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ABSTRACT 

Creating systems with multiple autonomous vehicles places severe demands on 

the design of control schemes. Robot formation control plays a vital role in coordinating 

robots. As the number of members in a system rise, the complexity of each member 

increases. There is a proportional increase in the quantity and complexity of onboard 

sensing, control and computation. This thesis investigates the control of a group of 

mobile robots consisting of a leader and several followers to maintain a desired geometric 

formation. The group considered has several inexpensive sensor-limited and 

computationally limited robots that follow a leader robot in a desired formation over long 

distances. This situation is similar to a search, demining, or planetary exploration 

situation in which several deployable/disposable robots are led by a more sophisticated 

leader. Complex sensing and computation are performed by the leader, while the 

followers perform simple operations under the leader’s guidance. The architecture 

consists of two main components: (i) a model-based vision system and (ii) a control 

algorithm. The model-based vision system can recognize and relatively localize the 

follower robots using markers mounted on the leader robot. A Bézier trajectory based 

mechanism is selected to enable a group of follower robots to follow the leader. The 

following control method is mathematically simple, easy to implement, and  well suited 

for long distance navigation. The algorithm only requires knowledge of the leader-

follower relative distance and bearing angle. Both types of data are computed using 

measurements from a single camera, eliminating the need for a more sophisticated stereo 

system.  
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1. INTRODUCTION 

1.1. MULTI ROBOT-SYSTEMS 

The prospects of multi-robot systems have been increasing in recent years. This is 

because the advantages such systems offer over a single robot including greater 

flexibility, adaptability, scalability, and affordability. Having a group of robots move in 

formation would be beneficial in many real world applications, such as search and rescue, 

demining in military missions, transporting large objects, and convoying. It is possible 

for one user to control an entire group of robots without having to specify explicitly the 

commands for each one. Figure 1.1 shows a situation in which only the lead truck in a 

supply convoy needs to be manned. In an alternative scenario, the lead robot may be 

endowed with more sophisticated sensors and computational capabilities for overall 

planning and navigation, while other robots in formation are simple and specialized.  The 

de-emphasis of one large and expensive robot reduces the chance of a catastrophic 

mission failure. The use of several mobile robots in a coordinated manner enables the 

achievement of complex tasks. The robots do not have to be very complex in structure, 

since each one can be specialized for a particular task. Reducing the number of sensors 

on each robot in a multi-robot system plays a major role in reducing the complexity and 

cost. 

 

 

 
Figure 1.1. Convoy of Supply Trucks.1 

                                                 
1 Picture courtesy: http://www.stockinterview.com/News/03222006/china-coal.html 
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One potential advantage of multi-robot systems is the reduction of human 

involvement in dangerous situations including search and rescue, mining areas, 

battlefields, and planetary missions. Such applications subject the robots to high damage 

and failure rates. Single units fitted with expensive equipment raise unacceptable 

economic concerns. The use of multiple robots equipped with low cost components, 

among which tasks are distributed are more suitable for such situations. Task distribution 

includes sensing, computation, and control for the group as a whole. Simple robots can be 

considered disposable to the overall mission, so loosing a few units does not result in 

mission failure. In a leader-follower framework, the leader is given the task of navigation, 

including path planning, and obstacle avoidance, whereas the followers’ tasks involve 

tracking the leader, gathering data, and handling communication.  These groups can be 

easily expandable to accommodate more units for a larger sensor coverage or troop 

movement. 

This thesis addresses the problem of designing a leader-follower framework with 

sensor-limited robots. Given a leader robot that moves about in an unknown trajectory, an 

attempt was made to maintain the robots following the leader at a certain distance behind, 

by using only visual information about the position of the leader robot. The robots were 

designed to be as simple as possible in structure. The units are not equipped with 

expensive sensors such as laser or sonar rangefinders. Global Positioning System (GPS) 

receivers are subject to satellite availability and sometimes lose a signal if there is no 

clear view of the sky. Sensors for keeping track of robot movement, such as wheel 

encoders, are subject to accuracy issues and drift, making information gathered from such 

sensors unreliable. For these reasons, in the current work, all the sensing was done via 

vision. The team consisted of three or more units equipped with only a forward facing 

camera for gathering data. 

 

1.2. RESEARCH MOTIVATION 

Traditionally, the control design for mobile robots relies on measurement from 

dead reckoning sensors such as wheel encoders which provide odometer or position data. 

However, these measurements render themselves completely unreliable after a few 

meters of navigation due to the encoder's low accuracy and drift. Wheel slippage, uneven 
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surfaces, and electrical noise render readings imprecise. Acoustic sensors such as radars 

and sonars are expensive and their readings are susceptible to stray reflections. They are 

also unable to recognize and distinguish between objects of similar shape, type and color. 

