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ABSTRACT 

Machine Learning (ML) involves the use of computer algorithms to solve for 

approximate solutions to problems with large, complex search spaces. Such problems 

have no known solution method, and search spaces too large to allow brute force search 

to be feasible. Evolutionary algorithms (EA) are a subset of machine learning algorithms 

which simulate fundamental concepts of evolution. EAs do not guarantee a perfect 

solution, but rather facilitate convergence to a solution of which the accuracy depends on 

a given EA’s learning architecture and the dynamics of the problem. 

Learning classifier systems (LCS) are algorithms comprising a subset of EAs. The 

Rote-LCS is a novel Pittsburgh-style LCS for supervised learning problems. The Rote 

models a solution space as a hyper-rectangle, where each independent variable represents 

a dimension. Rote rules are formed by binary trees with logical operators (decision trees) 

with relational hypotheses comprising the terminal nodes. In this representation, sub-rules 

(minor-hypotheses) are partitions on hyper-planes, and rules (major-hypotheses) are 

multidimensional partitions. The Rote-LCS has exhibited very high accuracy on 

classification problems, particularly Boolean problems, thus far. The Rote-LCS offers an 

additional attribute uncommon among machine learning algorithms – human readable 

solutions. Despite representing a multidimensional search space, Rote solutions may be 

graphed as two-dimensional trees. This makes the Rote-LCS a good candidate for 

supervised classification problems where insight is needed into the dynamics of a 

problem. Solutions generated by Rote-LCS could prospectively be used by scientists to 

form hypotheses regarding interactions between independent variables of a given 

problem.  
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SECTION 

1. INTRODUCTION 

 In the area of machine learning, learning classifier systems (LCS) are rule-based 

algorithms which combine reinforcement learning (for determining rule quality) with 

evolutionary computing (for stochastically searching rule-spaces in a directed manner) to 

solve a variety of prediction and classification problems. There are various representation 

schemes; few if any have human-readable solution outputs. A large portion of LCS 

algorithms, for instance, are ternary, which is not naturally human-readable. Artificial 

neural networks, among other types of ML, also tend to not produce human-readable 

solutions. 

 The Rote-LCS, introduced within the scope of this thesis, offers exceptional 

results in classification problems, while offering the potential for human-readable 

solutions. This characteristic may be useful in a wide variety of applications, including 

scientific investigation of problems in which a need exists to develop hypotheses to 

explain phenomena resulting from particular interactions between problem variables. The 

Rote is able to achieve high accuracy at low computational expense and retain human 

readability by evolving rule sets consisting of hypotheses which use the relational 

operators greater-than, and less-than or equal to (>, =<) to assess the result of an 

assumption about the relative value of a given independent variable of an observation 

(e.g. “temperature is greater than 500 degrees Fahrenheit”). These 'sentences' of relational 

hypotheses are able to hold relevant predictive information in a condensed form, are easy 

for a human to understand, and may be evaluated to true or false. 
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Later versions of the Rote include the use of binary trees and logical operators 

(tree nodes) to link the relational hypotheses (terminal nodes) to allow the evolutionary 

algorithm to explore relationships between independent variables for significantly 

increased accuracy. Binary trees may be represented two-dimensionally, and like 

relational sentences, are human-readable. 

 The Rote-LCS was originally written to solve a problem involving breast-cancer 

prediction. Its functionality was expanded in subsequent work to enable use of the Rote 

in new types of problems, and to increase its accuracy. The latest version of the Rote is 

able to train solutions on supervised datasets to perform classification with exceptionally 

high accuracy. The Rote may also be used for real-value classification and could also be 

used to develop AI control systems.  
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2. THESIS OVERVIEW  

 This thesis presents three incarnations of the Rote-LCS, in chronological order of 

development. Paper 1, accepted to 2012 IEEE Conference on Computational Intelligence 

in Bioinformatics and Computational Biology, presents the first version of Rote-LCS [1]. 

The Rote is used on a problem to predict breast cancer from patients' results on a series of 

nine cancer indicators. When trained on five hundred or more observations (patients), 

some positive and some negative for cancer, the Rote is able to achieve 99% accuracy or 

better on the test dataset. The paper was co-authored with Dr. Corns and Dr. Cudney of 

the Engineering Management and Systems Engineering department of Missouri 

University of Science and Technology. 

 Paper 2, accepted to 2012 IEEE Congress on Evolutionary Computation, uses the 

Rote on a ground-level ozone prediction problem; the Rote's functionality is expanded to 

use in real-value classification [2].  This paper was also co-authored with Dr. Corns and 

Dr. Cudney. 

 Paper 3, pending submission to IEEE Transactions in Evolutionary Computation, 

includes a major addition to the original Rote algorithm. Relational hypotheses, which 

make up the rule representation scheme of the original Rote-LCS, become rule segments 

within larger hypotheses. Binary trees and logical operators are used to link relational 

hypotheses. This enables the evolutionary algorithm to explore relationships between 

independent variables rather than considering them separately, leading to a significant 

increase in the accuracy of the Rote. 
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PAPER 

I.  INTRODUCTION OF R-LCS AND COMPARATIVE ANALYSIS WITH  

FSC AND MAHALANOBIS-TABGUCHI METHOD FOR BREAST 

CANCER CLASSIFICATION 

Benjamin Daniels, Steven M. Corns, Elizabeth A. Cudney  

 

Abstract – Classification for medical diagnosis is an important problem in the field 

of pattern recognition. We introduce a new method for classification based on 

repeated analysis of information tailored to small data sets – the Rote Learning 

Classifier System. Using the Wisconsin Breast Cancer study, this method was 

compared to three other methods of classification: Mahalanobis-Taguchi Systems, 

Finite State Classifiers, and Neural Networks. It was found that for the given data 

set, the Rote Learning Classifier System outperformed the other methods of 

classification. This new algorithm correctly classified over 92% of the data set.   

 

I. Introduction 

In the field of computational intelligence, it has been demonstrated that no problem 

solving method dominates all others in all problems [1]. The first method is a uniquely 

structured Pittsburgh learning classifier system (LCS), developed by the PI [2,3,4]. 

Nicknamed the ‘Rote,’ it is introduced here as the R-LCS method. This method is 

compared to two other methods for data classification: the Mahalanobis-Taguchi System 

(MTS) [5] and finite state classifiers (FSC) [6]. Both of these methods have been 
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successfully applied to other classification problems, and therefore are appropriate 

methods to compare and contrast for accuracy. 

The R-LCS was developed by the PI to perform classification on data sets where a 

relatively small amount of training data is available.  It is designed to address problems in 

which the input parameters consist of discrete points in one or more bounded ranges of 

known size. The problem input parameters for the R-LCS method consist of an arbitrary 

number of ranges to be evaluated for a Boolean output. The R-LCS method is particularly 

adept at training itself well in cases where only very small training populations exist.  

The Mahalanobis-Taguchi System (MTS) was developed by Genichi Taguchi to 

provide a means to establish a reference group and a means to define a measure the 

degree of abnormality of individual observations when using the Mahalanobis distance 

(MD) to determine class membership [5]. Mahalanobis distance is a discriminant analysis 

approach that uses a distance measure based on correlations between variables and the 

different patterns that can be identified and analyzed with respect to a reference   

population.   MD is used to determine the similarity of a known set of values (normal 

group) to that of an unknown set of values (abnormal group). It has been successfully 

used in a broad range of cases, largely due to its ability to identify inter-variable changes 

in data. Also, because the MD is measured in terms of standard deviations from the mean 

of the samples, it provides a statistical measure of how well an unknown sample matches 

a known sample set. 

Finite state classifiers are Finite State Machines (FSMs) where a vote to classify the 

data set is performed in each state based on the data being input to drive the state 

machine [6, 7].  The input being analyzed by the FSM is used to drive the machine 
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between states, gathering information from the states as it progresses. The FSC were 

created using an evolutionary algorithm that treated the state descriptions as an array 

which was used as the genome representation for the problem. These algorithms have 

been shown to be useful as classifiers on Polymerase Chain Reaction (PCR) primer 

classification [8, 9] and image classification [10], which contain a full description of how 

these classifiers are constructed and implemented. 

The data set used for this analysis is the Wisconsin Breast Cancer study, consisting of 

nine attributes and one class (positive or negative for cancer). The classification is 

performed based on the values of these nine separate attributes, with values ranging from 

1 to 10. The nine attributes taken under consideration are:  

• Clump Thickness 

• Uniformity of Cell Size 

• Uniformity of Cell Shape 

• Marginal Adhesion 

• Single Epithelial Cell Size 

• Bare Nuclei 

• Bland Chromatin  

• Normal Nucleoli 

• Mitoses 

 

More information on these attributes can be found at the University of California 

Irvine Machine Learning Repository Website [11]. 
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Evolutionary algorithms (EAs), including LCSs are generally an appropriate method 

for this type of problem; however, there are typically many unique ways to apply EA 

operators to a given problem. In the course of this paper, a new approach is taken and 

then compared with the use of finite-state classifiers and the Mahalanobis-Taguchi 

System.  For additional consideration, results for a neural network approach [12] are also 

considered. 

