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ABSTRACT

One step in the synthesis procedure for realizing
an asynchronous sequential circuit that is operating in
fundamental mode is to obtain an internal-state assigﬁ—
ment that will realize the operations of the circuit,
Often the procedures that are used in acccmplishing the
above task genefate several satisfactory assignments.
The first part of this paper presents a method that will
enable one to predict which of the internal-state assign-
ments will yield a simpler set of next-state expressions.

A second topic treated in this paper is one of
presenting a method to generate the next-state expressions
for an asynchronous sequentiél circuit directly from the
internal-state assignment., An algorithm is presented for
generating the next-state expressions without construction

of the transition table,
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I. INTRODUCTION

Sequential switching circuits are normally categor-
ized as being either synchronous or asynchronous. In
synchronous circuits, clock pulses synchronize the opera-
tions of the bircpit, while in asynchronous circuits, it
is usually assumed that no such cloéking is available.

A desirabie feature of asynchronous deéign is that the
resulting circuit may take full advantage of basic deﬁice
speed since the circuit does not have to wait for the
arrival of clock pulses before effecting a transition.
This paper deals with only the asynchronous sequential
circuits.

The operation of an asynchronous sequential éwitching

1

circuit can be described by means of a flow table“. An

example appears in Figure 1.

I 1, I,

1 O~ 2 4

23 @n @n

3 1®)/2 4 2
1 @z  @n

Figure 1. Flow table for an asynchronous

sequential circuit.
Each column of the flow table represents an input
state, each row represents an internal state, and the

table entries specify the next internal state and output



state. If the next internal state entry is equal to the
present internal state, the state is séid to be stable and
is denoted as such by a circled entry. Uncircled entriés
are called unstable., For example, in Figure 1, if the cir-
cuit is presently stable in internal state 2 with input Iz,
the output is in output state 1. A change in input from

I, to I; will cause the circuit to enter unstable state 3.
This will be followed by a change in internal state from
state 2 to state 3 with a new output stéte 2. The circuit

is now stable and the internal state will undergo no further

changes until there is another change in input.

Definition 1: An asynchronous sequential circuit is

said to be operating in the fundamental mode if the inputs

are never changed unless the circuit is in a stable condi-

tion.

Definition 2: A flow table with the characteristic
that each unstable state leads directly to a stable state

is called a normal flow table.

The seqguential circuits in this paper will be considered to
be normal fuﬁdamental—mode asynchronous seguential circuits.
The problem of selecting an internal-state éSsignment_
for the realization of a given normal flow.table for an
asynchronous sequential circuit that will result in critical-
race-free operation is an important step in the design of .

such circuits. A critical race is a condition that exists



when there is a possibility that unequal transmission delays
may cause the sequential circuit to reach a stable state
other than the one intended.

Huffman recognized the existence of the internal-
state assignment problem in his original paperl which has
been the basis for much of the work in asynchronous sequen-
tial circuit design and analysis. A year later, Huffman
presented a generalized assignment procedure for coding a
2"-row normal flow table with a maximum of 2n-1 internal-
state variablesz. This assignment procedure would pro-
duce codes with no races and therefore free of critical
races.

Liu3 has developed systematic procedures for construct-
ing noncritical assignments for normal fundamental-mode
sequential circuits. These procedures, which are dependent
on flow table structure, have been extended by Tracey4.

One of the three procedures developed by Tracey yields a
minimum-variable assignment for normal fundamental-mode
flow tables. Often, the algorithms developed by Tracey
produce several internal-state aséignments with the same
number of internal-state variables, all of which produce
critical-race-free realizations of a given flow table. It
has been observed that the next-state expressions which
result from some of these internal-state assignments are
simpler than others; One purpose of this paper is to

present a method to predict which internal-state assignment



for an asynchronous sequential machine will yield siﬁpler
next-state expressions than other assignments for the séme
machine,

The second topic treated in this paper is to find a
direct method for obtaining the next-state expressions for
&n asynchronbus sequential machine from a given critical-
race-free internal-state assignment. An algorithm is pre-
sented in this paper for generating the next-state-

expressions without the construction of a transition table.



II. SELECTION OF AN INTERNAL-STATE ASSIGNMENT WHICH WILL
YIELD SIMPLER NEXT-STATE EXPRESSIONS
The discussion presented throughout this paper will
not be concerned with the coding of the input states and
will be restricted to finding the next-state expressions
on a per-column basis. If there are n internal-state
variables and a flow table of m columns and m input states,
the general form for the next-state expressions will be
Yy = f11(01,02, ¢ . R
+ 612(yl,y2, . e ,yn)I2 + . ..
+ fipmlyrey2s « « - 1Y) Ip
Yo = £21(yy1.Y2s - o « 2yp) Iy
+ 622(gl,y2,‘. . . 'yn’IZ + ...
+ oty y2, Coe 1Y) I

Yn = 6nl(yl'§/21 LI ) 'yn)Il
+ fn2lyroyar o o aydIp v ..

