + B sin Bt, ( 2 0 l) 

where B >> w. This separation of the two frequency com-

ponents allows the magnitude of the low-frequency wave to 

be assumed constant over any one cycle of the high­

frequency wave with little error. 

Instead of "dual-input describing function", Olden­

burger and :Boyer used the new term "pseudo describing 

function". This new term was introduced instead of using 

the existing terms, "dual-input describing function" or 

"modified describing function", because the methods used to 

calculate these functions imply that the ratio between 

the frequencies of the sinusoidal signal is an integer. 8 

The pseudo describing function requires a different 

assumption, namely, a large frequency ratio. Although 

10 

the pseudo describing function is valid only for a frequency 

ratio greater than about ten, signal stabilization can, 

and often does, occur at lower frequency ratios. However, 

when lower frequency ratios are used the stabilizing 

signal is often seen at the output of the system, which 

may be just as undesirable as the original limit cycle. 

The equivalent gain is defined as the ratio of the 

average value of the output to the average value of the 

input when the input to the nonlinear element is a 

sinusoidal signal with a constant bias. This gain is a 



function of the bias. Let A denote the bias, and 
0 

B sin St the sinusoidal signal. The input e(t) to the 

nonlinear element is of the form 

ll 

e(t) =A + B sin St, 
0 

( 2. 2) 

and the output is then 

m(t) = 

Therefore, 

g(A ,B) 
0 

A 
v 

+ B' sin St + B" sin St · · · 

= average value of output = 
average value of input 

( 2. 3) 

(2.4) 

As an example, consider an asymmetric relay. The 

input-output characteristic of such a relay is shown in 

Figure 2.1. The output of the relay reaches the value 

A1 
or -A2 when the input is positive or negative, respect-

ively. The input to the nonlinear element is given by 

equation 2.2. One period of the corresponding output is 

. byl5 g1ven 

-1 A -1 A 
sin 0 < wt < + sin 0 - B 7T B 

m(t) = 
-1 A -1 A 

sin 0 wt 2n sin 0 ( 2. 5) 7T + < < -
B B 

By using Fourier series analysis, the de value of the 

output is obtained as 

A = 1 J
2

TI m(t) d(wt). 
V 2TI Q 

( 2 • 6) 



Thus, 

A v = 1T 

A 
+ . -1 ~) 

Sln B --21T 

A 
( 1T - 2 . -1 ~) s1n B 

( 2. 7) 

If the relay is symmetric, or A
1 

= A2 = M equation 2.7 

becomes 

A v 
2M . -1 Ao 

= 1T s1n B 

Therefore, the equivalent gain is 

g(A ,B) = 
0 

2M 
nA 

0 

( 2. 8) 

( 2. 9) 

From this example it is clear that the calculation of 

the equivalent de gain requires only a direct application 

of Fourier analysis. The results for several common 

11 nonlinearities, have been calculated by Boyer. 

The equivalent gain may be used to develop an 

equivalent nonlinear element. To simplify system com-

putations, the equivalent nonlinear element can be 

substituted for the extra sinusoidal input signal and the 

existing nonlinear element. The accuracy of the approach 

is comparable to the accuracy of the describing function 

analysis of systems unexcited by stabilizing inputs. 

12 
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C. Equivalent Nonlinear Element 

The equivalent nonlinear element can be used to 

explain how the stabilizing signal affects the character-

istics of the nonlinear element for simultaneous low 

frequency inputs. This view can be used even when the loop 

is closed, since, if the describing function applies at 

all, the high-frequency components will certainly be 

attenuated around the loop. The equivalent nonlinear 

element allows some simplifying approximation in the 

stability and transient analysis of signal stabilized 

systems. Assume that the input to a given nonlinearity 

is of the form in equation 2.1. If S >> w, the value of 

the w component may be considered constant over a cycle 

of the B component; i.e., equation 2.2 may be used to 

approximate the input. Thus, for each cycle of B one 

may compute an average value of the output by multiplying 

the proper A by the value of g(A ,B). 
0 0 

This results in a 

stepped or quantized wave. The width of each step corre-

sponds to one period of sinusoidal input. 

As the frequency, S, of the sinusoidal portion of the 

input increases, the duration of the staircase output 

diminishes and the staircase output wave may be assumed to 

approach a smooth curve. This smooth output is called 

the representative output wave. 



For a slowly varying input, f(t), the nonlinearity 

behaves as if the component B sin ~ were absent and the 

nonlinearity were replaced by an equivalent nonlinearity 

for which the output is the input multiplied by the 

equivalent gain. This equivalent gain is a function of 

f(t) and thus of time t. The equivalent nonlinear element 

can also be obtained directly from the given nonlinear 

characteristic and an input of the form of equation 2.2. 

It is in reality a plot of A versus A for the given 
v 0 

nonlinearity, with B as a parameter. The equivalent non-

linear element for the limiter and the relay are given in 

Figures 2.2 and 2.3. From these figures, one can obtain 

the following important results: At any instant the 

output of the equivalent nonlinear element is less than or 

equal to the output of the actual nonlinear element. In 

general, if the input to a nonlinear element is e and the 

output a differentiable function f(e), the introduction 

of an extra sinusoidal signal will decrease the slope f' (e) 

at e = 0, if 

14 

e > 0, for f"(e) < 0, (2 .lOa) 

and 

e < 0, for f" (e) > 0. (2.10b) 

Similarly, if 

f 11 (e) > 0, fore> 0, (2.lla) 

f 11 (e) < 0, fore< 0, (2.llb) 
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m(t) 
1.0 

B=2.0 

e(t) 

Figure 2.2. Equivalent Nonlinear Element for the Relay. 

m (t) 

-3a -2a e(t) 

2a 3a 

A 
B 0.0 - = a 

B 
B 2.0 - = a 

c B 4.0 - = a 

Figure 2.3. Equivalent Nonlinear Element for the Limiter. 



then the introduction of an extra sinusoidal input signal 

will raise the gain ate= 0. 17 

D. Pseudo Describing Function 

The conventional describing function is used in the 

stability analysis of nonlinear systems with no external 

inputs. With an external input, the modified describing 

function may be defined as the ratio of the fundamental 

component of the output, to the low frequency component of 

the input. The input to the nonlinear element is the sum 

of two sinusoidal signals with different frequencies. 

16 

Practical application usually requires the use of a digital 

computer or other computational aid to compute this 

quantity. An approximation of the modified describing 

function is the pseudo describing function. It is defined 

as the ratio of the fundamental component of the represen-

tative output wave to the low frequency component of the 

input. This output wave is shown in Figure 2.4. Again 

the input to the nonlinearity is the sum of two sinusoidal 

signals. Experimental and theoretical work has shown that 

the ratio of these two frequencies should be at least 10, 

'1 . 10 but not necessarl y an lnteger. 

The pseudo describing function is an approximation 

because two assumptions are necessary for the derivation: 



-2 

Output 

2.0--

-2.0 

2 

3.5 

2.0 

Input 

-2.0 

Figure 2.4. Representative Output Waveform for the Relay With Sinusoidal Dither. 



1) the low frequency component of the input can be 

considered a constant for any period of the 

stabilizing signal, 

2) the representative output waveform contains the 

amplitude and phase of the fundamental component 

of the actual output of the nonlinear element. 

