Minimization and generation of next-state expressions for asynchronous sequential circuits

Gary Keith Maki

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Electrical and Computer Engineering Commons

Department:

Recommended Citation

Maki, Gary Keith, "Minimization and generation of next-state expressions for asynchronous sequential circuits" (1967). Masters Theses. 6869.
https://scholarsmine.mst.edu/masters_theses/6869

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

MINIMIZATION AND GENERATION OF NEXT-STATE EXPRESSIONS

 FORASYNCHRONOUS SEQUENTIAL CIRCUITS

BY
GARY K. MAKI -1943-
\qquad
A
129517
THESIS
submitted to the faculty of
THE UNIVERSITY OF MISSOURI AT BOLA
in partial fulfillment of the requirements for the
Degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
Rolla, Missouri
1967

$$
\begin{gathered}
7200 p \\
\text { shop } \\
0.1
\end{gathered}
$$

Approved by

ABSTRACT

One step in the synthesis procedure for realizing an asynchronous sequential circuit that is operating in fundamental mode is to obtain an internal-state assignment that will realize the operations of the circuit. Often the procedures that are used in accomplishing the above task generate several satisfactory assignments. The first part of this paper presents a method that will enable one to predict which of the internal-state assignments will yield a simpler set of next-state expressions.

A second topic treated in this paper is one of presenting a method to generate the next-state expressions for an asynchronous sequential circuit directly from the internal-state assignment. An algorithm is presented for generating the next-state expressions without construction of the transition table.

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. James H. Tracey for his guidance throughout the entire project. The prompt and careful reading of the manuscript is greatly appreciated.

The author also wishes to acknowledge the typing efforts of his wife, Alice, and the help extended by Mrs. Mary Colton in preparing this thesis.

TABLE OF CONTENTS
ABSTRACT ii
ACKNOWLEDGEMENTS iii
LIST OF FIGURES v
I. INTRODUCTION 1
II. SELECTION OF AN INTERNAL-STATE 5 ASSIGNMENT WHICH WILL YIELD SIMPLER NEXT-STATE EXPRESSIONS
III. GENERATION OF NEXT-STATE EXPRESSIONS 19
IV. SUMMARY 34
BIBLIOGRAPHY 35
VITA 36

I. INTRODUCTION

Sequential switching circuits are normally categorized as being either synchronous or asynchronous. In synchronous circuits, clock pulses synchronize the operations of the circuit, while in asynchronous circuits, it is usually assumed that no such clocking is available. A desirable feature of asynchronous design is that the resulting circuit may take full advantage of basic device speed since the circuit does not have to wait for the arrival of clock pulses before effecting a transition. This paper deals with only the asynchronous sequential circuits.

The operation of an asynchronous sequential switching circuit $c a n$ be described by means of a flow table ${ }^{l}$. An example appears in Figure 1.

	I_{1}	I_{2}	I_{3}
1	(1) $/ 1$	2	4
2	3	(2)/1	(2)/1
3	(3)/2	4	2
4	1	(4)/2	(4) $/ 1$

Figure l. Flow table for an asynchronous sequential circuit.

Each column of the flow table represents an input state, each row represents an internal state, and the table entries specify the next internal state and output
state. If the next internal state entry is equal to the present internal state, the state is said to be stable and is denoted as such by a circled entry. Uncircled entries are called unstable. For example, in Figure 1 , if the circuit is presently stable in internal state 2 with input I_{2}, the output is in output state 1. A change in input from I_{2} to I_{1} will cause the circuit to enter unstable state 3 . This will be followed by a change in internal state from state 2 to state 3 with a new output state 2. The circuit is now stable and the internal state will undergo no further changes until there is another change in input.

Definition 1: An asynchronous sequential circuit is said to be operating in the fundamental mode if the inputs are never changed unless the circuit is in a stable condition.

Definition 2: A flow table with the characteristic that each unstable state leads directly to a stable state is called a normal flow table.

The sequential circuits in this paper will be considered to be normal fundamental-mode asynchronous sequential circuits.

The problem of selecting an internal-state assignment for the realization of a given normal flow table for an asynchronous sequential circuit that will result in critical-race-free operation is an important step in the design of such circuits. A critical race is a condition that exists
when there is a possibility that unequal transmission delays may cause the sequential circuit to reach a stable state other than the one intended.

Huffman recognized the existence of the internalstate assignment problem in his original paper ${ }^{1}$ which has been the basis for much of the work in asynchronous sequential circuit design and analysis. A year later, Huffman presented a generalized assignment procedure for coding a 2^{n}-row normal flow table with a maximum of $2 n-1$ internalstate variables ${ }^{2}$. This assignment procedure would produce codes with no races and therefore free of critical races.

Liu ${ }^{3}$ has developed systematic procedures for constructing noncritical assignments for normal fundamental-mode sequential circuits. These procedures, which are dependent on flow table structure, have been extended by Tracey ${ }^{4}$. One of the three procedures developed by Tracey yields a minimum-variable assignment for normal fundamental-mode flow tables. Often, the algorithms developed by Tracey produce several internal-state assignments with the same number of internal-state variables, all of which produce critical-race-free realizations of a given flow table. It has been observed that the next-state expressions which result from some of these internal-state assignments are simpler than others. One purpose of this paper is to present a method to predict which internal-state assignment
for an asynchronous sequential machine will yield simpler next-state expressions than other assignments for the same machine.
The second topic treated in this paper is to find a direct method for obtaining the next-state expressions for an asynchronous sequential machine from a given critical-race-free internal-state assignment. An algorithm is presented in this paper for generating the next-state expressions without the construction of a transition table.
II. SELECTION OF AN INTERNAL-STATE ASSIGNMENT WHICH WILL YIELD SIMPLER NEXT-STATE EXPRESSIONS

The discussion presented throughout this paper will not be concerned with the coding of the input states and will be restricted to finding the next-state expressions on a per-column basis. If there are n internal-state variables and a flow table of m columns and m input states, the general form for the next-state expressions will be

$$
\begin{aligned}
Y_{1} & =\sigma_{11}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{1} \\
& +\sigma_{12}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{2}+\ldots, \\
& +\delta_{1 m}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{m} \\
Y_{2} & =\delta_{21}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{1} \\
& +\delta_{22}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{2}+\ldots, \ldots \\
& +\delta_{2 m}\left(y_{1}, y_{2}, \ldots, \ldots, y_{m}\right.
\end{aligned}
$$

$$
Y_{n}=f_{n_{1}}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{1}
$$

$$
+\operatorname{sn}_{2}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{2}+\ldots .
$$

$$
\begin{equation*}
+\operatorname{frm}\left(y_{1}, y_{2}, \ldots, y_{n}\right) I_{m^{\prime}} \tag{I}
\end{equation*}
$$

where $y_{1}, y_{2}, . . ., y_{n}$ are the present state variables; Y_{1}, Y_{2}, . . , Y_{n} are the next-state variables; I_{1}, I_{2}, . . . I_{m} are the inpıat states; 611,612, . . . finm are functions of the internal-state variables alone.

