
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1967

Minimization and generation of next-state expressions for Minimization and generation of next-state expressions for

asynchronous sequential circuits asynchronous sequential circuits

Gary Keith Maki

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Maki, Gary Keith, "Minimization and generation of next-state expressions for asynchronous sequential
circuits" (1967). Masters Theses. 6869.
https://scholarsmine.mst.edu/masters_theses/6869

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229285469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6869?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MINIMIZATION AND GENERATION OF NEXT-STATE EXPRESSIONS

FOP.

ASYNCHRONOUS SEQUENTIAL CIRCUITS

BY

GARY K. MAKI - /7 ,/3 ~

A

THESIS

submitted to the faculty of

THE UNIVERSITY OF MISSOURI AT ROLLA

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN ELECTRICAl. ENGINEERING

Rolla, Missouri

1967 r -;.J,,~ ,p
~ .
c.. I

. ' ---...,

\;?Vr<oh /)/. (J~ (advisor)
.' \

I i
\)

(J4;:~~y, (}J~~-]0

ABSTRACT

One step in the synthesis procedure for realizing

an asynchronous sequential circuit that is operating in

fundamental mode is to obtain an internal-state assign-

ment that will realize the operations ~f the circuit.

Often the procedures that are used in accomplishing the
.

above task generate several satisfactory assignments.

The first part of this paper presents a method that will

enable one to predict which of the internal-state assign-

ments will yield a simpler set of next-state expressions.

A second topic treated in this paper is one of

presenting a method to generate the next-state expressions

for an asynchronous sequential circuit directly from the

internal-state assignment. An algorithm is presented for

generating the next-state expressions without construction

of the transition table.

ii

iii

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation

to Dr. James H. Tracey for his guidance throughout the

entire project. The prompt and careful reading of the

manuscript is greatly appreciated.

The author also wishes to acknowledge the typing

efforts of his wife, Alice, and the help extended by

Mrs. Mary Colton in preparing this thesis.

TABLE OF CONTENTS

ABSTRACT ii

ACKNOWLEDGEl-'IENTS iii

LIST OF FIGURES v

I. INTRODUCTION 1

II. SELECTION OF AN INTERNAL-STATE 5
ASSIGN~lliNT WHICH WILL YIELD SIMPLER
NEXT-STATE EXPRESSIONS

III. GENERATION OF NEXT-STATE EXPRESSIONS 19

IV. SUMMARY 34

BIBLIOGRAPHY 35

VITA 36

iv

I. INTRODUCTION

Sequential switching circuits are normally categor

ized as being either synchronous or asynchronous. ' In

synchronous circuits, clock pulses synchronize the opera-

tions of the circuit, while in asynchronous circuits, it

is usually assumed that no such clocking is available.

A desirable feature of asynchronous design is that the

resulting circuit may take full advantage of basic device

speed since the circuit does not have to wait for the

arrival of clock pulses before effecting a transition.

This paper deals with only the asynchronous sequential

circuits.

The operation of an asynchronous sequential switching

circuit can be described by means of a flow tablel . An

example appears in Figure 1.

II 12 13

1 0/1 2 4

2 3 0/1 0/1

3 0/2 4 2

4 1 0/2 @/l

Figure 1. Flow table for an asynchronous

sequential circuit.

Each column of the flow table represents an input

state, each row represents an internal state, and the

table ent~ies specify the next internal state and output

2

state. If the next internal state entry is equal to the

present internal state, the state is said to be stable and

is denoted as such by a circled entry. Uncirc1ed entries

are called unstable. For example, in Figure 1, if the cir

cuit is presently stable in internal state 2 with input I2'

the output is in output state 1. A change in input from

I2 to II will cause the circuit to enter unstable state 3.

This will be followed by a change in internal state from

state 2 to state 3 with a new output state 2. The circuit

is now stable and the internal state will undergo no further

changes until there is another change in input.

Definition 1: An asy~chronous sequential circuit is

said to be operating in the fundamental mode if the inputs

are never changed unless the circuit is in a stable condi

tion.

Definition 2: A flow table with the characteristic

that each unstable state leads directly to a stable state

is called a normal flo,., table.

The sequential circuits in this paper will be considered to

be normal fundamental-mode asynchronous sequential circuits.

The problem of selecting an internal-state assignment .

for the realization of a given normal flow table for an

asynchronous sequential circuit that will result in critica1-

race-free operation is an important step in the design of ·

such circuits. A critical race is a condition that exists

3

when there is a possibility that unequal transmission delays

may cause the sequential circuit to reach a stable state

other than the one intended.

Huffman recognized the existence of the internal

state assig~ment problem in his original paperl which has

been the basis for much of the work in asynchronous sequen-

tial circuit design and analysis. A year later, Huffman

presented a generalized assignment procedure for coding a

2n-rol,o, normal flow table with a maximum of 2n-l internal

state variables2 • This assignment procedure would pro-

duce codes with no races and therefore free of critical

races.

Liu3 has developed systematic procedures for construct-

ing noncritical assignments for normal fundamental-mode

sequential circuits. These procedures, which are dependent
4

On flow table structure, have been extended by Tracey.

One of the three procedures developed by Tracey yields a

minimum-variable assignment for normal fundamental-mode

flow tables. Often, the algorithms developed by Tracey

produce several internal-state assignments with the same

number of internal-state variables, all of which produce

critical-race-free realizations of a given flow table. It

has been observed that the next-state expressions which

result from some of these internal-state assignments are

simpler than others. One purpose of this paper is to

present a method to predict \vhich internal-state assignment

for an asynchronous sequential machine will yield simpler

next-state expressions than other assignments for the same

machine.