The fundamental component of the representative out-

put can be found by well known graphical and trigonometric 

methods. 20 

If the fundamental input component is given as 

18 

E sin wt, and the representative output wavefore is symmetric 

about t = 0 and t = K, the phase shift of the pseudo w 
describing function will be zero. The above symmetry will 

exist if the output of the equivalent nonlinear character-

istic is an odd function of the input. This condition will 

be satisfied if the equivalent gain is an odd function of 

A , the de value of the input. 
0 

The equivalent gain will be 

an odd function of A when the output of the actual non­o 

linear element is an odd function of the input. Thus the 

phase shift of the pseudo describing function will be zero 

if the nonlinear element has been idealized with a nonlinear-

ity whose output is an odd function of the input. This 

. d . 11 applies to nonlinearities both w1th an w1thout memory. 

The pseudo describing function has been calculated and 

plotted for the relay, limiter, dead band, relay with dead 
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band, relay with hysteresis, and the absquare by Boyer. 11 

These are summarized in several texts and are not given 

h 12,14 ere. 

The describing function is a gain associated with the 

low frequency input component when the amplitude B of 

the high frequency component of the input vanishes. Thus 

it is reasonable that the pseudo describing function 

approximates the describing function when the amplitude A 

of the low frequency input component dominates B, i.e., 

A >> B. 

E. Pseudo Describing Function Analysis 

The pseudo describing function may be used to deter-

mine the possibility of limit cycle operation for some 

closed loop nonlinear systems when a sinusoidal stabilizing 

signal is present in the system. If the input to the non-

linear element is of the form 

e(t) = E sin wt + B sin(wt + e), (2.12) 

then by the use of the pseudo describing function one can 

determine the over-all loop gain for the self oscillation 

signal, E sin wt. 

Pseudo describing function stability analysis is an 

extension of describing function analysis and is subject 

to the restrictions usually associated with describing 

function analysis, except that in this case the input to 

the nonlinearity is the sum of two sinusoidal signals with 



greatly different frequencies. Pseudo describing function 

stability analysis will be fully considered in the next 

chapter in connection with triangular wave signal stabili­

zation. 

20 
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III. TRIANGULAR WAVE SIGNAL STABILIZATION 

A. Introduction 

As was mentioned in the previous chapters, the 

stabilizing signal may be one of a wide variety of periodic 

waveforms, provided that its frequency is large compared 

to the self-oscillation frequency and that its amplitude 

is large enough that it causes the nonlinearity to enter 

its saturation region, if the nonlinearity exhibits 

saturation. A further requirement is that the waveform 

not be such that the nonlinearity is always in saturation. 

In the previous chapter the stabilizing effect of 

a sinusoidal signal was considered. This problem was 

studied initially by Oldenburger and Boyer.lO,ll Pulse 

19 
train signal stabilization has been considered by Korolov. 

Very little work concerning triangular wave stabilization 

has been done. The equivalent gain for the limiter was 

18 
derived by Oldenburger and Nakada. The pseudo describing 

function for the limiter with hysteresis was developed by 

16 
Ochiai and Oldenburger. Both of these studies were 

carried out using a triangular wave dither signal, but 

other nonlinearities were not considered. In this chapter 

the effect of a triangular wave dither on systems con-

taining a more general class of nonlinearities will be 

considered. 



A comparison of the effects of applying triangular 

wave and sinusoidal dither to the ideal relay is given in 

Table 3.1. The linearization effects of these dithers 

in the neighborhood of the origin are quite comparable. 

In the following section these effects will be considered 

mathematically. 

B. Comparison of the Effects of Sinusoidal and Triangular 
Wave Dithers 

The comparison of the output of the nonlinearity 

due to sinusoidal and triangular wave dither may be 

developed with the aid of Fourier analysis. The output of 

the ideal relay to either a sinusoidal or triangular wave 

input with the same frequency is exactly the same. The 

outputs of the limiter with sinusoidal and triangular 

wave inputs are given in Figure 3.1 and 3.2 respectively. 

22 

Let a sine wave input to the limiter of Figure 3.1 be given 

by 

e ( t) = Bl s 
sin wt. ( 3. l) 

The amplitude of thefUndamental sinusoidal component of 

the output can easily be obtained by use of the Fourier 

series expansion of the output as 

m s 
= B (M) 

1 a 
2TI {sln -1 a + a 

Bl Bl 
(1 - a 2 1/2} ( F.;) ) . 

1 
( 3. 2) 



Dither Nonlinear Elem~ Equivalent 

M 

---1M 

M 

-M 

TABLE 3.1 

Nonlinear Element 

-A 
0 
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IDEAL RELAY WITH TWO TYPES OF DITHER AND THE ASSOCIATED 

EQUIVALENT NONLINEAR CHARACTERISTICS 



Figure 3.1. 

rn ( t) 

-1-l 
3 

e(t) 

e (t) 

rn ( t) 

wt 

Output Waveform for Sinusoidal Dither Input. 

24 



If (: ) is small then it is possible to use the Taylor 
l 

series expansion of sin-l a and (l- (~} 2 ) 11 2 to obtain 
Bl Bl 

the approximate output expression: 

or 

m s 

m ~ 
s 

2M Bl {a l a 3 ~[l = TI a ~ + 6(~) + .•. + Bl 
l l 

( 3. 3) 

Now, let a triangular wave input to the limiter of Figure 

3.2 have amplitude B2 . Then the Fourier series expansion 

of the dither signal is 

e(t)t 
BB2 sin 3 wt sin 5 wt -· .. ) . = --2- (sin wt - + 
TI 3

2 
5

2 ( 3 • 4 ) 

The output expression can then by shown to be 

8B2 M oo l nTI 
= (-) [ L sin -2 -2- a 2 

n n=l,3,5 n 
sin n8] . ( 3. 5) 

The amplitude of the fundamental component of the output 

signal, mt, is given by 

25 

8B2 M 
~ (-) mt -2- a S in TI (a ) -;:;- -B • (3.6a) 

"- 2 

for sufficiently small, mt may be approximated as 

(3.6b) 
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Figure 3.2. Output Waveform for Triangular Dither Input 
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By considering equations 3.3 and 3.6b, it is evident that if 

( 3. 7) 

the output of the limiter to either sinusoidal or triangular-

wave input is approximately the same. 

For other nonlinearities the same procedure might be 

exployed to show the similarity of the effect of these two 

dither signals. Therefore, for analyzing triangular wave 

stabilization, the method utilized in Chapter II for the 

sinusoidal case will be used here. 

C. Equivalent Gain 

The classical describing function technique cannot 

be used to analyze the stabilizing effect of an additional 

dither signal because the input to the nonlinear element 

is not a single sine wave. A signal stabilized system 

was shown ln Figure 1.1. It was assumed that the system 

sustained an oscillation with frequency w. Therefore, in 

the absence of the stabilizing signal, the input of the 

nonlinear element is assumed to be of the form E sin wt. 

The linear portions of the system must be effective enough 

filters so that only the fundamental component of the 

output of the system is propagated to the input of the 

nonlinearity. This condition is the standard assumption 

of describing function analysis and is satisfied in a 

great many physical situations. 



The stabilizing signal may be introduced at any point 

in the system as long as the total input to the nonlinear 

element is of the form 

e(t) = f(S,B) + E sin wt, ( 3. 8) 

where, f(S,B) is the triangular wave stabilizing signal 

with amplitude B and frequency S >> w. In other words, 

the sinusoidal input signal, E sin wt, varies slowly 

compared to the triangular-wave, as shown in Figure 3.3. 