The intent of this section is to obtain a figure of merit that will predict which internal-state assignment for
a normal fundamental-mode asynchronous sequential machine will yield simpler next-state expressions than other assignments for the same machine. In this paper the assignmentselection process is considered to be the selection of that assignment which will minimize the functions $6_{11}, 6_{12}$, . . $6_{i j}$. . . . $6_{n m}$ into a simplest sum-of-products expression. The assignment which tends to minimize the complete set of functions will be the one that will be said to yield the simplest next-state expressions. It is realized that the coding of the input states will affect the complexity of the next-state expressions, but there is some positive value in choosing the assignment with the simplest $f_{i j}$ coefficients of Eq. (1), even though it cannot be guaranteed to result in a minimal set of equations. Optimum coding of the input states will not be part of the study in this paper.

The determination of a figure of merit that will be used to judge each internal-state assignment will be based on the following characteristics:

1) The number of internal-state variables which have the characteristic that the next state is equal to the present state for all transitions in a particular column of a flow table.
2) The number of internal-state variables that remain constant for all transitions in a particular column of a flow table.

An internal-state variable y_{j}, which has the characteristic that the next state is equal to the present state in a
column of a flow table under input state I_{i} will have as part of the next-state expression for the next-state variable $\mathbf{Y}_{\mathbf{j}}$

$$
\begin{equation*}
Y_{j}=y_{j} I_{i} \tag{2}
\end{equation*}
$$

or $\delta_{i j}=y_{j}$ as one of the coefficients in Eq. (1). Another way of stating this is that the internal-state variable y_{j} will not change state in any transition in the column of the flow table with input state I_{i}.

An internal-state variable y_{j} which remains constant for all transitions in a particular column with input I_{i} will have as part of the next-state expression for the next-state variable Y_{j}

$$
\begin{equation*}
Y_{j}=1(0) I_{i} \tag{3}
\end{equation*}
$$

or $6_{i j}=l(0)$ as one of the coefficients in Eq. (1). Another way of stating this is that if a transition table was formed, the next-state variable Y_{j} would have a next-state entry of 1 or 0 for all the specified internal states in the column with input I_{i}.

The discussion following. will describe exactly how the characteristic of the next state being equal to the present state can be determined. It is advantageous to use partition theory as it has been employed to describe certain aspects in switching theory.

Definition 3: A partition $l l$ on a set S is a collection subsets of S such that their pairwise intersection is the null set. The disjoint subsets are called the blocks of π.

If the set union of these subsets is S, the partition is completely specified; otherwise, the partition is incompletely specified. Elements of S that do not appear in π are called unspecified or optional elements with respect to that partition.

Definition 4: The two-block partition τ_{1}, τ_{2}, \cdot. τ_{n} induced by the internal-state variables $y_{1}, y_{2}, . . ., y_{n}$, respectively, are called the set of t-partitions of that assignment.

The following example in Figure 2 will help illustrate the above definition. Here the first block in each t -partition is a set of the internal states that have been coded with a 0 by each internal-state variable and the second block is a similar set of the states that have been coded with a 1 by each internal-state variable. It should be pointed out that the ordering of the blocks is unimportant.

Internal	states \quad Internal-state variables
	$y_{1} \quad y_{2} \quad y_{3}$

a	0	0	0
b	0	1	0
c	1	1	0
d	1	0	0
e	0	1	1
f	1	0	1
τ_{1}	$=\{\overline{a, b, e} ; \overline{c, d, f}\}$		
τ_{2}	$=\{\overline{a, d, f} ; \overline{b, c, e}\}$		
τ_{3}	$=\{\overline{a, b, c, d} ; \overline{e, f}\}$		

Figure 2. Internal-state assignment and corresponding τ-partitions.

Definition 5: A k-set of a single column of a flow table consists of all $k-1$ unstable entries leading to the same stable state, together with that stable state.

Definition 6: A column partition a_{1} is a collection of the k-sets of the column of a flow table with input state I_{i}, where each k-set is contained in a single block.

	I_{i}
a	1
b	2
c	(1)
d	(2)
e	2
f	(3)
9	3
h	(4)
j	(5)

Figure 3. Partial flow table and corresponding column partition $\alpha_{1}=\{\overline{a, c} ; \overline{b, d, e} ; \overline{f, 8} ; \bar{h} ; \bar{j}\}$.

Definition 7: Partition θ_{2} is less than or equal to $\theta_{1}\left(\theta_{2} \leqslant \theta_{1}\right)$ where θ_{1} and θ_{2} may be incompletely specified, if and only if all elements specified in θ_{2} are also specified in θ_{1} and each block of θ_{2} appears in a unique block of θ_{1}.

Theorem 1: An internal-state variabley j will not change state in any transition in a column of a flow table with input state I_{i} if $\alpha_{i} \leq \tau_{j}$.

Proof: From the definition of a k-set, all transitions of the column of a flow table with input state I_{i} will take place within some k-set of the column partition α_{i}. If the column partition α_{i} is less than or equal to a τ partition τ_{j}, each block of the column partition α_{i}, which is a k-set of the column partition, is included in one of the blocks of the partition τ_{j}. Therefore, the internalstate variable y_{j} cannot undergo a change of state in any transition in the column with input I_{i}, because each pair of states that have a transition between them are listed in the same block of the partition τ_{y} and are coded idenically with internal-state variable $y_{j} . \nabla$

To demonstrate the use of theorem 1 , the τ-partitions

$$
\begin{aligned}
& \tau_{1}=\{\overline{a, c, f, g, h} ; \overline{b, d, e, f}\} \\
& \tau_{2}=\{\overline{a, b, d, e ; \overline{c, f, g, h, j}\}}
\end{aligned}
$$

will be compared to the column partition of Figure 2

$$
a_{1}=\{\overline{a, c} ; \overline{b, d, e} ; \overline{f, g} ; \bar{h} ; \bar{j}\}
$$

Each block of α_{i} is contained in a block of τ_{1} or ($\alpha_{i} \leq \tau_{1}$). This means that in all the transitions of this column, internal-state variable y_{1} will not change state, or the next state will always be equal to the present state for any transition in the column with input I_{i}. However, τ_{2} does not satisfy theorem 1 in that the block $\overline{a, c}$ of a_{1} does not appear in a block of τ_{2}. The internal-state variable y_{2} will therefore, undergo a change of state during the transition state a to state c.