+ gnm(ylfUZ' R 'yn)Imr (1)
where yi,yp, . . . ,yy are the present state variables;
Y1,¥5, » « . ,Y, are the next-state variables; Iy,Iy,

« « « I are the input states; {17,612/ - - -+ /fym are
functions of the internal-state variables alone.
The intent of this section is to obtain a figure of

merit that will predict which internal-state assignment for



a normal fundamental-mode asynchronous sequential machine
will yield simpler next-state expressions than other assign-
ments for the same machine. In this paper the assignment-
selection process is considered to be the selection of that
assignment which will minimize the functions 611,612,. . .
6ij' « + « tfpy into a simplest sum—of¥products expression.
The assignment which tends to minimize the complete set of
functions will be the one that will be said to yield the
simplest next-state expressions. It is realized tﬁat the
coding of the input states will affect the complexity of

the next-state expressions, but there is some positive value
in choosing the assignment with the simplest 6ij coefficients
of Eq.(l), even though it cannot be guaranteed to result in
a minimal set of equations. Optimum coding of the input
states will not be part of the study in this paper.

The determination of a figure of merit that will be
used to judge each internal-state assignment will be based
on the following characteristics:

1) The number of internal-state variables which have
the characteristic that the next state is equal to
the present state for all transitions in é partic-
ular column of a flow table.

2) The number of internal-state variables that remain
constant for all transitions in a particular column
of a flow table;

An internal-state variable yj}which has the character-

istic that the next state is equal to the present state in a



column of a flow table under input state I; will have as
part of the next-state expression for the next-state variable

Y.
J

Yj = !/in, : | (2)
or 5ij = y4 as one of the coefficients in Eq.(l). Another
way of stating this is that the internal-state variable yj
will not change state in any transition in the column of the
flow table with input state I;.

An internal-state variable yj which remains constant
for all transitions in a particular column with input I; will
have as part of the next-state expression for the next-state
variable Y.

]
Y. = 1(0)14, - (3)

] ‘ .

or 6ij = 1(0) as one of the coefficients in Eq.(l). Another
way of stating this is that if a traﬁsition table was formed,
the next-state variable Yj would have a next-state entry of
1 or 0 for all the specified internal states in the column
with input I;.

The discussion following.will describe exactly how the
characteristic of the next state being equal to the present
state can be determined. It is advantageous to use partition

theory as it has been employed to describe certain aspects

in switching theory.

Definition 3: A partition I on a set S is a collection

subsets of S8 such that their pairwise intersection is the

null set. The disjoint subsets are called the blocks of TI.



If the set union of these subsets is S, the partition is
completely specified; otherwise, the partition is incom-
pletely specified. Elements of S that do not appear in T
are called unspecified or optional elements with respect

to that partition.

Definition 4: The two-block partition T1rTos o o o T

‘'n

induced by the internal-state variables Y1:Yr « = o +Upge

respectively, are called the set of t-partitions of that

assignment,

The following example in Fiqure 2 will help illustrate
the above definition. Here the first block in each T-par-
tition is a set of the internal states that have been coded
with a 0 by each internal-state variable and the second bibck
is a similar set of the states that have been coded with a 1
by each internal-state variable. It should be pointed out
that the ordering of the blocks is unimportant.

Internal states Internal-state variables
Y1 Yo Y3

MO O O
ForRrFRoO
OrHOPMHO
HROoOOOO

T, = {a,b,e; c,d,f}

1, = {a,d,f; b,c,e}

Ty = {a,b,c,d; e,f}
Figure 2. Internal-state assignment and

corresponding t-partitions.



Definition 5: A k-set of a single column of a flow
table consists of all k-1 unstable entries leading to the
same stable state, together with that stable State.

Definition 6: A column partition a; is a collection

of the k-sets of the column of a flow table with input

state I;, where each k-set is contained in a single block.

h

3
Pigure 3. Partial flow table and

@@wé~@®~HF

cofresponding column partition

ay = {a,c; b,d,e; f,g; h; ).
Definition 7: Partitione2 is less than or equal tp
CH (925 01 ) where 0, and 8, may be incomp;etely specified,
if and only if all elements specified in €, are also specified

in 9, and each block of 6, appears in a unique block of 8y,

Theorem 1: An internal-state variableyj will not

change state in any transition in a column of a flow table

with input state Ty if ay < Ty -
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Proof: From the definition of a kh~set, all transitions
of the column of a flow table with input state I; will take

place within some k-set of the column partition a If

4
the column partition a; i1s less than or equal to a t-
partition Ty, each block of the column partition a;, which
is a k-set oflthe column partition, is included in one of
the blocks of the partition Ty Thefefore, the interna;—
state variable gj cannot undergo a change of state in any
trahsition in the column with input I;, because each pair
of states that have a transition between them are listed
in the same block of the partition Ty and are coded iden-

