
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2009

Real-time reconfiguration of programmable logic controller Real-time reconfiguration of programmable logic controller

communication paths communication paths

Curtis Alan Parrott

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Parrott, Curtis Alan, "Real-time reconfiguration of programmable logic controller communication paths"
(2009). Masters Theses. 4738.
https://scholarsmine.mst.edu/masters_theses/4738

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229285438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4738?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

REAL-TIME RECONFIGURATION OF PROGRAMMABLE LOGIC CONTROLLER

COMMUNICATION PATHS

by

CURTIS ALAN PARROTT

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2009

Approved by

Kelvin T. Erickson, Advisor
Ann Miller

Steven Grant

© 2009

Curtis A. Parrott

All Rights Reserved

iii

ABSTRACT

This thesis explores the topics related to reconfiguration of Programmable Logic

Controller’s (PLC’s) communications paths as it relates to network security and

reliability. These paths are normally fixed, which creates a single fault point which can

easily be disrupted by network failure or network based attack. With the ability for

autonomous communications path reconfiguration these disruptions in communications

can be avoided or bypassed. This work builds on these principles and a series of PLC

programs are developed to facilitate several things: Scanning of the three different

network types most common in PLC to PLC communications; a comprehensive network

scan routine for locating multiple communications paths to available network enabled

modules and devices; add-on functions for verifying and using these found

communications paths; and MS Excel macros for documenting the found modules and

devices along with their communications paths from the host processor.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Erickson and my committee for their guidance during

the pursuit of a Master of Science degree in Electrical Engineering at the Missouri

University of Science and Technology. Without the help of Dr. Erickson and the rest of

my committee it would not have been possible to complete. The guidance of Dr.

Erickson during the entirety of my master’s work was valuable beyond words and I am

deeply happy I was able to work with him.

My parents have also helped me greatly over my entire life in more ways that

can be mentioned. I owe them a great deal for their help emotionally and financially

while completing my master’s work.

v

TABLE OF CONTENTS

Page

ABSTRACT... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS.. vii

LIST OF TABLES... viii

SECTION

1. INTRODUCTION .. 1

2. NETWORK SCAN APPROACH AND ROUTINES .. 3

 2.1. NETWORK SCAN APPROACH ... 3

 2.2. MESSAGE SETUP.. 3

 2.2.1. Communication Message for Device Who. 5

 2.2.2. Communication Message for Serial Number.. 5

 2.2.3. MSG Communications Path Formulation... 7

 2.3. NETWORK SCAN ROUTINES ... 9

 2.3.1. ControlNet Scan Routine .. 10

 2.3.2. Ethernet Scan Routine... 12

 2.3.3. DeviceNet Scan Routine. .. 13

 2.4. BACKPLANE SCAN ROUTINE ... 15

 2.5. MAIN SCAN ROUTINE... 16

 2.6. VERIFY PATHS ROUTINE... 17

 2.7. FIND_PATH ADD-ON INSTRUCTION ... 19

3. LIST AND DOCUMENT FOUND PATHS .. 20

 3.1. MICROSOFT EXCEL PATH EXTRACTION MACRO 20

4. VERIFY AND TESTING... 22

5. CONCLUSION AND FUTURE WORK ... 23

vi

APPENDICES

A. CONTROLNET SCAN ROUTINE ..25

B. ETHERNET SCAN ROUTINE ..28

C. DEVICENET SCAN ROUTINE ..32

D. BACKPLANE SCAN ROUTINE...36

E. MAIN SCAN ROUTINE ..39

F. PATH VERIFICATION ROUTINE ...43

G. FIND PATH ADD-ON INSTRUCTION..46

H. MICROSOFT EXCEL VISUAL BASIC MACRO ..49

BIBLIOGRAPHY... 53

VITA .. 54

vii

LIST OF ILLUSTRATIONS

 Page

Figure 2.1. Configuration dialog box setup for the DeviceWho MSG block. 6

Figure 2.2. Configuration dialog box setup for the Serial Number MSG block................. 6

Figure 2.3. Illustration of communications path example .. 9

Figure 2.4. Pseudo code for the ControlNet scan routine. ... 11

Figure 2.5. Pseudo code for the Ethernet scan routine. ... 13

Figure 2.6. Pseudo code for the Ethernet scan routine. ... 15

Figure 2.7. Pseudo code for the backplane scan routine... 16

Figure 2.8. Pseudo code for Verify Path routine. ... 18

Figure 4.1. MST PLC Laboratory layout with separated ControlLogix Ethernet subnet.22

viii

LIST OF TABLES

 Page

Table 2.1. Media Types for Path formation [5]. ... 7

Table 2.2. Node or Address types for different communications networks [5].................. 7

Table 2.3. Decoding of example message path 1,5,2,100.100.100.100,1,0,2,24,1,10 [5]. . 8

1

1. INTRODUCTION

The increasing dependence on industrial control systems in daily life requires the

evaluation of the reliability and security of these systems. These systems become

critical either for monetary or safety and security reasons. Down time in any industry

can cost millions of dollars per hour and reliability of the highest degree is imperative

[1]. Also, in critical infrastructure real-time response is necessary to safely manage

temperature, pressure, water level and other critical factors. These Supervisory, Control

and Data Acquisition (SCADA) systems are increasingly essential in energy,

telecommunications and manufacturing systems. SCADA systems, as opposed to other

systems and networks, require high reliability and long life expectancy, even under 24x7

operation.

Due to the increasing integration of Human Machine Interface (HMI) equipment

and Programmable Logic Controllers (PLCs) with enterprise networks these SCADA

networks are more susceptible to all of the vulnerabilities of Ethernet-based network

attacks. This trend of moving from proprietary communications protocols to standard

protocols, including Ethernet, also opens these networks to attack.

There are a few standard networks that connect PLC processors with other PLC

processors or distributed I/O; the trend is to migrate to Ethernet-based communications

systems often paired with a control-specific protocol layer, like CIP or Modbus.

Typically, these networks pass individual messages between devices over fixed

communications paths. Autonomous reconfiguration of these communications paths is

needed to survive a cyber attack, physical attack or any possible communications failure

which disrupts the original communications path. This autonomous reconfiguration

system must be contained within the PLC processor for maximum protection.

Although it is not known if it has been attempted, it is possible to autonomously

change the communications path within several brands of PLCs. This communication

path reconfiguration is possible with Allen-Bradley ControlLogix, PLC-5 and SLC-500

processors. The PLC program running on the processor is able to access all necessary

components required to perform this reconfiguration such that no additional components

need to be added to the PLC processor firmware. This eliminates the need for

2

collaboration with the manufacturer and the use of specialized firmware development

tools. Allen-Bradley ControlLogix processors are the focus of this work. However the

methods used here can be ported to other models in the Allen-Bradley family of PLCs.

3

2. NETWORK SCAN APPROACH AND ROUTINES

2.1. NETWORK SCAN APPROACH

The approach to scanning the available networks is to build a comprehensive

table of all found modules and devices. This table of modules is separated into two

groups: communications modules and other modules and devices. The separation allows

for easy differentiation between scannable modules and other modules in the scanning

routines. Each of the entries is identified by serial number so other addressing is not

needed, as there is no other easy way to identify the modules. Under each serial number

all of the found paths are recorded in the order in which they are discovered. If the

module is a communication module the network type of the module is also recorded for

later use in scanning. As new paths are found for a given module the new paths are

appended to the path list.

In order to do a comprehensive scan of all of the available networks there are

three main parts: two communication messages, scan routines for each of the three

network modules covered in this work and the main scan routine that ties all parts

together. These parts of the program are elaborated upon in the following sections.

2.2. MESSAGE SETUP

The message, or MSG, block provides a peer-to-peer communications function

for Allen-Bradley PLCs [2]. This MSG block is mainly used for PLC-to-PLC

communications [2]. This is done by reading or writing tags from the target PLC in any

of the families of Allen-Bradley PLCs [2]. Although PLC-to-PLC communications is

the main use of the MSG block, communications with other modules and devices over

the Allen-Bradley networks is also possible. This allows the use of MSG blocks to

discover modules and devices other than just PLC processors. This advantage is used in

the network scanning routines in order to comprehensively scan the entire SCADA

network.

The MSG instruction has an associated tag which holds all relevant data used in

the MSG instruction execution: status flags, destination or received tag, communications

path, timeout values, and other required variables. The main concern of this work is

4

with the communications path contained within the tag. It is contained in an 86 element

string which contains the path to the desired module or device. The components of this

path are built from the host processor to the destination module or device and can take

many hops between the two. The structure of these paths is explained in a later section.