It might be noted that in making the test for $\alpha_{i} \leqslant \tau_{j}$ for all i and j, one only has to be able to show that each block of the column partition α_{1} is contained in a block of the τ-partition τ_{j}. Extending this even further, only the blocks of a_{i} which contain two or more elements need be considered.

Let $\left(\# y^{f}\right)$ be the number of internal-state variables that meet the conditions of theorem 1 under each column with input I_{i}. The total number of terms like that of Eq. (2), which will appear in the next-state expressions of Eq.(1), will be

$$
\begin{equation*}
D_{k}=\sum_{i=1}^{m}\left(\# y^{i}\right), \tag{4}
\end{equation*}
$$

where m is the number of columns in the flow table and D_{k} is the total number of internal-state variables that do not change state for internal-state assignment k. Following is an algorithm that can be used to obtain D_{k} for internalstate assignment k :

1) Form the partitions a_{i} and τ_{j} for all values of i and j.
2) Determine $\left(\# y^{1}\right)$, which is the number of internalstate variables under input I_{l} that meet the conditions of theorem 1. Repeat for $i=2,3, \ldots, m$.
3) D_{k} for internal-state assignment k is given by Eq. (4).

At this point, attention will be given to the internalstate variables which remain constant for all transitions in a particular column of a flow table, or can be considered as
constant next-state terms. In determining the constant next-state terms in a particular column of a flow table, consideration will be given to the actual next-state entry for each internal state in a column of the flow table as it would appear in a transition table.

It has been extablished that all the transitions in a column of a flow table take place within some k-set k_{r} of that column. Each of the unstable states of the k-set k_{r} can experience a transition to the stable state of k_{r}. The next-state entry for each of the unstable states of k_{r} will have to be the same as the code assigned to the stable state within k_{n} in order to insure a transition from the unstable states to the stable state will be independent of transmission delays. In other words, the next-state entry for each of the unstable states of a k-set k_{r} will be determined completely by the code assigned to the stable state of k_{n}. If the internal-state variable y_{j} in the code assigned to the stable state of k_{r} in a certain column of a flow table is $l(0)$, then all the internal states of k_{r} will have a next-state entry of $I(0)$ for the next-state variable Y_{j}.

Extending the above argument even further and assuming there are (\#k ${ }^{i}$) k-sets in a particular column of a flow table with input I_{i}, the next-state variable Y_{j} will have a next-state entry of $I(0)$ in all the specified states of the columin with input I_{i} if the internal-state variable y_{j} is $1(0)$ in the code assigned to all $\left(\# h^{i}\right)$ stable states of the
same column. The resulting next-state expression would be

$$
Y_{j}=I(0) I_{i}
$$

The following discussion will explain a method that can be used to obtain the constant terms in each column of a flow table. First list the stable states and their respective codes for each column of the flow table and identify each set of lists with the respective input state of the column. From these lists, one can determine which, if any, of the internal-state variables are $l(0)$ in the codes for the stable states in each of the respective columns. To illustrate this, assume the internal states with their respective codes shown in Figure 4 are the stable states in a column of a flow table.

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
a	1	0	1	0	1
c	1	1	0	0	1
d	1	0	1	0	0
f	1	1	1	0	0

Figure 4. Stable states and their
respective codes.
By inspection, one can determine that there are two internalstate variables that are $1(0)$ in the states listed; they are $y_{1}=1$ and $y_{4}=0$.

Let ψ_{i} be the number of internal-state variables that are $1(0)$ in the codes for the stable states in the column with input I_{i}. In Figure $4, \psi_{i}=2$. Let C_{k} be the total number of internal-state variables found in the columns to be $l(0)$ for internal-state assignment k;

$$
\begin{equation*}
c_{k}=\sum_{i=1}^{m} \psi_{i} \tag{5}
\end{equation*}
$$

where m is the number of columns in the flow table.
Both of the characteristics discussed for determing a weight to attach to each internal-state assignment for a asynchronous sequential machine are valuable. The relative weight to attach to D_{k} and C_{k} for internal-state assignment k may vary with each type of implementation. The weight for an internal-state assignment k will be defined as

$$
\begin{equation*}
W_{k}=D_{k}+\xi C_{k} \tag{6}
\end{equation*}
$$

where W_{k} will be the weight attached to internal-state assignment k and ξ is a variable that would allow the adjustof the relative values of C_{k} in respect to D_{k}. It seems safe to conclude that a constant coefficient, as represented in Eq. (3), would require a lesser amount of combinational logic for synthesis than a literal coefficient, as represented in Eq. (2). The designer of a sequential circuit will have to decide on a value for ξ in determining how much easier it is to implement a constant coefficient as opposed to a literal coefficient. This could be done by obtaining a cost figure to compare the coefficients. This cost figure would depend on the number of literals associated with each input state.

In general, ξ will vary with each type of implementation. For purposes of illustration in this paper, ξ will take on a value of 2 , which is arbitrary, to demonstrate the assignmentselection procedure. The weight for an internal-state assignment k will be defined in the examples shown in this paper as

$$
\begin{equation*}
W_{k}=D_{k}+2 C_{k} \tag{7}
\end{equation*}
$$

The internal-state assignment with the largest weight associated with it will be predicted to yield the simplest next-state expressions, because it would have the largest number of terms like those shown in Eq.(2) and Eq. (3).

Sequential machine A in Figure 5 can be coded with either of the two internal-state assignments shown. The criteria developed above will be used to predict which assignment will produce the simplest next-state expressions.

	I_{1}	I_{2}	I_{3}
	A	F	D
b	C	D	B
c	C	C	B
d	A	D	D
e	F	E	E
f	F	F	E

Assignment 1 Assignment 2

y_{1}	y_{2}	y_{3}	y_{1}	y_{2}	y_{3}	
0	0	0	a	0	0	0
1	0	1	b	1	0	1
1	0	0	c	1	1	1
0	0	1	d	0	0	1
0	1	1	e	1	1	0
0	1	0	f	0	1	0

Figure 5. Machine A with two assignments.

First D_{k} will be obtained by following the procedure developed in this paper.