However, due to the effectiveness and low cost of vision sensors and their relative 

cheapness in computing power, the current trend is to design systems that use vision as 

their primary sensor. Image processing in software obviates the need for complex 

systems using odometry, sonar or laser sensors. In this thesis, an effort was made to 

acquire localization and sensory information through vision. Although this method results 

in increased computation, better algorithms can be applied to reduce this concern.  This 

research entailed getting a group of mobile robots with inexpensive sensors to follow a 

leader with a desired geometric formation. A single forward facing camera was the only 

sensor being used for setting up and maintaining formation. These robots are significantly 

less powerful and complex in comparison to other robotic systems in terms of sensors and 

computational power. 

 

1.3. RELATED WORK 

1.3.1. Visual Tracking. Localization using vision  sensors in  robot  formations is  

also known as the visual tracking problem. Fiala, (2004) presented a vision based system 

for controlling multiple robot platforms in real time using imagery from a top view video 

camera. Lowe, (2004) described a method that  involved  extracting distinctive features 

by matching individual detected features to a feature database of known objects using a 

fast nearest neighbor algorithm. Chen et al. (2005) developed a monocular-camera based 

visual servo tracking controller for a mobile robot subject to nonholonomic motion 

constraints using Lyapunov-based techniques. By comparing corresponding object target 

points from two different camera images, geometric relationships are exploited to derive 

a transformation that relates the actual position and orientation of the mobile robot to a 

reference position and orientation. This transformation is used to synthesize a rotation 

and translation error system from the current position and orientation to the fixed 

reference position. Han and Hahn, (2005) used a single forward facing camera to 

determine the relative position of a robot with respect to another robot or object. Since 

the shape of the target in the image frame varies due to rotation and translation of the 
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target, they suggested a tracking scheme which uses the extended snake algorithm to 

extract the contour of the target and updates the template in every step of the matching 

process. In this work, the follower robots forward facing camera has an unobstructed 

view of the leader robot. The leader has a colored pattern mounted behind it. This helps 

in determining the position and orientation of the leader robot with the follower robot as a 

reference. Perspective geometry is used to transform real world 3D coordinates to a 2D 

image plane. 

1.3.2. Formation Control.  A variety of approaches have been proposed for robot  

formation and control. One of the first approaches was developed by Balch and Arkin, 

(1994) who proposed a behavior-based approach for formation of a team of military 

unmanned ground vehicles as scout units equipped with GPS, sonars, and vision sensors. 

Tan and Lewis, (1996) applied the concept of virtual rigid structure for formation 

maintenance. Their algorithm assumed that all robots had global knowledge and  

iteratively fit the virtual structure to the current robot positions, displaced the virtual 

structure in some desired direction, and updated the robots’ positions. Vidal et al. (2003) 

translated the formation control problem into a separate visual servoing task for each 

follower, which is also the same approach used in this thsis. The follower robot uses 

vision to estimate the position and velocities of its leader. However, this was 

accomplished using omni-directional cameras. Although using distributed camera sensors 

in these approaches requires intense computation at each robot, implementing better 

algorithms for vision processing reduces the need for higher processing power. Chiem 

and Cervera, (2004) proposed an efficient method to control robot formations using 

Bézier trajectories. Each follower robot uses a forward facing color-tracking vision 

camera to estimate the relative pose of the leader. Then, a local Bézier trajectory is 

created and followed. The work presented in this thesis uses Bézier curves for trajectory 

generation on simple lines, because it is computationally simple and is well suited to the 

simple follower robots. Work by both Fredslund and Mataric, (2002) and Michaud et al. 

(2002) involved the followers panning their cameras to center the leader in the camera's 

field of view. Their works also proposed methods in which the robots initialize and 

determine their own positions in the formation, in addition to formation control. However 

each member of the team of homogeneous robots, is equipped with sonar, laser, a camera, 
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and a radio link for communicating with the others. Parker et al. (2004) presented a 

control approach for heterogeneous robots in which a more capable leader assists simpler 

follower robots that have no onboard capabilities for obstacle avoidance or localization 

and only minimal capabilities for kin recognition. The leader controls navigation using a 

“chaining” formation method, forming a sensor network. Das et al. (2001) presented a 

paradigm for switching between centralized and decentralized controllers that allows for 

changes in formation. Like the leader, followers can also take part in obstacle avoidance. 

A single omni-directional camera is used in all robots and a host computer is used as a 

centralized processing unit. The host computer receives video from all robots and 

calculates relative velocity and pose between each follower and its leaders. Desai et al. 

(1998) used methods of feedback linearization for controlling formations that utilize only 

local sensor-based information in a leader-follower motion. First, the lead robot is  given 

a motion plan. Each robot has the ability to measure the relative position of other robots 

that are immediately adjacent to it. Once the motion for the lead robot is given, the 

remainder of the formation is governed by local control laws based on the relative 

dynamics of each of the follower robots and the relative positions of the robots in the 

formation. Akella and Hutchinson, (2002) address the task of coordinating the motions of 

multiple robots when their trajectories (defined by both the path and velocity along the 

path) are specified, used primarily to avoid collisions between units. In Hutchinson’s 

work, each follower robot is equipped with a forward facing camera. Visual tracking the 

leader robot gives its orientation and position with the follower robot as a reference. A 

Bézier curve is then generated between the two robots, enabling the follower to track the 

leader robot using velocity control. 