During each period of the triangular wave dither, the 

sinusoidal input is nearly a constant, and can be approxi-

mated by a staircase function F(t). The width of each 

step of F(t) corresponds to one period of the triangular 

28 

wave dither input, so that the actual input can be approxi-

mated by 

e(t) = f(S,B) + F(t), ( 3 . 9 ) 

as shown in Figure 3.4. Let the value of F(t) for one 

step be denoted by A
0

. Then the input for the period of 

this step may be approximated by 

e(t) = f(S,B) +A . 
0 

(3.10) 

Thus, the input consists of a triangular wave, f(S,B), 

and a bias of value A . 
0 

Because of this bias, the output 

should contain some non-zero, de value, A . v 

gain is defined as 

= average value of the output 
average value of the input = 

The equivalent 

A v 
A 

0 

(3.11) 
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30 

...... 
1::4 

3 -Cr., 

+ 
...... 
fXJ .. 
CQ 

~ 

II 

...... 
+J 

(J) 

E 
~ 
0 

Cr., 

(J) 

..r:: 
+J 

~ 
0 

+J 
::! 
Q, 

--. 

c; 

+J 

H 

(J) 

(J) 

+J 
ro 
E 

·.-j 

X 
0 
~ 
Q, 
Q, 
~ 

'<:!' 

(Y) 

(J) 

~ 
::! 
tTl 

•.-j 

Cr., 



This equivalent gain is applied to signal stabilization 

by letting the input of the nonlinear element be the sum 

of the stabilizing signal and a bias A . 
0 

It is assumed 

that the average value of the stabilizing signal is zero. 

The triangular-wave stabilizing signal satisfies this 

assumption. It is now necessary to derive expressions for 

the equivalent gain, g(A ,B), of several different non­o 

linear elements for a triangular wave stabilizing signal. 

Consider a symmetrical nonlinear element as shown 

in Figure 3.5. Let e(t) given by equation 3.10 represent 

the total input to the nonlinearity. Thus, the input may 

be represented as 

e(t) = 2B St + A 
1T 0 

1T 
0 < St < 2 I 

e(t) = ;B St + 2B + A
0

, 
1T 31T 
2 < St < 2 
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e(t) = 2B St - 4B +A , 3 
2 .::_ St .::_ 2TI. ( 3 .11) 

1T 0 

The output of the nonlinear element will be (see Figure 3.6 

m (t) = f (e) , 81 < (3t < 82, 

m (t) = M, 82< Bt < 83, 

m (t) = f(-e) =-f (e), 8 < St < 85, 3 

m (t) -M, 8 < St < 8 6' 5 

m (t) = f (e) , 8 < Bt < 8 
6 7. (3.12) 



Now e1 can be found from equation 3.11 as follows 

e(t) = b 2B 
= 1T 81 + Ao, 

b-A 
0 8 1 = ( 2B ) 1T. 

32 

(3.13a) 

The e., i=2,3, ... ,7 are found by exactly the same procedure 
1 

as 8 1 , and the results are 

c-A 
( 0 

82 = 2B ) 1T' 

2B + A -a 
83 ( 0 

) 1T , = 2B 

2B + A + b 
8 4 = ( 2B 

0 
) 1T' 

2B + A + c 
85 ( 0 

) 1T , 2B 

4B - A a 
86 ( 0 

) 1T , = 2B 

4B - A + b 
87 ( 0 

) 1T • (3.13b) = 2B 
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e(t) + + m (t) 

Figure 3.5. A Symmetric Saturating Nonlinear Element. 



The average value of the output may be found by 

calculating the algebraic sum of the areas
1 s · 1 i=l 1 2 1 o o o 6 f 

l 

shown in Figure 3.6. This yields 

A 
v f

21T 

~TI 0 
m(t)d(St) 

1 n 
= -2 L s .. 

TI i=l l ( 3. 14) 

Note that s 1 = -s 4 , due to the summetry properties assumed 

for the nonlinearity. The same argument is true for s
3 

and s6. Thus, 

1 f21T 1 A = 21T m(t)dt = 
21T [S2 + < -s 5) J v 

0 

1 
[M ( 8 

3 8 2) - M(8 8 5) ] = 2 -
6 

M MA 
[ 8 3 82 86 + 8 5] 

0 
(3.15) = 2 - - = 

B 

or 

M 
g(A

0
,B) = B (3.16) 

which is quite an interesting result. This consideration 

proves that the equivalent gain g(A ,B) for a symmetrical 
0 

nonlinear element depends on the saturation level, and 

the triangular-wave amplitude, B. All of these are con-

stants. The following theorem may then be stated. 

a) Equivalent Gain Theorem: The application of a 

triangular-wave dither signal to a symmetrical 

saturating nonlinearity results in a constant 

equivalent gain. 

34 
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Figure 3.6. Equivalent Gain for a General Symmetric 
Saturating Nonlinear Element. 
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It is interesting to consider another somewhat general 

example. 

b) Example 1: Equivalent Gain of the Gain-

Changing Nonlinearity with Dead-band 

Figure 3.7 shows the characteristic of the gain 

changing nonlinearity with dead-band, its input which is 

of the form given by equations 3.10 and 3.llr and also 

its corresponding output. The input-output character-

istic equations of such a nonlinearity are given by 

m (t) 

m (t) 

0 

n [ e ( t) -a] , 

m(t) = p[e(t)-(a+b)] + bn, 

m(t) = n[e(t) +a], 

je(t) j<a, 

a<e(t)<a+b, - -

e(t) > a+b, 

-(a+b) < e(t)< -a, 

36 

m (t) p [ e ( t ) + (a+ b ) ] - bn , e ( t ) < - ( a+ b) • (3.17) 

The basic angles of the discontinuity in the output are 

easily obtained as 

a + b - A 

el = ( 0) 'IT, 
2B 

e 2B + A - (a+ b) 
( 0 

) 'IT , = 2B 2 

2B + A + (a+ b) 
e3 ( 0 

) 'IT , = 2B 

4B A (a+b) 
0 84 = (----~2~B~--------)TI. (3.18) 

The maximum and minimum amplitudes of the output are 

obtained by the use of equations 3.17 and the maximum and 

minimum amplitudes of the input which are given by 



-a 

-(a+b) 

m (t) 

Slope=n 

a a+b 

U> 

rt 
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m(t) 

nb -

e (t) 

Figure 3.7. Gain Changing Nonlinear Element With Dead Band. 



E -- A + B 1 max o 

E . = A - B. m1n o 

The maximum and minimum values of the output are: 

M max P[A + B 
0 

(a+b)] + bn 1 

M. = P[A - B + (a+b)] - bn. m1n o 

38 

(3.19) 

(3.20) 

The average value of the output 1 AI v is given by equation 

3.14. 

Thus I 

Here the S. are the areas represented in Figure 3.7. 
l 

S 1 + S 
3 

= nb ( 8 
2 

- 8
1

) + ( -nb) ( 8 
4 

- 8 
3

) = 
2nn A b 

0 

B 

A v 

2PTIA 
= B 0 [B-(a+b)]. 

4 
1 

= 2n L 
i=l 

s. = 
l 

n A b 
0 

B 
+ 

p A 
0 

B [B-(a+b)] (3.21) 

The equivalent gain is then given by 

g (A I B) 
0 

= 
A 

v = nb + P [B-(a+b)]. 
A B B 

(3.22) 
0 

The equivalent gain for several other nonlinearities can be 

obtained from equation 3.22 by proper choice of parameters 

n 1 P 1 a or b. For example, by letting a = 0 in equation 

3.22 the equivalent gain expression for the gain changing 

nonlinearity is obtained. Another example of this case is 

the preload nonlinearity. By letting a + b = 0 in equation 
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3.22, the equivalent gain expression for the preload non-

linearity is obtained. Note that nb = M must be substituted 

in the new expression. The equivalent gain expression for 

the dead band is obtained by letting P=n in equation 3.22. 