Two different communication messages are used to scan for modules and

devices on the networks. The first message is configured to return the “Device Who”

information of the module and another which just returns the serial number of certain

devices. The messages are both setup and saved ahead of time. These messages are

described in detail the following sections.

5

2.2.1. Communication Message for Device Who. As stated before, a MSG is

setup to retrieve the “Device Who” information from a module or device. If the module

or device supports the Device Who query, the returned information includes the vender

ID of the module, product type and code, firmware revisions, serial number and the

module catalog name and description. This information is returned in the form of a

single string and must be decoded into these individual parts. The decoding is done via

the DECODE_DEVICE_WHO function. Instructions for decoding this information can

be seen in [3]. This function places the decoded information in a User Defined Type

(UDT) tag, which is similar to a structure in C programming, to make the information

more easily accessible. This message is used to find all modules and devices on the

ControlNet, Ethernet networks and most of the devices on the DeviceNet network. The

setup for this message can be seen in [3]. The setup box for the “Device Who” MSG

block can be seen in figure 2.1.

2.2.2. Communication Message for Serial Number. Not all of the devices on

the network respond to the “Device Who” query and so for these devices it is needful to

request the Serial Number in a separate MSG query. These devices which do not support

the “Device Who” are standalone devices, like stack light bases, photo eyes and

pushbutton stations, mostly on the DeviceNet network. This MSG is setup as a CIP

Generic MSG with parameters found in [4]. The MSG returns the serial number of the

queried device, if the device supports this query, as a DINT. The setup box for the Serial

Number MSG block can be seen in figure 2.2.

6

Figure 2.1. Configuration dialog box setup for the DeviceWho MSG block.

Figure 2.2. Configuration dialog box setup for the Serial Number MSG block.

7

2.2.3. MSG Communications Path Formulation. The communications path to

a particular module or device is encoded in a special format. This format is different

whether input from the configuration menu or modified on the tag level. The paths are

built from path pairs of the form x,y; the x component is the media type and y is the node

or address for the media selected in x. The values which x can take can be seen below in

table 2.1 and the values for y can be seen in table 2.2. These x,y pairs can be

concatenated together, separated by commas, and the pairs can be concatenated together

to create multi-hop paths over multiple modules and networks.

Table 2.1. Media Types for Path formation [5].

Value of 'x' Media Type

1 Backplane
ENET ‐ Out to Ethernet
ENBT ‐ Out to Ethernet
CNB,CN2 ‐ Out to ControlNet
DNB,SNB ‐ Out to DeviceNet
Controllers ‐ Out to Serial

2

Table 2.2. Node or Address types for different communications networks [5]

Network Format and Value of 'y'

ControlNet ControlNet Node Address (0‐99)
Ethernet Ethernet IP Address (a.b.c.d)
RS232 Serial Port DF1 Node Address (0‐255 , 1 for point to point)
Backplane Backplane Slot Number (0‐16 depending on Chassis Size)
DeviceNet DeviceNet Node Address (0‐63)

8

In order to understand the path statements an example is presented, taken from

[5]. This example shows how to develop or decode a path statement. The given path is

1, 5, 2, 100.100.100.100, 1, 0, 2, 24, 1, 10. The decoded message can be seen in table

2.3, as well as an illustration of the decoded path in figure 2.3; in this illustration all

paths segments are numbered with orange boxes and all paths are depicted in bold

colors: red for backplane moves, gray for Ethernet moves and blue for ControlNet

moves. This example shows how to communicate from one AB ControlLogix processor

to another over Ethernet and ControlNet. This example does not include a path through

a DeviceNet network but the setup is very similar to ControlNet with only less node

addresses available.

Table 2.3. Decoding of example message path 1,5,2,100.100.100.100,1,0,2,24,1,10 [5].

Segment Element of Path Description of Path element

1 Out to the backplane
5 To slot 5 (Slot 5 contains an Ethernet Module)
2 Out to Ethernet

100.100.100.100 To Ethernet address 100.100.100.100
1 Out to the backplane
0 To slot 0 (Slot 0 contains an ControlNet Module)
2 Out to ControlNet
24 To ControlNet Node 24 (Another CNB Module)
1 Out to the backplane
10 To slot 10 (Contains the Destintation Processor 1756‐Lxx)

5

Starting at ControlLogix Processor 1756‐Lxx

1

2

3

4

9

Figure 2.3. Illustration of communications path example

In order for a program to change the communications path the string tag holding

the path must be modified. The path string is held in the MSG setup tag and is not

encoded exactly as typed in the configuration box. These differences are not

documented by Allen-Bradley and had to be discovered by entering different paths and

examining the resulting string in the MSG setup tag. For all of the media types, as well

as the DeviceNet and ControlNet, node addresses are not encoded as ASCII but are just

encoded as plain byte numbers. The Ethernet IP address is, however, is encoded as an

ASCII string in dotted-decimal notation. The two bytes in front of the ASCII encoded

IP string identify that the proceeding information is an IP address and the length of the

IP string. The IP address also contains the separation points, which are also encoded as

ASCII. These findings make it possible to build a program which can change the path

string and automatically change the destination module or device.

2.3. NETWORK SCAN ROUTINES

In order to construct a program for populating a table of all modules and devices

on the various PLC networks, routines must be written for scanning the various PLC

networks. The main networks considered in this work are Ethernet, ControlNet and

10

DeviceNet. However, there are many more networks used in SCADA systems but most

do not allow Allen-Bradley modules to communicate through them. These three

networks are the main networks in ControlLogix PLC systems.

All of the routines, which are expanded upon in the later sections, are based on a

similar code structure. Each subroutine contains a state machine which governs the

steps the programs take. These routines take advantage of the two pre-configured MSG

functions to scan the designated network. Each routine is passed a base-path, which is

the path to be scanned, scanning range and base-path serial number. The base-path

serial number is the serial number of the module which will have its network scanned.

2.3.1. ControlNet Scan Routine. The first routine discussed is the scanning

routine for ControlNet. This routine is passed the base-path, scan range and module

serial number. This routine increments through all of the ControlNet node addresses

within the supplied range through the supplied path and records all of the found modules

or devices on that network.

The ControlNet routine has seven steps which facilitate the scanning of the

ControlNet network. The first step to this routine is to concatenate the passed base-path

with the media-type, which would be an ‘x’ value of 2 for ControlNet, and the node

address to be scanned. The MSG block is then reset to prepare it to be used. The

second step is then to activate the MSG block. This starts the communication with the

destination node address. Once the MSG block is activated, the DN and ER bits are

monitored. If the MSG block DN bit is activated then the message was successful and

the next step is to decode the “Device Who” information received. If the MSG block

ER bit is active then either the destination node is empty or the module does not support

the “Device Who” query and the program skips to the next to last step. Once the

“Device Who” information is decoded the found module table is searched for the found

module. If the module or device is found in the table then the new path for that module

is compared to the other found paths for that module or device. If the new path is

different it is added to the list and if it is a repeated path then it is ignored. If the module

is new then the module is appended to the table of modules and the path is added to it.

The next step is to increment the node address and to check if it is still in the desired

scan range. When the whole scan range is scanned the routine signals that it is done and

11

stays in a final wait state. The pseudo code for the routine can be seen in figure 2.4,

which illustrates a more complete explanation of the routine. Also, the code listing

appears in Appendix A.

Figure 2.4. Pseudo code for the ControlNet scan routine.

12

2.3.2. Ethernet Scan Routine. The next routine discussed is the scanning

routine for Ethernet. This routine is similar to the other routines in that it takes in the

base-path, scan range and module serial number. This routine, however, does not scan

all IP addresses but only scans the last octet of the address and is passed a base address

of the first three octets. This least significant byte, or fourth octet, of the IP address is

scanned within the supplied range, through the supplied path, and all modules or devices

found are recorded in the table of found modules.

The Ethernet scan routine has seven steps which facilitate the scanning of the

network. The first step to this routine is to convert the Ethernet IP address to a string in

dotted-decimal notation, concatenate the passed base-path with the media-type, which

would be an ‘x’ value of 2 for Ethernet, and the IP address string and saved to the

DeviceWho MSG block’s communications path. The MSG block is then reset to

prepare it to be used. The second step is then to activate the MSG block, which starts

the communication with the destination IP address. Once the MSG block is activated,

the DN and ER bits are monitored for this MSG block. If the MSG block DN bit is

activated then the message is successful and the next step is to decode the “Device

Who” information received. If the MSG block ER bit is active then either the

destination node is empty or the module does not support the “Device Who” query and

the program skips to the next to last step. Once the “Device Who” information is

decoded the found module table is searched for the found module. If the module or

device is found in the table then the new path is added for that module, if the path does

not already exist. If the module has not been found before, the module is appended to

the table of modules and the path is added to it. The next step is to increment counter,

which is used to set the fourth octet, and is checked to see if it is still in the scan range.