Step 1. The column partitions are

$$
\begin{aligned}
& \alpha_{1}=\{\overline{a, d} ; \overline{b, c} ; \overline{e, f}\} \\
& \alpha_{2}=\{\overline{a, f} ; \overline{b, d} ; \bar{c} ; \bar{e}\} \\
& \alpha_{3}=\{\overline{a, d} ; \overline{b, c} ; \overline{e, f}\} .
\end{aligned}
$$

The τ-partitions for assignment 1 are

$$
\begin{aligned}
& \tau_{1}=\{\overline{a, d, e, f} ; \overline{b, c}\} \\
& \tau_{2}=\{\overline{a, b, c, d} ; \overline{e, f}\} \\
& \tau_{3}=\{\overline{a, c, f} ; \overline{b, d, e}\}
\end{aligned}
$$

and for assignment 2 are

$$
\begin{aligned}
& \tau_{1}=\{\overline{a, d, f} ; \overline{b, c, e}\} \\
& \tau_{2}=\{\overline{a, b, d} ; \overline{c, e, f}\} \\
& \tau_{3}=\{\overline{a, e, f} ; \overline{b, c, d}\} .
\end{aligned}
$$

Step 2. The r-partitions for assignment 1 that meet the conditions of theorem 1 are

$$
\begin{aligned}
& \alpha_{1} \leq{ }^{\top} 1 \\
& \alpha_{1} \leq{ }^{\top} 2 \\
& \alpha_{2} \leq \tau_{3} \\
& \alpha_{3} \leq{ }^{\top}{ }_{1} \\
& \alpha_{3} \leq \tau_{2},
\end{aligned}
$$

and for assignment 2

$$
\alpha_{2} \leqslant \tau_{3} .
$$

Step 3. $\quad D_{1}$ and D_{2} are

$$
\begin{aligned}
& D_{1}=2+1+2=5 \\
& D_{2}=0+1+0=1
\end{aligned}
$$

C_{k} is obtained by following the procedure given earlier. The stable states and their respective codes in assignment 1 under each input state are

	I_{1}		I_{2}			I_{3}			
a	00	0	c	10	0	b	1	0	1
c	10	0	d	00	1	d	0	0	1
f	01	0	e	01	1	e	0	1	1
			f	01	0				

and in assignment 2 are

	I_{1}		I_{2}				I_{3}			
a	00		c	1	1	1	b		0	1
c	11		d	0	0	1	d	0	0	1
£	01	0	e	1	1	0	e	1	1	0
			f		1					

Internal-state variable y_{3} is constant in the above lists in the columns with input I_{1} and I_{3} for assignment 1 . There are no internal-state variables constant in the above lists for assignment $2 . \quad C_{1}$ and C_{2} are

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=0 .
\end{aligned}
$$

The weight for each assignment is

$$
W_{1}=5+4=9 .
$$

and

$$
w_{2}=1+0=1
$$

From the above information, assignment 1 would be predicted to have the simpler next-state expressions.

The next-state expressions for assignment 1 are

$$
\begin{array}{llr}
Y_{1}= & y_{1} I_{1}+ & \left.y_{1} y\right\} I_{2}+ \\
Y_{2}= & y_{1} I_{3} \\
Y_{3}= & y_{2} I_{1}+\left(y_{2}+y_{1}^{\prime} y_{3}^{\prime}\right) I_{2}+ & y_{2} I_{3} \\
y_{3} I_{2}+ & I_{3 j}
\end{array}
$$

and for assignment 2 are

$$
\begin{array}{lr}
Y_{1} & =y_{1} y_{3} I_{1}+\quad y_{1} y_{2} I_{2}+\left(y_{1}+y_{2}\right) I_{3} \\
Y_{2} & =\left(y_{1}+y_{2}\right) I_{1}+\left(y_{2}+y_{3}^{\prime}\right) I_{2}+ \\
Y_{3} & =y_{2} y I_{3} \\
y_{1} y_{3} I_{1}+ & y_{3} I_{2}+\left(y_{3}+y_{2}^{\prime}\right) I_{3} .
\end{array}
$$

Clearly, assignment 1 yields the simpler next-state expressions.

Presented in this section was a method to predict which internal-state assignment, from several such assignments for the same asynchronous sequential machine, will yield the simplest next-state expressions.
III. GENERATION OF NEXI-STATE EXPRESSIONS

The problem treated in this section is one of obtaining the next-state expressions for a normal fundamental-mode asynchronous sequential machine directly from a given critical-race-free internal-state assignment. An algorithm is presented for generating the next-state expressions without the construction of a transition table. The nextstate expressions are generated in the form shown in Eq. (1). The input states are shown uncoded, but would be coded and simplified before realization of the flow table is attempted. Each of the functjons $6_{i j}$ in Eq. (I) will consist of a sum-of-products expression representing the 1-cells and a similar expression representing the don'tcare states for a next-state variable Y_{j} in the column of a flow table with input state I_{j}. In general, these expressions are not minimal, but the minimal expressions can certainly be obtained from these equations with conventional simplification algorithms.

Consider the example shown in Figure 6 to be part of a flow table with the corresponding internal-state assignment.

Figure 6. State assignment and partial flow table.
In this example, there are transitions between states a and b and states c and e. One will note that a race condition exists at state c. Because of unequal transmission delays, any of the internal states -1 -, where the dashes represent all combination of $l^{\prime} s$ and $D^{\prime} s$, could momentarily be assumed during the transition between states c and e. Internal states $c, 011$, and $e, 110$, must have a next-state entry of 110 ; but to insure that the circuit reaches the proper terminal state, internal states 010 and 111 must also have the next-state entry of 110 . If these states had any other next-state entry, improper operation could result. A complete transition table, if formed, would have to show states 010 and 111 with the proper next-state entry of 110 .

This set of states that have the same next-state entry can be represented as a p-subcube of an n-cube. The n-cube would represent all possible internal states in a particular column of a flow table, and the p-subcube would be a subset of the states represented by the n-cube. Each subcube can be represented, in turn, by a product function of the internal-state variables. In the above example,
the p-subcube pould be $-1-$, or as a product of internalstate variables, it is y_{2}. In this example then, all internal states where $y_{2}=1$ will have the same next-state entry as stable state e including internal state e, there are 4 such states. For the transition b to a, the subcube that represents all the states which will have the same next-state entry as stable state a is 00 - or $y_{1}^{\prime} y_{2}^{\prime}$. All internal states where both y_{1} and y_{2} are zero will have a next-state entry of 000 , which is the code induced by the internal-state vaxiables for stable state a.