4

The second topic treated in this paper is to find a

direct method for obtaining the next-state expressions for

an asynchronous sequential machine from a given critical

race-free internal-state assignment. An algorithm is pre

sented in this paper for generating the next-state

expressions without the construction of a transition table.

II. SELECTION OF AN INTERNAL-STATE ASSIGNMENT WHICH WILL

YIELD SIMPLER NEXT-STATE EXPRESSIONS

5

The discussion presented throughout this paper will

not be concerned with the coding of the input states and

will be restricted to finding the next-state expressions

on a per-column basis. If there are n internal-state

variables and a flow table of m columns and m input states,

the general form for the next~state expressions will be

Yl = 611 (YI , Y2 , · . . , !:In) I1

+ 612 (!:II,!:I2' · , Yn) I2 + . . .
+ h m (Yl ' Y2 , · , !:In) 1m

Y2 = 621 (Yl' Y2 ' · . . , !:In) II

+ 622(Yl'Y2' · , !:In) 12 + . . .
+ 62m (Yl' !:I2 , · ,yn)Im

+ 6n2 (Yl ' !:I 2 , .

+ 6nm(Yl'Y2 1 •

where Yl'Y2/' ,Yn are the present state variables;

Yl'Y2' ..• 'Yn are the next-state variables; 11,121

•.• ,1m are the inp'.lt states; 011'012, .•. ,nnm a .re

functions of the internal-state variables alone.

(1)

The intent of this section is to obtain a figure of

merit that will predict which internal-state assignment for

6

a normal fundamental-mode asynchronous sequential machine

will yield simpler next-state expressions than other assign

ments for the same machine. In this paper the assignment

selection process is considered to be the selection of that

assignment which will minimize the functions 611 ,612"

Oijl ••• ,6 nm into a simplest sum-of-products expression.

The assignment which tends to minimize the complete set of

functions will be the one that will be said to yield the

simplest next-state expressions. It is realized that the

coding of the input states will affect the complexity of

the next-state expressions, but there is some positive value

in choosing the assignment with the simplest 6ij coefficients

of Eq. (I), even though it cannot be guaranteed to result in

a minimal set of equations. Optimum coding of the input

states will not be part of the study in this paper.

The determination of a figure of merit that will be

used to judge each internal-state assignment will be based

on the following characteristics:

1) The number of internal-state variables which have

the characteristic that the next state is equal to

the present state for all transitions in a partic

ular column of a flow table.

2) The number of internal-state variables that remain

constant for all transitions in a particular column

of a flow table.

An internal-state variable Yj which has the character

istic that the next state is equal to the present state in a

7

column of a flow table under input state Ii will have as

part of the next-state expression for the next-state variable

Y.
J

Yj = Yjli' (2)

or nij = Yj as one of the coefficients in Eg. (I). Another

way of stating this is that the internal-state variable Yj

will not change state in any transition in the column of the

flow table with input state Ii.

An internal-state variable Yj which remains constant

for all transitions in a particular column with input Ii will

have as part of the next-state expression for the next-state

variable Y,
J

Yj = ICO}I i , (3)

or nij = 1(0) as one of the coefficients in Eg.(l). Another

way of stating this is that if a transition table was formed,

the next-state variable Yj would have a next-sta~e entry of

1 or 0 for all the specified internal states in the column

with input Ii.

The discussion following.will describe exactly how the

characteristic of the next state being equal to the present

state can be determined. It is advantageous to use partition

theory as it has been employed to describe certain aspects

in swi~ching theory.

Definition 3: A partition IT ona set S is a collection

subsets of S such that their pairwise intersection is the

null set. The disjoint subsets are called the blocks of IT.

If the set union of these subsets is S, the partition is

completely specified; otherwise, the partition is incom-

pletely specified. Elements of S that do not appear in IT

are called unspecified or optional elements with respect

to that partition.

Defini tion 4: The two-block partition 1'1' 't' 2' • . • ;r n

induced by the internal-state variables Ql,Q2' • ,Yn ,

respectively, are called the set of 't'-partitions of that

assignment.

The following example in Figure 2 will help illustrate

the above definition. Here the first block in each 1'-par-

titian is a set of the internal states that have been coded

8

with a 0 by each internal-state variable and the second block

is a similar set of the states that have been coded with a 1

by each internal-state variable. It should be pointed out

that the ordering of the blocks is unimportant.

Internal states Internal-state variables
.Yl CJ2 Y3

a
b
c
d
e
f

o
o
1
1
o
1

o
1
1
o
1
o

't'1 - {a,b,e; c,d,f}

't'2 - {a,d,f; b,c,e}

1'3 c {a,b,c,d; e,f}

o
o
o
o
1
1

Figure 2. Internal-state assignment and

corresponding T-partitions.

Definition 5: A k-set of a single column of a flow

table consists of all k-l unstable entries leading to the

same stable state, together with that stable stat~ . .

Definition 6: A column partition ai is a collection

of the k-sets of the column of a flow ~able with input

state Ii' where each k-set is contained in a single block.

I.
~

a 1

b 2

c 0)
d @
e 2

f 0)
g 3

h 0
j ®

Figure 3. Partial flow table and

corresponding column partition

at = {a,e; b,d,e; f,g; h; j}.

Definition 7: Partition0 2 is less than or equal to

91 (92~ 91) where 91 and 9 2 may be incompletely specified,

9

if and only if all elements specified in 92 are also specified

in 91 and each block of 92 appears in a unique block of 91.