When the whole scan range is scanned the routine signals it is done and stays in a final

wait state. The pseudo code for the routine can be seen in figure 2.5, which illustrates a

more complete explanation of the Ethernet scan routine. Also, the code listing appears

in Appendix B.

13

Figure 2.5. Pseudo code for the Ethernet scan routine.

2.3.3. DeviceNet Scan Routine. The final routine discussed is the scanning

routine for DeviceNet. The routine is slightly different than the other two routines since

some DeviceNet devices do not respond to the “Device Who” query. This facilitates the

need for another MSG block, explained earlier, which only queries the serial number of

a device. The routine increments through the supplied DeviceNet node address range,

through the supplied path, and records all of the found modules or devices on the

network.

The DeviceNet routine has eight steps which facilitate the scanning of the

network. The first step to this routine is to concatenate the passed base-path with the

media-type, which would be an ‘x’ value of 2 for DeviceNet, and the node address to be

scanned and saved to the DeviceWho and SerialNumber MSG blocks’ communications

paths. The MSG blocks are then reset in preparation for reuse. The second step is then

to activate the MSG block and verify that they are enabled, which starts the

14

communication with the destination node address. Once the MSG blocks are activated,

the DN and ER bits are monitored for both MSG blocks. If the DeviceWho MSG block

DN bit is activated then the message was successful and the next step is to decode the

“Device Who” information received. Alternately, if the SerialNumber MSG block DN

bit is activated then the decode_device_who subroutine is skipped. If both the MSG

block ER bits are active then either the destination node is empty or the module does not

support either of the queries and the program skips to the next to last step. The found

modules table is then searched for the found module or device and if it is an existing

module the found path is added if new. This check avoids adding redundant paths. If

the module has not been found beforehand the module and path are appended to the

table. The next step is to increment the node address and verify if it is still in the scan

range. When the whole scan range is scanned the routine signals it is done and stays in a

final wait state. The pseudo code for the routine can be seen in figure 2.6, which

illustrates a more complete explanation of the routine. Also, the code listing appears in

Appendix C.

15

Figure 2.6. Pseudo code for the Ethernet scan routine.

2.4. BACKPLANE SCAN ROUTINE

In earlier sections the network scan routines were covered; however, the

capability to scan the backplane of the found communications modules is still needed.

This routine is similar to the network scan routines with a different media type. The

routine is passed the path to a communication module and scans the backplane of that

module. During the scanning process all new found modules are appended to the found

modules table.

The first step of this routine is to concatenate the passed module path and the

media type associated with the backplane and the slot to be scanned. The “Device Who”

MSG block is also prepared for transmission. Next the flag bits are then monitored; if

the MSG is done then the “Device Who” info is decoded; if the MSG is in error then the

slot is assumed to be empty, or may contain an incompatible module, and the state

machine skips to the last step. Once the “Device Who” information is decoded the

16

found module table is searched for the found module. If the module or device is found

in the table then the new path is added for that module, if it does not already exist. If the

module is new, the module is appended to the table of modules and the path is added to

it. The next step is to increment the slot number and is then checked to make sure it is

less than seventeen; the largest ControlLogix rack available is a seventeen slot rack.

When the entire rack is scanned the routine signals it is done and stays in a final wait

state. The pseudo code for the routine can be seen in figure 2.7, which illustrates a more

complete explanation of the backplane scan routine. Also, the code listing appears in

Appendix D.

Figure 2.7. Pseudo code for the backplane scan routine.

2.5. MAIN SCAN ROUTINE

The main scan routine combines all of the above subroutines to create a

comprehensive scanning routine which scans the entire PLC networks. This routine is a

17

state machine which steps the program through the six steps required to scan the entire

network. The routine repeats itself three times in order to fill the array of path strings,

but this repeat number can be changed to suit the PLC network.

The routine first scans the backplane of the host processors; this is done by

passing the backplane scan routine a blank base path. This step will populate the first

entry in the found modules table and find all the available communications modules.

The next step is to scan the networks associated with these found communications

modules by calling the appropriate routine for the found module. Once all of the

communications modules have been scanned and paths updated, the backplanes of all of

the found communications modules are scanned. This may find alternate paths to

already found modules; this is the basis of the scan routine since alternate paths are

found for all of the modules. Very quickly all of the modules accessible on the network

are found and alternate paths are found. Once all of the path slots are filled, or the

program has repeated a certain number of times, the program runs the verify paths

routine. This routine checks all of the found paths and makes sure they are still valid.

Once this routine is done it remains in a wait state and signals it is done. Once the

routine is in this wait state it can be recalled to update the paths or the table generated

can be used to find different path to specific modules. Also, the code listing can be seen

in Appendix E.

2.6. VERIFY PATHS ROUTINE

This routine is used to verify the paths for all of the modules found in the main

scan routine. The routine uses the appropriate MSG block to check that all the paths

return the correct serial number. Since the topology of the network may have changed

due to module failure or network attack may have occurred, some paths may no longer

be valid and must be checked. Once the path is checked, the valid path flag gets cleared

or set accordingly.

In order to process the steps needed to verify the paths two state machines are

used. Since the modules are separated into communications and non-communications

modules these two state machines are needed. Both state machines are identical but

each checks the two different types of modules. The state machine steps through all of

18

the found modules and checks all of the paths for each of the modules. In order to check

all the modules both of the MSG blocks are needed. The state machine first sets the

communications path for each MSG block to the path to be checked and enables the

MSG blocks. Once the MSG blocks are enabled, the program checks the flag bits for

the MSG blocks to set the valid bit for the checked path. If either MSG block is done,

the serial number is checked to make sure the path still communicates with the correct

module; if the module is correct then the valid path flag bit is set for the communications

path. However, if the path is not to the correct module, or if both MSG blocks are in

error, then the valid flag bit is cleared. The state machine is then repeated for the non-

communications modules. The state machine for the verify paths routine can be seen in

figure 2.8. Also, the code listing can be seen in Appendix F.

Figure 2.8. Pseudo code for Verify Path routine.

19

2.7. FIND_PATH ADD-ON INSTRUCTION

The Find_Path function returns a valid path to a given module. This routine is

passed a serial number and returns the first valid path, from the found modules table,

which communicates with the module identified by the passed serial number. This

program is different from the other routines in that it is built as an Add-On instruction.

Since an add-on instruction cannot call an outside routine, the Verify_Paths routine must

be called before using an instance of this function.

This routine has several inputs and outputs; the routine must be passed the

FoundModules UDT, the serial number to be searched for and the string to hold the

found path. The routine also has several output flag bits which signal the status of the

add-on instruction: the DN bit signals the module serial number was found and a path

has been returned; the ER bit signals that either the module serial number was not found

or none of the paths for the module are valid. Once the DN bit is set, the string to hold

the returned path will contain the communications path to the module identified by the

serial number. If the ER bit is set then the communications path string will be empty

and no communications path is available to the specified module. The add-on

instruction setup and code listing can be seen in Appendix G.

20

3. LIST AND DOCUMENT FOUND PATHS

Once the main scan routine has completed and all modules and devices have

been found it may be necessary to extract the information in the FoundModules UDT for

easy decoding and documentation. There is no easy way to view and document with any

single piece of software. For the ability to extract tag values from the PLC, Allen-

Bradley RSLinx software is needed. RSLinx allows OPC and DDE transfers to and

from a networked PLC to extract tag values. In order to use these communications links

a program must be written. Excel contains DDE transfer functions accessible with the

built-in Visual Basic macro language and provides a way to extract these paths.

3.1. MICROSOFT EXCEL PATH EXTRACTION MACRO

The Excel macro is written in VBA (Visual Basic for Applications) and uses the

DDE transfer functions. These functions communicate with RSLinx, which in turn

communicates with the networked PLC. In order for this process to work, a topic for the

destination PLC must be configured in RSLinx. This topic name is then used with the

DDE communications functions to specify the destination PLC. First, in order to use the

DDE functions, a channel must be opened using the DDEInitiate function which states

the destination program, which is RSLinx in this case, and the topic, which is associated

with the destination PLC in RSLinx. Once this is done, the DDE functions use this

created channel for the request function. This function, DDERequest, takes in the

channel and the requested tag in an ASCII encoded string.