II. Methodology 

A. Basic Approach 

The representation of the R-LCS method is separated into four chromosomes to 

which the traditional EA operators (parent selection, recombination, mutation, and 

natural selection) are applied. The information contained in these four chromosomes is as 

follows: 

 

• Chromosome 1 contains an integer value from 1-10 which is compared with the 

patient’s test results. Each test will be compared to a unique location in the 

chromosome. These values will be compared to determine which is greater to 

drive the classification. 

• Chromosome 2 contains a Boolean operator, or a value which can be converted 

into a Boolean. If true, the hypothesis is that the patient has cancer if the test score 

lies above the number in Chromosome 1, and does not if otherwise. If false, the 

hypothesis is that the patient has cancer if the test score lies below the number in 

Chromosome 1, and does not if otherwise. 
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• Chromosome 3 holds the weighting factor or number of points earned towards a 

positive diagnosis. It is counted for a patient only if Chromosomes 1 and 2 point 

to a positive diagnosis. 

• Chromosome 4 holds the weighting factor or number of points earned towards a 

negative diagnosis. It is counted for a patient only if Chromosomes 1 and 2 negate 

a positive diagnosis. 

 

To better understand this approach, consider the following example in Table 1. The 

test results for a single patient are evaluated by the chromosomes of a single potential 

solution. The patient’s test scores are on the left. The information in the four 

chromosomes determines how this data is evaluated. Finally, the results for each indicator 

are summed for a final determination. A negative number indicates no cancer, while a 

positive one indicates a positive diagnosis. To evaluate the first attribute (Clump 

Thickness), it is first compared to the patient’s value for this indicator with the 

corresponding value in C1 (Chromosome 1). In this case, it is ‘greater than’. 

Chromosome 2 has a value of false. This in conjunction with  

the fact that the patient’s value is greater than the C1 value means that there is a negative 

diagnosis on this indicator for this patient on this solution. Since the diagnosis is 

negative, we look at the weighting coefficient for this indicator when the diagnosis is 

negative. The value is 8, so -8 is the output of this indicator for the patient.  

This is performed for each of the nine attributes, and then the results are summed. If 

the value is positive, then the prediction is positive for cancer, otherwise the prediction is 

negative. 
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B. Sensitivity Operator 

The above example uses a single point which is chosen in each range, provided by 

Chromosome 1. However, there is one final main addition to the R-LCS method: in order 

to achieve more ‘sensitivity,’ or ‘granularity,’ multiple points within each range are 

examined simultaneously. This requires adding four more chromosomes for each 

increment in sensitivity; thus, the size of the rule set used for training increases by a 

factor equal to the sensitivity factor.  For example, if the sensitivity factor is 2, then two 

points on each range of each indicator are chosen to evaluate. Figures 1 and 2 illustrate 

how this sensitivity factor is used in evaluating the attribute values. The range for clump 

thickness is now split twice and each of the two corresponding chromosome sets are 

evaluated independently. The sums of each are then added for the final diagnosis 

decision. For simplicity, the sensitivity factor is chosen at the onset of a simulation for 

the R-LCS method; all indicators of all solutions will have the same sensitivity factor. 

The sensitivity factor may be of any arbitrary size, but as the sensitivity factor increases, 

marginal improvement in EA effectiveness per increase of the sensitivity factor 

approaches zero. 

C. Application of EA 

      For this method, truncation selection is used as the natural selection operator. As it is 

known that the selective pressure for truncation selection is extremely high, the parent 

selection method used in the R-LCS method was chosen to be random, 
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Table 1 – Example evaluation of breast cancer patient information using R-LCS. A 
negative sum indicates no cancer predicted. 

 

since no further selective pressure seems likely to be needed. An n-point recombination 

operator was selected for crossover, with the number of points selected by the user before 

a run. All subsequent runs will then utilize the same n-point value. Mutation occurs by 

randomly selecting a child, then randomly selecting a chromosome, and mutating it to a 

random value within the valid range of possible solutions. There will be a number of 

mutations equal to the value input by the user for ‘Mutation Rate’ when the simulation is 

started. A population size of 10 was used for the R-LCS. 

D. Fitness Evaluation 

Type-I (false positives) and type-II error (false negatives) are distinguished within 

this method. Specifically, type-II error is prioritized to decrease the likelihood that a 

patient with a malignant growth will be diagnosed with a benign growth. While a false 

positive for cancer may be stressful for the patient, it is less likely to put the patient at 

risk than an instance of type-II error. Type II errors were discouraged through a fitness 

weighting scheme. The fitness weighting criteria are as follows:  
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• A correct positive is worth +4 

• A correct negative is worth +3 

• An incorrect positive is worth -2 

• An incorrect negative is worth -6 

 

To determine fitness, each solution in the Plus (parents plus children) survival 

population is evaluated using data from 500 actual patients. The prediction made by the 

solution is compared with the real diagnosis and fitness points are awarded to solutions 

accordingly based on predictive accuracy. 

III.  Results 

The R-LCS method was first tested for breast cancer prediction accuracy at various 

levels of its sensitivity function.  It was then tested at its highest level of sensitivity and 

compared versus other prediction methods. 

The data set used for this project is the breast cancer data from the UCI machine-

learning repository, which was collected at the University of Wisconsin by W. H. 

Wolberg [13]. They used this data to predict whether a tissue sample taken from a 

patient’s breast is malignant or benign. There are one class, nine numerical attributes, and 

699 observations. Sixteen instances contain a single missing attribute value and were 

removed from the analysis [14]. 

 

Figure 1, Information contained by Chromosome 1for clump thickness, with a sensitivity 
factor of 1. 
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Figure 2, Information contained by Chromosome 1for clump thickness, with a sensitivity 
factor of 2. 
 

The training data was broken into two parts: 485 for training and 199 for evaluation. 

The initial comparisons are conducted with previous work, so to compare the 

performance of the R-LCS method with the other methods it was necessary to train the 

data on the data set sizes of 20, 30, 50, and 100. All used data points were chosen at 

random from the training data set of 485. A random sample set was chosen at the 

beginning of each run. For each training data size, the R-LCS method was tested on 10 

runs at seven different levels of sensitivity. The sensitivity levels used are 1, 2, 3, 4, 5, 7, 

10, and 30. These levels are used to demonstrate the success of the R-LCS with smaller 

rule set sizes. A sensitivity factor of 30 is chosen arbitrarily to demonstrate relative 

performance on a somewhat larger rule-set size.  

The R-LCS method had mediocre classification accuracy when a data set of 20 was 

used for sensitivities of one to four (fig. 3), with classification accuracy typically of 83-

90%. When the sensitivity was increased to five or higher, the algorithm classification 

accuracy increased to 95% or better. As the training data set size increased, this trend 

continued, although the classification accuracy was always above 92% and usually above 

95%. For most data set sizes, the accuracy continues to improve for three of the five data 

sets. This may indicate the beginning of overtraining on the data set. 

The type I and type II errors were also evaluated to determine how well the algorithm 

classified the two possible outcomes. The type I errors were calculated by dividing the 



14 
 

number of false positives by the total number of biopsies that were negative (fig. 4). The 

type II errors were calculated by dividing the number of false positives by the number of 

biopsies found positive for cancer (fig. 5). Comparing the results, it can be seen that there 

is a distinct bias against type II errors, with only about one percent of errors falling in this 

category for all positive biopsy results.  

 

Figure 3, total number of errors vs. sensitivity for the R-LCS approach with training set 
sizes of 20, 30, 50, 100, and 500. 
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Figure 4, Percentage of type I errors vs. sensitivity for the R-LCS approach with training 
set sizes of 20, 30, 50, 100, and 500. 

 

Figure 5, Percentage of type II errors vs. sensitivity for the R-LCS approach with training 
set sizes of 20, 30, 50, 100, and 500. 
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The best performing sensitivity level was then compared against Mahalanobis-

Taguchi System and the neural net methods. The information for this comparison was 

extracted from previous work [14] in which the Mahalanobis-Taguchi system was 

compared to a neural network approach. Data from exactly ten runs was collected and 

averaged, and the results plotted and compared with ten runs of the neural network and 

ten applications of the Mahalanobis-Taguchi system. Figure six shows the comparison 

between these methods. The data collected from each of the experiments here are given 

in tables 2, 3, and 4.  