Theorem l: An internal-state variable Ij j will not

change state in any transition in a column of a flow table

with input state T i if ai ~ T j .

Proof: From the definition of a k-set, all transitions

of the column of a flow table with input state Ii will take

place within some k-set of the column partition ai' If

the column partition ai is less than or equal to a T

partition l j , each block of the column partition ai' which

is a k-set of the column partition, is included in one of

the blocks of the partition Tje Therefore, the internal

state variable Yj cannot undergo a change of state in any

transition in the column with input IiI because each pair

of states that have a transition between them are listed

in the same block of the partition tj and are coded iden

ically with internal-state variable y .• V
J

To demonstrate the use of theorem 1, the T-partitions

Tl • {a,c,f,8,hj b~d,e,j}

T2 • {a,b,d,e; c,f,g,h,j}

will be compared to the column partition of Figure 2

Cli • {a,c; b,d,e; f,g; h; j}.

10

Each block of a i is contained in a block of T1 or (ai~ T1),

This means that in all the transitions of this column,

internal-state variable Yl will not change state, ~r the

next state will always be equal to the present state for any

transition in the column with input Ii" However, T2does not

satisfy theorem 1 in that the block a,c of ai does not appear

in a block of T2" The internal-state variable Y2 will there

fore, undergo a change of state during the transition state

a. to state c.

It might be noted that in making the test for at ~ tj

for all land j, one only has to be able to show that

each block of the column partition a
i

is contained in a

block of the ~-partition Tjo Extending this even further,

only the blocks of at which contain two or more elements

need be considered.

Let (4 yi) be the number of internal-state variables

that meet the conditions of theorem 1 under each column

with input Ii' The total number of terms like that of

Eq.(2), which will appear in the next-state expressions of

Eq. (1), will be

11

(4)

where m is the number of columns in the flow table and Dk

is the total number of internal-state variables that do

not change state for internal-state assignment k. Following

is an algorithm that can be used to obtain Dk for internal

state assignmen·t k:

1) Form the partitions a
i

and tj fqr all values

of .i and J.

2) Determine (#yl), which is the number of internal

state variables.under input II that meet the

conditions of theorem 1. Repeat for i = 2,3 I' •• ,m .•

3) Dk for internal-state assignment k is given by Eq.(4).

At this point, attention will be given to the internal

state variables which remain constant for all transitions in

a particular column of a flow table, or can be considered as

constant next-state terms. In determining the constant

next-state terms in a particular column of a flow table,

consideration will be given to the actual next-state entry

for each internal state in a column of the flow table as

it would appear in a transition table.

It has been extablished that all the transitions in .

a column of a flow table take place within some k-set k~

of that column. Each of the unstable states of the k-set

k4 can experience a transition to the stable state of k~.

The next-state entry for each of the unstable states of k~

will have to be the same as the code assigned to the stable

state within "4 in order to insure a transition from the

unstable states to the stable state will be independent of

12

transmission delays. In other words, the next-state entry

for each of the unstable states of a k-set k4 will be deter

mined completely by the code assigned to the stable state

of k~o If the internal-state variable Yj in the code assigned

to the stable state of "4 in a certain column of a flow

table is 1(0), then all the internal states of k~ will have

a next-state entry of 1(0) for the next-state vari~ble Yjo

Extending the above argument even further and assuming

there are (#k.i) h.-sets in a particular column of a flow

table with input Ii' the next-state variable Yj will have a

next-state entry of 1 (0) in all the specified states of the

column \"ith input Ii if the internal-state variable Yj is

1(0) in the code assigned to all (#k.i) stable states of the

same column. The resulting next-state expression would be

Yj = I(O)Ii'

The following discussion will explain a method that can be

used to obtain the constant terms in each column of a flow

table. First list the stable states and their respective

codes for each column of the flow table and identify each

13

set of lists with the respective input state of the column.

From these lists, one can determine which, if any, of the

internal-state variables are 1(0) in the codes for the stable

states in each of the respective columns. To illustrate this,

assume . the internal states with their respective codes shown

in Figure 4 are the stable states in a column of a flow table.

!/l !/2 Y3 Y4 !/S

a I 0 1 0 I

c I I 0 0 I

d 1 0 1 0 0

f 1 1 1 0 0

Figure 4. Stable states and their

respective codes.

By inspection, one can determine that there are t,vo internal

state variables that are 1(0) in the states listed; they

are Yl = 1 and Y4 = o.
Let ~i be the number of internal-state variables that

are 1(0) in the codes for the stable states in the column

with input Ii. In Figure 4, ~i = 2. Let CQ be the total

number of internal-state variables found in the columns to

be 1(0) for internal-state assignment k;

14

(5)

where m is the number of columns in the flow table.

Both of the characteristics discussed for determing a

weight to attach to each internal-state assignment for a

asynchronoussequenti~l machine are valuable. The relative

weight to attach to Dk and Ck for internal-state assignment

k may vary with each type of implementation. The weight for

an internal-state assignment k will be defined as

Wk = Ok + tCk.' (6)

where ~'1k will be the weight attached to internal-state

assignment k and t is a variable that would allow the adjust-

of the relative values of Ck in respect to Dk . It seems safe

to conclude that a constant coefficient, as represented in

Eq.(3), would require a lesser amount of combinational logic

for synthesis than a literal coefficient, as represented in

Eq. (2). The designer of a sequential circuit will have to

decide on a value for ~ in determining how much easier it

is to implement a constant coefficient as opposed to a literal

coefficient. This could be done by obtaining a cost figure

to compare the coefficients. This cost figure would d~pend

on the number of literals associated with-each input state.