Due to the path strings not being totally ASCII encoded, the string values must

be fetched a byte at a time instead of all at once as a single string. If the string is fetched

as a single string the non-standard characters are not preserved. This requires a for-loop

to be used to fetch a byte at a time. This loop then differentiates between the ASCII

encoded Ethernet IP address and the other parts, then rebuilds the string as it would

appear in the PLC.

This routine has two different loops which step through every found module and

extracts every path for that module. The serial numbers are encoded in hexadecimal and

then all paths are listed under each serial number. The three different flags associated

21

with each path are also extracted: valid path, scanned network and backplane scanned

flag bits. Each PLC topic has its own sheet in the Excel worksheet. The macro steps

through each sheet and uses the sheet name as the DDE topic. This allows for easy

addition of each PLC needed to be documented. The listing of the Excel macro VBA

can be seen in Appendix H.

22

4. VERIFY AND TESTING

In order to verify the workings of the scan routines, the scan routine was adjusted

for every v16 ControlLogix processors in the MST PLC lab. This includes 13

ControlLogix processors which vary in model and slot numbers. The layout of the

scannable modules and devices can be seen in figure 4.1. First the ControlLogix subnet

was connected to the department Ethernet and the scanning routines were run. After

these routine had finished the path extraction MS Excel macros were run to extract the

found paths from every processor running the routines.

Once all of these processors had completed scanning the network and found

paths documented, the Found Modules UDT where cleared and the programs reset.

Next the ControlLogix Ethernet subnet was disconnected from the department network.

The modules were verified working and had their IP addresses set. After these steps the

scan routines were run to completion. At the time the routines are done, the MS Excel

macro is run in a new worksheet to extract the new paths. The extracted paths, as

documented in the MS Excel worksheets, are decoded by hand to verify they point to the

appropriate module or device.

Figure 4.1. MST PLC Laboratory layout with separated ControlLogix Ethernet subnet.

23

5. CONCLUSION AND FUTURE WORK

This work has demonstrated a complete system for reconfiguring

communications paths using Allen-Bradley ControlLogix PLC processors. The set of

PLC structured text routines demonstrate scanning of three of the major communications

networks: ControlNet, Ethernet and DeviceNet. These routines, when combined in a

larger scanning routine, are used to create a comprehensive scanning routine for finding

all modules and devices available on the network, as well as multiple valid paths to these

found modules and devices. Since these paths may become invalid due to a number of

reasons, including network attack or network failure, a routine is demonstrated to check

all found paths for validity. Once these paths have been validated, it is desired to use the

found valid paths. An add-on instruction is included which searches for the desired

module or device in the found modules table and returns the first valid path found for

this device. Along with the PLC based programs an MS Excel document is included

which will fetch the found modules table from all specified PLCs.

Some improvements could be made to the existing work to make the network

scan complete faster and scanning routines easier to deploy on a larger scale. First,

multiple MSG blocks could be used to initiate multiple messages in parallel, instead of

serially as they are now. This technique is thought to be used in Allen-Bradley’s

RSLinx software and has potential for greatly increasing the speed of the scan routines.

Also in an effort to increase the speed of the network scan the timeouts could be

optimized. These could be initially adjusted globally but could be further refined. As a

final improvement, these routines might be packaged as add-on instructions for ease of

deployment. This process is complicated due to the direct manipulation of the MSG

block tags and may be an impassable hurdle with the routines in their current form.

As this work provides a working example of one approach to the problem at

hand, another approach could be explored in future work. The adopted approach of

completing a comprehensive scan can be redundant if multiple PLCs on the network are

performing the same scan. If this is the case, an AD-HOC approach could be explored.

The host processor would only scan one level; i.e., the networks and racks directly

connected to its host rack. When the processor wishes to communicate with a module or

24

device more than one communications level away from it, the host processor would send

a request to all other PLC processors running the scan routine for a path to the desired

module. They would either relay the message to the other processors it can

communicate within one level or return the path to the desired processor. This approach

has the possibility for greatly speeding the scanning of the network by effectively

parallelizing the scan over many modules.

25

APPENDIX A.

CONTROLNET SCAN ROUTINE

26

IF NOT ONS3 THEN
 i := ScanRange.Min;
 ONS3 := 1;
END_IF;

CASE Step OF
 1: // Set message path to backplane to slot 'i'
 DELETE(MSG1.Path,82,1,MSG1.Path);
 INSERT(MSG1.Path,Path_Net,1,MSG1.Path);
 IF MSG1.path.len > 84 THEN
 Step := 7;
 ELSE
 MSG1.Path.Data[MSG1.path.len] := 2; // Go out on ControlNet
 MSG1.Path.Data[MSG1.path.len+1] := i; // to address 'i'
 MSG1.path.len := MSG1.path.len + 2;

 // Clear DN and ER bits to make sure ready for new scan.
 MSG1.DN := 0;
 MSG1.ER := 0;
 Step := Step + 1;
 END_IF;

 2: //Send Message for "Module WHO" to CNet Node 'i'
 MSG(MSG1);

 //If MSG1 is enabled, goto next step (Should always be 1)
 IF MSG1.EN THEN
 Step := Step + 1;
 END_IF;

 3: IF MSG1.DN THEN
 // Clear DN bit
 MSG1.DN := 0;

 // GoTo next step
 Step := Step + 1;
 ELSIF MSG1.ER THEN
 // Clear ER bit
 MSG1.ER := 0;
 // Skip to next slot
 Step := 6;
 END_IF;

 4: // Decode RAW data from MSG
 Decode_Module_Who(DecodeModWho1,Module_Raw,Module);
 // GoTo next step
 Step := Step + 1;

 5: // Check if current slot contains my processor
 IF Module.Product_Type = 12 AND Mod_SN <> Module.Serial_Num THEN
 NewMod := 1;

 FOR m := 0 TO FoundModules.NumComm DO
 IF FoundModules.Comm[m].SN = Module.Serial_Num THEN
 NewPath := 1;
 FOR h := 0 TO 24 DO
 IF FoundModules.Comm[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND FoundModules.Comm[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Comm[m].NumPaths;
 INSERT(FoundModules.Comm[m].Path[NumPaths],MSG1.Path,1, ▼
 FoundModules.Comm[m].Path[NumPaths]);
 FoundModules.Comm[m].NetScanned[NumPaths] := 1;
 FoundModules.Comm[m].NumPaths := NumPaths + 1;
 END_IF;
 NewMod := 0;
 END_IF;
 END_FOR;

27

 IF NewMod AND FoundModules.NumComm < 100 THEN
 FoundModules.Comm[FoundModules.NumComm].SN := Module.Serial_Num;
 FoundModules.Comm[FoundModules.NumComm].Type := Module.Product_Code;
 // Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
 NumPaths := FoundModules.Comm[FoundModules.NumComm].NumPaths;
 INSERT(FoundModules.Comm[FoundModules.NumComm].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Comm[FoundModules.
 NumComm].Path[NumPaths]);
 FoundModules.Comm[FoundModules.NumComm].BPScanned[0] := 0;
 FoundModules.Comm[FoundModules.NumComm].NetScanned[NumPaths] := 1;
 FoundModules.Comm[FoundModules.NumComm].NumPaths := NumPaths + 1;
 FoundModules.NumComm := FoundModules.NumComm + 1;
 END_IF;
 ELSIF Module.product_type <> 12 AND Mod_SN <> Module.Serial_Num THEN
 FOR m := 0 TO FoundModules.NumMod DO
 IF FoundModules.Mod[m].SN = Module.Serial_Num THEN
 NewPath := 1;
 FOR h := 0 TO 24 DO
 IF FoundModules.Mod[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND FoundModules.Mod[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Mod[m].NumPaths;
 INSERT(FoundModules.Mod[m].Path[NumPaths],MSG1.Path,1,
 FoundModules.MOD[m].Path[NumPaths]);
 FoundModules.Mod[m].NumPaths := NumPaths + 1;
 END_IF;
 NewMod := 0;
 END_IF;
 END_FOR;
 IF NewMod AND FoundModules.NumMod < 100 THEN
 FoundModules.Mod[FoundModules.NumMod].SN := Module.Serial_Num;
 // Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
 NumPaths := FoundModules.Mod[FoundModules.NumMod].NumPaths;
 INSERT(FoundModules.Mod[FoundModules.NumMod].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Mod[FoundModules.
 NumMod].Path[NumPaths]);
 FoundModules.Mod[FoundModules.NumMod].NumPaths := NumPaths + 1;
 FoundModules.NumMod := FoundModules.NumMod + 1;
 END_IF;
 END_IF;
 // GoTo next step
 Step := Step + 1;

 6: // Increment node counter 'i'
 i := i + 1;
 // Check 'i'
 IF i <= ScanRange.Max THEN
 Step := 1;
 ELSE
 i := 0;
 Step := 7;
 END_IF;

 7: // DONE scanning CNet; STOP
 ONS3 := 0;
 Step := 7;

 ELSE
 // If in non-defined step, GoTo first step
 Step := 1;

END_CASE;

28

APPENDIX B.