 

Figure 6, Comparison of correct classifications vs. training data size for R-LCS, MTS, 
and NN. 
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Table 2 – Results for Mahalanobis - Taguchi System [11] 

 

Table 3 – Results from Neural Network Classification [11] 
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Table 4 – Results for the R-LCS method 

  data20 data30 data50 data100 
1 0.974 0.924 0.936 0.985 
2 0.947 0.990 0.952 0.985 
3 0.842 0.947 0.900 0.990 
4 0.995 0.985 0.969 0.985 
5 0.856 0.963 0.990 0.936 
6 0.888 0.930 0.990 0.952 
7 0.849 0.952 0.888 0.936 
8 0.990 1.000 0.958 0.969 
9 0.969 0.979 0.947 0.963 
10 0.906 0.909 0.990 0.974 
RLCS 0.921 0.958 0.952 0.967 

 

The next step was to compare the R-LCS method with a finite-state classifier (FSC) 

method. The FSC used for the comparison were the best classifier from 100 different 

runs, and was constructed in a similar manner to that used in previous work [10]. Each 

state had am attribute number, a real value assigned to it, and a comparison operator. 

When entering the state, the value stored in the state was compared to the value of the 

attribute specified in the state. Based on whether the statement was true or false, a 

response instructed the state incremented, decremented or in some cases ignored a 

running counter. When the information was fully evaluated, a positive result indicated the 

growth was malignant and a negative valued indicated benign. 64 states were used for 

each of the FSC, and they were evolved using a generational algorithm using two point 

crossover and a mutation operator that changed the initial state (10%), the comparison 

operator (10%), the transition destination (20%), the response (10%), or the value used to 

make the comparison (50%). This algorithm was run for 1000 generations using training 

data set sizes of 20, 30, 50, 100, and 485.The best run of 10 runs with a sensitivity 
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coefficient of 30 from the R-LCS method was compared. The two EAs were compared 

on training data set size of 20, 30, 50, 100, and 485. Sets of these sizes were chosen to 

demonstrate general performance on small and moderately sized training sets; results 

from these were compared with a set of 485, which was the largest available. Figure 7 

shows that the R-LCS method had a better success rate on classification of the data for all 

sizes of training data. The R-LCS method also demonstrates negligible overtraining on 

this data set.  

 

 Figure 7, Comparison of correct classifications vs. training data size for R-LCS, and FSC 

IV. Discussion 

A. Sensitivity Factor and Performance 

      As expected, higher levels of sensitivity performed better in preliminary testing 

before comparison with other methods. As the sensitivity increased to 10, error 

distribution between the different population sizes stabilized and generally decreased. 

Since a sensitivity factor of 30 seemed to be the highest performing, it was chosen to be 
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compared with the other methods. It performed well at smaller population sizes versus 

the Mahalanobis-Taguchi System and neural network methods, and slightly better at 

larger population sizes. The R-LCS method dominated the other methods on all data set 

sizes. 

      It is interesting to note that overall performance of the R-LCS method actually 

decreased slightly as population size increased, and then began to increase again. It is 

possible that this is due to randomness in chosen population members. It is also possible 

that this may be due to some effect of the high sensitivity level used with the R-LCS 

method for the comparison. Additional experiments with a larger number of runs will be 

necessary to evaluate this fully. 

Although a sensitivity factor of 30 was the highest used, the sensitivity factor for the 

R-LCS method may be set arbitrarily high. Results have shown that as the sensitivity 

factor is increased, general accuracy of the EA is also increased, at all training sizes. The 

downside is computation time; the EA requires more computation time as the sensitivity 

factor (and thus rule set size) is increased. There was no study done to determine what 

this rate of increase in computation time is, or whether it is linear or exponential. Also, 

the marginal benefit yielded by an increase of the sensitivity factor should eventually 

approach zero. In terms of general computation time, the Mahalanobis-Taguchi System 

has the lowest; it is virtually instantaneous. The R-LCS method had much better 

computation times than the FSC, which required a wall clock time of approximately one 

hour.  
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B. Further Study 

In order to further investigate the performance of the R-LCS method with larger 

training populations, the R-LCS method was trained with a population size of 485 

observations, the maximum possible. At this level, all sensitivity levels discovered better 

solutions. The best solution found had a 99% success rate, with zero instances of type-II 

error, and only two instances of type-I error after testing on 199 observations. 

C. Possible Sources of Error in Comparison 

The first possible source of error comes from the fact that sample size (ten runs) used 

to compare the Mahalanobis-Taguchi System, neural network method, and the R-LCS 

method is quite small. For this paper, it was necessary to use ten runs because only ten 

runs were performed for the Mahalanobis-Taguchi System and neural network prediction 

methods. As a rule of thumb, it is typically advisable to have at least 30 samples for 

comparisons of the mean between different populations. It may also be possible that 

variation from the sampling of the data sets has introduced some uncertainty in the 

results, as there is no available data on the particular portion of the data set the 

Mahalonbis-Taguchi System and the neural network approaches used. 

Another possible source of error is due to the distinction which the R-LCS method 

makes between type-I and type-II error. Unlike the other methods to which the R-LCS 

method was compared, the R-LCS method penalizes type-II error significantly. This may 

lead to more total errors in a solution if it is necessary to have more instances of type-I 

error in order to avoid type-II errors with a greater success rate.  

One final possible source of error in comparison with the Mahalanobis-Taguchi and 

neural net methods is in the size of the pool of training observations used for creating a 



22 
 

training population versus that used for testing. Although the same data was used by all 

methods compared, the other methods may have allocated the use of data differently. For 

example, the Mahalanobis-Taguchi System analyzes the data directly and does not have a 

training step. 

V. Conclusions 

The R-LCS method was extremely successful at solving this problem, and may be 

capable of regularly out-performing other known methods at solving range searching 

problems. The R-LCS method is very efficient in terms of computation time, with very 

low training time compared with the FSC. The R-LCS method dominated all other 

prediction methods at all levels of population size. 

Repetition within the algorithm on the attributes of the data set allows the algorithm 

more opportunity to fine-tune the weighting of the different attributes. This allows for a 

gradual build up of weights and makes it more likely that complimentary combinations of 

information can be found. A well-known disadvantage to the application of LCS in 

general is the possibility of overtraining. However, in this test case no evidence of 

overtraining was apparent. 

The outcome of the R-LCS method seems promising; it is important to acknowledge, 

however, that the data set size in this case was relatively small for an LCS application. 

An LCS approach in this case is still justifiable; nine variables with ten possible states 

each provides a search space with 109 (one billion) possible combinations, which is 

generally too large to warrant a heuristic approach. Future applications of the R-LCS 

method for breast cancer could include the development of a nine dimensional response 
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surface that may be used to indicate combinations of variables that indicate positive 

results for malignant growths. 

It will likely be useful to look for other applications where the R-LCS method could 

be used. It may be beneficial to investigate further the use of different levels of sensitivity 

in the training of the R-LCS method, or to further refine the technique. It would also be 

advantageous to apply this method to other data sets to gain more information on the 

benefits of the weighting scheme and to explore any potential areas where overtraining 

would be a serious issue. 

The problem solving techniques which the R-LCS method was compared against are 

generally good at a wide variety of problems. It could be valuable to compare the R-LCS 

method against other problem solving techniques which are specially formulated for 

range searching. 
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II.  A COMPARISON OF REPRESENTATIONS FOR THE PREDICTION OF 

GROUND-LEVEL OZONE CONCENTRATION 

Benjamin Daniels, Steven Corns, Elizabeth Cudney 

 

Abstract – This work presents a comparison of methods to predict ground-level 

ozone to highlight differences in the ability of the algorithms and to compare their 

performance to an established signal to noise based prediction method. Existing 

data related to weather conditions and ground-level ozone was divided into a 

training set and a test set. Three algorithms were trained using the training set to 

create predictors, which were then analyzed with the test set, and then compared to 

the Taguchi Method to determine performance. It was found that the newly 

introduced Rote-EA performed well on this problem, predictors using the Taguchi 

method had a smaller deviation from actual results. This indicates an additional 

factor other than the level of correlation in the data that dictates how well these 

predictors perform on classification problems.  

Keywords-component; evolutionary computation, predictor, classifier 

 

I. Introduction 

For this analysis, a case study for ozone concentration is used to investigate the ability of 

three different methods to predict ground-level ozone: a standard evolutionary algorithm 

(EA), a graph based evolution algorithm, and a rote evolutionary algorithm. These results 

were compared to the Taguchi Method (T-method); a design of experiments approach 

originally used to reduce variation in production. Comparing these evolutionary 
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computation methods to the T-method gives an indication of how well these stochastic 

methods can identify the correlations found with the T-method. All of these methods 

were applied to make predictions of ground-level ozone concentrations based on 

information from seven monitoring sites that gathered thirteen different data points from 

the Dallas-Fort Worth area, aggregated between January 1, 2005 and December 31, 2007. 