In general, ~ will vary with each type of implementation.

For purposes of illustration in this paper, ~ will take on a

value of 2, which is arbitrary, to demonstrate the assignrnent

selection procedure. The weight for an internal-state assign

ment k will be defined in the examples shown in this paper as

15

(7)

The internal-state assignment with the largest weight asso

ciated with it will be predicted to yield the simplest

ne~t-state expressions, because it would have the largest

number of terms like those shown in Eq. (2) and Eq. (3) •

Sequential machine A in Figure 5 can be coded with

either of the two internal-state assignments shown. The

criteria developed above will be used to predict which

assignment \V'ill produce the simplest next-state expressions.

I1 12 13

a @ F D

b C D ®
c @ @ B

d A @ @
e F ® 0
f 0 ® E

Assignment I Assignment 2

Y1 Y2 if3 YI tJ2 Y3
0 0 0 a 0 0 0

1 0 I b 1 0 1

1 0 0 c I 1 1

0 0 1 d 0 0 1

a 1 · 1 e 1 1 0

0 1 0 f 0 1 0

Figure 5. Machine A with two assignments.

First Dk will be obtained by following the procedure

developed in this paper.

Step !.. The column partitions are

a1 - {a,d; b , c ; e, f}

{a,f;
- ;} a2 - b,d; c;

a3 -{a,d; b,c; e, f}.

The 1-partitions for assignment 1 are

11 -{a,d,e,fj b,c}

T2 - {a,b,c,dj e,f}

13 - {a,c,f; b,d,e}

and for assignment 2 are

\1 - {a,d,f; b,e,e}

12 - {a,b,d; ~;:f}

\3 - {a,e,f; b,e,d}.

Step~. The T-partitions for assignment 1 that meet the

conditions of theorem 1 are

a1 ~ 11

a 1 < L2 -
0.2 ~ 13

a3 ~ L!

a3 < L 2 '

and for assignment 2

a2 ~ L 3'

Step l. D1 and D2 are

01 = 2 + 1 + 2 = 5

D2 = 0 + 1 + 0 = 1.

16

17

c~ is obtained by following the procedure given earlier.

The stable states and their respective codes in assignment

I under each input state are

II 12 13

a 0 0 0 c 1 0 0 b 1 0 1

c 1 0 0 d 0 0 1 d 0 0 1

f 0 1 0 e 0 1 1 e 0 1 1

f 0 1 0

and in assignment 2 are

II 12 13

a 0 0 0 c 1 1 1 b 1 0 I

c 1 1 I d 0 0 1 d 0 0 I

f 0 1 0 e I I 0 e 1 1 0

f 0 I 0

Internal-state variable Y3 is constant in the above lists in

the columns with input 11 and 13 for assignment 1. There

are no internal-state variables constant in the above lists

for assignment 2. C1 and C2 are

Cl = 2

C2 = o.
The weight for each assignment is

WI = 5 + 4 = 9,

and W2 = 1 + 0 = 1.

From the above information, assignment 1 would be predicted

to have the simpler next-state expressions.

The next-state expressions for assignment I are

YI = yII l +

Y2 = Y2 I 1 +

Y3 =
and for assignment 2 are

YI = YI Y3I l +

Y2 = (Ul + Y2)I I +

YlyjI 2 +

(Y2 + Yiy3)I2 +

Y3 I 2 +

YI Y2I 2 + (YI + Y2)I 3

(Y2 + y~)I2 + Yay!I3

Y3 = YIY3 I I + Y3 I 2 + (Y3 + Y2)I 3·

Clearly, assignment 1 yields the simpler next-state ex

pressions.

Presented in this section was a method to predict

which internal-state assignment, from several such assign

ments for the same asynchronous sequential machine, will

yield the simplest next-state expressions.

18

19

III. GENERATION OF NEXT-STATE EXPRESSIONS

The problem treated in this section is one of obtain-

ing the next-state expressions for a normal fundamental-mode

asynchronous sequential machine directly from a given

critical-race-free internal-state assignment. An algorithm

is presented for generating the next-state expressions

without the construction of a transition table. The next-

state expressions are generated in the form shown in

Eq. (1). The input states are shown uncoded, but would be

coded and simplified before realization of the flow table

is attempted. Each of the functions 6 .. in Eq. (1) will
. ~J .

consist of a sum-of-products expression representing the

I-cells and a similar expression representing the don't

care states for a next-state variable Y
j

in the column of

a flow table with input state I .• In general, these
J

expressions are not minimal, but the minimal expressions

can certainly be obtained from these equations with conven-

tional simplification algorithms.

Consider the example shown in Figure 6 to be part of

a f1m'l table with the corresponding internal-state assign-

mente

001

o 1 1

101

110

a

b

c

d

e

I.

1

2

Q)

o
Figure 6. State assignment and partial flow table.

In this example, there are transitions between states

a and b and states c and e. One will note that a race

20

condition exists at state c. Because of unequal transmission

delays, any of the internal states -1-, where the dashes

represent all combination of l's and D's, could momentarily

be assumed during the transition between states c and e.

Internal states e, 011, and e, 110, must have a next-state

entry of 110; but to insure that the circuit reaches the

proper terminal state, internal states 010 and III must

also have the next-state entry of 110. If these states had

any other next-state entry, improper operation could result.

A complete transition table, if formed, would have to show

states 010 and III with the proper next-state entry of 110.