 

1.4. ORGANIZATION 

This thesis is organized as as described below. Section 1 provides an introduction 

to research topics related to this work. Multi-robot systems are introduced, then related 

work on various visual tracking and formation control methods is reviewed. Finally, the 

motivation behind this work is discussed. 

In Section 2, the whole system setup is described in detail. The physical and 

electrical configuration of the robots is presented and the visual capture algorithm is 
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discussed. The technique used to measure and estimate the robot position and orientation 

using parameters from the visual algorithm is discussed, followed by a description of the 

software used. 

Section 3 describes the trajectory tracking control algorithm, which is based on 

Bézier Trajectories. 

Section 4 presents the experimental results of the formation control law, using the 

mobile platforms in the laboratory. The experimental setup is described in detail followed 

by results with different formations. 

Section 5 summarizes the contributions of this work and identifies areas in which 

future work could improve and extend the methods developed here. 
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2. DESIGN METHODOLOGY 

2.1. SYSTEM OVERVIEW 

Each robot in a team is capable of localizing and following the leader robot using 

vision. The system structure of such a robot is shown in Figure 2.1. It consists of six 

units: main unit, power unit, locomotion, sensing, communication and the host computer 

units. The main unit, an ARM7 CPU, is described in Section 2.2.1. The power unit is a 

single 8V lithium-polymer battery along with 3.3V and 5V voltage regulators for 

powering the main control board. The drive motors run directly on the 8V. An onboard 

CMOS camera captures JPEg images and sends them over serially to the ARM7 

controller. However, in the research for this thesis, a USB camera was used due to 

camera firmware issues. A Zigbee radio handles communication between the ARM7 

controller and the host computer. All the image processing is accomplished by the host 

computer and control commands are sent back to the robots locomotion module. 

 

 

 
 

Figure 2.1. Robot System Overview. 
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2.2. ROBOT HARDWARE 

The robots, based on Surveyor™ Corporations2 SRV-1 platform, are palm sized 

and feature two independently driven, differential-steered tank-style treads run via two 

DC gear motors. An ARM7 controller handles processing and manages onboard 

peripherals. The platforms are equipped with infrared sensors for detecting near ranged 

obstacles and a forward facing camera. All communication between the robots and the 

host computer is conducted serially via Zigbee wireless radios. Figure 2.2 illustrates key 

platform parts. The system is powered by an 8V lithium polymer battery. Aside from the 

drive motors, the platform runs at 3.3V to 5V. 

 

 

 

Figure 2.2. Key Parts of the Robot Platform. 

 

 

2.2.1. Processor.  The platforms are powered by a 60MIPS 32bit ARM7TDMI-S 

LPC2106 processor from Philips NXP with 64kB on chip static RAM and 128kB on chip 

flash memory for storing code. The ARM7TDMI-S core is a synthesizable embedded 

RISC processor that provides system designers with the flexibility necessary to build 

embedded devices requiring small size, low power, and high performance. The processor 

employs a unique architectural strategy known as Thumb, which makes it ideally suited 

to high-volume applications with memory restrictions or applications in which code 

                                                 
2 Surveyor™ Corporation, http://www.surveyor.com/ 
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density is an issue. The key idea behind Thumb is a super-reduced instruction set. 

Essentially, the ARM7TDMI-S processor has two instruction sets including  the the 

standard 32-bit ARM set and the 16-bit THUMB set. 

The Thumb sets 16-bit instruction length allows it to approach twice the density 

of standard ARM code while retaining most of the ARM’s performance advantage over a 

traditional 16-bit processor using 16-bit registers. This is possible because Thumb code 

operates on the same 32-bit register set as ARM code. Due to the huge code size of this 

work, all code has been written in Thumb mode. 

Peripherals for the LPC2106 include two Universal Asynchronous Receivers 

Transceivers (UARTs). One UART provides a full modem control handshake interface; 

the other provides only transmit and receive data lines. The implemented I2C-bus 

supports bit rates up to 400 Kbit/s (Fast I2C-bus). Six single edges and/or double edge 

controlled PWM outputs are available for motor control. 

As shown in Figure 2.3, the processor is based around a development board from 

Embedded Artists. 

 

 

 

Figure 2.3. The ARM7 LPC2106 Controller from Philips. 

 

 

The board runs at a voltage of 3.3V and has all of the processor's pins routed to 

header for easy interface. Downloading of new firmware onto the chip is handled by the 

chip's onboard boot loader using a serial channel.  
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2.2.2. Wireless Communication. Each SRV1 communicates with the base station  

via Zigbee 802.15.4 compliant wireless radios. These are full fledged radio modems 

capable of speeds up to 250,000bps. They have a transmitting power of 100mW with an 

indoor range of about a 100m each. Data is transferred between the robots and the base 

station at 115200bps. The radios are used for telemetry, as well as for remotely 

downloading code onto the robots. All SRV-1 data and control commands, including 

camera images are sent via these radios. Figure 2.4 shows one such radio module. Figure 

2.5 shows the base station, which consists of a similar radio connected via Universal 

Serial Bus.  