One more example is the relay with dead-band and gain 

which is obtained by letting nb % m f 0, and b = 0. 

Now, consider the equivalent gain for the backlash 

nonlinear element, since it can not be obtained from the 

equivalent gain theorem or from the results of the previous 

example. 

c) Example 2: Equivalent Gain of the Backlash Element 

Figure 3.8 shows the characteristic of the backlash 

element, its input which is of the form given by equations 

3.10 and 3.11, and also its corresponding output. The 

basic angles of the discontinuity in the output are easily 

obtained as 

a-A 
e = ( o)n 

1 2B I 

e 1T = 2 I 2 

e = (B+2 a) TI 

3 2B I 

2B+A +a 
e 0 = ( 2B ) n, 

4 

e 3n = 2 I 5 

e (3B+2a) 
6 = 2B n, 

4B-A +a 
e 0 (3.23) = ( 2B ) TI • 7 
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The maximum and minimum amplitudes of the output occur 

whenever the input reaches the maximum and minimum 

amplitudes given by equation 3.19. These two values are 

as follows, 

M = n(A +B)-na, max o 

(3.24) 

The average value of the output, A v' is given by Equation 

3.14. 

sl 

Thus 

The s. are represented ln l 

l 
Mmax [ ( 84 2 -

l = -2 M . [ ( 87 -mln 

A v 
l 

= 2 TT L 
i=l 

2 

81) 

s. 
l 

+ ( 83 

= n A . 
0 

-

Figure 

82) ] = 

The equivalent gain is then given by, 

A 
g(Ao,B) = Av = n. 

0 

3.8 

n1T [ (A +B) 2 2 - a ] , 2B o 

(3.25) 

(3.26) 

The equivalent gain expressionsfor several common 

nonlinearities are represented in Table 3.2. Those 

characteristics which are obtainable from the equivalent 

gain theorem are indicated by asterisks, and those which 

follow from Example are indicated by daggers. 

The equivalent gain may be used to develop an 

equivalent nonlinear element. To simplify system com-

putations, the equivalent nonlinear element can be 



M max 

m (t) 

M. m1n 

e (t) 
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m (t) 

e(t) 

Figure 3.8. Backlash Nonlinear Element Characteristic. 
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substituted for the extra sinusoidal input signal and the 

existing nonlinear element. The accuracy of the approach 

is comparable to the accuracy of describing function 

analysis of systems unexcited by stabilizing inputs. 

D. Equivalent Nonlinear Element 

As was mentioned in the previous section, the input to 

the nonlinear element is the sum of two signals with 

greatly different frequencies. As the frequency ratio 

is increased, the low frequency component of the input 

signal approaches a constant for any given stabilizing 

signal period. This was given by equation 3.10. If the 

low frequency component of the input signal is considered 

a constant over each stabilizing signal period, the 

equivalent gain can be applied to the input signal by 

letting the instantaneous values of the low frequency 

component of the input signal equal A0 , and the instant­

aneous values of a representative output equal the average 

value of the output, A , determined by the equivalent gain 
v 

calculations of section C. Thus, a plot of the average 

value of the output, A , versus the average value of the 
v 

input, A , with B as a parameter represents an altered 
0 

input-output characteristic because the low frequency 

component of the input signal is not actually a constant 

for any period of stabilizing signal. However, this 
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TABLE 3.2 

EQUIVALENT GAIN FOR TRIANGULAR-WAVE SIGNAL STABILIZATION 

B = Amplitude of the Triangular Wave Input 

Nonlinear Element Equivalent Gain 

*t M [/! g(A
0

,B) M 
= -

-a B 

1/ a 

'-M 

Limiter 

t 

-a ~ope~n 
g(A ,B) n (B-a) = 

slope/ 
0 B a 

Dead Band 

*t 

M 

g (A , B) M 
= -

0 B 

-M 

Relay 
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Nonlinear Element Equivalent Gain 

t 

Vi= =n 
-b nb p 

y b g (A , B) = + - (B-:0) 
0 B B 

' 

Gain Changing 

t M ~ope=p 

g (A , B) M 
= - + p 

0 B 

-M 

Preload 

*t M ---1! 
-(a+b)-a 

~--- a a+b g(A ,B) M 
= -

0 B 
-M 

Limiter With Dead-Band 

t sl/ 
-(a+b)-a nb ~ [B- (a+ b) ] /-lope g (A , B) = + 

a a+b 0 B 
= n 

Gain Changing With Dead-
Band 



Nonlinear Element 

t 

M ____ slope=p 

-a 

a 

.._-- -M 

slope=p 

~elay With Dead-Band and 
Gain 

*t 
M r---.---

-a 
a 

__ j ___ -M 

Relay With Dead-Band 

* M 

-a a 

-M 

Relay With Hysteresis 

Equivalent Gain 

M g(A ,B) = o B 

M g{A ,B) = -o B 
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* 

Nonlinear Element 

M - ---.----r--

-(a+b) -a 

I I __ _ a (a+b) 

-M 

Relay With Dead-Band and 
Hysteresis 

Backlash 

M lj: 
-(a+b) / : 

Limiter with Hysteresis 

Equivalent Gain 

M g(A ,B) = o B 

g(A ,B) = n 
0 

M 
g(A ,B) =-

o B 
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approximation approaches the actual altered characteristic 

as the frequency ratio of the input signals is increased. 

When the input to the actual nonlinear element is of 

the form given by equation 3.9, a representative output 

waveform can be found by considering F(t) as the input 

to the altered characteristic and plotting the resulting 

output. This output will be called the representative 

output wave. The altered characteristic of the relay of 

Figure 3.9a is plotted in Figure 3.9b. The representative 

output wave for the relay is shown in Figure 3.10, from 

which it is obvious that at any instant the output of the 

equivalent nonlinear element is less than or equal to the 

output of the actual nonlinearity. In general, if the 

input to the nonlinear element is e and the output a 

differentiable function f(e), the introduction of an 

47 

extra triangular signal with proper frequency and amplitude 

will decrease the slope f' (e) at e = 0 to a lower value 

than in the original nonlinearity. Different equivalent 

nonlinearities may usually be obtained from a given non­

linear element by varying the amplitude B of the dither 

signal. However, the equivalent gains and the equivalent 

nonlinearity, or altered characteristic, of the nonlinear 

elements which satisfy the conditions of the theorem in 

the previous section are identical. The equivalent gain 

and the equivalent nonlinear element for the backlash 
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Figure 3.9. Equivalent Relay Characteristic. 
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Figure 3.10. Representative Output Waveform for the Relay 
With Triangular Wave Dither. 
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element are independent of the amplitude B of the dither 

signal if B > a, where 2a is the width of the backlash loop. 

For the backlash element, when the input e(t) switches 

direction (from increasing to decreasing, or vice-versa), 

the input must change by 2a before the output will follow 

the input. 

Although the representative output wave is not the 

actual output of the nonlinear element when the sum of a 

sinusoidal signal and a triangular wave dither are introduced 

to the nonlinearity, it is assumed that the representative 

output wave contains the amplitude and phase of the funda­

mental component of the actual output of the nonlinear 

element. By using the equivalent nonlinear element concept 

it is possible to define the pseudo describing function. 