It has been established that all the transitions irt a colum of a flow table take place within some k-set k_{r} of that column. Each of the unstable states of k_{r} can experience a transition to the stable state of k_{r}. The next-state entry for each of the unstable states of k_{r} will have to be the same as the code assigned to the stable state within k_{r} in order to insure a transition from the unstable states to the stable state will be independent of transmission delays. In some cases a single p-subcube can represent all the internal states of a k-set that must have the same next-state entry, like in the example above with only two internal states per k-set in the original. flow table. In general, it may take several p-subcubes to represent the internal states of a k-set with more than two internal states. The following example shown in Figure 7 will illustrate this point.

u_{1}	y_{2}	y_{3}		r_{i}
0	0	0	a	A
1	1	0	b	D
0	1	1	c	A
1	1	1	d	D
1	0	1	e	A

Figure 7. State assignment and partial flow table.
Internal states a, c, and e are in the same k-set and will have the same next-state entry of 000 ; internal states b and d are in the same k-set and will have the next-state entry of 111 . During the transitions between states c and a, any of the internal states $0--$ could momentarily be assumed and must have the next-state entry of 000 to insure proper operation of the circuit. These states can be represented by the p-subcube $0-$-, or as a product of internal-state variables y_{1}^{\prime}. During the transition from e to a, any of the states -0 - could momentarily appear and must have the next-state entry of 000. This p-subcube can be represented as -0 - or as y_{2}^{\prime}. In this example, a sum-of-products expression that can represent all the internal states that must have the nextstate entry of 000 is

$$
y_{1}^{\prime}+y_{2}^{\prime} .
$$

The p-subcube that would represent the internal states that must have a next-state entry of 111 is ll- or $y_{1} y_{2}$.

A p-subcube represents all the internal states that could momentarily appear due to unequal transmission delays during the transition between an unstable and stable state within a k-set. The internal states represented by a $p-s u b c u b e$ must have the same next-state entry. A p-subcube may represent even internal states which may not be assigned to the rows of the original flow table. These spare states may be entered during a transition between internal states when unequal transmission delays cause internal states other than those assigned to the rows of the original flow table to be assumed. However, it will not be necessary to identify the spare states individually because they will be represented in a p-subcube.

Each transition between an unstable and stable state of a k-set k_{r} has a unique $p-s u b c u b e p_{r}$ which represents all the internal states that could be assumed. None of the internal states represented in p_{r} can be represented in another p-subcube. If the situation did occur where two subcubes had an internal state in common, this internal state would be required to have two different next-state entries. Such an assignment does not constitute a satisfactory code for flow tables operating in normal fundamen-tal-mode.

In the previous example it can be seen that for k-sets of three or more internal states, it will require more than one p-subcube to represent all the internal states that must have the same next-state entry in a column of a flow
table.

Definition 8: $\quad K_{r}$ is defined to be a sum-of-products expression representing all the internal states of k--set k_{r} which have the same next-state entry, namely that of the stable state of k_{r}.

A method to represent the p-subcube as a product of the internal-state variables which represents all possible internal states that could appear during a transition between an unstable and a stable state in a k-set is as follows:

1) List the codes assigned to the stable and unstable states involved in the transition within k-set k_{r}.
2) The product expression that will represent the p-subcube will be a subset of the internal-state variables ($y_{h} \cdot \cdot \cdot y_{i} \cdot$. y_{k}). If the internalstate variable y_{j} is a 1 in both of the states in question of k_{r}, it will appear uncomplemented in the product expression. If the internal-state variable \underline{u}_{j} appears as a 0 in both of the states in question of k_{r}, its complement will appear in the product expression. If the internal-state variable y_{j} appears as both 1 's and 0 's in the states in question of k_{r}, it is considered a don'tcare variable and does not appear in the product expression.

Consider the following single column of a flow table with the codes listed for each internal state:

Figure 8. Partial flow table and corresponding state assignment. Internal states a, b, d and e are in the same k-set $k_{0} \cdot$. There are transitions a to b, d to b and e to b in k_{o}. The p-subcube representing the states of the transition a to b is obtained as follows: Internal-state variable y_{1} and y_{5} are 1 in both states a and b; therefore, y_{1} and y_{5} will appear in the product expression. Internal-state variable y_{2} is 0 in both states; therefore, y_{2}^{\prime} will appear in the product expression. Internal-state variables y_{3} and y_{4} appear as l's and 0's in both states, so neither will appear in the product expression. The product expression for this p-subcube, which represent the internal states that may appear during the transition from state a to state b, is $y_{1} y^{2} y_{5}$. The p-subcube which will represent the states that may appear during the transition from state d to state b is obtained in the same manner just described and is $y_{1} y_{2}^{\prime} y_{4} y_{5}$. Obtained in the samemanner, the p-subcube that
represents the states for the transition from e to b is $y_{1} \|_{2}^{\prime} y_{3} y_{5}$. K_{0} which represents all the internal states of k_{0} that have the same next-state entry 10111 is

$$
y_{1} y_{2}^{\prime} y_{5}+y_{1} y_{2}^{\prime} y_{4} y_{5}+y_{1} y_{2}^{\prime} y_{3} y_{5} .
$$

A tabular method to obtain the same subcubes is shown for the internal states of k_{0} from Figure 8 as follows:
b $\begin{array}{llllll}1 & 0 & 1 & 1 & 1\end{array}$
b $\quad 1011111$
b 101111
a 100001
d 10011
e 10101
$10 \sim-1$
$10-11$
$101-1$

Record the value of the intexnal-state variable in those columns where it is the same; where there is a difference in the internal-state variable, place a don't-care (-). The sum-of-products expression can be obtained directly from above and k_{0} for k_{0} is

$$
y_{1} y_{2}^{\prime} y_{5}+y_{1} y_{2}^{\prime} y_{4} y_{5}+y_{1} y_{2}^{\prime} y_{3} y_{5} .
$$

As stated before, all the unstable internal states represented by K_{r} must have the same next-state entry, namely that of the code for the stable state of the corresponding k-set, k_{k}. It follows that if the internalstate variable y_{j} in the code for the stable state of k-set k_{n} is $I(0)$, then all the internal states represented by K_{n} will have a next-state entry of $l(0)$ for the nextstate variable y_{j}.

Definition 9: An internal state which has a specified next--state entry in a particular column of a flow table will be called a specified internal state of that column.

The remaining internal states are said to be unspecified for that column.

Each K_{r} represents a unique set of internal states and each of these internal states is specified. The total number of specified internal states S_{i} in a column of a flow table j.s equal to the sum of the number of the internal states represented by each K_{r} of that column. If there are k internal-state variables in the internal-state assignment, the number of internal states in a column of a flow table that are not specified is $2^{k}-S_{i}$, where 2^{k} is the total number of internal states possible with k internal-state variables.