This area was selected since it does not currently meet the EPA’s satisfactory level of 

ozone pollution [1, 2]. It has the 12th highest ozone air pollution in the nation, which is 

likely a result of nearby facilities such as a material incineration plant, concrete 

installations, and other local industrial. In addition, an increasing number of automobiles 

used by commuters is likely a major contributor of this pollutant [3]. 

Ground-level ozone is one of the most common human health hazards that is directly 

associated with human activity. This pollutant is formed when volatile organic 

compounds (VOCs) and nitric oxides react in the presence of sunlight [1]. High levels of 

this pollutant are hazardous to the human health and harmful to the environment. About 

50% of all anthropogenic NOx emissions result from motor vehicles [4], making it an 

even greater concern in areas highly travelled by these vehicles. At elevated levels of 

ozone, an individual can experience effects ranging from airway irritation to permanent 

lung damage, with a person with average sensitivity to ground-level ozone having 

adverse reactions to concentrations as low as 0.08 parts per million (ppm). An accurate 

method to predict daily ozone levels would be a valuable tool for assessing this risk to 

public health [5].  
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     The ozone prediction problem involves a set of independent variable parameters, or 

indicators, which consists of information that is believed to be useful in achieving good 

predictability. For ozone prediction, these indicators are shown in Table 1. 

 

Table 1 – Variables used to determine ground level ozone concentrations 

Variable Units 

Independent   
Maximum wind 
gust 

Miles per hour 

Nitric Oxide Parts per billion 
Outdoor 
Temperature 

Degrees Fahrenheit 

Resultant wind 
direction 

Degrees 

Resultant speed Miles per hour 

Solar radiation 
Langley’s per 
minute 

Standard Deviation 
of horizontal wind 
direction 

Degrees 

Wind Speed Miles per hour 
Month Month of the Year 
Day Day of the Month 
Year Year of the Study 
Weekday Day of the week 
Dependent   
Ozone Parts  per billion 
 

     The baseline algorithm for this study is a simple evolutionary algorithm [6]. This was 

represented as a pool of solutions that were created uniformly at random and allowed to 

interact with one another through recombination and mutation operators. To gain a better 

comparison a graph based evolutionary algorithm (GBEAs) was also used to determine 

any effects diversity preservation had on the solution quality [7]. These GBEAs mimic 
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geographic boundaries that restrict mating within an evolving population, which has been 

found beneficial to preserving solution diversity [8]. This is done by placing solutions at 

the vertices of a graph and proceeding with a steady state mating scheme [9], allowing 

mating to occur only between vertices with a common edge. For this experiment a cycle 

graph was selected, as it had been found to provide larger population diversity than other 

GBEAs previously used [8]. The results of these experiments were then compared to the 

T-Method and another evolutionary algorithm, the RoteEA. 

     The RoteEA is an Evolutionary Algorithm method originally developed to predict 

instances of breast cancer among patients being tested for the disease. As applied in this 

problem, each predictive result was either positive or negative; an implementation in 

which the RoteEA was found to be highly effective. In this study, the RoteEA is tested on 

a problem where each predictive result consists of a point on an unbounded range.  

     Using the RoteEA, solutions are evolved which enable prediction of the ozone level 

based on the indicators in Table 1. These indicators are not necessarily the only factors 

which affect ground-level ozone concentrations, and therefore any solution evolved to 

predict ozone based on these indicators will be limited by the information on hand.  

II. Methodology 

A. Standard Evolutionary Algorithm and GBEA 

     This approach used a standard evolutionary algorithm with no special 

accommodations for training on the data. Each population member is a string of eight 

doubles which were used as coefficients for the eight variables used to predict ozone. The 

eight variables and the ozone level coinciding with those values were read into the EA 

and normalized. A population of 512 solutions was generated randomly, with each 
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coefficient initialized to a value from zero to one. Mating was performed using a steady 

state mating process with two point crossover at a 100% crossover rate. In addition, a 

mutation operator was used that added or subtracted from 0 to 0.1 to the value of a 

coefficient selected uniformly at random. The mutation rate applied was 80%. 100 trials 

were conducted with the standard evolutionary algorithm, with a stopping criteria of 

200,000 mating events. 

     To investigate the use of diversity preservation, a graph based evolutionary algorithm 

was applied to the problem. GBEAs use graphs to impose an artificial geography on the 

population of evolving solutions. For this work, the cycle graph was used as it provided 

the most diversity preservation and therefore the most contrast to the standard 

evolutionary algorithm. All of the parameters used in the standard evolutionary algorithm 

were applied to the GBEA, with the mating restrictions imposed by the graph the only 

difference between the standard evolutionary algorithm. More information on GBEAs 

can be found in [Bryden, 2006]. 

B. RoteEA 

1) Background of the RoteEA: The first application of the RoteEA used a particular 

methodology to attempt to find relationships between various indicators by evolving as a 

solution a set of rules in terms of 1) Direction and 2) Significance.  

If one were to visualize how a RoteEA-evolved solution works, it could be seen as 

operating like a pressure gauge. Direction is the direction of pressure (positive or 

negative) for each rule within the solution. The RoteEA method differs significantly from 

finite state classifiers (FSCs) in its method of mapping Direction. With FSCs, each 

individual FSC maps a given input to one of many possible outputs; many FSCs are 
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typically used in tandem to create a map. By contrast, Direction in the RoteEA method, 

(which may be likened to an FSC output) is Boolean; it has only two possibilities. In 

theory, this decreases complexity while still allowing for versatility in evolving highly fit 

solutions. 

     Significance is a weighting factor that is applied to Direction to determine its overall 

importance in the solution with the objective of finding good predictive results. In other 

words, Significance is the magnitude of pressure in the given Direction for a given rule.  

     The input from each indicator is considered multiple times, the number of which is 

determined by a ‘Sensitivity Factor’, which is an input parameter given to the RoteEA 

before it begins to evolve solutions. The Sensitivity Factor is static and is the same for all 

indicators. A solution evolved by the RoteEA is simply a set of rules. The number of 

rules is equal to  

 

S * I             (1) 

Where S is the Sensitivity Factor, and 

 I is the number of indicators 

 

      Every rule consists of a Direction and a Significance. Four chromosomes are used to 

hold this information; the method of constructing these chromosomes is given in the next 

section. When a solution is evaluated using the required indicator parameters, the result is 

a ‘pressure’ which is either positive or negative, and has a certain magnitude. The final 

pressure value itself is the final result which is then evaluated for fitness by comparing it 
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with the value for the dependent variable. It is found by summing the pressure values 

from the evaluations of each rule in the solution. 

     For the purposes of this paper, the original RoteEA which was used to predict cancer 

has been altered in one significant way: instead of using the ‘pressure value’ to represent 

whether the patient was positive or negative for cancer, the pressure value is instead 

mapped onto a space which represents ground-level ozone in parts-per-billion (ppb). 

With the RoteEA, the evolved solution contains information of the actual relationships 

between the indicator variables in a way which allows for extrapolation, to an extent, into 

territory for which the RoteEA was not fully trained. This should allow the RoteEA to 

find solutions for the dependent variable (ozone level in ppb) without bounds (for 

instance, the highest ozone ppb in training data may be 65, however, solutions evolved by 

the RoteEA should still be capable of predicting ozone levels in cases where the ppb 

should be higher than 65; ozone levels are allowed to be arbitrarily high). 

2) Structure of Chromosomes: The genetic information, or ‘DNA,’ of the solution  

set of the RoteEA is separated into four chromosomes to which the traditional EA 

operators (parent selection, recombination, mutation, and natural selection) are applied. 

Before the EA begins evolving solutions, the data for all chromosomes is randomized. 

chromosomes 1 and 2 contain the information about the Direction of each rule; 

chromosomes 3 and 4 contain information about the Significance. Remember: 

• Each rule is evaluated only for a single indicator 

• Each indicator typically has several rules; the number of rules per indicator is 

equal to the Sensitivity Factor. 

• Each rule contains information from each of the four chromosomes 
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     Before the EA begins evolving solutions, the test data is scanned to find the highest 

and lowest values for each indicator. This is used to determine the bounds for 

chromosome 1.  

 The information contained in the four chromosomes consists of the following: 

• Chromosome 1 contains a number between the highest and lowest values for the 

indicator found while scanning training data. When testing a solution or 

evaluating it for fitness, the number for Chromosome 1 for a given rule is 

compared with the value in the indicator for that rule. 

• Chromosome 2 contains a Boolean operator, or a value which can be converted 

into a Boolean. If true, the hypothesis is that the pressure is positive if the 

indicator score lies above the number in Chromosome 1, and does not if 

otherwise. If false, the hypothesis is that the pressure is positive if the indicator 

score lies below the number in Chromosome 1, and does not if otherwise. 