 

 

 

Figure 2.4. The Zigbee Radio Modem. 

 

 

 

 

Figure 2.5. USB to Serial Radio Adaptor. 

 

 

2.2.3. Camera.  The SRV-1 robots are  equipped with a C328  JPEG compression 

module which performs as a video camera or a JPEG compressed still camera (OV7640 

sensor). The included lens has a focal length of 4.63mm with a 57 degree field of view. 
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As show in Figure 2.6, the camera consists of a lens, an image sensor (Omnivision’s 

OV7640), and a compression/serial-bridge chip (Omnivision’s OV528). The OV7640 is a 

low-voltage CMOS image sensor that supports various image resolutions (VGA, CIF, 

SIF, QCIF, 160×128, 80×64) as well as various color formats (4 gray/16 gray/256 

gray/12-bit RGB/16-bit RGB). It provides complete user control of image quality, 

formatting, and output data transfer. The OV528 Serial Bridge is a controller chip that 

implements both a JPEG compression engine and a serial (RS-232) interface to a host 

controller. The OV528 implements a set of 11 initialization commands, including taking 

a snapshot, getting a picture, and setting the packet size. 

 

 

 

Figure 2.6. CMOS Camera Module. 

 
 

Commands to the camera are issued via a serial RS-232 interface at 921,000bps. 

Snapshot commands from the ARM7 controller capture a full resolution single-frame still 

picture. The picture is then compressed by the JPEG engine (OV528) and transferred to 

the host which is further relayed to the base station for processing. The camera is capable 

of taking JPEG snapshots at 80x64, 160x128, 320x240, 640x480 resolutions. The 

160x128 resolution is used due to radio bandwidth issues. The camera provides a frame 

rate of about 1 to 2 frames per second. Figure 2.7 shows a JPEG image as seen by one of 

the robots. 
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Figure 2.7. Follower View of the Leader Robot 

 

 

Due to firmware problems of the camera module, however, it was not possible to 

obtain the required frame rate of 15-20 frames per second. This reduced frame rate 

resulted in a lot of lag and miscalculations in sending commands to the robot.  Hence, in 

this research, a low cost CCD camera was fixed and used instead of the onboard camera. 

The webcam is a Philips 900NC model capable of grabbing images at 30 frames per 

second. Figure 2.8 shows one of the modified robots fitted with the webcam. Images are 

captured and analyzed at a rate of 15 frames per second by the vision processing 

program. 

 

 

                                             
Figure 2.8. Follower Robot Fitted With a CCD USB Camera. 
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2.3. VISUAL SYSTEM 

The visual tracking problem is divided into target detection and pose estimation. 

Target detection, explained in this section, involves capturing an image from the camera 

and  processing it to detect features of interest. Estimation of pose is explained in Section 

3.0. The vision processing can be divided into the tasks illustrated in Figure 2.9.  

 

 

                                      

Image Capture

HSV Thresholding 

Contour Detection

Sorting / Labeling 
detected points

Position/ Orietation 
estimation on of 

target 

Color Image

Binary Image

Points/Markers

 
                        Figure 2.9. Vision Processing Flow Control. 

 

 

2.3.1. Image Capture.  The CCD camera captures images of the leader robot in  a   

JPEG format. Captured Images are the converted into OpenCVs IplImage format for 

processing. Images are captured at the rate of 15 frames per second.  
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2.3.2. HSV Thresholding. One of the main tasks for the vision system is to detect 

the leader using colored blobs mounted on the leader robot. Detection is done through 

color segmentation in Hue Saturation Value (HSV) space. While the Red Blue Green 

(RGB) color system is used widely by most digital and capturing devices, it is not 

suitable for use in recognition tasks. When the value of a separate channel (red, blue, 

green) changes, the color presentation of the entire image is affected greatly whereas in 

the HSV space, the Hue value represents color while saturation indicates intensity of the 

color and value contains information about how bright the pixel is. Unlike the RGB space 

where colors are mixed up from three different color channels, using the HSV color 

system to detect a feature of a particular color is much satisfactory. 

Figure 2.10 shows the HSV thresholding sequence where a three channel 

IplImage captured into OpenCV which is converted from RGB image space to HSV as 

shown in Figure 2.10b. The HSV image is further stripped into three individual hue, 

saturation and value channels. The hue channel is then individually thresholded to detect 

a specific color. The saturation and intensity values are thresholded depending on lighting 

conditions. Since the HSV thresholded IplIimage as shown in Figure 2.10c is a one 

channel image, it does not show any color. 

 

 

      (a)        (b)        (c) 

Figure 2.10. HSV Thresholding Sequence (a) Color Image, (b)the HSV Image, 
and (c)the HSV Thresholded Image. 
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2.3.3. Contour  Extraction  and  Selection.   The   thresholded   images   are  run  

through an OpenCV implementation of contour extraction based on the algorithm 

developed by Suzuki and Abe, (1985) due to its simplicity, robustness and fast speed. 