ically with internal-state variable yj.v

To demonstrate the use of theorem 1, the r-partitions

Ty = {a,c,f,g,h; b,d,e,3}

Ty = {a’b)dve; chIgihlj}

will be compared to the column partition of Figure 2

a; = {a,c; b,d,e; F,g; h; J}.
Each block of a, is contained in a block of 1, or (ais ).
This means that in all the transitions of this column,
internal-state variable Yq will not change state, or the
next state will always be equal to the present state for any
transition in the column with input I;. However, t,does not
satisfy theorem 1 in that the block 373 of a; does not appear
in a block of 1,. The internal-state variéble Y, will there-

fore, undergo a change of state during the transition state

a to state c¢.
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It might be noted that in making the test for ai $ Ty
for all 4 and j, one only has to be able to show that

each block of the column partition «, is contained in a

i
block of the t-partition Ty Extending this even further,

only the blocks of g, which contain two or more elements

i
need be considered.
Let (#yi) be the number of intefnal-state variables
that meet the conditions of theorem 1 under each column
with input I;. The total number of terms likg that of

Eq.(2), which will appear in the next-state expressions of

Eq. (1), will be
m .
D, = L(#yh, | (4)
i=1 :

where m is.the number of columns in the flow table and Dy

is the total number of internal-state variables that do

not change state fdr internal-state assignment k. Following
is an algorithm that can be used to obtain D, for internal-
state assignment k:

1) Form the partitions a_, and Ty for all values

i
of 4 and f§.

2) Determine (#yl), which is the number of internal-
state variables .under input I; that meet the

conditions of theorem 1. Repeat for 4 .= 2,3,...,m.

3) Dp for internal-state assignment k is given by Eq.(4).

At this point, attention will be given to the internal-
state variables which remain constant for all transitions in

a particular column of a flow table, or can be considered as
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constant next-state terms. In determining the constant
next-state terms in a particular column of a flow table,
consideration will be gi&en to the actual next-state entry
for each internal state in a.column of the flow table as
it would appear in a transition table.
It has been extablished that all the transitions in.
a column of a flow table take place within some k-set kn
of that column, Each of the unstable states of the k-set
hh can experience a transition to the stable state of kn'
The next-state entry for each of the unstable states of hn'
will have to be the same as the code assigned to the stable
state within kn in order to insure a transition from the
unstable states to the stable state will be independent of
transmission delays. In other words, the next-state entry
for each of the unstable states of a k-set ka will be deter-
mined completely by the code assigned to the stable state
of kk. If the internal-state variable Y in the code assignedr
to the stable state of ky in a certain column of a flow
table is 1{0), then all the internal states of kn will have
a next-state entry of 1(0) for the next-state varigble Yj..
Extending the above argument even further and assuming
there are (#ki) k-sets in a particular column of a flow
table with input Ij, the next-state variable Yj will have a
next-state entxry of 1(0) in all the specified states of the

column with input I; if the internal-state variable gj is

1(0) in the code assigned to all (4k1) stable states of the
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same column. The resulting next-state expression would be

Yj = 1(0)1y.
The following discussion will explain a method that can be
used to obtain the constant terms in each column of a flow
table., First list the stable states and their resbective
codes for each column of the flow table and identify each
set of lists with the respective input state of the column.
From these lists, one can determine which, if any, of the
internal—state variables are 1(0) in the codes for the stable
states in éach of the respective columns. To_illustrate this,

assume the internal states with their respective codes shown

in Figure 4 are the stable states in a column of a flow table.

Y1 Y2 93‘ Y4 Ys

a 1 0 1 0 1
c 1 1 0 0 1
d. 1 0 1 0 0
£ 1 1 1 0 0

Figure 4, Stable states and their
respective codes,.
By inspection, one can determine that there are two internal-
state variables that are 1(0) in the states listed; they
are y; = 1 and y4 = C.

Let y; be the number of internal-state variables that
are 1(0) in the codes for the stable states in the cqlumn
with input I;. In Figure 4, y; = 2. Let Cj be the total
number of internal-state variables found in the columns to

be 1(0) for internal-state assignment k;
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)
Cp= 1 ¥y, (5)
: i=1 1 .

where m is the number of columns in the flow table.

Both of the characteristics discussed for determing a
weight to attach to each internal-state assignment for a
asynchronous sequential machine are valuable. The relative
weight to attach to D, and C, for internal-state assignment
k may vary with each type of implementation., The weight for
an internal-state assignment k will be defined as

W, = D, + ECp, | (6)
where W, will be the weight attached to internal-state
assignment k and £ is a variable that would allow the adjust-
of the relative values of C, in respect to D,. It seems safe
to conclude that a constant coefficient, as represented in
Eqg. (3), would require a lesser amount of combinational logic
fqr synthesis than_é literal coefficient, as representedvin
Eq.(2). The designer of a sequential circuit will.have to
decide on a value for f in determining how much easier it
is to'implement a constant coefficient as opposed to a literal
coefficient, This could be done by obtaining a cost figure
to compare the coefficients. This cost figure would depend
on the number of literals associated with each input state.