• Chromosome 3 holds the weighting factor (Significance), or number of points 

earned towards a positive pressure. It is counted only if Chromosomes 1 and 2 

point in the positive Direction. 

• Chromosome 4 holds the weighting factor (Significance), or number of points 

earned towards a negative pressure. It is counted only if Chromosomes 1 and 2 

negate a positive pressure Direction. 

3) Application of EA: For this method, truncation selection is used as the natural  

selection operator. As it is known that the selective pressure for truncation selection is 

extremely high, the parent selection method used in Method A was chosen to be random, 

since no further selective pressure was likely to be needed.  
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      This EA uses an n-point recombination operator; the number of points may be 

selected by the user before a run; all solutions of all runs will then utilize the same n-

point value. 

      Mutation occurs by randomly selecting a child, then randomly selecting a 

chromosome, and then mutating it to a random value within the valid range of possible 

solutions. There will be a number of mutations equal to the value input by the user for 

‘Mutation Rate’ at the onset of a simulation. 

4) Fitness Evaluation: The fitness evaluation consists of summing the pressures for  

each instance in which the pressure Direction was positive, summing the pressures for 

each instance in which the pressure Direction was negative, adding these together to get 

the predicted result, and then taking the absolute value of the predicted result minus the 

actual: 

 

 D = |G – A|    (2) 

 

Where D is the distance between actual ground-level ozone concentration and the 

estimate 

A is the actual ground-level ozone concentration 

G is the estimated ground-level ozone concentration 

 

     D is averaged over all used training-data members and multiplied by (-1) to find the 

final fitness score for the RoteEA-evolved solution.  
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C. Taguchi Method 

     The T-method is used to calculate the Signal-to-Noise (S/N) ratio for the overall 

prediction of the dataset. One of the main benefits of the T-Method is that it can be used 

to predict results based on a relatively small set of input data. While there are several 

other methods to make such predictions, most require much larger data sets to reach an 

acceptable solution. For many studies this becomes a limiting factor when these large 

data sets are not always available to perform these analyses, and so the T-Method is an 

ideal choice as it can identify correlations with relatively little data. The T-method 

examines the variation of the data points within the data set to calculate a signal to noise 

ratio (S/N) associated with the overall prediction of a data set. This property is used in 

situations where weather conditions often display high variability and the data is limited, 

the T-method proves efficient as it can be applied on a limited dataset. 

     The T-Method as it is applied here is an implementation of the Taguchi System of 

Quality Engineering (TSQE). This methodology was introduced to eliminate variation 

during product design and manufacturing through the use of four steps: 1) product 

parameter design, 2) tolerance design, 3) process parameter design and 4) on-line quality 

control. The method is carried out in three stages. First the objective is defined, then the 

available feasible solutions are explored, and the process is then completed with the 

selection of the best alternative to meet the design objective, using the S/N ratio as a 

measure of fidelity [10]. Depending on the quality characteristics used, different 

formulations of the S/N ratio may be used, such as: 1) normal-the-best (NTB), 2) smaller-

the-better (STB), and 3) larger-the-better (LTB). For the development of technological 

systems and components the dynamic S/N ratio is typically used, in part because it allows 
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designers to better assess the stability of the system. Additional types of S/N ratios can be 

found in publications by Taguchi [11], Phadke [12], Fowlkes & Creveling [10], and 

Taguchi & Jugulum [13].  

     The T-method requires the selection of a unit space (or normal space) in which all 

members of the group must have the same or similar output. This multivariate output data 

is partitioned into two different classes that are then used to perform the analysis. The 

first class is referred to as the unit group and the second class is the signal group. The 

average output value of the unit group and the average output value of each variable are 

subtracted from each member of the signal group. Using the relationship between the 

variable values and the output of the signals, the slope, β, and S/N ratio, η, are calculated 

to obtain an overall estimate of the true output value for each signal member. The slope, 

β, is the sensitivity of the output with respect to the explanatory (independent) variable. 

The present study is limited to applications having only one response (dependent) 

variable and several explanatory (independent) variables. In addition, this work assumes 

that the explanatory variable is selected based on expert knowledge and understanding 

the nature of the problem. Previous applications of the T-method include the prediction of 

the food self-sufficiency ratio and the prediction of the total precipitation based on 

historical data [14, 15]. 

III. Results 

      The standard evolutionary algorithm and GBEA were evolved using 899 data sets and 

then evaluated using the remaining 195 data sets. The deviation of the prediction varied 

greatly over the evaluation data set, but the mean deviation was fairly consistent across 

all 100 trials for the two methods. For the first twenty data sets, the standard evolutionary 
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algorithm (Figure 1) had a large variation in the results, which continued for the entire 

195 data sets, resulting in an average deviation of 15.579 from the true ozone level. The 

GBEA solution fared better than the standard evolutionary algorithm (Figure 2). The 

trend tracked the actual ground-level ozone better than the standard evolutionary 

algorithm, but still had a significant deviation from the actual ozone levels, with an 

average deviation of 7.709. 

 

Figure 1, Standard EA results showing actual and predicted ground level ozone for 20 
sample data sets. 
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Figure 2, GBEA results showing actual and predicted ground level ozone for 20 sample 
data sets. 
 

      The Rote EA was initially tested over 11 runs, each with a different combination of 

parameter values between two parameters:  

1) The number of data points used in training out of a total possible of 899 

2) The Sensitivity Factor 

   A table containing the different combinations, as well as the respective results of each 

run in terms of mean deviation of predicted vs. actual, is shown in Table 2. 
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Table 2 – Sensitivity factors, training set size, and predictor results. 

  Sensitivity Factor Number Trained Mean Deviation 
        
1 32 899 6.06 
2 128 899 5.74 
3 32 50 7.12 
4 32 100 6.58 
5 128 50 6.71 
6 64 100 6.34 
7 128 100 6.57 
8 32 500 7.2 
9 64 500 5.85 
10 128 500 5.9 
11 128 50 6.92 
   

 The RoteEA was evaluated over 30 runs using a training set of 100 data points. For 

each run, the mutation rate was 10, and the Sensitivity Factor was also 10. The RoteEA 

was evaluated based on the average difference between actual and predicted values. 

Actual versus predicted values for ground-level ozone are provided in Figure 3. 

 

Figure 3, Rote-EA results showing actual and predicted ground level ozone for 20 sample 
data sets. 
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  Of the 30 runs, the best performing exhibited an average deviation of predicted from 

actual values of 5.825. The worst run showed an average deviation of 8.815, and the 

average deviation for all runs was 7.203. 

  To forecast the ozone concentration using the T-method, twenty samples from the 

ozone concentration data are selected at random to construct a base system. This base 

system will then be used to predict the values of ozone concentrations, while the 

remaining data will be used as a validation data set. The unit space is first defined to 

provide the reference data that will be used to forecast the output. The average of all the 

data points available is calculated to determine this unit space, as the unit space should 

capture all of the data and these are distributed around this mean value. In addition, 

calculating the mean of the data set provides the user information on how the data points 

will be distributed around the mean. Before the results of the T-Method can be used to 

forecast the unknown values of ozone concentrations it must be validated using the 

remaining values of the ozone concentration from the data set. The known ozone 

concentration data is selected as the signal space. Each unit space value is then subtracted 

from the signal data to obtain a new standardized dataset. This method of standardization 

is used to show the deviation of the signal data is from the unit space (signal-to-noise 

ratio) [15]. 

  The average output response value is denoted by M0, and the average values of input 

variables are denoted as x01, x02, x03,…, x0k. The total number of signal members is n. This 

case study involves twenty signal members, representing the twenty data samples. 

Therefore, M0 is the average value of twenty response values M1, M2,…, M20. Similarly, 

x01, x02, x03,…, x0k corresponds to the average values of (x11, x12, x13,…, x1k) ,…, (xi1, xi2, 
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xi3,…, xik), where k varies from one to thirteen to represent the independent variable 

signals in the unit space. 

      The sensitivity between one input variable and the output response is denoted using β, 

and the corresponding signal-to-noise ratio is denoted η.  The calculations outlined by 

Taguchi and Jugulum (2002) are given in Equations 3-8:  
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  Using the Equations 3 through 8, β and η values are calculated for each value of x. 

Using the individual S/N ratio, each individual prediction can be calculated as follows: 
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  The signal values ( iM ) and the predicted values (iM̂ ) can then be tabulated and 

compared to show the prediction accuracy for these individual. The calculation for 

overall prediction and the S/N ratio for the entire system are calculated as shown in 

Equations 10-15 (Taguchi and Jugulum, 2002). 
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  The S/N ratio calculated in equation 15 gives an indication of the robustness of the 

system being analyzed. After the method is validated with the data set of known ozone 

concentration, the forecasting procedure is applied to calculate the values of the unknown 

ozone concentrations. In this case, the signal space is the data containing the values of the 

factors (x0,1 – x0,k) affecting the unknown ozone concentrations. The sum of the mean 
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square error is used to obtain the base system that will be used to predict the unknown 

values of ozone concentrations (Parthiv et al., 2009). The mean square error for each 

combination of variables with the lowest value obtained is selected for the base system. 