ETHERNET SCAN ROUTINE

29

// !!!: DONT TRY TO SCAN IP ENDING IN 0 :!!!
IF i = 0 OR NOT ONS3 THEN
 i := ScanRange.Min;
 ONS3 := 1;
END_IF;
CASE Step OF
 1: //Disable MSG1 (for good measure) while chaning path str
 MSG1.EN := 0;
 // Set message path to backplane to ENet addr 131.151.52.i
 DELETE(MSG1.Path,82,1,MSG1.Path);
 INSERT(MSG1.Path,Path_Net,1,MSG1.Path);

 IF MSG1.path.len > 69 THEN
 Step := 7;
 ELSE
 MSG1.Path.Data[MSG1.path.len] := 18; // ITS JUST WHAT MSG DIALOG DOES FOR ETHERNET
 // Make sure to clear old IP string (Not sure if needed)
 DELETE(IP.STR,82,1,IP.STR);
 IP.octet[3] := i;

 // Convert DINT octets of IP to single STRING (could be converted to ADD-ON for tiddyness)
 FOR h := 0 TO 3 DO
 // Convert each Octet in a sting
 DTOS(IP.octet[h],TempStr);
 // Concatinate this with the IP string
 CONCAT(IP.STR,TempStr,IP.STR);
 // Add '.' between OCTETs in IP (only between 0-1, 1-2 and 2-3 octets)
 IF h <> 3 THEN
 IP.STR.DATA[IP.STR.LEN] := 46; // Add '.' after octet (46 = '.' in ASCII ; LEN points to last element+1)
 IP.STR.LEN := IP.STR.LEN + 1; // INC String length since added '.'
 END_IF;
 END_FOR;

 MSG1.Path.Data[MSG1.path.len+1] := IP.STR.LEN; // Length of the IP address imbeded in the path string
 MSG1.path.len := MSG1.path.len + 2;
 // Concatinate destination IP to Path string (should take care of setting correct path string length)
 CONCAT(MSG1.Path,IP.STR,MSG1.path);
 // Clear DN and ER bits to make sure ready for new scan.
 MSG1.DN := 0;
 MSG1.ER := 0;
 Step := Step + 1;
 END_IF;

2: //Send Message for "Module WHO" to ENet address in IP.str (131.151.52.i in this example)
 MSG(MSG1);
 Step := Step + 1;

3: IF MSG1.DN THEN
 // Clear DN bit
 MSG1.DN := 0;
 // GoTo next step
 Step := Step + 1;
 ELSIF MSG1.ER THEN
 // Clear ER bit
 MSG1.ER := 0;
 // Skip to next slot
 Step := 6;
 END_IF;

4: // Decode RAW data from MSG
 Decode_Module_Who(DecodeModWho1,Module_Raw,Module);
 // GoTo next step
 Step := Step + 1;

5: // Copy new info for node 'i' to UDT
 IF Module.Product_Type = 12 AND Mod_SN <> Module.Serial_Num THEN
 NewMod := 1;
 FOR m := 0 TO FoundModules.NumComm DO
 IF FoundModules.Comm[m].SN = Module.Serial_Num THEN
 NewPath := 1;

30

 FOR h := 0 TO 24 DO
 IF FoundModules.Comm[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND FoundModules.Comm[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Comm[m].NumPaths;
 INSERT(FoundModules.Comm[m].Path[NumPaths],MSG1.Path,1,
 FoundModules.Comm[m].Path[NumPaths]);
 FoundModules.Comm[m].NetScanned[NumPaths] := 1;
 FoundModules.Comm[m].NumPaths := NumPaths + 1;
 END_IF;
 NewMod := 0;
 END_IF;
 END_FOR;
 IF NewMod AND FoundModules.NumComm < 100 THEN
FoundModules.Comm[FoundModules.NumComm].SN := Module.Serial_Num;
FoundModules.Comm[FoundModules.NumComm].Type := Module.Product_Code;
// Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
NumPaths := FoundModules.Comm[FoundModules.NumComm].NumPaths;
INSERT(FoundModules.Comm[FoundModules.NumComm].Path[NumPaths],MSG1.Path,1,
 FoundModules.Comm[FoundModules.NumComm].Path[NumPaths]);
FoundModules.Comm[FoundModules.NumComm].BPScanned[0] := 0;
FoundModules.Comm[FoundModules.NumComm].NetScanned[NumPaths] := 1;
FoundModules.Comm[FoundModules.NumComm].NumPaths := NumPaths + 1;
FoundModules.NumComm := FoundModules.NumComm + 1;
 END_IF;
 ELSIF Module.product_type <> 12 AND Mod_SN <> Module.Serial_Num THEN
 FOR m := 0 TO FoundModules.NumMod DO
 IF FoundModules.Mod[m].SN = Module.Serial_Num THEN
 NewPath := 1;
 FOR h := 0 TO 24 DO
 IF FoundModules.Mod[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND FoundModules.Mod[m].NumPaths < 24 THEN
NumPaths := FoundModules.Mod[m].NumPaths;
INSERT(FoundModules.Mod[m].Path[NumPaths],MSG1.Path,1,
 FoundModules.MOD[m].Path[NumPaths]);
FoundModules.Mod[m].NumPaths := NumPaths + 1;
 END_IF;
 NewMod := 0;
 END_IF;
 END_FOR;
 IF NewMod AND FoundModules.NumMod < 100 THEN
FoundModules.Mod[FoundModules.NumMod].SN := Module.Serial_Num;
// Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
NumPaths := FoundModules.Mod[FoundModules.NumMod].NumPaths;
INSERT(FoundModules.Mod[FoundModules.NumMod].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Mod[FoundModules.NumMod].Path[NumPaths]);
FoundModules.Mod[FoundModules.NumMod].NumPaths := NumPaths + 1;
FoundModules.NumMod := FoundModules.NumMod + 1;
 END_IF;
 END_IF;
 // GoTo next step
 Step := Step + 1;

6: // Increment node counter 'i'
 i := i + 1;
 // Check 'i'
 IF i <= ScanRange.Max THEN
 Step := 1;
 ELSE
 i := 0;
 Step := 7;
 END_IF;

7: // DONE scanning ENet; STOP
 ONS3 := 0;

31

 Step := 7;

ELSE
 // If in non-defined step, GoTo first step
 Step := 1;

END_CASE;

32

APPENDIX C.

DEVICENET SCAN ROUTINE

33

IF NOT ONS3 THEN
 i := ScanRange.Min;
 ONS3 := 1;
END_IF;

CASE Step OF
 1: // Set message path to backplane to slot 'i'
 DELETE(SN_MSG.Path,82,1,SN_MSG.Path);
 INSERT(SN_MSG.Path,Path_Net,1,SN_MSG.Path);
 IF MSG1.path.len > 84 THEN
 Step := 7;
 ELSE
SN_MSG.Path.Data[SN_MSG.path.len] := 2; // Go out on DeviceNet
SN_MSG.Path.Data[SN_MSG.path.len+1] := i; // to address 'i'
SN_MSG.path.len := SN_MSG.path.len + 2;
// Clear DN and ER bits to make sure ready for new scan.
SN_MSG.DN := 0;
SN_MSG.ER := 0;
// Prepare "DeviceWho" MSG with same path as "SerialNumber" MSG
DELETE(MSG1.Path,82,1,MSG1.Path);
INSERT(MSG1.Path,SN_MSG.path,1,MSG1.Path);
// Clear DN and ER bits to make sure ready for new scan.
MSG1.DN := 0;
MSG1.ER := 0;
Step := Step + 1;
 END_IF;

 2: //Send Message for "Module WHO" to CNet Node 'i'
 MSG(SN_MSG);
 MSG(MSG1);
 IF SN_MSG.EN AND MSG1.EN THEN
 Step := Step + 1;
 END_IF;