Each K_{r} which represents all the internal states that have the same next-state entry in the k-set k_{r} represents a unique set of internal states that are specified in a particular column of a flow table. K_{r} can be expressed as a sum-of-products expression in terms of the internal-state variables. It follows that a sum of the product expressions representing all the K_{r} 's of a particular column of a flow table would be an expression to logically represent all the specified internal states of that column. The unspecified entries would be simply the logical complement of the above expression obtained from the K_{r} 's. Consider the flow table with m input states and the corresponding internal-state assignment in Figure 9:

Figure 9. Sequential machine B.
The k-sets under input state I_{l} are

$$
k_{1}=a b c, \quad k_{2}=d e, \quad k_{3}=f g, \text { and } k_{4}=h j
$$

The k-sets under input state I_{2} are

$$
k_{5}=\text { act, } k_{6}=\text { be, and } k_{7}=f g h
$$

The k-sets under input state I_{m} are

$$
k_{8}=a f, \quad k_{9}=c g j, \text { and } k_{10}=d .
$$

The p-subcube for each transition pair under input I_{1}
in k_{1}
a to b is $-0-0$ or $y_{2}^{\prime} y_{4}^{\prime}$
c to b is -010 or $y_{2}^{\prime} y_{3} y_{4}^{\prime}$
in: $k_{2} \quad$ e to a is $-0-1$ or $y_{2}^{1} y_{4}$
in $k_{3} \quad f$ to g is $11-0$ or $y_{1} y_{2} y_{4}^{\prime}$
in $k_{4} \quad j$ to h is $01-0$ or $y_{1}^{\prime} y_{2} y_{4}^{\prime}$
The p-subcube for each transition pair under input I_{2}

$$
\begin{array}{ll}
\text { in } k_{5} \quad & \text { a to } c \text { is } 00-0 \text { or } y_{1}^{\prime} y_{2}^{\prime} y_{4}^{\prime} \\
& \text { a to } c \text { is } 00-- \text { or } y_{1}^{\prime} y_{2}^{\prime}
\end{array}
$$

in k_{6}
e to b is lol- or $y_{1} y_{2}^{\prime} y_{3}$
in: k_{7}
9 to f is $11-0$ or $y_{1} y_{2} y_{4}^{\prime}$
h to f is -100 or $y_{2} y_{3}^{\prime} y_{4}^{\prime}$

The p-subcube for each transition pair under input I_{m}
in $k_{8} \quad f$ to a is -00 or $y_{3}^{\prime} y_{4}^{\prime}$
in k_{9}
g to j is -110 or $y_{2}!_{3} y_{4}^{\prime}$
c to j is $0-10$ or $y_{1}^{\prime} y_{3}^{y} y_{4}^{\prime}$
in k_{10}
d to d is 0001 or $y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}$
Each K_{r} representing the $k-s e t k_{r}$ under the respective input state is given as follows:

Under input I_{1}

$$
\begin{aligned}
& k_{1}=y_{2}^{\prime} y_{4}^{\prime}+y_{2}^{\prime} y_{3} y_{4}^{\prime} \\
& K_{2}=y_{2}^{\prime} y_{4}, \\
& K_{3}=y_{1} y_{2} y_{4}^{\prime}, \\
& K_{4}=y_{1}^{\prime} y_{2} y_{4}^{\prime} .
\end{aligned}
$$

Under input I_{2}

$$
\begin{aligned}
& K_{5}=y_{1}^{\prime} y_{2}^{\prime} y_{4}^{\prime}+y_{1}^{\prime} y_{2}^{\prime}, \\
& K_{6}=y_{1} y_{2}^{\prime} y_{3} \\
& K_{7}=y_{1} y_{2} y_{4}^{\prime}+y_{2} y_{3}^{\prime} y_{4}^{\prime} .
\end{aligned}
$$

Under input I_{m}

$$
\begin{aligned}
& K_{8}=y_{3}^{\prime} y_{4}^{\prime}, \\
& K_{9}=y_{2} y_{3} y_{4}+y_{1}^{\prime} y_{3} y_{4}^{\prime}, \\
& K_{10}=y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4} .
\end{aligned}
$$

The sum of the product expressions of the K_{r} 's in the column with input I_{i} will logically represent all the specified internal states of that column. In this case, the expressions
that represent the specified states are for
Input $I_{1}: \quad u_{2}^{\prime} y_{4}^{\prime}+y_{2}^{\prime} y_{3} y_{4}^{\prime}+\underline{u}_{2}^{\prime} y_{4}+y_{1} u_{2} y_{4}^{\prime}+y_{1} y_{2} y_{4}$
Input $I_{2}: y_{1}^{\prime} y_{2}^{\prime} y_{4}^{\prime}+y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime} y_{3}+y_{1} y_{2} y_{4}^{\prime}+y_{2} y_{3}^{\prime} y_{4}^{\prime}$
Input $I_{m}: y_{3}^{\prime} y_{4}^{\prime}+y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}+y_{2} y_{3} y_{4}^{\prime}+y_{1}^{\prime} y_{3} y_{4}^{\prime}$.
The logical complement of the above expressions would
represent the unspecified states in each column. The
simplified expressions that represent the unspecified states are for

Input $I_{1}: y_{2} y_{4}$
Input $I_{2}: \quad y_{2} y_{4}+y_{1} y_{2}^{\prime} y_{3}^{\prime}+y_{1}^{\prime} y_{2} y_{3}$
Input $I_{m}: y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4}+$
The above terms represent the unspecified or don't-care
states of each column as a simplified sum-of-products expression.