This is selected as it represents the lowest variation obtained in the base system, giving a 

stable base system to allow for more accurate predictions. Seventy-five sample data 

entries were analyzed and the results were used to forecast future ozone concentrations 

based on the system generated with the unit space and signal space. The signal data 

containing the values of known ozone concentrations are taken into account for this 

prediction. The results between the actual and predicted data of the signal data are shown 

in Figure 4. This shows the validation of the data for the known values and the accuracy 

of the T-method for selecting the base system.  

  

Figure 4, T-Method results showing actual and predicted ground level ozone for 20 
sample data sets. 

IV.  Conclusions 

  A comparison of the three evolutionary computation algorithms shows that the 

representation of the problem has a large impact on the quality of the predictor found. 
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The average deviation for twenty evaluations of each method is shown in Table 3. For the 

standard evolutionary algorithm, the predictors found performed very poorly, with most 

predictions deviating more than 100% from the actual ozone values. The use of a 

diversity preserving graph improved the accuracy of the predictors significantly, as did 

the use of the Rote-EA.  

Table 3 – Standard Error 

 
T-
Method 

SGA 
Cycle 
GBEA 

RoteEA 

Standard 
Error 

1.949 
15.579 

7.709 7.203 

 

  The RoteEA seems to benefit from a high value for the sensitivity factor; it seems also 

to benefit from a greater number of trained data points. Both of these results were 

expected. The higher the sensitivity factor, the more rules are available to be trained per 

solution. The higher the number of data points to train on, the more opportunities the 

RoteEA has to refine its solutions. Each of these parameters, however, causes longer 

computation times if high values are chosen, and diminishing marginal returns are 

experienced. 

  The RoteEA does not require a high sensitivity factor or large training data sets to be 

effective, as demonstrated by Figures 4 and 5. Figure 4 demonstrates the ability of the 

RoteEA to capture relationships; none of the 11 runs differ vastly from the others despite 

large differences in the number of rules and the number of data points used to train. 

Figure 5 demonstrates the ability of the RoteEA to consistently train on small data sets 

and few rules.   
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  This work represents the first time the RoteEA was applied to a problem of which the 

dependent variable lies on an unbounded range. As a new problem-solving method, the 

RoteEA demonstrated solid performance on a bounded problem; however, a weakness of 

the RoteEA was also discovered. Although the RoteEA seems adept at finding rules 

which describe relationships between independent variables and the dependent variable 

individually, the RoteEA in its current form is not able to explore the interrelationships 

between the independent variables of a problem; a significant disadvantage. 

  These evolutionary computation problems were compared to an existing prediction 

method that has been proven to perform well with a small number of variables and 

amount of training data. One of the concerns when using the Rote-EA is with 

overtraining the algorithm on the initial data set, a problem not encountered in the T-

method. The algorithm did perform much better than the standard evolutionary algorithm, 

but did not perform as well as the more established T-method. Previous studies have 

shown that EC methods can sometimes outperform statistical models similar to the T-

method [16], although this particular data set favored the T-method. This does indicate 

that as the T-method performs well on all correlated data, other factors affect the ability 

of evolved predictors to accurately perform on some data sets. This could be due to the 

cyclic nature of the collected data causing additional overtraining problems when 

applying a learning algorithm.  

  Based on past work, the overall result of the RoteEA method is similar to what one 

might expect if a system of finite state classifiers (FSCs) was evolved in a way which put 

a particular weight upon each individual FSC. However, the RoteEA seems to have some 
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advantages over FSCs. The RoteEA is believed to be able to build solutions in a less 

complex manner, thereby saving computation time.  

  This problem may be overcome by ‘squaring’ the RoteEA. Squaring the RoteEA 

entails utilizing a new set of chromosomes which act upon the previously existing ones, 

treating them as independent variables. In this way, the RoteEA should be able to develop 

rules which describe the cross-links between independent variables and better map the 

problem space. This should lead to the evolution of significantly better solutions, while 

only doubling the size of the existing RoteEA. The RoteEA is very lean in its design and 

exhibits short computation times; this change should therefore prove to be an inexpensive 

trade-off. In future work, a Rote-Squared EA may be introduced which will nullify the 

vulnerabilities of the current version.  
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III.  USE OF DECISION TREES TO MODEL COMPLEX VARIABLE 

INTERACTIONS TO IMPROVE ROTE-LCS ACCURACY ON 

CLASSIFICATION PROBLEMS  

Benjamin Daniels 

 

Abstract – The Rote-4 Learning Classifier System (Rote-4 LCS) expands on earlier 

versions of the Rote-LCS algorithm by linking Rote rules (consisting of relational 

hypotheses) by logical operators within a binary tree. The result is a rule-set 

consisting of one or more ‘major-hypotheses’, each of which consist of a binary tree 

and in turn are comprised of ‘minor hypotheses’, each of which consist of a terminal 

node of the binary tree. The result is a significant expansion of the accuracy of the 

Rote-LCS for classification problems. An added benefit of the representation 

method is human-readability; it is easier to understand relationships and rules 

represented in tree form than other common representation schemes in the field of 

machine learning.  

 

I. Introduction 

The Rote-LCS is a novel representation among learning classifier systems (LCS), a 

subset of machine learning algorithms. The Rote has been modified several times since 

its inception, improving its accuracy and increasing its versatility.  

      Rote4-LCS evolves rule sets, where each rule, or ‘major-hypothesis’ is a decision tree 

(binary tree with logical operators for tree nodes) with rule segments at the terminal 

nodes, each of which is a relational statement referred to as a ‘minor-hypothesis’. Each 
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solution consists of one or more rules, which, when evaluated, contributes a value which 

may be different if the rule is evaluated to true rather than false; these values are summed 

to produce a prediction or classification.  

      Unlike previous versions of Rote-LCS implementation [7, 8], Rote4-LCS is able to 

consider complex relationships between independent variables due to the inclusion of 

binary trees. Relational sentences convey a great deal of information in a relatively 

compact form. In addition, relational operators work well within binary tree structures 

because they may be evaluated to 'true' or 'false'. The result is a representation scheme 

which treats the solution space as a hyper-rectangle, where each independent variable 

represents one dimension. Each minor-hypothesis is a partition on a hyper-plane, and 

each rule is a multi-dimensional partition within the solution space. Unlike most or all 

other hyper-dimensional representation methods, however, Rote-LCS solutions may be 

represented in a two-dimensional graph as a tree of relational statements, allowing it to be 

human-readable [1, 2]. This is especially useful for applications, where a hypothesis must 

be derived concerning interactions between problem variables; one example of this is 

mapping of the carbon cycle. 

      The Rote-LCS is extremely competitive for classification problems, particularly 

Boolean problems. The Rote may also be useful for repetitive learning applications, such 

as those required by some AI control systems. In this paper, Rote4-LCS methodology is 

compared with earlier versions of the Rote in classification and real-value classification. 
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II.  Background 

      The Rote-LCS is a supervised Pittsburgh learning classifier system (LCS) [3]. 

Learning classifier systems are machine learning algorithms intended for use in 

classification, reinforcement learning, and function approximation [4]. LCS algorithms 

are a subset of genetic algorithms (GA), which originated in 1975 with work by Dr. John 

Holland, and expanded upon by Dr. David Goldberg and others [5,6]. 

      The addition of 'decision trees' of binary trees with tree nodes consisting of logical 

operators is partly inspired by earlier work of others, particularly Koza, involving the 

evolution of decision trees within a GA [7,8]. In this paper, decision trees are used to link 

rules such as those used by earlier research on the Rote. Rote4-LCS is partly inspired by 

Genetic Programming [5, 6] particularly the concept, representation, and methodology of 

evolving binary trees. A departure from earlier LCS methodology is the use of binary tree 

representation to create complex hypotheses from logical and relational operators. Unlike 

many prior supervised learning methods, the Rote attempts to represent relationships 

between independent variables in a way that could yield useful insight into the problem 

itself. By contrast, the majority of LCS methods use a ternary representation scheme, 

where binary inputs are compared to ternary rules. This is disadvantageous for at least 

two reasons; firstly, a mapping scheme must be created to enable this approach. Also, 

solutions will not be human-readable. Other common machine learning algorithms, such 

as neural nets and finite state machines also do not produce human-readable solutions. 

      Rote4-LCS is the fourth incarnation of the Rote. The first version was a classifier 

using only relational operators, the second used the same representation for real-value 
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classification, and the third included the use of the AND operator to build relationships 

between independent variables. 