 3: IF SN_MSG.DN AND MSG1.ER THEN
 // Clear DN and ER bits
 SN_MSG.DN := 0;
 MSG1.ER := 0;
 // GoTo step 4 (add NonComm module to UDT)
 Step := 4;
 ELSIF SN_MSG.DN and MSG1.DN THEN
 // Clear DN and ER bits
 SN_MSG.DN := 0;
 MSG1.DN := 0;
 // GoTo step 5 (add Comm module to UDT)
 Step := 5;
 ELSIF SN_MSG.ER THEN
 // Clear bits
 SN_MSG.ER := 0;
 MSG1.DN := 0;
 MSG1.ER := 0;
 // Skip to next address
 Step := 7;
 END_IF;

4: // Add NonComm module to UDT
 FOR m := 0 TO FoundModules.NumMod DO
 IF FoundModules.Mod[m].SN = Received_SN THEN
 NewPath := 1;
 FOR h := 0 TO 24 DO
 IF FoundModules.Mod[m].PATH[h] = SN_MSG.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND FoundModules.Mod[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Mod[m].NumPaths;
 INSERT(FoundModules.Mod[m].Path[NumPaths],SN_MSG.Path,1,▼
 FoundModules.MOD[m].Path[NumPaths]);
 FoundModules.Mod[m].NumPaths := NumPaths + 1;
 END_IF;

34

 NewMod := 0;
 END_IF;
 END_FOR;
 IF NewMod AND FoundModules.NumMod < 100 THEN
 FoundModules.Mod[FoundModules.NumMod].SN := Received_SN;
 // Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
 NumPaths := FoundModules.Mod[FoundModules.NumMod].NumPaths;
 INSERT(FoundModules.Mod[FoundModules.NumMod].Path[NumPaths],SN_MSG.Path,1,▼
 FoundModules.Mod[FoundModules.NumMod].Path[NumPaths]);
 FoundModules.Mod[FoundModules.NumMod].NumPaths := NumPaths + 1;
 FoundModules.NumMod := FoundModules.NumMod + 1;
 END_IF;
 // goto step 7 and skip CommMod add
 Step := 7;

 5: // Decode RAW data from MSG
 Decode_Module_Who(DecodeModWho1,Module_Raw,Module);
 // GoTo next step
 Step := Step + 1;

 6: // Check if current slot contains my processor
 IF Module.Product_Type = 12 AND Mod_SN <> Module.Serial_Num THEN
 NewMod := 1;
 FOR m := 0 TO FoundModules.NumComm DO
 IF FoundModules.Comm[m].SN = Module.Serial_Num THEN
 NewPath := 1;
 FOR h := 0 TO 24 DO
 IF FoundModules.Comm[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND FoundModules.Comm[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Comm[m].NumPaths;
 INSERT(FoundModules.Comm[m].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Comm[m].Path[NumPaths]);
 FoundModules.Comm[m].NetScanned[NumPaths] := 1;
 FoundModules.Comm[m].NumPaths := NumPaths + 1;
 END_IF;
 NewMod := 0;
 END_IF;
 END_FOR;
 IF NewMod THEN
FoundModules.Comm[FoundModules.NumComm].SN := Module.Serial_Num;
FoundModules.Comm[FoundModules.NumComm].Type := Module.Product_Code;
// Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
NumPaths := FoundModules.Comm[FoundModules.NumComm].NumPaths;
INSERT(FoundModules.Comm[FoundModules.NumComm].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Comm[FoundModules.
NumComm].Path[NumPaths]);
FoundModules.Comm[FoundModules.NumComm].BPScanned[0] := 0;
FoundModules.Comm[FoundModules.NumComm].NetScanned[NumPaths] := 1;
FoundModules.Comm[FoundModules.NumComm].NumPaths := NumPaths + 1;
FoundModules.NumComm := FoundModules.NumComm + 1;
 END_IF;
 ELSIF Module.product_type <> 12 AND Mod_SN <> Module.Serial_Num THEN
 FOR m := 0 TO FoundModules.NumMod DO
 IF FoundModules.Mod[m].SN = Module.Serial_Num THEN
 NewPath := 1;
 FOR h := 0 TO 24 DO
 IF FoundModules.Mod[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND FoundModules.Mod[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Mod[m].NumPaths;
 INSERT(FoundModules.Mod[m].Path[NumPaths],SN_MSG.Path,1,▼
 FoundModules.MOD[m].Path[NumPaths]);
 FoundModules.Mod[m].NumPaths := NumPaths + 1;
 END_IF;
 NewMod := 0;

35

 END_IF;
 END_FOR;
 IF NewMod THEN
 FoundModules.Mod[FoundModules.NumMod].SN := Module.Serial_Num;
 // Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
 NumPaths := FoundModules.Mod[FoundModules.NumMod].NumPaths;
 INSERT(FoundModules.Mod[FoundModules.NumMod].Path[NumPaths],SN_MSG.Path,1,▼
 FoundModules.Mod[FoundModules.
 NumMod].Path[NumPaths]);
 FoundModules.Mod[FoundModules.NumMod].NumPaths := NumPaths + 1;
 FoundModules.NumMod := FoundModules.NumMod + 1;
 END_IF;
 END_IF;
 // GoTo next step
 Step := Step + 1;

 7: // Increment node counter 'i'
 i := i + 1;
 // Check 'i'
 IF i <= ScanRange.Max THEN
 Step := 1;
 ELSE
 i := 0;
 Step := 8;
 END_IF;

8: // DONE scanning CNet; STOP
 ONS3 := 0;
 Step := 8;

ELSE
 // If in non-defined step, GoTo first step
 Step := 1;

END_CASE;

36

APPENDIX D.

BACKPLANE SCAN ROUTINE

37

CASE Step OF
 1: // Set message path to backplane to slot 'i'
 DELETE(MSG1.Path,82,1,MSG1.Path);
 INSERT(MSG1.Path,Path_BP,1,MSG1.Path);
 IF MSG1.path.len > 84 THEN
 Step := 7;
 ELSE
 MSG1.Path.Data[MSG1.path.len] := 1;
 MSG1.Path.Data[MSG1.path.len+1] := i;
 MSG1.path.len := MSG1.path.len + 2;
 // Clear DN and ER bits to make sure ready for new scan.
 MSG1.DN := 0;
 MSG1.ER := 0;
 Step := Step + 1;
 END_IF;

 2: //Send Message for "Module WHO" to slot 'i'
 MSG(MSG1);
 //If MSG1 is enabled, goto next step (Should always be 1)
 IF MSG1.EN THEN
 Step := Step + 1;
 END_IF;

 3: IF MSG1.DN THEN
 // Clear DN bit
 MSG1.DN := 0;
 // GoTo next step
 Step := Step + 1;
 ELSIF MSG1.ER THEN
 // Clear ER bit
 MSG1.ER := 0;
 // Skip to next slot
 Step := 7;
 END_IF;

 4: // Decode RAW data from MSG
 Decode_Module_Who(DecodeModWho1,Module_Raw,Module);
 // GoTo next step
 Step := Step + 1;

 5: // Check if current slot contains my processor
 NewMod := 1;
 IF FoundModules.NumMod >= FoundModules.NumComm THEN
 LEN := FoundModules.NumMod;
 ELSE
 LEN := FoundModules.NumComm;
 END_IF;
 FOR m := 0 TO LEN DO
 IF FoundModules.Comm[m].SN = Module.Serial_Num OR FoundModules.Mod[m].SN = Module.Serial_Num THEN
 NewPath := 1;
 FOR h := 0 TO 24 DO
 IF Module.Product_Type = 12 AND FoundModules.Comm[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 ELSIF Module.Product_Type <> 12 AND FoundModules.Mod[m].PATH[h] = MSG1.Path THEN
 NewPath := 0;
 END_IF;
 END_FOR;
 IF NewPath AND Module.Product_Type = 12 AND FoundModules.Comm[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Comm[m].NumPaths;
 INSERT(FoundModules.Comm[m].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Comm[m].Path[NumPaths]);
 FoundModules.Comm[m].BPScanned[NumPaths] := 1;
 FoundModules.Comm[m].NumPaths := NumPaths + 1;
 ELSIF NewPath AND Module.Product_Type <> 12 AND FoundModules.Mod[m].NumPaths < 24 THEN
 NumPaths := FoundModules.Mod[m].NumPaths;
 INSERT(FoundModules.Mod[m].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.MOD[m].Path[NumPaths]);
 FoundModules.Mod[m].NumPaths := NumPaths + 1;
 END_IF;
 NewMod := 0;