In general, £ will vary with each type of implementation.,
For purposes of illustration in this paper, & will take on a
value of 2, which is arbitrary, to demonstrate the assignment-
selection procedure. The weight for an internal-state assign-

ment k will be defined in the examplés shown in this paper as
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Wk = Dy, + ZCk : {(7)

The internal-state assignment with the largest weight asso-

ciated with it will be predicted to yield the simplest

next-state expressions, because it would have the largest

number of terms like those shown in Eq.(2) and Eq.(3).

Sequential machine A in Figure 5 can be coded with

either of the two internal-state assignments shown. The

criteria developed above will be used to predict which

assignment will produce the simplest next-state expressions.

e

i

!

Assignment 1

Y1
0

Figure 5.

¥
0

1
1

Y3
0

o

1
0

e

f

OIOJOIOIRAN
M@@waOuH

Assignment 2

41 Y3 Y3
o o0 0
1 o0 1
1 1 1
0 0 1
11 0
0 1 0

Machine A with two assignments.



First D, will be obtained by following the procedure
developed in this paper.

Step 1. The column partitions are

a; = {a,d; b,c; e,f}

a, = {a,f; b,d; c; Z}

a3 = {a,d; b,c; e,f}.

The t-partitions for assignment 1 are

11 = {a,d,e,f; b,c}

19 = {a,b,c,d; e,f}

Ty = {a,c,f; b,d,e}

and for assignment 2 are

1, = {a,d,f; b,c,e}

T, = {a,b,d; c,e,f}

19 = {a,e,f; b,c,d}.
Step 2. The r-partitions for assignment 1 that meet the

conditions of theorem 1 are

@p £ 71
®1 2 T2
@, < Tqg
@3 $ 7y
a3 £ Ty,
and for assignment 2
a2 < T3.
Step 3. Dy and D, are
D, = 2+ 1+ 2=25
=0+ 1+ 0= 1.

Dy

16
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C, is obtained by following the procedure given earlier.
The stable states and their respective codes in assignment

1 under each input state are

Iy T2 I3
a 000 c 100 b 101
c 100 d 001 d 001
£ 010 e 011 e 011
£ 010 |

and in assignment 2 are

5 I, I3
"a 000 c 111 b 101
c 111 ad 001 a 001
£ 010 e 110 e 110
£ 010

Internal-state variable y, is constant in the above lists in

the columns with input Il and I, for assignment 1. There

3
are no internal-state variables constant in the above lists
for assignment 2. C; and C, are

Cp =2

C, = 0.
The weight for each assignment is

Wy =5+4=29,

and W2 =1+0=1,

From the above information, assignment 1 would be predicted

to have the simpler next-state expressions.
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The next-state expressions for assignment 1 are

¥2.= yoIy + (Y + y1y3I,
Xy = y3I2

and for assignment 2 are

Y = Y1431 + Y1421,

[
0

2 = Wy YY)y v Yy + ¥
¥3 = y1y3I; + Y31z
Clearly, assignment 1 yields the simpler

pressions.

+ Y113
+ Y21,
+ 13/

+ (yl + g2)13
+ Y4313
+ (y3 + y3)I;.

next-state ex-

Presented in this section was a method to predict

which internal-state assignment, from several such assign-

ments for the same asynchronous sequential machine, will

yield the simplest next-state expressions.
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III. GENERATION OF NEXT-STATE EXPRESSIONS

The problem treated in this section is one of obtain-
ing the next-state ekpressions for a normal fundamental-mode
asynchronous sequential machine directly from a given
critical-race-free internal-state assignment. An algorithm
is presented for generating the'next-state expréssions
without the construction of a transition table. The next-
state expressions are generated in the form shown in
Eq.(l). The input states are shown uncoded, but would be
coded and simplified before realization of the flow table
is attempted. Each of the functionslﬂij in Eq. (1) wi}l
consist of a sum-of-products expression representing the
l-cells and a similar expression representing the don't-
care states for a next-state variable Yj in the column of
a flow table with input sﬁate Ij. In general, these
expressions are not minimal, but the minimal expressions
can certainly be obtained from these equations with conven-
tional simplification algorithms.