This set of states that have the same next-state e~try

can be represented as a p-subcube of an n-cube. The

n-cube would represent all possible internal states in a

particular column of a flow table, and the p-subcube would

be a subset of the states represented by the n-cube. Each

subcube can be represented, in turn, by a product function

of the internal-state variables. In the above example,

the p-subcube would be -1-, or as a product of internal

state variables, it is Y2" In thi~ example then, all

internal states ~'lhere Y2 = J. \-lill have the same next-state

entry as stable state e; including internal state e, there

are 4 such states. For the transition b to a, the subcuba

that represents all the states which will have the same

next-state entry as stable state a is 00- or YiY~. All

internal stai;es ",'here both y 1 and IJ 2 are zero Nill have a

n~~~:i:-stnte entry of OOQ, which is the code induced by the

internal-state variables for stable state 4.

It has begn established that all the transitions i~

a column of a f1m., table take place wi thin some h.-set k. It

of that column. Each of the unstable states of k~ can

experience a transition to ~che stable state of k~" The

next-state entry for each of the unstable states of k~

will have to be the same as the code assigned to the

stable state ,~ithin k~ in order to insure a transition

from the unstable states to the stahle state will be in-

dependent of transmission delays. In some cases a single

p-subcube can represent all the internal states of a

k-set that must have the same next-state entry, like in

the example above \>iith only two internal states per

k-set in the original flow table. In general, it may take

several p-subcubes to represent the internal states 6f a

k-set with more than two internal states. The follottlin~

example shown in Figure 7 will illustrate this point.

21

Y1 Y2 !f3 I·
~

0 0 0 a 0)
1 1 0 b D

0 1 1 c A

1 1 1 d ®
1 0 1 e A

Figure 7. State assignment and partial flow table.

Internal states a, e, and e are irt the same k-set

and will have the same next-state entry of 000; internal

states band d are in the same k-set and will have the

next-state entry of 111. During the transitions between

states e and a, any of the internal states 0-- could

momentarily be assumed and must have the next-state entry

of 000 to insure proper operation of the circuit. These

states can be represented by the p-subcube 0--, or as a

product of internal-state variables yi' During the

transition from e to a, any of the states -0- could momen-

tarily appear and must have the next-state entry of 000.

This p-subcube can be represented ~s -0- or as y~. In

this example, a sum-of-products expression that can

represent all the internal states that must have the next-

state entry of 000 is

yi -I- Y2·

22

The p-subcube that would represent the internal states that

must have a next-state entry of III is 11- or Yl Y2'

23

A p-subcube represents all the internal states that

could momentarily appear due to unequal transmission dela,ys

during. the transition bebveen an unstable and stable state

within a ~-set. The internal states represented by a

p-subcube must have the same next-state entry. A p-subcube

may represent even internal states which may not be assigned

to the rows of the original flm., table. These spare states

may be entered during a transition between internal states

when unequal transmission delays cause internal states

other than those assigned to the rows of the original flow

table to be assumed. However, it will not be necessary to

identify the spare states individually because they will be

represented in a p-subcube.

Each transition between an unstable and stable state

of a k-set ~It. has a unique p-subcube Pit. which represents

all the internal states that could be assumed. None of the

internal states represented in Pit. can be represented in

another p-subcube. If the situation did occur where two

sl.lbcubes had an internal state in common, this internal

state would be required to have two different next-state

entries. Such an assignment does not constitute a satis

factory code for flow tables operating in normal fundamen

tal-mode.

In the previous example it can be seen that for 'k-sets

of three or more internal states, it will require more than

one p-subcube to represent all the int~rnal states that

must have the same next-state entry in a column of a flow

table.

Definition 8: Kn is defined to be a sum-of-products

expression representin~ all the internal states of ~-set

~n which have the same next-state entry, namely that of the

stable state of ~n.

A method to represent the p-subcube as a product of

the internal-state variables which represents all possible

internal states that could appear during a transition be-

24

tween an unstable and a stable state in a k-set is as follows:

1) List the codes assigned to the stable and unstable

states involved in the transition within k-set kA"

2) The product expression that will represent the

p-subcube will be a subset of the internal-state

variables (Yh . If the internal-

state variable Yj is a 1 in both of the states in

question of k
A

, it will appear uncomplemented in

the product expression. If the internal-state

variable Y
j

appears as a 0 in both of the states

in question of k , its complement will appear in
n

the product expression. If the internal-state

variable Yj appears as both lis and O's in the

states in qu~stion of ~n' it is considered a don't

care variable and does not appear in the product

expression.

Consider the following single column of a flow table with

the codes listed for each internal state:

Y
l Y2 Y3 Y

4
Ys

I,
1

1 0 0 0 1 a 1

1 0 1 1 1 b 0)
0 0 1 0 1 c 2

1 0 a 1 1 d 1

1 0 1 0 1 e 1

0 1 0 1 0 f CD
Figure 8. Partial flO\¥' table and corresponding

state assignment.

Internal states a, b, d and e are in the same k-set ko' ~

There are transitions a. to b, d to b and e to b in k o '

The p-suhcuhe representing the states of the transition a.

to b is obtained as follows: Internal-state variable

Yl and YS are 1 in both states a and b; therefore, if1 and

YS will appear in the product expression. Internal-state

variable Y2 is 0 in both states; therefore, Y~ will appear

in the product expression. Internal-state variables Y3 and

Y
4

appear as l's and a's in both states, so neither will

appear in the product expression. The product expression

for this p-subcube, which represent the internal states

that may appear during the transition from state a to state

25

b, is YlY~Ys' The p-subcube which will represent the states

that may appear during the transition from state d to state

b is obtain~d in the same manner just described and is

YlY2Y 4Y5' Obtained in the .. same'--manner, the p-subcube that

26

represents the states for the transition from e to b is

YIY~Y3Y5' Ko which represents all the internal states of ko

that have the same next-state entry 10111 is

YlYiY s + YlyiY4YS + Y1YiY3YS·

A tabular method to obtain the same subcubes is shm·m

for the internal states of ko from Figure 8 as follows:

b I 0 I 1 I

a 1 0 0 0 I

10- - 1

b 1 0 III

d 1 0 0 1 1

1 0 - 1 1

b 1 0 III

e 1 0 I 0 I

1 0 1 - 1

Record the value of the internal-state variable in those

columns where it is the samei where there is a difference

in the internal-state variable, place a don't-care (-).