E. Pseudo Describing Function 

As was mentioned in the previous chapter, the convent­

ional describing function is used in the stability analysis 

of nonlinear systems with no external inputs. With an 

external input, the modified describing function can be 

defined. This is the ratio of the fundamental component 

Of the output to the low frequency component of the input. 

Practical application usually requires the use of a digital 

computer or other computational aid to compute this 

quantity. 
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The representative output wave derived in the preceding 

section can be used to approximate the modified describing 

function. This approximation is called the pseudo describ-

ing function. The pseudo describing function is defined 

as the ratio of the amplitude of the fundamental component 

of the representative output wave to the amplitude of the 

fundamental component of the input.lO,ll The input to 

the nonlinear element is in general the sum of two signals 

with greatly different frequencies, and the lowest of the 

two input frequencies in the fundamental frequency. 

The pseudo describing function is an approximation 

because two assumptions are necessary for its derivation: 

1) the low frequency component of the input can be 

considered a constant for any period of the 

stabilizing signal, and 

2) the representative output waveform contains the 

amplitude and phase of the fundamental component 

of the actual output of the nonlinear element. 

Since mathematical difficulties were encountered with 

the direct calculation of the pseudo describing function, 

Ochiai and Oldenburger introduced the concepts of the 

space derivative of the nonlinearity and the second 

. b. f t. 16 
descr1 1ng unc 1on. This approach will be reviewed 

here, since it will be used later in this section. 
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The input-output relationship of commonly occuring 

nonlinear elements is usually represented by a curve in 

two dimensional space. The derivative of the output of the 

element with respect to the input of the element is called 

the space derivative of the nonlinearity (SDN). For piece-

wise linear elements the SDN is sectionally constant with 

respect to the input. Use of this property of the SDN 

substantially reduces the computational work required for 

obtaining the conventional and pseudo describing functions. 

1. The SDN and the Second Describing Function 

With reference to Figure 3.11, the relationship between 

the input e to a nonlinear element and the time derivative 

dm dt of the output m is as follows: 

dm dm 
dt=de 

de 
dt= 

dm 
de De, (3.27) 

d 
where D = dt" As shown in the figure, the nonlinear element 

lS 
dm divided into the SDN, or de' and two linear elements. 

!t is convenient to think of e as the input to a nonlinear 

dm dm . t d element with the characteristic de D and output dt' 1ns ea 

of as the input to a nonlinear element with the character-

istic f(e) and output m. 

If the describing function of the given nonlinearity 

with the characteristic m = f(e) · e of Figure 3.lla is 
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rn = f(e) • e 

a) Nonlinear Element 

,--------l 

I SDN I drn 
e I ·I I 1 ~: I I dt 1 l I 

rn 

I D D 

I 
L ____ ____ ___.,1 

b) Equivalent SDN 

Figure 3.11. Nonlinearity Described by SDN 



called the first describing function, N1 , of this nonlinear 

element, it is possible to define the describing function 

of the second nonlinearity with the characteristic 
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dm dm 
dt = de De of Figure 3.llb to the second describing function, 

N2 , of the given nonlinear element. 

2. Pseudo Describing Function and Equivalent SDN 

Consider a time invariant nonlinear element, the 

input of which is a triangular signal f(S,B) with a con-

stant bias A , shown in Figure 3.12. 
0 

Let A denote the v 

average of the output of the nonlinear element for one 

period of the triangular signal. In section D the given 

nonlinearity was replaced by the 

characterized by the equivalent 

equivalent nonlinearity 

. Av 
ga1n ~ , as is represented 

0 

1n Figure 3.13. Let A = E sin wt, where the frequency S 
0 

of the triangular wave signal is large compared tow. 

means that A = E sin wt may be treated as a constant 
0 

value for one period of f(S,B). 

The pseudo describing function is the describing 

function of the equivalent nonlinearity. That is, 

This 

P(E,B) = 1 [f2Tr 
TIE 

A v 
A 

v 
cos wt d (wt) J • 

0 
(3.28) 
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-M 

1JJ 
rt 
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e(t) 

Figure 3.12. Triangular Signal With a Constant Bias. 
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The concept of the SDN may be used to simplify the corn-

putation of the integrals in equation 3.28. 

The describing function of a nonlinear element with 

dA 
the characteristic d~' or equivalently the second pseudo 

describing fucntion, P 2 (E,B), of a nonlinearity with the 

characteristic A , is introduced as follows, v 

1 I2TI dAV I2TI dAV 
P 2 (E,B) =TIE[ 

0 
dt sin wt d(wt) + j 

0 
dt cos wt d(wt)], 

(3.29) 
dA v where dt is sectionally continuous. It is noted that the 

relationship of Figures 3.13b and 3.13c is comparable to 

that of Figures 3.lla and 3.llb. 

dA v 
dt = 

dA 
v 

dA 
0 

dA 
0 

dt 

In equation 3.29 

(3.30) 

Using partial integration techniques in equation 3.20 and 

56 

comparing the result with equation 3.28 yields the following 

relation: 

P 
2 

( E, B) = j wP ( E, B) (3.31) 

For an extra sinusoidal input it is generally very difficult 

to carry out the integrations in equation 3.29 analytically. 

Often, however, it is possible to develop an expression 

in closed form for the pseudo describing function if a 

triangular wave dither is used. 
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I I dA 

1 I 1 :~I v 

~ I I dt 1 
A 

D ~ 

I I D 

I I 
L_ __________ _j 

c) Nonlinearity with Characteristic Equivalent 
SDN 

Figure 3.13. Nonlinearity Described by Various Character­
istics. 
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By use of the following theorem, one can simplify the 

expression for the pseudo describing function given by 

equation 3.28. 

a. Phase Shift Theorem: The phase shift of the 

pseudo describing function of a symmetrical 

nonlinearity is zero. 

The proof of this useful theorem may be developed as 

follows. From equations 3.29 and 3.31 it is noted that 

dA 
the theorem is true if it can be shown that d~ is an 

even function of wt. But, for a symmetrical nonlinearity 

A is an odd function of the input to the nonlinearity, A . 
v 0 

dA 
Hence, v dA is an even function of A

0
. 

0 

dA 

However, A = E sin wt 
0 

is an odd function of wt, and thus dAvis an even function 
0 

of wt. Since the product of two even functions is even, 

dA 
from equation 3.30 d~ is even in wt. Thus, the first 

integral in equation 3.29 vanishes, P 2 (E,B) is real, and 

the theorem is proved. 

The procedure for obtaining the pseudo describing 

function by the use of the second describing function is 

illustrated in the following example. 



dA v 
dAO 

= 

B. Example: For a limiter with hysteresis, shown 

in Figure 3.12, the equivalent SDN is as follows 

M 
A 

M 
2Bb (B+b-Ao)' IB- (a+b)l < A < B - a+b, 

0 
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0 b - a+b < A , 
0 

(3.32) 

where 

, B > a+b 
A = 

, a < B < a+b. (3.33) 

B > a+b is assumed here. That is, in order to utilize the 

effect of the extra signal, the total amplitude of this 

signal is assumed to be equal to or greater than the width 

of the hysteresis band. As will be seen below only 

dA 
v 

dA for the case A > 0 is needed for deriving the second 
0 

0 

describing function P 2 (E,B). By use of the phase shift 

theorem P 2 (E,B) may be obtained as follows, 

P
2

(E,B) = j !~ [fwtl ~(E cos wt) cos wt d(wt) 
0 

f
wt2 M (B + b - E 

+ 2bB 
Wtl 

sin wt) (E cos wt) cos wt d(wt) 

I
TI/2 

+ 0 (E cos wt) cos wt d(wt) 
wt2 

j ~~B { (B+b) (wt 2 +~sin 2 wt2 ) - [sgn(B- a+b)] x 

tB-b) (wt
1 
+~sin 2 wt1 ) +; E(cos

3 
wt 2-cos

3 
wt1 )} 
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where 

and 

= 1l 2 , 
7T wt 2 = 2 , 0 < E < jB- (a+b) j, 

wt2 sin -1 jB-(a+b) I t 7T jB-(a+b) 1 = E 'w 2 = 2' 

Wt
2 sin -1 jB-(a+b)j t sin -1 = E ,w 2 = 

sgn(B-a-b) - { 

1 

- -1 

, B-a-b > 0, 

, B-a-b < 0. 