The Suzuki-Abe algorithm retrieves contours from the binary image by raster scanning 

the image to look for border points. Once a point that belongs to a new border is found, a 

border following procedure is applied to retrieve and store the border in the Freeman 

chain format3. During the border following procedure, visited border points are marked 

with a special value. The algorithm outputs a list of contours using Freeman chain code. 

Figure 2.11 shows the detected contours. However, since the algorithm detects contours 

of any shape and size, a few false detections are generated, as illustrated in Figure 2.11a. 

Since the markers on the leader robot are of a known area range, the detected contours 

are area thresholded. Figure 2.11b shows the detected markers after filtering. 

 

 

 

 

 

 

 

 

 

 

 
  

               (a)               (b) 

Figure 2.11. Detected Contours (a)False Detection, (b)False Detections 
Filtered. 

 

 

 

 

 

 

                                                 
3 OpenCV Reference Manual – http://www.sourceforge.net/projects/opencvlibrary/ 
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2.4. SOFTWARE 

All code used in this work was developed using GNU open source tools. Code for 

the ARM7 microcontroller was written in C/C++ using an ARM port of GCC, which is a 

GNU compiler. OpenCV, an open source computer vision library developed by Intel was 

used to process images. This library provides functions for image capture and tracking, as 

well as processing. OpenCV is an image processing library developed by Intel™ 

specifically for their processors. It makes use of both the multimedia and streaming 

Single Instruction, Multiple Data (SIMD) extensions (MMX and Streaming SIMD 

Extensions) that Intel have introduced into their Pentium range, resulting in image 

manipulation speeds of up to 25fps. 

Figure 2.12 is a flow diagram illustrating how captured images are sent wirelessly 

to a host computer for processing. Features are then extracted and used by the visual 

servoing algorithm for generating velocity feedback commands. These commands are 

then sent back to the robots via the same radio link.  

 

 

 
Figure 2.12. Vision Processing  Flow Diagram. 
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3. ROBOT FORMATION CONTROL 

3.1. ROBOT MODEL 

The two treaded robot can be described by the following kinematics equations: 

ϕcos
.

vx =  (1) 

ϕsin
.

vy =  (2) 

ωϕ =&  (3) 
 
where (x,y) are the Cartesian coordinates of robot position, ϕ  is the robot orientation 

angle, and v and ω  are the robot linear and angular velocities.  and  denote linear 

speeds of the left and the right wheels, respectively. The linear ( ) and angular (

1v 2v

v ω ) 

velocities are expressed below: 

 

2
)( 21 vvv +

=  (4) 

L
vv )( 21 −=ω  (5) 

 
 
where L represents the distance between the two driving wheels. Figure 3.1 illustrates the 

geometric model of the robot. 

 

 

 
 

Figure 3.1. Robot Geometric Model. 
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3.2. VISUAL MEASUREMENT OF TARGET POSTURE 

This section presents a vision-based framework for mobile robot detection and 

tracking using off-the-shelf cameras mounted on the robot. Target detection and pose 

estimation are performed from single frames using markers as key elements. The method 

consists of tracking a rectangular shaped structure behind each robot. Determination of 

the position and orientation of the leader can be achieved by estimating its distance and 

relative orientation with regard to the followers. As shown in Figure 3.2, only the 

position (x, y) and orientation θ  needs to be estimated. 

 

 

 
Figure 3.2. Position and Orientation of the Leader in the Followers Frame of Reference. 

 

 

Pose and orientation estimation   refers to the issue of obtaining relative position 

and orientation between two or more mobile robots. The camera captures a pattern 

mounted on the leader robot, as shown in Figure 3.3.  
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Figure 3.3. Figure Showing the Follower Robots Camera Looking at the Leaders Pattern. 

 

 

The pattern as shown in Figure 3.4, features four circles at each corner of a square 

of known length E(mm). The two segments AC and BD provide an estimate to the 

distance between the follower and the leader based on their perceived and real heights. 

The difference between the perceived heights of the two segments gives an estimate of 

the orientation of the pattern with respect to the follower robot. The suggested pattern on 

the leader robot is illustrated in Figure 3.4a. Figure 3.4b. Illustrates the pattern as 

observed in the follower robots image plane (Ximage,Yimage). hL and  hR are the heights of 

the two segments AC and BD. The positions of the pattern's marks on the image are 

expressed in pixels as (Xi, Yi ) where i = A,B,C and D. 

 

 

       
Figure 3.4. Detection Pattern (a) Leader Robot, (b) Pattern on the Followers Camera 

Image. 
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Figure 3.5 illustrates the horizontal projection of the vision system, showing the 

posture of the leader vehicle on a coordinate system (XC, ZC) associated with the camera. 

‘f’ is the focal length of the camera being used. Points A, C and B, D represent segments 

AC and BD when viewed from the top.  

 

 

 
Figure 3.5. Horizontal Projection of the Visual System. 