The sum-of-products expression can be obtained directly

from above and Ko for ko is

YIY2 YS + YlyiY4YS + YlYi Y3YS"

As stated before, all the unstable internal states

represented by K must have the same next-state entry,
Jr.

namely that of the code for the stable state of the cor-'

responding k-set, kJr.o It follows that if the internal

state variable y. in the code for the stable state of
J

k-set kJr. is 1(0), then all the internal states ~epresented

by KJr. will have a next-state entry of leO) for the next

state variable Yj .

Definition 9: An internal state which has a specified

next-state entry in a particular column of a flow table

will be called a specified internal state of that column.

The remaining internal states are 5aid to be unspecified

for that column.

Each K~ represents' a unique set of internal states

and each of these internal states is specified. The total

number of specified internal states Si in a column of a

27

flow table is equal to the sum of the number of the internal

states represented by each K~ of that column. If there are

k internal-state variables in the internal-state assignment,

the number of internal states in a column of a flo~l table

that are not specified is 2k - s., where 2k is the total
. ~

number of internal states possible with k internal-state

variables.

Each K~ which represents all the internal states that

have the same next-state entry in the k-set k~, represents

a unique set of internal states that are specified in a

particular column of a flow table. KA can be expressed as

a sum-of-products expression in terms of the internal-state

variables. It follows that a sum of the product expressions

representing all the K~ts of a particular column of a flow

table would be an exp~ession to logically represent all the

specified internal states of that column. The unspecified

entries ~lOuld be simply the logical complement of the above

expression obtained from the K~ts. Consider the flow table

with m input states and the corresponding internal-state

assignment in Figure 9:

28

(11 Y2 Y3 Y4 II l2 · · • I
m

-~----

0 0 0 0 0 a B C · · •

1 0 1 0 b ® ® • · •

0 0 1 0 c B @ · · • J

0 0 0 1 d ® c • · · ®
1 0 1 1 e D B · · •

1 1 0 0 f G 0 · · • A

1 1 1 0 9 ® F · · · J

0 1 0 0 h ® F • • •

0 1 1 0 j H • • • @
Figure 9. Sequential machine B.

The Il-sets under input state II are

III = abc, k.2 = de, 12.3 = fg, and k4 = hj.

The k-sets under input state I2 are

k,S =: acd, 1<'6 = be, and R.7 = fgh.

The k-sets under input state lm are

k,a = af, kg = cgj, and kID = d.

The p-subcube for each transition pair under input I1

in kl a to b is -0-0 or y'tj' 2 4

c to b is -010 or ' , Y2 Y3Y4
in; k2 e to d is -0-1 or Y2 Y4

in 12.3 f to 9 is 11-0 or Y1Y2Y,i

in k4 j to h is 01-0 or ' , YIY2Y4
The p-subcube for each transition pair under input 12

in "5 a to c is 00-0 or YiYi Y4
d to c is ~O-- or tj'y' 1 2

in k6 e to b is 101-- or YI Y2!!3

in.'1<.
. 7 g to f is 11-0 or !!lY2!!4

h to f is -100 or !:f2 Y3!14
The p-subcube for each transition pair under input Im

in R.s f to a is ---00 or y'y' 3 4
in kg 9 to j is -110 or Y2 Y3Y4

c to j is 0-10 or Yi Y3!!4
in k

lO d to d is 0001 or YiY2Y~Y4
Each Kit representing the k-set k~ under the respective input

state is given

Under input I1

Under input I2

Under input Im

The sum of the

as follows:

Kl ::: yi Y4 +

K2 = Yi Y4'

K3 = YIY2Y41

K4 ::: yiY2Y4"

KS = yiY2Y4

K6 = YI!:f2 Y3 1

K7 ::: Yl!l2!14

Ka = Y)!f,i,

Kg = Y2Y3Y!

y' , 2 Y 3Y 4'

+ YiY21

+ Y2 Yjyl"

+ Yi Y3Y4'
KIO= yi lf2Y3Y4·

product expressions of the Kit's in the column

29

with input Ii will logically represent all the specified

internal states of that column. In this case, the expressions

tha.t represent the specified states are for

Input I l : Y~Y~ + Y~Y3Y~ + Y~if4 + YlY2YA + ylY2Y!

Input 12 : YiY~Yl + YiY~ + YlY~Y3 + YlY2Yl + Y2Y~Y~

Input Im: Y3 Y4 + yiYi Y3Y4 + Y2Y3Y4 +yiY3Y4-
The logical complement of the above expressions would

represent the unspecified states in each column. The

simplified expressions that represent the unspecified states

are for

Input II:

Input 1
2

:
t t ,

Y2 Y4 + Yl Y2Y3 + Yl Y2Y3

YI Y4 + Y2Y4 + Y3Y4 + Input I .
m .

The above terms represent the unspecified or don't-care

states of each column as a simplified sum-of-products

expression.