38

 END_IF;
 END_FOR;
 IF NewMod AND Module.Product_Type = 12 AND FoundModules.NumComm < 100 THEN
 FoundModules.Comm[FoundModules.NumComm].SN := Module.Serial_Num;
 FoundModules.Comm[FoundModules.NumComm].Type := Module.Product_Code;
 // Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
 NumPaths := FoundModules.Comm[FoundModules.NumComm].NumPaths;
 INSERT(FoundModules.Comm[FoundModules.NumComm].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Comm[FoundModules.NumComm].Path[NumPaths]);
 FoundModules.Comm[FoundModules.NumComm].BPScanned[0] := 1;
 FoundModules.Comm[FoundModules.NumComm].NumPaths := NumPaths + 1;
 FoundModules.NumComm := FoundModules.NumComm + 1;
 ELSIF NewMod AND Module.Product_Type <> 12 AND FoundModules.NumMod < 100 THEN
 FoundModules.Mod[FoundModules.NumMod].SN := Module.Serial_Num;
 // Must pull out variable NumPaths; For some reason INSEART did not like it in the indices
 NumPaths := FoundModules.Mod[FoundModules.NumMod].NumPaths;
 INSERT(FoundModules.Mod[FoundModules.NumMod].Path[NumPaths],MSG1.Path,1,▼
 FoundModules.Mod[FoundModules.NumMod].Path[NumPaths]);
 FoundModules.Mod[FoundModules.NumMod].NumPaths := NumPaths + 1;
 FoundModules.NumMod := FoundModules.NumMod + 1;
 END_IF;
 // GoTo next step
 Step := Step + 1;

 6: // Copy new info for slot 'i' to UDT
 Step := Step + 1;

 7: // Increment slot counter 'i'
 i := i + 1;
 // Check 'i'
 IF i <= 16 THEN
 Step := 1;
 ELSE
 i := 0;
 Step := 8;
 END_IF;

 8: // DONE scanning rack; STOP
 Step := 8;

 ELSE
 // If in non-defined step, GoTo first step
 Step := 1;
END_CASE;

39

APPENDIX E.

MAIN NETWORK SCAN ROUTINE

40

// On first startup, scan own Backplane
IF NOT FS THEN
 // Set path to scan backplane (if Path_BP is empty, routine will just scan own backplane)
 DELETE(Path_BP,82,1,Path_BP);
 // Jump to backplane scanning routine
 JSR(Scan_BP);
 // If in Step 8 then scanning complete
 IF Step = 8 THEN
 FS := 1;
 FoundMods := FoundModules.NumComm;
 END_IF;
ELSE
 CASE ScanStep OF
 0: n := 0;
 A := 0;
 ScanStep := ScanStep + 1;

 1: // Check for scannable network and scan unscanned paths
 CASE FoundModules.Comm[n].Type OF
 7: //ControlNet type of network; SCANNABLE
 IF NOT FoundModules.Comm[n].NetScanned[A] THEN
 IF NOT ONS2 THEN
 DELETE(Path_Net,82,1,Path_Net);
 INSERT(Path_Net,FoundModules.Comm[n].Path[A],1,Path_Net);
 Step := 1;
 ONS2 := 1;
 Mod_SN := FoundModules.Comm[n].SN;
 END_IF;
 // Scan ControlNet in the range [0,5]
 ScanRange.Min := 0;
 ScanRange.Max := 5;
 JSR(Scan_CNet);
 END_IF;
 IF Step = 7 OR FoundModules.Comm[n].NetScanned[A] THEN
 ONS2 := 0;
 FoundModules.Comm[n].NetScanned[A] := 1;
 A := A + 1;
 END_IF;
 IF A >= FoundModules.Comm[n].NumPaths THEN
 ScanStep := ScanStep + 1;
 A := 0;
 END_IF;

 14: //Scan DeviceNet (Product_Code = 12)
 IF NOT FoundModules.Comm[n].NetScanned[A] THEN
 IF NOT ONS2 THEN
 DELETE(Path_Net,82,1,Path_Net);
 INSERT(Path_Net,FoundModules.Comm[n].Path[A],1,Path_Net);
 Step := 1;
 ONS2 := 1;
 Mod_SN := FoundModules.Comm[n].SN;
 END_IF;
 // Scan DeviceNet in the range [0,63]
 ScanRange.Min := 0;
 ScanRange.Max := 63;
 JSR(Scan_DNet);
 END_IF;
 IF Step = 8 OR FoundModules.Comm[n].NetScanned[A] THEN
 ONS2 := 0;
 FoundModules.Comm[n].NetScanned[A] := 1;
 A := A + 1;
 END_IF;
 IF A >= FoundModules.Comm[n].NumPaths THEN
 ScanStep := ScanStep + 1;
 A := 0;
 END_IF;

 58,125: // Scan ENBT and EWEB modules.
 IF NOT FoundModules.Comm[n].NetScanned[A] THEN
 IF NOT ONS2 THEN

41

 DELETE(Path_Net,82,1,Path_Net);
 INSERT(Path_Net,FoundModules.Comm[n].Path[A],1,Path_Net);
 Step := 1;
 ONS2 := 1;
 Mod_SN := FoundModules.Comm[n].SN;
 END_IF;
 // Set IP to scan (Octets [0,2] could also be varied for scanning network)
 IP.OCTET[0] := 131;
 IP.OCTET[1] := 151;
 IP.OCTET[2] := 52;
 // Scan Octet3 in the range [129,151]
 ScanRange.Min := 129;
 ScanRange.Max := 151;
 JSR(Scan_ENet);
 END_IF;
 IF Step = 7 OR FoundModules.Comm[n].NetScanned[A] THEN
 ONS2 := 0;
 FoundModules.Comm[n].NetScanned[A] := 1;
 A := A + 1;
 END_IF;
 IF A >= FoundModules.Comm[n].NumPaths THEN
 ScanStep := ScanStep + 1;
 A := 0;
 END_IF;

 ELSE
 // If unscannable network (i.e not in above list) then skip to next comm module.
 ScanStep := 3;

 END_CASE;

 2: //IF BPSCANNED[A] bit NOT set then need to scan that modules backplane.
 IF NOT FoundModules.Comm[n].BPScanned[A] THEN
 IF NOT ONS1 THEN
 DELETE(Path_BP,82,1,Path_BP);
 INSERT(Path_BP,FoundModules.Comm[n].Path[A],1,Path_BP);
 Step := 1;
 ONS1 := 1;
 END_IF;
 JSR(Scan_BP);
 END_IF;
 IF Step = 8 OR FoundModules.Comm[n].BPScanned[A] THEN
 ONS1 := 0;
 FoundModules.Comm[n].BPScanned[A] := 1;
 A := A + 1;
 END_IF;
 IF A >= FoundModules.Comm[n].NumPaths THEN
 ScanStep := ScanStep + 1;
 A := 0;
 END_IF;

 3: // Inc n, check limits and goto 1 if n ok
 n := n + 1;
 RestartFlag := 0;
 IF n = FoundModules.NumComm THEN
 FOR j := 0 TO (FoundModules.NumComm - 1) DO
 CASE FoundModules.Comm[j].type OF
 7,14,58,125:
 FOR z := 0 TO (FoundModules.Comm[j].NumPaths - 1) DO
 IF NOT FoundModules.Comm[j].Netscanned[z] OR NOT
 FoundModules.Comm[j].BPscanned[z] THEN
 RestartFlag := 1;
 END_IF;
 END_FOR;
 END_CASE;
 END_FOR;
 IF RestartFlag AND RestartCTR < 3 THEN
 ScanStep := 0;
 RestartCTR := RestartCTR + 1;
 ELSE

42

 ScanStep := 4;
 END_IF;
 ELSE
 ScanStep := 1;
 END_IF;

 4: // Validate all paths found.
 IF NOT ONS6 THEN
 V_DN := 0;
 V_STEP := 0;
 V_TOGGLE := 0;
 ONS6 := 1;
 END_IF;
 JSR(Validate_Paths);
 IF V_DN THEN
 ScanStep := 5;
 V_DN := 0;
 ONS6 := 0;
 END_IF;

 5: // DONE.
 ScanStep := 5;

 ELSE
 ScanStep := 0;

 END_CASE;
END_IF;

43

APPENDIX F.