Consider the example shown in Figure 6 to be part of
a flow table with the corresponding intefnal—state assign-

ment.
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g, Y, Yy I,
o 0o o a |
o 0 1 b |1
0 1 . 1 ¢ |2
1 0 1 a |(®
1 1 0 e |

Figure 6. State assignment and parﬁial flow table.
In this example, there are transitions between states
a and_b and states ¢ and ¢. One will note that a race
condition exists at state c¢. Becahse of unequal transmission
delays, any of the internal states -1-, where the dashes
represent all combination of 1's and 0's, could momentarily
be assumed during the transition between states ¢ and e.
Internal states ¢, 011, and e, 110, must have a next-state
entry of 110; but to insure that the circuit reaches the
proper terminal state, internal states 010 and 111 must
also have the next-state entry of 110. If these states had
any other next-state entry, improper operation could result.
A ccomplete transition table, if formed, would have to show
states 010 and 111 with the proper next-state entry of 110.
This set of states that have the same next-state eantry
can be represented as a p-subcube of an p-cube. The
n-cube would represent all possible internal states in a
particular column of a flow table, and the p-subcube would
be a subset of the states represented by the np-cube. Each
subcube can be represented, in turn, by a product function

of the internal-state variables. In the above example,



the p-subcube would be -~1l-, or as a product of internal~
state variables, it is by In this example then, all
internal states where Yo, = 1 will have the same next-state
entey as stable state e¢; including internal state e, there
aie 4 such states. For the transition b to a, the subcube
that represents all the states which will have the same
next-state entry as stable state a is 00- or giyé.' All
internal states wherxe both gl and y2 are zero will have a
next-state entry of 000, which is the code induced by the
internal-state variables for stable state a.

It has béen established that all the transitions iq
a colgmn of a flow table take place within some k-set k&
of that cclumn. Each of the unstable states of kn can
experience a transition to the stable state of k,. The
next-state entry for each of the unstable states of kn
will have to ke the same as the code assigned to the
stable state within k, in order to insure a transition
from the unstable states to the stable state will be in-
dépendent of transmission delays. In some cases a single
p~subcube can represent all the internal states of a
k-set that must have the same next-state entry, like in.
the example above with only two internal states per
h-set in the original flow table. In general, it may take
several p—subcubes to represent the internal states o6f a
k-set with more than two internal states. The following

example shown in Figure 7 will illustrate this point.

21
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=
b=
Q

b4

111d@
. _

0 1l e A

Figure 7.> State assignment and partial flow table.
Internal states a, c,.and ¢ are in the same k-set

and will have the same next-state entry of 000; internal
states b and d are in the same k-set and will have the
next-state entry of 111. During the transitions between
states ¢ aﬂd a, any of the internal states 0-- could
momentarily be assumed and must have the next-state entry
of 000 to insure propef operation of thé circuit. These
states can be represented by the p-subcube O——,.or as a
product of internal-state variables yi. During the
transition from ¢ to a, any of the states -0- could momen-
tarily appear and must have the next—state-entry of 000.
This p-subcube can be represented as -0- or as yé. In
this example, a sum-of-~products expréssion that can
fepresent all the intefnal.statés that must have the next-

state entry of 000 is

yi + Y3

22

The p~subcube that would represent the internal states that

must have a next-state entry of 111 is 1l- or Y1Y5-
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A p-subcube represents all the internal states that
could momentarily appear due to unequal transmission delays
during. the transition between an unstable and stable state
within a k-set. The internal states represented by a
p-subcube must have the same next-state entry. A p-subcube
may represent even internal states which may not be assigned
to the rows of the original flow table. These spare states
may be entered during a transition between internal states
when unequal transmission delays cause internal statés
other than those assigned to the rows of the original flow
table to be assumed. However, it will not be necessary to
identify the spére states individually because they will be
represented in a p-subcube.

Each transition between an unstable and stable state
of a k-set ky has a unigue p-subcube p, which fepresents
all the internal states that could be assumed. None of the
internal states represented in p, can be represented in
another p-subcube. If the situation did occur where two
subcubes had an internal state in common, this internal
state would be required to have two different next-state
entries. Such an assignment does not constituﬁé a sétis—
factory code for flow tables operatihg in nofmal fundamen-
t&l—mode. |

. In the previous example it can be seen that for ‘k-sets
of three or more internal states, it will require more than
one p-subcube to'represent all the internal states that

must have the same next-state entry in a column of a flow
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table.

Definition 8: Kn is defined to be a sum-of~-products
expression representing all the internal states of k-set
hn which have the same next-state entry, namely that of the

stable state of kn'

A method to represent the p-subcube as a product of
the internal-state variables which represents all possible
internal states that could appear during a transition be-
tween an unstable and a stable state in a k-set is as follows:
1) List the codes assigned to the stable and unstable
states involved in the transition within k-set k.
2) The product expression ﬁhat will represént the
p—-subcube will be a subset of the internal-state
variables ( Yp « o Yy oo yk). If the internal-
state variable y4 is a 1 in both of the states in
question of hn, it will appear uncomplemented in
the product expression. If the internal-state
variable yj appears as a 0 in both of the states
in guestion of kn' its complement will appear in
the product expression. If the internal-state
variable yj appears as both 1l's and 0's in the
states in question of hn’ it is considered a don't-

care variable and does not appear in the product

expression.