After obtaining the unspecified or don't-care states,

it is necessary to obtain the I-cells for each next-state

variable in each column. As noted before, all the internal

30

states represented in K~ will have the same next-state entry,

namely that of the stable state of k~. Consider the binary

code for the stable state of the k-set k4 in a certain column

to be c l c 2 • • • ck. 'l'he next-state variable Y 1 \-1ill have a

I as the next~state entry for all internal states represented

in the corresponding K~ if c l of the stable state is 1. If cl

is 0, then the next-state variable Y1 will be 0 for all the

internal states represented by K4 " This same reasoning can be

applied to any next-state variable Yj • In general, the next

state variable Yi will be 1(0) for all internal states repre-

santed in Kh if Q j of the stable state of kh is 1(0).

All the I-cells of the next-state variable Yj in a

particular column of a flm.; table can be represented by

the sum of the product expres~ions of those K rs where
It

Yj = 1. Following is an algorithm that can be used to

generate the next-state expressions in the form of Eg.(l):

1) List the k-sets of each column and the stable

states of each k-set.

2) Determine the p-subcube corresponding to each

transition pair in each k-set indentified

with input state 1 1 • Retain the identity

of this set of p-subcubes with input II and

their respective h.-set. Repeat this proce-

dure for input states 12 , I 3 , • • " , 1m-

3) Determine the Kit correspondil1g to k-set k.Jt

indentified with input state I 1 • Each Kit

is obtained by the sum of the product ex-

pressions of the p-subcubes associated with

k-set k
Jt

" Retain the identity of this

~et of Kit'S with input state I 1 • Repeat

this procedure for input states I 2 , 1 3 , 0 00 ,1m.

4) Determine the don't-care states associated with

each column as fo110\'1s:

a. Form a sum-of-products expression of all

the KJt's corresponding to the k-sets under

31

input II" Retain the identity of this set of

expressions with input I l "

input states 12 , I 3 , .

Repeat this for

I I " rn

32

b. Find the logical complement of the expression

identified with input I l " This will represent

. the don't-care states in this column of the

flow table. Repeat for input states 12' 13 ,

. . . , Im-

5) The I-cells for each next-state variable Yj for

j == 1, 2, " , n can be found as 'follows:

a. Determine the ~-sets where c
l

== 1 in the

stable states in the column ,'lith input II

to be identified with' Y1 • Repeat fo.r

c.. = 1 for j == 2, 3 , ." I It under input
J

II' Retain the identity of this set of.

k-sets with input II and the respective Yj .

R~peat for input states 12 , 13 1 ••• 1 I m"

b. Form a sum-of-products expression of the

K 's It· that represent each of the k-sets
•

of step 4a under input Il for the next

state variable Yl- Repeat for Y21 Y3'

1 Yn • Retain the identity of each

expression with input II- Repeat for in

puts 12' 13 , , •• , 1m"

33

6) Determine the next-state expressions for the next

state variable Yj for j = 1,2, •.• , n under

each column as follows:

a. Form a sum-of-products expression of the 1-cel1s

for each Yj that are associated ·with input 11

of step 4a and the don't-care states asso

ciated with the same input of step 3. Repeat

for input states I 2 , I 3 , ••• , Im'

b. Perform the logical AND operation with the

input Il and the sum-of-products expression

that is associated with II of step Sa. Repeat

for input states 12, I3' ••• ,1m.

7) Determine the next-state expression for the next

state variable Yj for j = 1, 2, •.• , n by per

forming the logical OR operation with the respe9-

tive Yj terms from step Sb. The results will be

in the form of Eg. (1).

At this point, the input states can be coded and the

minimal next-state expressions can be obtained by use of a

computer simplification program or some other simplifica~

tion technique.

The next-state expressions for sequential machine B,

shown in Figure 7, are obtained here using the algorithm

as follows:

Steps 1,2,3, and 4 have already been completed in the al-

gorithm.

Step 5a. The next-state variable!> have I-cells in the

following k-sets:

In the column with input II'

Yl has I-cells in kl and k
3

,

Y2 has I-cells in k3 and k 4 ,

Y3 has I-cells in kl and k3,

Y4 has I-cells in k2 •

In the col umn \vi th input 1 2 ,

Yl has I-cells in k6 and k7 ,

Y2 has I-cells in k7 ,

Y3 has l-cells in kS and kG'

Y4 has no I-cells.

In the column with input Irn'

YI has no I-cells,

Y2 has l-cells in kg,

Y3 has l-cells in kg,

Y4 has l-cells in klO -

Step ~..E.. The sum-of-products expression that repre"sents

the I-cells for each next-state variable are as follows:

The expression for the I-cells in the columns with input

for YI is ff2ff4 + YIY2 fi 4 + !J I I 12Y3Y4'

for Y2 is filY2 fi 4 + ffi Y2Y.!'
for Y3 is ff'y' 2 4 + YIY2 fi 4 + Y2Y3Y4'
and for Y4 is y'

2 ff 4 •

34

II

The expression for the 1-cells in the column with input 12

for Y
1

is If '+ ,+ ,., LlY2Y3 IflY2Y4 Y2 Y3Y4'

for Y2 is Y1Y2Y4 + Y2 y jY4,
for Y3 is yiY2Y4 + Yi Y2 + Yllf2, 1f 3'

and for Y
4

there is none.