 

 

The projected pattern on the robot's camera image appears with a projection 

distortion as represented in Figure 3.6. The heights hL and  hR now change as the leader 

changes orientation. From these image features, it is possible to compute the posture of 

the target vehicle (xT, zt, θ). 

The reverse perspective model is used to project a 3D point in the 2D camera 

image plane, resulting in the following parameters, which correspond to Figure 3.5.  

 

A
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Figure 3.6. Projected Pattern of the Leader on the Followers Camera Image. 
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Figure 3.7 shows frames captured by the follower robot when the leader robot is 

straight in front of the follower at a distance of 730mm in different orientations. Figure 

3.7a shows the leader oriented at a 20 degree angle to the left whereas Figure 3.7b shows 

the leader with the same orientation to the right. Heights hL and hR change in value as the 

pattern orientation is altered. 
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(a) (b) 

Figure 3.7. Distortion in the Followers Image Plane when the Leader Changes 
Orientation, (a) Left and (b) Right. 

 

 

3.3. BÉZIER TRAJECTORY GENERATION 

3.3.1. The Bézier Trajectory Principle.   A  Bézier curve in  its   most   common  

form is a simple cubic equation used for curve fitting. Originally developed by Pierre 

Bézier, who used it to design the Body of a Renault Car in the 1970s, it has only recently 

been used in robotics. Figure 3.8 illustrates a simple Bézier curve. 

 

 

                         
Figure 3.8.  A Simple Bézier Curve. 
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A Bézier curve is a curve which is exactly determined by a set of control points. 

Each point of the curve is calculated from a parametric mathematical function which uses 

the coordinates of the control points as parameters. 

Given the four points A, B, C, and D, and a value t between 0 and 1, the points E, 

F, and G are constructed a t-fraction of the way along the segments AB, BC, and CD, 

respectively; points H and I are then placed a t-fraction of the way along the segments EF 

and FG; and finally, J is constructed a t-fraction of the way along the segment HI. The 

locus generated by J as t goes from 0 to 1 is the generated curve. Points A and D are the 

end points, points B and C are the control points. The curve can be changed in shape by 

changing the distance between the segments AB and DC. In reference to the Leader-

Follower model, point A represents the follower and D represents the leader robot. Point 

J on the curve varies as t varies from 0 to 1. As illustrated in Figure 3.9a J lies at the 

midpoint of the Bézier curve with a value of t=1/2 whereas in Figure 3.9b J moves down 

to point A as t approaches 0.  

 

 

          

 

      

 
                     (a)                      (b) 

Figure 3.9. Point J on the Bézier Curve (a) 2
1=t , (b) . 0→t
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Given N+1 control points  with k=0 to N, the Bézier parametric curve is 

described by   as follows: 

kP

( )tP
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Bézier curves are parametric curves that, when applied independently to the x and 

y coordinates for a 2D curve, give: 
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The equation for a Bézier curve is a polynomial of degree N (one less than the 

number of control points). As the number of control points increases, degree N rises, so it 

becomes expensive in terms of processing power to draw the curve. However, most 

curves can be drawn utilizing only four control points. The polynomial degree is then 

three (thus the name "Cubic Bézier" curve). 

Given four control points- P0, P1, P2, and P3, the mathematical formula for a Cubic 

Bézier curve is as follows: 
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where, 

)(3 01 PPc −=                                                     (14) 

cPPb −−= )(3 02   
bcPPa −−−= 03   

0Pd =   
 

3.3.2. Bézier Curve Length. The length of the Bézier curve s, which is an 

integral  is: 

22 yxs ∂+∂=∂  

∫ ∂= ss ∫ ∂+∂= 22 yx  

( ) ( )∫
=

+++++=
1

0

2
321

2
321 3232

t

dttbtbbtataas     (15) 

The length of s is calculated by integration from t=0 to t=1.  and 

 for x and y can be calculated from Eqn. (14). 

3210 ,,, aaaa

3210 ,,, bbbb

3.3.3. Bézier Trajectory Generation. The follower robots use a Bézier curve to   

generate a trajectory to the leader  robot. This curve is the weighted sum of four control 

points (P0, P1, P2, and P3), as shown in Fig. 2.12. D is the distance between points P1-P0 

and P3-P2. 

 

 

                         
Figure 3.10. Bézier Curve Between the Leader and Follower Robots. 
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Endpoints P0 and P3 define the positions of the follower and leader, respectively. 

Control points P1 and P2 are determined by the orientation of the robots. The four points 

are defined in the follower robot's reference frame: 
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The cubic Bézier curve from Eqn. (13) given by: 

 
]1,0[,)( 23 ∈∀+++= tdctbtattP  (17) 

 
where the vectors a, b, c are defined as in Eqn. (14). 
 

Values of x, y and θ  are obtained from the vision system. The theory of Bézier 

curves states two properties regarding the endpoints: 

• The curve passes through the endpoints themselves, and 

• The curve is tangent to the vectors P1-P0 and P3-P2 at the endpoints 

The control points can be arbitrarily chosen anywhere in the space between the 

two robots. The shape of the curve can be easily deformed by modifying the distance D 

between points P1-P0 and P3-P2. However, placing the points in different locations results 

in different curves or trajectories, as illustrated in Figure 3.11. 