Consider the following single column of a flow table with

the codes listed for each internal state:

gl y2
1 0
1 0
0 0
1 0
1 0
0 1

3

1
0

y
0

=

1

/s

1

1

0

e

f

I,
—*
1
©
2

1
1

Figure 8. Partial flow table and corresponding

state assignment.

Internal states a, b, d and ¢ are in the same hk-set Rge

There are transitions a to b, d to b and ¢ to b in ko.

The p~subcube representing the states of the transition a

to b is obtained as follows:

Internal-state variable

Y1 and yg are 1 in both states a and b; therefore, ¥y and

Ys will appear in the product expression. Internal-state

variable yy is 0 in both states; therefore, Y5 will appear

in the product expression.

Internal-state variables y4 and

Y, appear as 1's and 0's in both states, so neither will

appear in the product expression.

The product expression

for this p-subcube, which represent the internal states

that may appear during the transition from state a to state
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b, is y1yldysg. The p-subcube which will represent the states

that may appear during the transition from state d to state

b is obtained in the same manner just described and is

ylyéy495. Obtained in the.same-manner, the p-subcube that
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represents the states for the transition from ¢ to b is
Y1U5Yqds- K, which represents all the internal states of k,
that have the same next-state entry 10111 is

Y1Y3Yg *+ Y1Ys44Ys + Y1Y2Y3Ys-

A tabular method to obtain the same subcubes is shown
for the internal states of ho from Figure 8 as follows:

b 10111 b 10111 b 10111

a 10001 4 10011 e 10101

10~-1 - - 10-11 101-1
Record the value of the internal-state variable in those
columns where it is the same; where there is a difference
in the internal-state variable, place a don't-care (-).
The sum-of-products expression can be obtained directly
from above and K, for k, is |

| Y1Yals + H1Y5Y4Ys +  Y1Y3Y4Ys-

As stated before, all the unstable internal states
represented by Kh must have the same next-state entry,
namely that of the code for the stable state of the cor-
responding k-set, k,. It follows that if the internal-
state variable yj in the code for the stable state of
k-set ky is 1(0), then all the internal states'repreSented
by Kn will have a next-state entry of 1(0) for the next-

state variable Vj.

Definition 9: An internal state which has a specified
next-state entry in a particular column of a flow table

will be called a specified internal state of that column.
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The remaining internal states are said to be unspecified

for that column.

Each K& represents a unique set of internal states
and each of these internal states is specified. The total
‘number of specified internal states S in a column of a
flow table is equal to the sum of the number of the internal
states represented by each Ka of that column. TIf there are
k. internal~-state variables in the internal-state assignment,
the number of internal states in a column of a flow table
that are not specified is 2k - Si’ where 2R is the.total
number of internal states'éossible with kR internal-state
variables. | | |

Each Kn which represents all the internal states that
have the same next-state entry in the k-set hn’ represents
a unique set of internal states that are.épecified in a
particular column of a flow table. Kn can be expressed as
a sum—of—products.expression in terms of the internal-state
variables, It follows that a sum of the product expressions
'répresenting all tﬁe K&'s of é particular column of a flow
table would be an expressidn to-logically represent all the
specified internal stateé of that column. The unspecified
entries would be simply the logical complement of the abhove
expression obtained from the K, 's. Consider the flow table

- with m input states and the corresponding internal-state

~assignment in Figure 9:



Yy Y2 Y3 Y44 - Ty - L
0 0 0 O a B < ... @
1 0 1 0 b ® ... -
0 0 1 0 e B © ...

0 0 0 1 a | ® c ... (®
1 0 1 1 e D B ... -
1 1 0 0 £ G ®» ... =a
11 1 0 © P C . J
0 1 0 0 h ® F ... -
0 1 1 0 5 H N ©)

Figure 9. Sequential machine B,

The k-sets under input state I, are
kl = abc, k2 = de, k3 = fg, and k4 = hj.

The k-~sets under input state I2 are

ke = acd, k6 = be, and k7 = fgh,
The k-sets under input state Iy are

kg = af, kg = cgj, and th = d.
The p-subcube for each transition pair under input I,
in hl a to b is ~0~0 or yéya

c to b is -010 or yég3ga

in:k, e to d is ~0-1 or yyy,
in k3 f to g is 11-0 or y 4,4,
in k, j to h is 01-0 or yiy,yj

The p-subcube for each transition pair under input I,

in kg | a to ¢ is 00-0 or yiysy,

. 3 e 2o ] ]
d to ¢ 1is 00 or ylyz



29

in h6 e tob is 101~ or yly5g3
infh7 ' g to £ is 11—0 Or Y, Y, ¥}
h to £ is ~100 or Yot 3y
The p-subcube for each transition pair under input In
in kg f to a is --00 or yéya
in hg g to j is =110 or y,uqu}
c to j is 0-10 or yinya

in klO d to d is 0001 or yiyéyéy4.
Each K& represénting the k-set R, under the respective input
state is given as follows:
Under input xl