B-a+b 
E 

< E < B-a+b, -

B-a+b < E, 

(3.35) 

(3.36) 

Substitution of P 2 (E,B) from equation 3.34 into equation 

3.31 gives the following expression for the pseudo describ-

ing function: 

P(E,B) M 1 
= nbB [ (B+b) (wt2 + 2 sin 2 wt2 ) 

1 - [sgn(B-a-b)] (B-b) (wt1 + 2 sin 2 wt1 ) 

2 3 3 + 3 E(cos wt2 -cos wt1 )]. (3. 37) 

The complete derivation of the equivalent SDN for the 

limiter with hysteresis is found in Appendix A. 

By letting a= 0 in equations 3.35, 3.36 and 3.37 the 

pseudo describing function for the limiter is obtained. 
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One can obtain the pseudo describing function for the relay 

with hysteresis by applying l' Hopital's rule to equation 

3.37, but the direct application of equation 3.29 is more 

straightforward. In this case, 

dA {~· 0 < A < B-a, v 0 

dA = 
0 0, A > B-a. 

0 
(3.38) 

B > a is assumed here. Thus, 

I
n/2 

+ O(E cos wt) 
wt

1 

cos w t d ( w t ) ] , 

or 

P(E,B) (3.39) 

where 

wt 1 
TI 0 < E < B-a, = 2 -

wt
1 

= sin-1 B-a E , E > B-a. (3.40) 

Letting a = 0 1n equation 3.39 and 3.40, results 1n the 

pseudo describing function expression for the relay. 

From these examples it is clear that the calculation 

of the pseudo describing function is straightforward if a 

triangular wave dither is used. Note that the number 

of terms in equation 3.29 is increased if the nonlinearity 

has several piecewise linear segments. For example, for 

the gain-changing element with dead-band there are five 

terms in the pseudo describing function expression. 
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By normalizing the input, output, and dimensions of 

the nonlinearity with respect to one parameter of the 

nonlinear element, it is sometimes possible to plot the 

pseudo describing function for different noramlized 

stabilizing signal amplitudes, B/a, on one graph. This 

is true only for dimensionless nonlinear elements. In 

Figure 3.14 the normalized pseudo describing function, 

P(E,B)/M, of the relay is plotted versus the amplitude 

E of the fundamental component of the input to the non-

linearity, with the amplitude of the stabilizing signal 

as a parameter. In Figures 3.15 and 3.16 the normalized 

pseudo describing function of the limiter and the limiter 

with hysteresis, respectively, are plotted versus the 

normalized amplitude, E, of the fundamental component of 
a 

the input, with the normalized amplitude, B/a, of the 

stabilizing signal as a parameter. 



P(E,B) 
M A B == 1. 

1.0 B B = 2 . 

c B == 3. 
A 

D B == 4 . 
0.8 

E B = 5. 

0. 6 
jP(E,B) Jc 

M 

B 

0.4 

c I 

0.2 D I 
E I 

I 
I 

1 K 3 5 7 9 

Figure 3.14. Normalized Pseudo Describing Function for the Relay. 
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Figure 3.15. Normalized Pseudo Describing Function for the Limiter. 
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F. Pseudo Describing Function Analysis 

As was mentioned in the previous chapter, the 

pseudo describing function may be used to determine the 

possibility of limit cycle operation for some closed loop 

nonlinear systems when a dither signal is present in the 

system. The basic assumptions of pseudo describing 

function analysis are as follows: 

l. The nonlinearities of the system can be lumped 

into one time invariant and frequency insen-

sitive nonlinear element. 

2. The frequency of the dither signal must be on 

the order of 10 or more times the frequency of 

possible limit cycles, and 

3. the system must contain sufficient low pass 

filtering so that the input to the nonlinear 

element can be approximated by an input of the 

form 

e(t) = f(B,B) + E sin(wt), (3.41) 

when the limit cycle exists. 

From the describing function technique it is well 

known that for the system to have a limit cycle, 

G ( j w) = 
1 (3.42) 

N (E, w) 

where G(jw) is the complex representation of the overall 
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linear system transfer function and N(E,w) is the describing 

function for the nonlinear element in the system. Assume 

that the general system shown in Figure 1.1 satisfies the 

pseudo describing function requirements. Let P(E,B), 

denote the pseudo describing function, w the self 
0 

oscillation frequency, and G(jw) the overall transfer func-

tion of the linear portion of the system as given by 

G(jw) = G1 (jw) G2 (jw) G
3

(jw). (3.43) 

The pseudo describing function, P(E,B), is substituted for 

the describing function in equation 3.42. A limit cycle can 

be sustained if for some value of B, A, and w
0 

(3.44) 

Equation 3.44 yields the limit cycle amplitude E and 

frequency w at the input to the nonlinear element when the 
0 

amplitude B of the extra signal is given. It frequently 

happens that the nonlinearity is symmetrical. If this is 

the case, phase shift theorem guarantees that the pseudo 

describing function is real. Then equation 3.44 can be split 

into two simultaneous equations, 

(3.45) 

and 
1 

arg G(jw0 ) = arg (- P(E,B)) = (1 + 2k)n (3.46) 

where w
0 

is the frequency of oscillation which should be 

used to determine the stabilizing signal frequency and 

k is an integer. The frequency w is found from equation 
0 



3.46 directly or with the aid of Bode or Nyquist diagrams 

of the linear portion of the system. Several solutions to 

equation 3.47 may exist, each representing a possible self 

oscillation frequency. 

Define the critical value jP(E,B) lc of the pseudo 

describing function to be the nonlinear gain necessary 

to sustain a limit cycle. By equation 3.45, 
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jP(E,B) I = c 
1 (3.47) 

G ( j w ) 
0 

Since G(jw ) is known from equation 3.46, IP(E,B) I can 
0 c 

be calculated from equation 3.47. 

The self-oscillation amplitude is determined by 

constructing on the pseudo describing function curves for 

the nonlinearity a horizontal line representing the 

critical value of the pseudo describing function. The 

self-oscillation amplitude is read from the intersection 

of the IP(E,B) I line and the pseudo describing function 
c 

curve for the stabilizing signal amplitude being investigated. 

Thus the self-oscillation amplitude will usually be a 

function of the stabilizing signal amplitude. Figure 

3.17 shows a procedure for finding the self-oscillation 

amplitude. 

The jP(E,B) I line may not intersect the pseudo 
c 

describing function curve for a particular stabilizing 

signal B . 
0 

If the entire pseudo describing function 
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curve for B lies 
0 

below the P (E,B) 
c line, a stabilizing 

signal with amplitude B will completely remove the self-
0 

oscillation of frequency w If 
0 

it lies above the jP(E,B)J 

line, a stabilizing signal with amplitude B will make the 
0 

system unstable. Therefore, the stabilizing signal does 

not always have a stabilizing effect on the system. 