 

 

 
Figure 3.11. Bézier Cubic Curves with Different Values of Scale Factor D. 
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The follower robots need to keep a set distance away from the leader robot. This 

is done by selecting an appropriate value of D. This D is proportional to the distance 

between the robots, and the same D is used for both pairs of endpoints and control points 

such that  

2301 PPPPD −=−=  (18) 
 

By experimental experience as shown by Chiem and Cervera, (2004), and from 

Figure 3.11.d, the value of D which makes the Bézier curve exactly the same as a 90-

degree arc is: 
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Although the leader robot is set on a predefined trajectory with a constant velocity 

v, the velocity may change by small amounts. The follower robot has to take into account 

these changes in velocities. This is done by keeping track of the length of the Bézier 

curve, s. The controller is proportional in nature, increasing the followers speed if it is too 

far from the leader and decreasing speed if it is too near. The change in linear velocity 

is given by: vΔ

 

( )0ssv −∝Δ           (20) 

 

where s0 is the desired length of the curve. 

Also, the follower robots need to vary their angular velocity, ω , which is 

computed as follows, to keep up with the leader robot. This angular velocity must 

correspond to the curvature of the Bézier trajectory at P0: 
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where R and κ are the radius and curvature of the trajectory, respectively. The curvature 

of any parametric curve is: 

 

2
3)( 22 yx
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From Figure 3.10, since the follower robot is at the origin (0,0) and it is only necessary to 

compute the curvature at t=0, 

 
vx =&  (23) 
0=y&   

 
so that the curvature at this point is: 
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where D is obtained from Eqn. (19) and the desired angular velocity is computed from 

Eqn. (21). Individual wheel velocities are then calculated from Eqn. (4) and Eqn. (5). 

The camera runs at a frame rate of 25 frames per second. When a frame is 

captured, the new position of the leader and the length of the Bézier curve is estimated. 

Using these parameters, the Bézier points are calculated and the new linear velocity v and 

angular velocity ω  are computed.  

 

3.4. MULTIPLE ROBOT FORMATION 

In this research, the follower robot maintains a position relative to a leader robot. 

Using the same leader-follower philosophy, multiple robots can be made to follow the 

same leader with the help of virtual points. These points are the position of the leader 

displaced a certain distance away. The only drawback of such a formation is that every 

follower robot has to have the leader in view. 

Virtual destinations are assigned to each follower to maintain a geometric 

formation. These points are the position of the leader robot moved perpendicular to and a 

certain distance away from the leaders y-axis. Then, cubic Bézier trajectories, as 

described in Section 3.3.2, are defined between the follower and these virtual destinations 
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to allow the robots to follow the leader. The trajectory is updated in real-time because the 

virtual destination varies as the leader robot moves. Figure 3.12 illustrates two follower 

robots tracking virtual points V1 and V2 displaced by certain amount in different 

directions from the leader. 

 

                              
Figure 3.12. Multiple Robot Formation. 
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4. EXPERIMENTAL RESULTS 

4.1. EXPERIMENTAL SETUP 

The setup consisted of an overhead camera covering a 7.0 x 5.3 sq. feet area. The 

camera was a low-cost CMOS vision sensor connected via USB to a computer 

mounted on the laboratory ceiling. The leader and the follower robots had colored 

markers mounted on their top. These served as robot identification for the program 

analyzing the area. The area was covered with white boards to ensure minimum 

disturbances from other colors and easy detection for the image processing program. 

Colors for the two robots were chosen so that they stand out against the background. 

Figure 4.1 shows the setup with the leader colored red and the follower colored blue. 

 

 

 
Figure 4.1. Overhead View of the Leader/Follower Robots. 
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OpenCV was used to capture and filter images and detect the markers. The colors 

were detected using the HSV threshold algorithm as described in Section 2. For a 

particular run the camera captured a video involving the leader and follower robots at a 

640 x 480 resolution at 25 frames per second. The video was then processed through 

OpenCV for analysis. Verification of the follower robots maintaining a desired formation 

with the leader was done by making sure that the robots maintain a constant predefined 

Bezier length between them and visually verifying their trajectories. 

 

4.2. FORMATION MAINTENANCE RESULTS 

This experiment demonstrates how the robots attain formation after a certain 

period of time. The leader and follower robots are separated at a distance of about 

1000mm at startup. The required distance between the robots is 500mm. This distance is 

maintained by calculating the length of the Bézier curve. Figure 4.2 Illustrates results for 

three independent runs. It is seen that the separation between the two robots converges to 

the desired value (500mm) after a certain period measured in frames.  

 

 

                
Figure 4.2. Evolution of Bézier Length Between the Follower and Leader. 
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Figure 4.3 shows the follower keeping up right behind the leader. The red trail 

represents the leader while the blue is the follower. The follower started its run at an 

angle to the leader. After a certain period, the follower maintained its position right 

behind the leader at the desired distance. 