The expression.for the l-cells in the column with input I
m

for Yl is none,

for Y is Y21f 3Y4 + Yi lf 3Y41 2

for Y
3 is Y2Y31f~ + Yi 1f 3Y4'

and for Y
4

is Yi Y;Y;Y4·
Step 6a and 6b o The -- unsimplified next-state expressions

under 'each column of the flow table, including the don't-

care states, are for

Input I
l

:

Yl = [y'y' + 2 4 !/lY2 Y4 + yi Y3Y4 + d(Y2 Y4)}I l
Y2 = [Y1Y 2!14 + ffi Y2Y4 + d(Y2 Y4)]I1
Y3 = (Y~1f4 + Y2 1f3Y4 + Y1Y2 Y4 + d(Y2 Y4)]I1

Y4 = [Y2 Y 4 + d(1f2Y4)]I l o

Input I 2 :

3.5

Yl [Y l yiY3 + Y2 Y3Y4 + Y2Y~ f d(Y2Y4 + YiY2Y3 + Yly~y~)]I2

Y2 ::: {YlY2Y'\ + Y2Y3Y~ + d(y2y 4 + Y1Y2Yj + Yi Y2Y3)]I2
Y3

::: [YiYi Y4 + LI'y' + -1 2 Y1Y2 Y3 + d(Y2 Y4 + Y1Y2Y~ + Yi Y2Y3)]I2
Y4 ::: GtI 2 0

Input I :
m

Step 7.

36

Yl = 01 m
Y2 = [Y2Y3U~ + Yi Y3Y4 + d(YlY4 + Y2 Y4 + Y3 Y4)]Im
Y3 = [Y2 Y3Y4 + YiY3Y~ + d(Yl!l4 + Y2Y4 + Y3 lf4)]Im

Y4 = [yi Y2Y3Y4 + d(YlY4 + Y2 Y4 + Y3 Y4)]Im
The next-state expressions are

Yl = [Y2 Y4 + YlY2 Y4 + yi Y3Y4 + d(Y2 Y4)]I l

+ [YlY~Y3 + Y2Y~Y~ + Y2Y~ + d(Y2 Y4 + Yi Y2Y3 + YIY2Y~)]I2 + .••

+ aIm

Y2 = [YIY2 Y4 + yi Y2Y4 + d(Y2!14)]I l

+ [YIY2 Y4 + Y2Y~Y4 + d(Y2!14 + UIY2Y3 + YiY2!13)]I2 + •.•

+ [Y2 Y3Y4 + yiY3Y4 + d(YlY4 + Y2Y4 + !l3Y4)]Im

Y 3 = [Y2!14 + YiY3Y4 + YlY2!14 + d(Y2 Y4)]I1

+ [Yi Y2Y4 + yiyi + YlY2 Y3 + d(Y2 Y4 + YIY~Y3 + YiY2Y3}]I2 + •••

+ [Y 2Y3Y4 + Yi Y3Y4 + d(YlY4 + Y2Y4 + Y3Y4)]Im

Y4 = [Y~Y4 + d(y 2 y4)]I1

+ 01 2 + •••

+ [YiY2Y3Y4 + d(YIY4 + Y2 Y4 + Y3Y4)lIm"

At this point one can code the input states and find

the minimal next-state expressions by using simplification

techniques.

The algorithm just presented generates the next-state

expressions, complete with dontt-cares, directly from the

internal-state assignment and the' flow table, without re

quiring the construction of the transition table.

IV. SUMMARY

This paper has presented a method that will enable

one to predict which of many internal-state assignments

for a normal fundamental-mode asynchronous sequential

machine will yield a simpler set of next-state expressions.

This can be done by using the assignment weighting scheme

described herein, which is based on blo simple algoti thrns

that determine important characteristics of e~ch internal

state assignment.

The second problem treated in this paper is one of

going directly from an internal-state assignment to the

next-state expressions for a normal fundamental-mode

asynchronous sequential machine. An algorithm is presented

for generating the next-state expressions without requiring

the construction of a transition table. This algorithm

would seem to make the problem of generating the next

state expression$ an easier one to program ,on a computer,

because the algorithm is given as a sequence of steps and

no decisions are required in following the algorithm.

Currently, a computer program is being written ' to im

plement this algorithm.

37

38

BIBLIOGRAPHY

1. HUFFMAN, D.A., liThe Synthesis of Sequential Switching
Circuits," J. of the Franklin Institute, Volume 257,
pp. 161-190 and 257-303, March and April 1954.

2. HUFFMAN, D.A., "A Study of the Memory Requirements of
Sequential Switching Circuits," Massachusetts
Institute of Technology, Technical Report No. 293,
March 1955.

3. LIU, C.N., "A State Variable Assignment for Asynchronous
Sequential Circuits," J. of the ACM, Volume 10,
pp. 209-216, April 1963. .

4. TRACEY, J.H., "The Internal State Assignment for
Asynchronous Sequential Machines," IEEE Trans
actions on Electronic Computers, Volume EC-1S,
pp. 551-560, August 1966.

VITA

The author was born on July 25, 1943 in Marquette,

Michigan. He received his primary and secondary education

in Munising, Michigan. He received a Bachelor of Science

degree in Electrical Engineering from Michigan Technological

University in June, 1965. The author has been enrolled in

the Graduate School at the University of Missoux-i at Rolla

and has been on the staff in the Electrical Engineering

Department since September, 1965.

The author is a member of Eta Kappa Nu, Tau Beta Pi,

and Phi Kappa Phi.

39

	Minimization and generation of next-state expressions for asynchronous sequential circuits
	Recommended Citation

	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	000015
	000016
	000017
	000018
	000019
	000020
	000021
	000022
	000023
	000024
	000025
	000026
	000027
	000028
	000029
	000030
	000031
	000032
	000033
	000034
	000035
	000036
	000037
	000038
	000039
	000040
	000041
	000042
	000043