After obtaining the unspecified or don't-care states, it is necessary to obtain the l-cells for each next-state variable in each column. As noted before, all the internal states represented in K_{n} will have the same next-state entry, namely that of the stable state of k_{r}. Consider the binary code for the stable state of the k-set k_{r} in a certain column to be $c_{1} c_{2}$. . . c_{k}. The next-state variable Y_{1} will have a 1 as the next-state entry for all internal states represented in the corresponding K_{r} if c_{1} of the stable state is 1 . If c_{1} is 0 , then the next-state variable Y_{1} will be 0 for all the internal states represented by K_{r}. This same reasoning can be applied to any next-state variable Y_{j}. In general, the nextstate variable Y_{i} will be $l(0)$ for all internal states repre-
sented in K_{r} if c_{j} of the stable state of k_{r} is $l(0)$.
All the l-cells of the next-state variable Y_{j} in a particular column of a flow table can be represented by the sum of the product expressions of those K_{r} 's where $Y_{j}=1$. Following is an algorithm that can be used to generate the next-state expressions in the form of $\mathrm{Eg} .(1)$:
I) List the k-sets of each column and the stable states of each k-set.
2) Determine the p-subcube corresponding to each transition pair in each k-set indentified with input state I_{1}. Retain the identity of this set of p-subcubes with input I_{1} and their respective $k-s e t$. Repeat this procedure for input states $I_{2}, I_{3}, \ldots, I_{m}$.
3) Determine the k_{r} corresponding to k-set k_{r} indentified with input state I_{1}. Each K_{r} is obtained by the sum of the product expressions of the p-subcubes associated with k-set k_{r}. Retain the identity of this set of $K_{r}{ }^{\prime} s$ with input state I_{1}. Repeat this procedure for input states $I_{2}, I_{3}, \ldots, I_{m}$.
4) Determine the don't-care states associated with each column as follows:
a. Form a sum-of-products expression of all the K_{n} 's corresponding to the k-sets under
input I_{1}. Retain the identity of this set of expressions with input I_{1}. Repeat this for input states $I_{2}, I_{3}, \cdots, I_{m}$.
b. Find the logical complement of the expression identified with input I_{1}. This will represent the don't-care states in this column of the flow table. Repeat for input states I_{2}, I_{3}, - . , I_{m}.
5) The l-cells for each next-state variable Y_{j} for $j=1,2$, . . , n can be found as follows:
a. Determine the k-sets where $c_{1}=1$ in the stable states in the column with input I_{1} to be identified with Y_{1}. Repeat for $c_{j}=1$ for $j=2,3, \ldots, n$ under input I_{1}. Retain the identity of this set of k-sets with input I_{l} and the respective Y_{j}. Repeat for input states I_{2}, I_{3}, . . , I_{m}.
b. Form a sum-of-products expression of the K_{r} 's that represent each of the k-sets of step 4 a under input I_{1} for the nextstate variable Y_{1}. Repeat for Y_{2}, Y_{3}, - . . Y_{n}. Retain the identity of each expression with input I_{1}. Repeat for inputs $I_{2}, I_{3}, \ldots, I_{m}$.
6) Determine the next-state expressions for the nextstate variable Y_{j} for $j=1,2$, , , n under each column as follows:
a. Form a sum-of-products expression of the l-cells for each Y_{j} that are associated with input I_{I} of step $4 a$ and the don't-care states associated with the same input of step 3 . Repeat for input states I_{2}, I_{3}, . . , I_{m}. b. Perform the logical AND operation with the input I_{1} and the sum-of-products expression that is associated with I_{1} of step $5 a$. Repeat for input states $I_{2}, I_{3}, \ldots, I_{m}$.
7) Determine the next-state expression for the nextstate variable Y_{j} for $j=1,2$, . . , n by performing the logical OR operation with the respective Y_{j} terms from step $5 b$. The results will be in the form of Eq. (1).

At this point, the input states can be coded and the minimal next-state expressions can be obtained by use of a computer simplification program or some other simplification technique.

The next-state expressions for sequential machine B, shown in Figure 7, are obtained here using the algorithm as follows:

Steps $1,2,3$, and 4 have already been completed in the algorithm.

Step Sa. The next-state variables have l-cells in the following k-sets:

In the column with input I_{1},

$$
\begin{aligned}
& Y_{1} \text { has } 1 \text {-cells in } k_{1} \text { and } k_{3}, \\
& Y_{2} \text { has } 1 \text {-cells in } k_{3} \text { and } k_{4}, \\
& Y_{3} \text { has l-cells in } k_{1} \text { and } k_{3}, \\
& Y_{4} \text { has } 1 \text {-cells in } k_{2} .
\end{aligned}
$$

In the column with input I_{2},

$$
\begin{aligned}
& Y_{1} \text { has l-cells in } k_{6} \text { and } k_{7} \text {, } \\
& Y_{2} \text { has l-cells in } k_{7}, \\
& Y_{3} \text { has l-cells in } k_{5} \text { and } k_{6} \text {, } \\
& Y_{4} \text { has no l-cells. }
\end{aligned}
$$

In the column with input I_{m},

$$
\begin{aligned}
& Y_{1} \text { has no l-cells, } \\
& Y_{2} \text { has l-cells in } k_{9 \prime} \\
& Y_{3} \text { has } 1 \text {-cells in } k_{9 \prime} \\
& Y_{4} \text { has l-cells in } k_{10} .
\end{aligned}
$$

Step Sb. The sum-of-products expression that represents the 1 -cells for each next-state variable are as follows: The expression for the l-cells in the columns with input I_{1} for Y_{1} is

$$
y_{2}^{\prime} y_{4}^{\prime}+y_{1} y_{2} y_{4}^{\prime}+y_{2}^{\prime} y_{3} y_{4}^{\prime}
$$

$$
\text { for } x_{2} \text { is } \quad y_{1} y_{2} y_{4}^{\prime}+y_{1}^{\prime} y_{2} y_{4}
$$

$$
\text { for } Y_{3} \text { is } \quad y_{2}^{\prime} y_{4}^{\prime}+y_{1} y_{2} y_{4}^{\prime}+y_{2}^{\prime} y_{3} y_{4}^{\prime}
$$

$$
\text { and for } Y_{4} \text { is } \quad y_{2}^{\prime} y_{4}
$$

The expression for the l-cells in the column with input I_{2} for Y_{1} is $\quad y_{1} y_{2}^{\prime} y_{3}+y_{1} y_{2} y_{4}^{\prime}+y_{2} y_{3}^{\prime} y_{4}^{\prime}$,
for Y_{2} is $\quad y_{1} y_{2} y_{4}^{\prime}+y_{2} y_{3}^{\prime} y_{4}^{\prime}$,
for Y_{3} is $\quad y_{1}^{\prime} y_{2}^{\prime} y_{4}^{\prime}+y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime} y_{3}$,
and for Y_{4} there is none.
The expression.for the 1 -cells in the column with input I_{m} for Y_{1} is none,
for Y_{2} is $\quad y_{2} y_{3} y_{4}^{\prime}+y_{1}^{\prime} y_{3} y_{4}^{\prime}$,
for Y_{3} is $\quad y_{2} y_{3} y_{4}^{\prime}+y_{1}^{\prime} y_{3} y_{4}^{\prime}$,
and for Y_{4} is $y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}$ 。
Step 6a and 6b. The unsimplified next-state expressions under each column of the flow table, including the don'tcare states, are for

Input I_{1} :

$$
\begin{aligned}
& Y_{1}=\left[y_{2}^{\prime} y_{4}^{\prime}+y_{1} y_{2} y_{4}^{\prime}+y_{2}^{\prime} y_{3} y_{4}^{\prime}+d\left(y_{2} y_{4}\right)\right] I_{1} \\
& Y_{2}=\left[y_{1} y_{2} y_{4}^{\prime}+y_{1}^{\prime} y_{2} y_{4}^{\prime}+d\left(y_{2} y_{4}\right)\right] I_{1} \\
& Y_{3}=\left[y_{2} y_{4}+y_{2}^{\prime} y_{3} y_{4}^{\prime}+y_{1} y_{2} y_{4}^{\prime}+d\left(y_{2} y_{4}\right)\right] I_{1} \\
& Y_{4}=\left[y_{2}^{\prime} y_{4}+d\left(y_{2} y_{4}\right)\right] I_{1} .
\end{aligned}
$$

mput I_{2} :
$Y_{1}=\left[y_{1} y_{2}^{\prime} y_{3}+y_{2} y_{3}^{\prime} y_{4}^{\prime}+y_{2} y_{4}^{\prime}+d\left(y_{2} y_{4}+y_{1}^{\prime} y_{2} y_{3}+y_{1} y_{2}^{\prime} y_{3}^{1}\right)\right] I_{2}$
$\mathrm{x}_{2}=\left[y_{1} y_{2} y_{4}^{\prime}+y_{2} y 3 y 4+d\left(y_{2} y_{4}+y_{1} y_{2}^{\prime} y_{3}^{\prime}+y_{1}^{\prime} y_{2} y_{3}\right)\right] I_{2}$
$X_{3}=\left[y_{1}^{\prime} y_{2}^{\prime} y_{4}^{\prime}+y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime} y_{3}+d\left(y_{2} y_{4}+y_{1} y_{2}^{\prime} y_{3}^{\prime}+y_{1}^{\prime} y_{2} y_{3}\right)\right] I_{2}$
$Y_{4}=O I_{2}$.