 

 

 
          Figure 4.3. A Follower Tracing a Straight Line Path Defined by the Leader. 

 

 

Figure 4.4 shows the two robots maintain a separation of 500mm between them. 

The oscillations from the desired value are due to a purely proportional controller. 

 

                    
       Figure 4.4 Separation vs Frame Number for Straight Line Formation. 
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In another experiment, a follower robot followed the leader in a circular arc 

motion as in Figure 4.5. During arc motions, although the follower got behind the leader, 

the vision system takes some amount of time before it could get the follower right behind 

the leader. Figure 4.6 shows the how the follower tried to maintain a distance of 500mm 

behind the leader. During curve motions there is a larger deviation from the desired 

separation  as  compared  to linear motions. This  discrepancy is  due  to  a  poor velocity  

controller model. 

 

 

 
Figure 4.5. Follower Tracing a Curve Generated by the Leader. 

 

 

 
Figure 4.6. Separation vs Frame Number with the Follower Tracing a Curve Generated 

by the Leader. 
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However, on curves with a larger radius, these deviations seem to reduce. Figure 

4.7 Illustrates the follower robot tracking a virtual point to verify multiple robot 

formations. Figure 4.8 shows the separation between the two robots for two independent 

runs. Figure 4.9 is the same experiment, but along a curve. As discussed before there is a 

much more deviation in the separation values when the robots move along a curve. The 

separation between the two robots is illustrated in Figure 4.10. 

 

 

      
Figure 4.7. Overhead View of the Follower Robot Tracking a Virtual Point. 

 

 

 
Figure 4.8. Separation vs Frame Number with Virtual Point Formation. 
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Figure 4.9. Overhead View of the Follower Robot Tracking a Virtual Point Along a 

Curve. 
 

 

 
Figure 4.10. Separation vs Frame Number with the Follower Robot Tracking a Virtual 

Point along a Curve. 
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5. SUMMARY AND FUTURE WORK 

5.1. SUMMARY 

This thesis presents a framework for vision-based control for multi-vehicle 

coordination using the leader-follower approach. Unlike the leader, the followers are 

designed to be equipped with low cost sensors, primarily vision sensors. The leader is a 

more sophisticated vehicle with potential navigation, ranging and obstacle avoidance 

capabilities. For  current work, the leader is programmed with a predefined trajectory. 

This framework consists of a vision based model and a formation control algorithm for 

the follower robots.  

 The follower requires only information about the position and orientation of the 

leader to follow. The vision system uses markers for identification of the leader robot. It 

can estimate the relative pose (distance and angle) between two robots from single 

images. The vision system is divided in two main components, image processing and 

pose estimation. A HSV thresholding approach is used for processing the captured 

images for markers detection. Using the model of perspective geometry, the position and 

orientation of the leader robot is deduced. 

 The formation control algorithm is based on generating a Bézier trajectory 

between the leader and follower. The Bézier trajectory is defined according to the relative 

configuration between the leader and the follower and is updated in real-time as the 

leader navigates. This type of control method is simple and does not require complicated 

computation in the followers. Experimental results show that the algorithm performs well 

with both straight line and virtual point following. While negotiating curves, the follower 

robots find it a little difficult to keep up with the leader. This can be solved by developing 

a better higher order velocity controller for the followers. 

  

5.2. FUTURE WORK 

The vision based pose estimation is precise enough so that the followers do not 

need accurate positioning systems. Only the leader robot carries such a system to 

command the entire formation. The proposed formation method is limited in that the 

followers need to maintain line-of-sight contact with the leader. If for any reason a 
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follower looses sight of the leader, a “search for leader” mechanism is run. Once 

visibility is recovered, the follower can catch up with the leader. A better solution would 

be to use a wide angle camera or an omni-directional camera. An omni-directional vision 

sensor consists of a conical lens and a camera which give a 360 view of the environment. 

The follower would not need to search for the leader because it would always be in view. 

 The robots in this research try to keep the leader in view by modifying their 

angular and linear velocities. However, since this work stresses the need for low cost and 

the smallest number of sensors, velocity feedback could be calculated from the vision 

sensor using optical flow algorithms.  

 Formation switching between the robots and obstacle avoidance is also important. 

There are times when the formation may need to form a single line. In such a scenario, 

each follower robot becomes a leader to the one behind it. Future work could focus on 

how to produce a centralized control strategy for teams of follower robots that switch 

between different formations in reaction to environmental changes or to avoid obstacles. 

However, such formations may increase communication bandwidth between the robots. 

Using omni-directional cameras as described above could also provide flexibility in 

achieving different formations. 
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APPENDIX 

COEFFICIENTS OF A CUBIC BEZIER CURVE 

A Cubic Bézier curve, in a 2-D plane, in parametric terms is : 
3

3
2
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3

2
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The four control points P0, P1, P2, and P3 can be expressed as: 
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The other two control points P1and P2 require the derivative of the curve. 

As in Figure 3.9, derivative along tangent AB: 
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Derivative along tangent DC: 
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