III. Methodology 

A. Solution Representation 

      Solutions are trained via an evolutionary process with the traditional operators of an 

evolutionary algorithm: parent selection, recombination, mutation, and natural (survivor) 

selection. Each solution consists of a set of rules; the number of rules for a given solution 

may increase or decrease over the course of evolution.  

      Each rule is evaluated on each observation of a dataset during training; each rule of a 

solution is evaluated independently of the other rules of a solution. Each rule represents a 

hypotheses, which may be proven true or false for a given observation. A different value, 

or weight, will be assessed for a given rule depending on whether it has been evaluated to 

true or false. The results of each rule of a solution are summed, providing a prediction or 

classification (depending on the problem type) for the given observation. The distance 

between the prediction result and the dependent value of the given observation is used to 

assess a fitness score for the observation. The summed fitness over all observations in a 

dataset is used to provide a fitness score for a given solution during the training process. 

      Each rule in a solution is comprised of a set of seven chromosomes. A chromosome is 

defined here as a rule component which contains information that is directly altered by 

recombination and mutation during evolution. Rules also contain other components 

which are altered indirectly by evolution in response to changes in the chromosomes; this 

information is required for implementation of the method but is not significant to the 
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learning architecture theory described in this section. 

      The seven chromosomes of the solution architecture are designed to enable 

exploration of relationships between independent variables and the dependent variable 

using binary trees, logical operators, and relational operators. Each rule represents a 

'major hypothesis' which consists of one or more 'minor hypotheses', which will be 

referred to henceforth as 'rule segments'. Each rule segment uses the relational operators 

(>=) and (<) to evaluate individual independent variables of an observation. Rule 

segments comprise the leaves (terminal nodes) of a binary tree which uses the logical 

operators AND, OR, XOR, and NOT to evaluate the result of the major hypothesis. 

 

Figure 1, A hypothetical rule with a trunk length of three is shown. All values depicted 
are arbitrary. Chromosomes 1, 2, and 3 comprise rule segments. Chromosomes 4 and 5 
hold weighted values associated with rule output. Chromosomes 6 and 7, not explicitly 
depicted, hold information associated with the nodes and edges of the graph, respectively.  



54 
 

       

      As shown in Figure 1, above, the first three chromosomes contain all information 

relevant for rule segments. The first chromosome stores the independent variable to use 

for each respective leaf. The second chromosome holds a value for evaluating the 

variable of the rule segment. The third holds a Boolean value which determines whether 

the relational operator will be (>=) or (<). Chromosome 6 holds the information for tree 

nodes (but not terminal nodes); it contains the identity of the logical operator for each 

tree node. Chromosome 7 holds the node linkage information for the tree. Chromosomes 

4 and 5 provide a weight to be output by the rule, depending on whether the major 

hypothesis is proven or disproven. 

B. Initialization and Parsimony Control 

      Initialization begins with the random generation of a randomly selected number of 

rules; the default initial bounds, originating from informal experimentation, are between 

5 and 30 rules for each population member. Each rule consists of a randomly generated 

tree with default trunk length randomly selected between 1 and 6 (default initial values 

originate from informal experimentation with parsimony control requirements for 

acceptable run times on a modern PC).  

      Before leaves are generated, the minimum and maximum bounds are found for 

Chromosome 2. This is done by going through all variables of all observations in the 

training file to find the highest and lowest values for each variable; these are used for the 

minimum and maximum bounds when generating (or mutating) the second chromosome 

of a given rule segment.  
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      The minimum and maximum bounds for Chromosomes 4 and 5 values depends on 

the number of significant digits for the dependent (predicted) variable in problems 

involving prediction of a number (for instance, ground level ozone ppm). As a rule of 

thumb, the range for Chromosomes 4 and 5 is -100:100, with an order of magnitude 

added for every significant digit after the first four significant digits of the dependent 

variable; for instance, four significant digits in the dependent variable yields a range of -

100:100, and eight yields -1000000:1000000 for Chromosomes 4 and 5. In classification 

problems, the default minimum and maximum values for Chromosome 4 and 5 are -100 

and 100, respectively.  

      Parsimony control occurs in two ways: 1) providing a fitness subsidy to solutions 

with relatively lesser rule (binary tree) sizes, and 2) restricting the number of rules per 

solution to a user defined range with a specific minimum and maximum. The number of 

rules can have a tendency to grow quickly on some problems -- particularly number 

generation problems -- using the Rote4-LCS method. Because parsimony control spans 

the entire solution, not just individual rules, subsidizing smaller trees results in pressure 

to have fewer rules. In classification problems, this may actually result in fewer rules than 

is optimal. In the course of informal experimentation, no need for absolute restriction on 

tree size was discovered; providing fitness subsidy for smaller trees seemed sufficient to 

control tree size for all problems investigated. 

C. Design of Evolutionary Operators 

     After informal experimentation, it was determined that the Rote seemed to perform 
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well with relatively light to moderate selective pressure for parent selection. Default 

parent selection for the Rote is fitness proportionate with replacement. Random selection 

with replacement also performed well in informal tests for parent selection.  

      Recombination methodology involves pooling all unique rules of two parent 

solutions, randomly determining the number of these rules to include in a child solution, 

and randomly selecting those rules. Individual rules are not recombined; rules are kept 

intact from the contributing parents. No method utilizing individual rule recombination 

was tested; reasons for this will be addressed in the discussion section. 

     The first step in mutation involves randomly selecting a number of mutations to 

perform on the population of child solutions. The maximum number of mutations which 

may be performed per generation is a user input, though a good default, established 

through informal experimentation, is a number of mutations roughly equal to the number 

of children per generation. Once a given child is randomly selected for mutation, one of 

four mutation possibilities will be chosen from, with equal probability: 

• Rule addition 

• Rule deletion 

• Alteration of a leaf or rule weight 

• Mutation of a tree 

      Rule addition and deletion are straightforward; addition results in the random 

generation of a new tree and leaves. The new tree, like initialized trees, will have a trunk 

length between 1 and 6. Deletion consists of the removal of one of the rules of the 
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solution. If alteration is chosen, then one of the first five chromosomes will be chosen for 

mutation. Alteration of a leaf involves a mutation in Chromosome 1, 2, or 3 of a 

randomly selected rule segment of a randomly selected rule; alteration of a rule weight 

involves a mutation in Chromosome 4 or 5 of the selected rule. The chromosome chosen 

for mutation will be a weighted probability: 3/11 chance of mutation for each of the 

chromosomes 1-3 and a 1/11 chance of mutation for each of the chromosomes 4 and 5. 

These weights were not justified experimentally, but were not chosen arbitrarily; it seems 

pertinent to mutate terminal nodes more often than trees, as they are more abundant. 

     Tree mutation is ‘subtree’ mutation [11, 12]. If this type of mutation occurs, an entire 

subtree is randomly generated and appended at a randomly chosen node of the original 

tree; any existing subtree at that node is deleted. The subtree will have a trunk length 

between 1 and 5 levels. The terminal nodes of the subtree are randomly generated. 

     Rote4-LCS has been tested informally with truncation and tournament survivor 

selection methods. Informal testing has demonstrated convergence on each to virtually 

identical fitness values, but with faster convergence for tournament selection. Informal 

testing for tournament selection seems to reveal a near-optimal number of tournament 

participants to be approximately equivalent to half of the child population. 

D. Implementation of Chromosomes 

     Chromosomes are stored in a series of multidimensional jagged arrays of integers, 

where each dimension represents a 'domain,' or information type.  
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Figure 2, All chromosomes store information in the form of multidimensional arrays of 
integers. As an example for Chromosome 3, D1 represents a rule, D2 represents a rule 
segment of D1, and D3 represents a classification. 

      There are five domains over the seven chromosomes: Rule, Rule Segment, Trunk 

Level, Branch Location, and Classification. The first four of these are relatively self-

explanatory; the last is used in classification problems where more than two possible 

classifications exist. For any other problem type, only the zeroth place of this domain is 

utilized. 

E. Problem Type Configuration 

      Problem types are treated similarly, with a few differences in fitness calculation in the 

fitness function. For classification problems, negative and positive scores from all rules 

are simply added for all classifications and the classification with the highest score is 

chosen. For real-value classification, rule score is normalized against a finite range that 

suits the dependent variable. This range is calculated by taking the highest and lowest 
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value of the dependent variable over all observations and multiplying by the constant 

1.25 (to enable extrapolation in the case of extreme test observations).  

      For classification problems, fitness is simply a sum of correctly classified 

observations. For real-value classification, fitness is calculated by measuring the distance 

between actual and predicted values and averaging this score over all observations. The 

maximum fitness score possible for real-value classification is zero, which would indicate 

no distance between actual and predicted values over all observations. The maximum 

fitness score for classification problems is equal to the number of observations. 