Input I_{m} :

$$
\begin{aligned}
& Y_{1}=0 I_{\mathrm{m}} \\
& \mathrm{Y}_{2}=\left[y_{2} y_{3} y_{4}+y_{1}^{\prime} y_{3} y_{4}^{\prime}+d\left(y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4}\right)\right] I_{\mathrm{m}} \\
& \mathrm{Y}_{3}=\left[y_{2} y_{3} y_{4}^{\prime}+y_{1} y_{3} y_{4}+d\left(y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4}\right)\right] I_{\mathrm{m}} \\
& \mathrm{X}_{4}=\left[y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}+d\left(y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4}\right)\right] I_{\mathrm{m}}
\end{aligned}
$$

Step 7. The next-state expressions are

$$
\begin{aligned}
& \quad Y_{1}=\left[y_{2}^{\prime} y_{4}^{\prime}+y_{1} y_{2} y_{4}^{\prime}+y_{2}^{\prime} y_{3} y_{4}^{\prime}+d\left(y_{2} y_{4}\right)\right] I_{1} \\
& +\left[y_{1} y_{2}^{\prime} y_{3}+y_{2} y_{3}^{\prime} y_{4}^{\prime}+y_{2} y_{4}^{\prime}+d\left(y_{2} y_{4}+y_{1}^{\prime} y_{2} y_{3}+y_{1} y_{2}^{\prime} y_{3}^{\prime}\right)\right] I_{2}+\ldots \\
& +
\end{aligned}
$$

$$
x_{2}=\left[y_{1} y_{2} y_{4}^{\prime}+y_{1}^{\prime} y_{2} y_{4}^{\prime}+d\left(y_{2} y_{4}\right)\right] I_{1}
$$

$$
+\left[y_{1} y_{2} y_{4}^{\prime}+y_{2} y_{3}^{\prime} y_{4}^{\prime}+d\left(y_{2} y_{4}+y_{1} y_{2}^{\prime} y_{3}^{\prime}+y_{1}^{\prime} y_{2} y_{3}\right)\right] I_{2}+\ldots
$$

$$
+\left[y_{2} y_{3} y_{4}^{\prime}+y_{1}^{\prime} y_{3} y_{4}^{\prime}+d\left(y_{1} y_{4}+y_{2} y_{4}+\dot{y}_{3} y_{4}\right)\right] I_{m}
$$

$$
Y_{3}=\left[y_{2}^{\prime} y_{4}^{\prime}+y_{2}^{\prime} y_{3} y_{4}^{\prime}+y_{1} y_{2} y_{4}^{\prime}+d\left(y_{2} y_{4}\right)\right] I_{1}
$$

$$
+\left[y_{1}^{\prime} y_{2}^{\prime} y_{4}^{\prime}+y_{1}^{\prime} y_{2}^{\prime}+y_{1} y_{2}^{\prime} y_{3}+d\left(y_{2} y_{4}+y_{1} y_{2}^{\prime} y_{3}^{\prime}+y_{1}^{\prime} y_{2} y_{3}\right)\right] \mathrm{I}_{2}+\ldots
$$

$$
+\left[y_{2} y_{3} \underline{u}_{4}^{\prime}+y_{1}^{\prime} y_{3} y_{4}^{\prime}+d\left(y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4}\right)\right] I_{m}
$$

$$
Y_{4}=\left[y_{2}^{\prime} y_{4}+d\left(y_{2} y_{4}\right)\right] I_{1}
$$

$$
+0 I_{2}+\ldots
$$

$$
+\left[y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime} y_{4}+d\left(y_{1} y_{4}+y_{2} y_{4}+y_{3} y_{4}\right)\right] I_{m} .
$$

At this point one can code the input states and find the minimal next-state expressions by using simplification techniques.

The algorithm just presented generates the next-state expressions, complete with don't-cares, directly from the internal-state assignment and the flow table, without requiring the construction of the transition table.
IV. SUMMARY

This paper has presented a method that will enable one to predict which of many internal-state assignments for a normal fundamental-mode asynchronous sequential machine will yield a simpler set of next-state expressions. This can be done by using the assignment weighting scheme described herein, which is based on two simple algorithms that determine important characteristics of each internal-state assignment.

The second problem treated in this paper is one of going directly from an internal-state assignment to the next-state expressions for a normal fundamental-mode asynchronous sequential machine. An algorithm is presented for generating the next-state expressions without requiring the construction of a transition table. This algorithm would seem to make the problem of generating the nextstate expressions an easier one to program on a computer, because the algorithm is given as a sequence of steps and no decisions are required in following the algorithm. Currently, a computer program is being written to implement this algorithm.

BIBLIOGRAPHY

1. HUFFMAN, D.A., "The Synthesis of Sequential Switching Circuits," J. of the Franklin Institute, Volume 257, pp. 1.61-190 and 257-303, March and April 1954.
2. HUFFMAN, D.A., "A Study of the Memory Requirements of Sequential Switching Circuits," Massachusetts Institute of Technology, Technical Report No. 293, March 1955.
3. LIU, C.N., "A State Variable Assignment for Asynchronous Sequential Circuits," J. of the ACM, Volume lo, pp. 209-216, April 1963.
4. TRACEY, J.H., "The Internal State Assignment for Asynchronous Sequential Machines," IEEE Transactions on Electronic Computers, Volume EC-l5, pp. 551-560, August 1966.

VITA

The author was born on July 25,1943 in Marquette, Michigan. He received his primary and secondary education in Munising, Michigan. He received a Bachelor of Science degree in Electrical Engineering from Michigan Technological University in June, 1965. The author has been enrolled in the Graduate School at the University of Missouri at Rolla and has been on the staff in the Electrical Engineering Department since September, 1965.

The author is a member of Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