Ky = yaya + 43434},

Ky = Y394

Ky = y1yy4),

Ky = yiyy9)e
Under input I

Ks = yluiyd + yiys,

K = 414543,

Ky = yyy0) + 4939}
Under input In

Kg = y394r

Kg = daysyd + ulysu},

Kio= ¥i¥3y3Yy-
The sum of the product expressions of the Ki's in the column
with input ii will logically represent all the specified

internal states of that column. In this case, the expressions
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that represent the specified states are for
Input Iy: o ubuy o+ ySuguy +oudys + yyuauh + ylyoyl
Input Ty: yiudui + yiys + 4145u3 + yispuh + ypuly)
Input In:o yhul + yiuduluy * uay3dh + uiyauy-
The logical complement of the above expressions would
represent the unspecified states in each column. The
simplified expressions that represent the unspecified states
are for
Input I: 4,4,
Input It y,4, + U 305+ 41Y,0;
Input Im: g1y4 + g2g4 + y3y4 +
The above terms represent the unspecified or don't-care
states of each column as a simplified sum-of-products
expression.,

After.obtaining the unspecified or don't-care states,
it is necessary to obtain the l-cells for each next-state
variable in each column. As noted before, all the internal
states represented in kn will have the same next~state entry,
namely that of the stable state of ka. Consider the binary
code for the stable state of the k-set k, in a certain column
to be ¢, Cy ; . Cx. 7The next-state variable Y; will have a
1 as the next-state entry for all internal states répresented
in the c6rresponding Ky if ¢y of the stable state is 1. If ¢4
is 0, then the next-state variable Yq will be 0 for all the
internal states represented by K&. This same reasoning can be

applied to any next-state variable Yj. In general, the next-

state variable 3{_.l will bhe 1(0) for all internal states repre-



sented in Kn if Qj of the stable state of k, is 1(0),

All the l-cells of the next-state variable Yj in a
particular column of a flow table can be représented by
the sum of the product expressiohs of those Kn's_where
Yj = 1, Fgllowing is an algorithm that can be used to
generate the next-state expressions in the form of Eg.(1l):

1) List the k-sets of each column and the stable

states of each k-set,

2) Determine the p-subcube corresponding to each
transition pair in each k-set indentified
with input state I;. Retain the identity
of this set of p-subcubes with input Illand
their respective h-sét.' Repeat this proce-

dure for input states I,, I3y o o oy Im

3) Determine the KA corresponding to h~set kn
indentified with input state I,. Each K,
is obtained by the sum of the product ex-
pressions of the p-subcubes associated with
k-set k, . Retain the identity of this
set of Kn‘s with input stéte I;. Repeat
this procedure for input states I,, I3, R Y
4) Determine the don't~care states associated with
each column as follows:
'a.»vForm a sum-of-products expression of all

the K,'s corresponding to the k-sets under

31
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input Il. Retain the identity of this set of

expressions with input I,- Repeat this for

input states I,0 1

3’ [ * . 4 Iml

b. Find the logical complement of the expression

- identified with input I;. This will represent

~the don't-care states in this column of the

flow table. Repeat for input states I,, I3,

. L] r Im.
5) The l-cells for each next-state variable Yj for
§f=1,2, .. ., n can be found as 'follows:
a. Determine the k-sets where ¢, = 1l in the

stable states in the column with input Il
to be identified with Y. Repeat for

cj =1 for §f =2, 3, . . . , n under input
I.. Retain the identity of‘this set of

1
k-sets with input I; and the respective Y

5
Repeat for input states 12, I3, « « « 4 In.
Form a sum-of-products exbression of the
K,'s that represent each of the k-sets
of step 4a under input I; for the next-
state variable Y;. Repeat for Y, Yj3,

+ + « , Yy. Retain the identity of each

expression with input Ij. Repeat for in-

puts Iz, I3, . e e g ;m.
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6) Determine the next-state expressions for the next-
state variable Yj for §f =1, 2, . . ., n under
each column as follows:

a. Form a sum-of-products expression of the l-cells
for each ¥; that are associated with input Iy
of step 4a and the don't-care states asso-
ciated with the same input of step 3, Repeat
.for input states Iy T30 ¢ o oy Ipe

b. Perform the logical AND operation with the
input I and the sum-of-products expression

that is associated with I, of step 5a. Repeat

for input states I3, I3, . . . , I

m

7) Determine the next-state expression for the next-
state variable Yj for =1, 2, . « ., n by per-
forming the logical OR operation with the respec—
tive Yj terms from step 5b. The results will be
in the form of Eq.(l).