IV. Results 

A. Experimental Setup 

      Rote4-LCS was tested on both classification and real-value classification problems. 

Three datasets were used; two of these have been used to evaluate previous versions of 

the Rote [7, 8].  

      For all tests, tournament selection was used on a generational population of 10 

members and 20 children. Mutation, survivor selection, and other parameters were 

confined to 'best mode' values as prescribed in Section III. 

      As discussed in Section III, classification and real-value classification problems have 

different reactions to tree subsidization; real-value classification problems often incur 

bloat, and classification problems may have the opposite problem. To investigate this 

further, eight experiments were performed; two using the breast cancer dataset used in 

[7], three using the ground-level ozone dataset used in [8], and three with an MMA 
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(mixed martial arts) dataset. The MMA dataset was obtained via a web-scraping 

application tailored to scrape three MMA websites for statistics of MMA contenders and 

match history. The MMA dataset was created exclusively for testing Rote4-LCS for 

classification. 

      The eight experiments each compared Rote4-LCS performance at different 

configurations of rule parsimony, where different ranges were utilized to disambiguate 

Rote performance expectation with regard to rule restriction on classification and real-

value classification problems.  

B. Results 

Table 1 – Fitness scores are shown for five runs over eight experiments on three datasets 

Max Possible Score 1 Score 2 Score 3 Score 4  Score 5 Average Accuracy

Cancer Lower Bound 10 197 193 196 192 194 194 193.8 0.983756

Cancer No Restriction 197 193 195 195 196 192 194.2 0.985787

MMA Lower Bound 10 293 244 248 254 255 251 250.4 0.854608

MMA Lower Bound 20 293 240 243 250 256 248 247.4 0.844369

MMA No Restriction 293 249 241 250 ## 247 246.75 0.84215

Ozone No Restriction 0 -1751 -2879 -3070 -1198 -2224.5

Ozone Upper Bound 75 0 -1314 -1805 -1977 -2085 -1795.25

Ozone Upper Bound 125 0 -592 -2630 -3796 -2132 -2287.5  

      From the table shown, the best score for Rote-4 on the breast cancer dataset was 

99.5%, with an average score of 98.5% for the five runs, on the configuration with a 

lower bound of 10 rules. The best score on the MMA dataset was 87%, with an average 

of 85.5% over the five runs, on the configuration with a lower bound of 10 rules. The best 

score on the ozone dataset, a real-valued classification problem, was a deviation of 5.92.  

       These scores are contrasted with Rote-1 and Rote-2, over the breast cancer and 

ozone datasets, respectively, as well as the results of Rote-1 on the MMA dataset tested 
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informally (results not shown). The best score achieved by Rote-1 on the breast cancer 

dataset was 99%, with an average of 96.7% over 10 runs [7]. The best score achieved by 

Rote-2 on the ozone dataset was 5.825; the worst run showed an average deviation of 

8.815, and the average deviation for all runs was 7.203. This is contrasted with the 

Taguchi Method, which achieved an average deviation of 1.9 [8]. The best score achieved 

on the MMA dataset by Rote-1 in the course of informal testing was 75%. 

V. Discussion 

A. Review 

      Earlier versions of the Rote-LCS method did not use binary trees to link rule 

segments. Rules comprised simple relational statements, as with rule segments in Rote-4-

LCS. Theoretically, this limited the ability of the method to explore complex 

relationships between the independent variables of a problem. Rote4-LCS methodology 

attempts to expand on previous work by linking rule segments using logical operators to 

build 'hypotheses' consisting of complex relational statements. 

      Based on results provided in this paper, as well as results from informal testing and 

comparison with previous work, Rote-4-LCS dominates earlier versions of the Rote and 

other algorithms in Boolean classification, and is dominated by earlier versions and by 

other algorithms in real-value classification. Formal and informal testing shows a wide 

gap between training and testing results for Rote4-LCS in real-value classification. Some 

degree of overtraining is apparent, as some solutions generated earlier within a run often 

perform better than later ones.  
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      Though Rote-4 does not appear to be a good match for real-value classification in its 

current configuration, it remains undefeated by other algorithms in the benchmark 

Boolean classification problems attempted. Formal experiment appears to demonstrate 

that rule restriction may not be necessary for classification problems. 

B. Future Work 

      A great deal of work remains for the Rote. This includes an improvement to increase 

the Rote's accuracy in real-valued classification problems. Four additional chromosomes 

will be added to enable each rule to project a range – weighted with a particular level of 

certainty – predicted to contain a good result. Each Rote rule will provide a predictive 

statement containing a relational operator, a weight, and an upper or lower bound 

(depending on the identity of the relational operator). An example rule may be such as 

"The desired value is greater than 24, with a certainty of 305." This places a weight of 

305 on each discrete value from 25 to the upper bound. After all rules are evaluated, the 

center of gravity will be found for all overlapping ranges; this point will become the 

predicted result. This is in contrast to the current representation scheme for real-valued 

problems, which envisions the prediction range as a pressure gauge; each Rote rule either 

adds or subtracts a pressure quantity (weight) for a final pressure sum. The bounds of the 

gauge is normalized against the bounds of the range of possible real-valued answers of 

the problem; the final prediction is therefore a ratio with the pressure sum. 

Also of important note is the 'Rote-Annex', a method which intends to use the Rote 

for evolving materials and systems by first modeling their characteristics using the Rote, 

and then predicting improvements based on the model. One example utility is the design 
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of composites. Composite materials manifest various properties based on their input 

materials and fabrication process. To maximize manifestation of useful properties while 

minimizing laboratory experimentation, a four-part process would involve: 1) many 

initial observations consisting of random input material combinations and variations in 

fabrication method, 2) generation of a model of material properties based on the resulting 

data, 3) optimization of desired material properties based on the model, and 4) an 

iterative approach in which successful improvements are interspersed with random 

changes, re-modeling, and re-optimization as the result is refined until a defined threshold 

of declining marginal gain is reached. 

VI.  Conclusions 

      Rote4-LCS uses binary trees and logical operators to link relational statements used 

in earlier versions of the Rote. Rote4-LCS appears to be extremely competitive in 

classification problems, remaining undefeated on the datasets used to benchmark 

classification performance on Boolean problems. 

      Rote4-LCS currently appears less useful for real-value classification problems, and 

may suffer from significant overtraining issues for this problem type. This issue, 

however, will be addressed in future work, as discussed in Section IV.B. 
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SECTION 

3. CONCLUSION 

 Rote-LCS is a unique learning classifier system with exceptional results on 

classification problems (particularly Boolean problems). and probable applicability to at 

least some reinforcement learning problems. It further has a rare advantage among 

learning classifiers and machine learning algorithms in general -- a representation scheme 

that is able to offer human readability. Rote-LCS is intended only for problems for which 

classifiers are applicable, particularly supervised learning classification problems. The 

Rote thus far does not contain functionality for unsupervised learning. The Rote has only 

had mediocre success on real-valued classification, although a modification will be 

applied in future work which is believed to be likely to fix this issue. 

 The first incarnation of the Rote-LCS established the basic rule representation 

methodology used throughout all subsequent versions of the Rote. Relational hypotheses 

are used to create partitions which define solutions within a hyper-rectangular search 

space, where each independent variable represents a dimension within the search space. 

Better than 99% accuracy is achieved on the best solutions on a breast-cancer dataset, 

dominating the other algorithms benchmarked against. 

 The second version of the Rote-LCS expanded the Rote's functionality to include 

real-valued problems, from only Boolean problems. Although the Rote-LCS was defeated 

by one of the benchmarked algorithms on a ground-level ozone prediction dataset, it 

implied its applicability to a wider range of problems than originally anticipated. 

 The latest version of the Rote-LCS includes the use of binary trees and logical 

operators (decision trees) to significantly expand the accuracy of the Rote by allowing 
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search of relationships between independent variables. This can also be imagined as an 

alteration to the way partitions are formed in the multi-dimensional search space; rather 

than considering each dimension and partition individually, partitions themselves are now 

multi-dimensional. The use of trees to link relational statements maintains the option for 

human-readable solution outputs; while it is not possible to visualize hyper-dimensional 

spaces, partitions may be represented two-dimensionally as trees which are not difficult 

to comprehend and may be represented visually.  

 Future work planned for Rote-LCS includes an improvement to increase the 

Rote's accuracy in real-valued classification problems; this will involve the addition of 

four additional chromosomes to enable each rule to project a range – weighted with a 

particular level of certainty – predicted to contain a good result. Further work will be 

done to produce the Rote-Annex, a method by which Rote modeling will enable 

reduction of lab work and experimentation for various applications, such as that of 

composite material creation. Also, work is planned to benchmark the Rote-LCS against 

other algorithms on various problems to determine how best to apply the Rote for 

maximum societal benefit. 
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