If the system can sustain an oscillation, it is neces-

sary to determine if the resultant limit cycle lS stable 

or unstable. If the limit cycle is stable, the oscillation 

amplitude will return to its original value after the 

system has received any small disturbance. If it is un-

stable, a small disturbance may either finally decrease 

in amplitude to zero or increase until the output becomes 

unbounded. 

The stability of the limit cycle can be determined 

from the slope of the pseudo describing function curve 

at its intersection with the jP(E,B) I line. c 
If the slope 

is negative or positive the limit cycle is stable or 

unstable, respectively. If the slope is zero, the limit 

cycle is semi-stable. Thus N, M, and P in Figure 3.17 

represents stable limit cycles. 

c 



P(E,B) 

B=l.O 

B=3.0 

c 

B=S.O 

0 R L K J 

Hypothetical pseudo describing function curve 

Points M, N and P represent stable limit cycles. 

Point Q represents an unstable limit cycle with an 
amplitude R when B = 3.0 

A 

Figure 3.17. Determination of Possible Limit Cycle From 
the Pseudo Describing Function Curves. 

70 



IV. EXPERIMENTAL RESULTS 

A. Introduction 

In this chapter a specific system is examined, both 

theoretically and by a simulation, in order to illustrate 

the methods discussed in previous chapters. A comparison 

of the system behavior under triangular wave stabilization 

with that under sinusoidal stabilization is made. 

B. Example of Signal Stabilization 

The system to be considered is shown in Figure 4.1. 

The linear part is obviously low pass. It is assumed that 

the input to the relay is the sum of the fundamental 

sinusoidal component and a stabilizing signal whose 

frequency is at least ten times that of the sinusoid. 

The assumption that a sinusoid exists is a valid one, 

because this system exhibits self oscillation for all 

values of K. The frequency and amplitude of this self 

oscillation may be determined by an application of clas-

sical describing function techniques. 

K = 0.4 
14 

are, 

w = 1 E ~ 2.55 0 , 

The results for 

(4.1) 

where E is the amplitude of the oscillation. 
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In order to determine how to stabilize the system it 

lS necessary to consider the methods discussed in Chapter 

III. For K = 0.4, the critical value of the pseudo de-

scribing function, I P (E, B) J , is determined by substituting c 

the linear element transfer function and equation 4.1 into 

equation 3.45. This yields, 

jP(E,B)j = 5.0 
c 

The normalized critical value of the pseudo describing 

function for this particular system is then, 

jP(E,B)jc 5.0 
= 

M 10.0 = 0.5 ( 4. 2) 

The normalized pseudo describing function curves for 

the relay are shown in Figure 3.14, which also shows the 

normalized critical pseudo describing function line for 

this example. Consider the case where B = 1.0. The 

intersection of the normalized pseudo describing function 

jP(E,B)jc 
curve forB= 1.0 and M = 0.5 at point Q represents 

a possible limit cycle. As seen from the projection of the 

intersection at point Q to the point K on the abscissa, 

the amplitude of the self-oscillation will be 2.54 units. 

The critical line does not intersect the normalized 

pseudo describing function curve for B > 2.0. Therefore, 

if the high frequency input amplitude B is greater than 

2.0 units, no limit cycle will exist. 



The pseudo describing function analysis presented in 

the previous chapter was checked on an IBM 360/50 digital 

computer using CSMP language. The dither signal is a 

high frequency triangular wave (B = 40. rad./sec.). The 
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self oscillation amplitude for a stabilizing signal amplitude 

of B = 1.0 was obtained as shown in Figure 4.2. The 

differences between the experimental results and the 

corresponding theoretical calculations are seen to be 

within the tolerances normally associated with describing 

function methods. 

The stabilizing effect of triangular wave dither 

with amplitude B = 3.0 is shown in Figure 4.3. Note 

that the sampling period used in the simulation must be 

small with respect to the period of the dither signal. 

Otherwise the stabilizing signal may appear to have a 

lower frequency, and may fail to stabilize the system. 

For comparison, the transient responses of the system 

under triangular wave dither and sinusoidal dither are 

shown in Figures 4.4 and 4.5, respectively. The input 

used is a unit step. 

A comparison of the equivalent gain for sinusoidal 

and triangular wave dithers (Table 3.1) would seem to 

indicate that the stabilizing effect of the triangular 

wave dither would be faster than that of sinusoidal 

dither, because of the higher gain which is associated 

with the triangular wave equivalent gain for small signals. 

But the simulation does not show this to be the case. A 
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f(S,B) 

e ( t) 

t R +"+ K rf+-
- 2 s(l+s) 

0 

Figure 4.1. Relay System With Stabilizing Signal. 



2.63 c(t) 

0.4 

Figure 4.2. Self-oscillation of the System of Figure 4.1 With Small Triangular 

Wave Dither. 



c(t) 

0.4 

t 

Figure 4.3. Triangular Wave Quenching of the System of Figure 4.1. 



1.847 
c(t) .. 

1.12 

1.0 

0.496 

2.25 5.95 9.9 t 

Figure 4.4. Transient Response With Triangular Wave. 

c ( t) 1.675 . 

1.36 

1.0 

0.502 

Figure 4.5. 

2.4 6.1 9.7 t 

Transient Response With Sinusoidal Signal. 
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closer examination shows that the amplitude of the self­

oscillation is large enough that the system does not 

operate in the small signal mode. Therefore, it is not 

possible to state general results relating to the tran­

sient response by considering only the equivalent 

nonlinearity. Another possible source of error may be 

in the digital synthesis of the triangular wave, since a 

small de component was introduced due to a finite sampling 

period. 

78 
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V. CONCULSIONS 

Many nonlinear systems display self-sustained oscilla-

tions which are often undesirable. The self oscillation 

of a physical system may often be removed by the introduction 

of an appropriate stabilizing signal which may change the 

open loop gain in a nonlinear manner. 

The stabilizing effect of a high frequency input 

signal on an oscillating system with one nonlinearity is 

determined by the characteristics of the nonlinear element 

in the system, the linear portion of the system, and the 

amplitude of the signal. 

This investigation has been concerned with the effect 

of a triangular wave stabilizing signal on these self 

oscillations. The equivalent gains for several common 

nonlinearities are derived. The pseudo describing function 

. d d b ld b d 10 , 11 f . . d 1 1ntro uce y 0 en urger an Boyer or s1nuso1 a 

stabilization has been extended to the triangular wave 

case, and it is shown that the pseudo describing function 

for an odd nonlinearity is real. 

The pseudo describing function is used in an analysis 

similar to describing function analysis in order to predict 

the existence and amplitude of the self oscillation of a 

triangular wave stabilized, closed loop 1 nonlinear system. 

The experimental results are in close agreement with the 

predictions of the theory. 
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APPENDIX 

DERIVATION OF THE EQUIVALENT SDN FOR 

THE LIMITER WITH HYSTERESIS 
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DERIVATION OF THE EQUIVALENT SDN 

The derivation of the first part of equations 3.32 

and 3.33 was given in Table 3.2. The derivation of the 

case in which A and B satisfy the following inequalities 
0 

0 < A < J B - (a+b) I , 
0 

a < B < a+b, 

(A. 1) 

(A. 2) 

is as follows. Consider Figure A.l which illustrates both 

equations A.l and A.2 simultaneously. The input-output 

characteristic of the limiter with hysteresis is given by, 

m(t) = - M 

m(t) = ~ [e (t) -a], 

m(t) = M, 

m (t) M = b [e (t) + a] , 

m(t) = -M, 

The input, given by 

e(t) = f (6 , B) + A ' 0 

may be represented as follows, 

e(t) = 2 B St + A , 
TT 0 

-oo<e(t) < 0, 

0 < e(t) < a+b, 

a+b < e (t) < m 

-(a+b) < e(t) < 0, 

- co< E (t) < - (a+b). 