At this point, the input states can be coded and the
minimal next-state expressions can be obtained by use of a
computér simplification program or some other simplifica-
tion technique.

The next-state expressions for sequential machine B,
shown in Figure 7, are obtained here using the algorithm
as follows: |
Steps 1,2,3,andwi have already been completed in the al-

goxrithm.



Step 5a. The next-state variables have l-cells in the
following h;sets:
In the column with input Il’
Y) has l-cells in hl and h3,
Y, has l-cells in k3 and Ryr
Y3 has l-cells in k; and Ry,
Yy has l-cells in k,.
In the column with input I,
Y, has l-cells in h6 and h7,
Y2 has l-cells in ko,
Y, has l-cells in k. and h6'
Y, has no l-cells.
In the column with input I
Yl has no l-cells,
Y, has l-cells in kg,
Y3 has l-cells in kg,
Y, has l-cells in kjj.
Step 5b. The sum-of-products expression that represents

the l-cells for each next-state variable are as follows:

The expression for the l-cells in the columns with input

for ¥ is Y394 * Y1494t Yp¥a¥y
for Y, is Yy1Yoyy + YiY,44,
for Y3 is Ypdy * 1Yoyt Ypdg¥ys

and for Y, is gé Yy
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The expression for the l-cells in the column with input I2

for Y. i
o 1 is
for Y2 is

for Y3 is

Y1Y3Y3t Y14 ht YoyY3yy,
Y1YoYy + YoY3Yas
YpYady * ¥ius v Y1Y3Ys,

and for Y, there is none.

4

The expression.for the l-cells in the coluwmn with input Im

for Y. is none,

1

for Y is
2

for Y3 is

and for Y4 is

Step 6a and 6b.

Y, U4y + Y1¥3Y)
! ! !
Yooy + YiYydye
] ' ' -
YIS

The unsimplified next-state expressions

under ‘each column of the flow table, including the don't-

care states, are for

I t I_:
npu 1

Input I :
P 2

<
1

17 439393
Yo = [yy1yav)
3 = lyiyyv}

i
|

i

luguy + Yrupul + uhyssy + dlypy) 1T
[yyypuy + ¥1¥29h + 404,17

[y3yd + yhysyy + yiyayh + dlyyyg) 1T,
[ysy, + d(y,yy) 11,

Yauiyy toUgyy t dlyyu, +oyjysys oy yiyy) 1T,
yauldyh + dly,y, + y1¥yy3 * 4i¥y93) 1T,
yiyy + yrysys * dlyuy oy usys +oyiuay3) i,
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Input Im:_
¥, = 0I_
Yo = lyaysud + yjysuy + dlygy, + Yoy + y3uy) Iy
Yy = lyyysy) + ylysud + dluyyy + yoys + y3ug) 11
Ya = 1919303y + dlypyy + doyy + Y3y 1T,

Step 7. The next-~state expressions are

<
|
it

[E/éya + gllfzya + _L/éy3y)1 + d(92U4)]Il
ol Yy Uyt Yyt dlYayy t o yiuady Foyyyiy I, 4o

il

[y19595 + ¥i¥a9g + dlypyg)1Ty
tol1yaYs + Yayiyg + dlypyy +oyaynes o Yiupyg) 1T F o
t o lusysyy + yiyayy + dlyqyy + doyg + yzyyg) 13

Yy o= Lysuy + yhusuh + ypypyy + dlyyy,) 1T,
*olyluguy + vivd + uusys t Ay, Foyiysey ¢ ginnya) 1T, + oL
oLy, yguy +oyiyayy t dlypyy t Yoyg + Y3ye) 1Ig

Yy = lyly, + dlyyy) 1T
+ 0L, + ... '
+ Yy, + dlugyy + Yoy + Y3y 11,

At this point one can code the input states and find
the'minimal next-state expressions by using Simplification
techniques. |

The algorithm just presented generates the next-state
éxpressions, chpiete with don't-cares, directly from the
interpal—ététe assignment and the flow table, without re=~

quiring the construction of the transition table.
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IvVv. SUMMARY

This paper has presented a method that will enable
one to predict which of many internal-state assignments
for a normal fundamental-mode asynchronous sequential
machine will yield a simpler set of next-state expressions,
This can be done by using the assignment weighting scheme
described herein, which is based on two simple algorithms
that determine important characteristics of each internal-
state assignmént.

The second problem treated in this paper is one of
going directly from an internal-state assignment to the
next-state e#pressions for a normal fundamental-que
asynchronous sequential machine. An algorithm is presented
for generating the next-state expressions without requiring
the construction of a transition table. This algorithm
would éeem to make the problem of generating the next-
state expressions an eaéier one to program on a computer,
.because the algorithm is given as a sequence of steps and
no decisions are required in_follo&ing the algorithm.
Currently, a computer program is being Written'to im-

plement this algorithm.
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