TT o < St < 2 ' 

e(t) = 2B T 3TT 
t + 2B + A

0
, 2 < St < ~ , --TT 

2B 
e(t) = TT St - 4B + A0 , 

3TI 
2< St < 2n. 

(A. 3) 

(A. 4) 

(A. 5) 
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Figure A.l. 

m ( t) m ( t) 
M 

~ax 

e(t) 

e(t) 

Triangular Signal with 0 <A < IB-(a+b) I 
0 

and a < B < a+b. 

St 

s 6 
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The maximum and minimum amplitudes of the output will 

be obtained with the aid of equations A.3 and the maximum 

and minimum amplitudes 

E = A + B m o 

of the input of the nonlinearity as follows: 

M max 

M . m1n 

M = b (A
0 

+ B-a) , 

M = b (A
0 

- B+a) . 

(A. 6) 

(A. 7) 

The basic angles 8i, i = 1,2, ... ,7 of the discontinuities 

in the output can be obtained with the aid of equations 

A.3, A.S, and A.7 as, 

8 
2 

83 

8 
4 

8 
5 

a-A 
0 = ( 2B ) 7T' 

= 

= 

= 

7T 

2' 

(B+2a) 
2B 7Tt 

2B+A +a 
( 

2B 

37T 

2' 

0 
) 7T ' 

( 3B+2a 
= 2B ) TT' 

4B+a-A 
87 = ( 0)7T. 

2B 
(A. 8) 

86 



The average value of the output, A , is given by v 

where 

by 

A 
v 

1 I 2TI 1 6 = 2TI O m(St) d(St) = 2TI E S., 
i=l l 

the s. are the areas represented 1n Figure 
l 

82 - 81 2 MTI 
sl = s3 ( )Mmax = 4bB(B + A - a) , 

2 0 

S = (8 - 8 )M = MaTI(B +A -a) 
2 3 2 max bB o 

A.l, 

MTI 2 
=- 4bB(B - Ao -a) ' 

Then 

s 
5 

= ( 8
6 

- 8
5

) • M . m1n 

A v 
1 6 

= 2TT L: 
i=l 

s. = 
l 

= Man (B - A - a). 
bB o 

The equivalent SDN is then given by 

for 

dAv M 
= dA b ... , 

0 

0 < A < [B - ( a+b) ] , 
0 

a < B < a+b. 

In the other case where, 

jB - (a+b) I < Ao < B - a+b, 

87 

(A. 9) 

given 

(A .1 0) 

(A.ll) 

(A.l2) 

(A .13) 



equation 3.32 may be derived by the same method. In 

figure A.2, which is actually Figure 3.12, the output of 

th 1 . . . h d . 2 TT . e non 1near1ty Wlt urat1on t 6 - t = -- lS shown. 
0 s 

Note that the duration of the output does not have any 

effect on the final result since the waveform is periodic. 

By definition, the average output A is given by the v 

following equation: 

Where s
1 

and s 2 represent the areas of the trapezoids 

T
0

T
1

T
2

T
3 

and T
3

T4T 5T
6

, respectively. Therefore the 

equivalent SDN is 

dA v 
dA 

0 

(A.l4) 

(A. 15) 

The values of s
1 

and s
2 

are obtained by considering Figure 

A. 2. 

and 

They are 

s
1 

= TTM (2B + 2A - b), 
2Bf3 o 

TTM s = 2 2Bbf3 
[(B-A) 2 -a

2 J. 
0 

(A.l6) 

Substituting for s
1 

and s 2 from equation A.l6 into equation 

A.lS yields 

(A. 17) 

88 



m (t) 

e (t) 

e(t) 

Figure A.2: Triangular Signal With B - (a+b) 

89 

< A < B - a+b. 
0 
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The last case given in equation 3.32, where 

B - a+b < A , 
0 (A. 18) 

may be derived by the same procedure. But, note that in 

this case the triangular wave dither never goes to the 

negative linear region of the nonlinearity, therefore 

A = M, v 

or 

dA v 0. dA = (A. 19) 
0 

The input of the nonlinear element given by equation 

3.10 is symmetric 
dAv 

about t = ~w and dt is even in wt. 

Using these properties and the results of the phase 

shift theorem allows equation 3.29 to be written as 

4 I 2n dA 
P 2 (E,B) = j TI~ O dtv cos wt d(wt). (A. 2 0 ~ 

For the limiter with hysteresis, the second pseudo describing 

function consists of 
dAv 

expressions for dt 

three terms, since there are three 

depending on the size of A . 
0 

Thus 
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J. 4w [ Jwotl MA P 2 (E,B) = nE (E cos wt) coswt d(wt) 

M 
2bB (B + b - E sin wt) (E cos wt) cos wt d(wt) 

J

n/2 
+ O(E cos wt) 

wt
2 

cos wt d(wt)], (A. 21) 

which is equation 3.34. 

The limits of the integrals of equation A.21 depend 

on the amplitude of the self oscillation. Consider 

Figure A.3, which represents the triangular input for two 

cases, when 

B > a+b, 

and 

B < a+b. (A. 22) 

Depending on the amplitude of the fundamental component, 

three distinct regions of operation may be distinguished. 

Region 1: When the triangular wave either goes into 

saturation on both sides or never goes into saturation. 

Which of these occurs depends on which condition of equation 

A.22 is met. To satisfy both cases simultaneously requires 

that 

0 < E < I B - (a+b) J . (A. 2 3) 

dA v 
In this case there is only one expression for dt , which 



B-(a+b) 
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Figure A.3. Two Different Cases of Triangular Signal Input. 
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is given by the first term in equation A.21. By con-

sidering equation A.20, the following limits are obtained, 

'IT = 2" (A.24) 

Region 2: When the triangular wave is in saturation for 

e(t) > 0, and is in the linear region for e(t) < 0. This 

occurs as soon as E is large enough that the condition of 

region 1 is no longer met. Thus, the lower bound of this 

region is 

E > I B - (a+b) I (A. 2 5) 

Note that in this region the tip of the triangular wave 

does not leave the negative linear region, so E - B < - a+b 

or E < B - a+b. Thus this region is bounded as 

(a+b) I < E < B - a+b, (A. 2 6) 

where E is the maximum de value. Thus, the lower limit is 

obtained from, 

E sin wt1 = I B - (a+b) I . (A.27) 

dA 
In this case there are two expressions for dtv' which are 

given by the first two terms in equation A.21. By con-

sidering equations A.20 and A.27, the following limits are 

obtained: 
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. -1 I B - (a+b) = s1.n · 
E I 

(A. 2 8) 

Region 3: When E is large enough that the tip of the 

triangular wave does not reach the negative linear region, 

or E - B > - a+b. Thus, 

E > B - a+b, (A. 2 9) 

represents the boundary of this open region. In this case 

there are three expressions for 
dAv . 
dt wh1.ch are given by 

equation 3.32. By considering equation A.20, the following 

limits are obtained: 

. -1 = s1.n 

. -1 wt2 = s1.n 

IB- (a+b) 
E 

B - a+b 
E 

(A.30) 

By carrying out the integrations in equation A.21, 

and considering the limits which were obtained above, 

equation 3.34 is obtained. 
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