PATH VERIFICATION ROUTINE

44

IF NOT V_TOGGLE AND NOT V_DN THEN //Check Non-Comm module paths.
 CASE V_STEP OF
 0: // Reset pointers
 V_IDX1 := 0;
 V_IDX2 := 0;
 V_STEP := 1;

 1: // Set paths
 DELETE(MSG1.Path,82,1,MSG1.Path);
 INSERT(MSG1.Path,FoundModules.Mod[V_IDX1].Path[V_IDX2],1,MSG1.Path);
 DELETE(SN_MSG.Path,82,1,SN_MSG.Path);
 INSERT(SN_MSG.Path,FoundModules.Mod[V_IDX1].Path[V_IDX2],1,SN_MSG.Path);
 V_STEP := V_STEP + 1;

 2: // Set message for 'Device_Who' and 'SerialNumber' to enable.
 MSG(MSG1);
 MSG(SN_MSG);
 IF MSG1.EN AND SN_MSG.EN THEN
 V_STEP := V_STEP + 1;
 END_IF;

 3: //Check to see if messages are done or error
 IF MSG1.DN OR SN_MSG.DN THEN
 FoundModules.Mod[V_IDX1].ValidPath[V_IDX2] := 1;
 V_STEP := 4;
 ELSIF MSG1.ER AND SN_MSG.ER THEN
 FoundModules.Mod[V_IDX1].ValidPath[V_IDX2] := 0;
 V_STEP := 4;
 END_IF;

 4: // Increment path pointer
 V_IDX2 := V_IDX2 + 1;
 IF V_IDX2 = FoundModules.Mod[V_IDX1].NumPaths THEN
 V_IDX2 := 0;
 V_STEP := 5;
 ELSE
 V_STEP := 1;
 END_IF;

 5: // Increment module pointer
 V_IDX1 := V_IDX1 + 1;
 IF V_IDX1 = FoundModules.NumMod THEN
 V_IDX1 := 0;
 V_STEP := 6;
 ELSE
 V_STEP := 1;
 END_IF;

 6: // DONE
 V_STEP := 0;
 V_TOGGLE := 1;

 ELSE
 V_STEP := 0;

 END_CASE;

ELSIF V_TOGGLE AND NOT V_DN THEN //Check comm module paths.

 CASE V_STEP OF
 0: // Reset pointers
 V_IDX1 := 0;
 V_IDX2 := 0;
 V_STEP := 1;

 1: // Set paths
 DELETE(MSG1.Path,82,1,MSG1.Path);
 INSERT(MSG1.Path,FoundModules.Comm[V_IDX1].Path[V_IDX2],1,MSG1.Path);
 DELETE(SN_MSG.Path,82,1,SN_MSG.Path);
 INSERT(SN_MSG.Path,FoundModules.Comm[V_IDX1].Path[V_IDX2],1,SN_MSG.Path);

45

 V_STEP := V_STEP + 1;
 2: // Set message for 'Device_Who' and 'SerialNumber' to enable.
 MSG(MSG1);
 MSG(SN_MSG);
 IF MSG1.EN AND SN_MSG.EN THEN
 V_STEP := V_STEP + 1;
 END_IF;

 3: //Check to see if messages are done or error
 IF MSG1.DN OR SN_MSG.DN THEN
 FoundModules.Comm[V_IDX1].ValidPath[V_IDX2] := 1;
 V_STEP := 4;
 ELSIF MSG1.ER AND SN_MSG.ER THEN
 FoundModules.Comm[V_IDX1].ValidPath[V_IDX2] := 0;
 V_STEP := 4;
 END_IF;

 4: // Increment path pointer and set step
 V_IDX2 := V_IDX2 + 1;
 IF V_IDX2 = FoundModules.Comm[V_IDX1].NumPaths THEN
 V_IDX2 := 0;
 V_STEP := 5;
 ELSE
 V_STEP := 1;
 END_IF;

 5: // Increment module pointer
 V_IDX1 := V_IDX1 + 1;
 IF V_IDX1 = FoundModules.NumComm THEN
 V_IDX1 := 0;
 V_STEP := 6;
 ELSE
 V_STEP := 1;
 END_IF;

 6: // DONE
 V_IDX1 := 0;
 V_IDX2 := 0;
 V_STEP := 0;
 V_TOGGLE := 0;
 V_DN := 1;

 ELSE
 V_STEP := 0;

 END_CASE;
END_IF;

46

APPENDIX G.

FIND PATH ADD-ON INSTRUCTION

47

48

CODE:
flag := 0;
FoundMod := 0;

FOR idx := 0 TO 99 DO
 IF FoundModules.Mod[idx].SN = Serial_Number THEN
 flag := 1;
 FoundMod := idx;
 idx := 100;
 END_IF;
END_FOR;

IF NOT flag THEN
 FOR idx := 0 TO 99 DO
 IF FoundModules.Comm[idx].SN = Serial_Number THEN
 flag := 1;
 FoundMod := idx;
 idx := 100;
 END_IF;
 END_FOR;
ELSE
 DN := 1;
END_IF;

IF DN AND flag THEN
 FOR idx := 0 TO (FoundModules.Mod[FoundMod].NumPaths - 1) DO
 IF FoundModules.Mod[FoundMod].ValidPath[idx] THEN
 Insert(FoundModules.Mod[FoundMod].Path[idx],Found_Path,1,Found_Path);
 idx := FoundModules.Mod[FoundMod].NumPaths;
 END_IF;
 END_FOR;
 DN := 1;
 ER := 0;
ELSIF NOT DN AND flag THEN
 FOR idx := 0 TO (FoundModules.Comm[FoundMod].NumPaths - 1) DO
 IF FoundModules.Comm[FoundMod].ValidPath[idx] THEN
 Insert(FoundModules.Comm[FoundMod].Path[idx],Found_Path,1,Found_Path);
 idx := FoundModules.Comm[FoundMod].NumPaths;
 END_IF;
 END_FOR;
 DN := 1;
 ER := 0;
ELSE
 DN := 0;
 ER := 1;

 END_IF;

49

APPENDIX H.

MICROSOFT EXCEL VISUAL BASIC MACRO

50

Sub Get_Paths()
 Dim DDE_Topic As String
 Dim TempAry(90) As Byte
 Dim TestSTR As String
 Dim RowCtr As Long
 Dim H As Byte
 Dim M As Byte
 Dim DelALL
 Dim SerialNumber As Long
 Dim wksht As Worksheet
 Dim i As Long

 For i = 1 To ActiveWorkbook.Worksheets.Count Step 1
 Worksheets(i).Activate
 DDE_Topic = Worksheets(i).Name

 If i = 1 Then
 Set DelALL = Range("A3:C2500")
 DelALL.Delete
 Range("A3").Value = "Serial Number:"
 Range("B3").Value = "Paths:"
 Range("C3").Value = "Valid:"
 Range("D3").Value = "BP Scan:"
 Range("E3").Value = "Net Scan:"
 RowCtr = 4
 Else
 Set DelALL = Range("A1:C2500")
 DelALL.Delete
 Range("A1").Value = "Serial Number:"
 Range("B1").Value = "Paths:"
 Range("C1").Value = "Valid:"
 Range("D1").Value = "BP Scan:"
 Range("E1").Value = "Net Scan:"
 RowCtr = 2
 End If

 Channel = DDEInitiate("RSLinx", DDE_Topic)

 NumMod = DDERequest(Channel, "FoundModules.NumMod")
 NumComm = DDERequest(Channel, "FoundModules.NumComm")

 With WorksheetFunction

 RowCtr_STR = Trim(.Substitute(Str(RowCtr), " ", ""))
 Range("A" + RowCtr_STR).Value = "Non-Comm Modules:"
 RowCtr = RowCtr + 1

 For H = 0 To NumMod(1) - 1 Step 1
 H_STR = Trim(.Substitute(Str(H), " ", ""))
 SN = DDERequest(Channel, "FoundModules.Mod[" + H_STR + "].SN")
 RowCtr_STR = Trim(.Substitute(Str(RowCtr), " ", ""))
 SerialNumber = SN(1)
 Range("A" + RowCtr_STR).Value = "0h" + Hex8(SerialNumber)
 RowCtr = RowCtr + 1
 NumPaths = DDERequest(Channel, "FoundModules.Mod[" + H_STR + "].NumPaths")
 For M = 0 To NumPaths(1) - 1 Step 1
 M_STR = Trim(.Substitute(Str(M), " ", ""))
 ValidPath = DDERequest(Channel, "FoundModules.Mod[" + H_STR + "].ValidPath[" + M_STR + "]")
 BPScanned = DDERequest(Channel, "FoundModules.Mod[" + H_STR + "].BPScanned[" + M_STR + "]")
 NetScanned = DDERequest(Channel, "FoundModules.Mod[" + H_STR + "].NetScanned[" + M_STR + "]")
 RowCtr_STR = Trim(.Substitute(Str(RowCtr), " ", ""))

 Range("C" + RowCtr_STR).Value = ValidPath(1)
 Range("D" + RowCtr_STR).Value = "N/A"
 Range("E" + RowCtr_STR).Value = "N/A"

 TestSTR = ""

 StrLEN = DDERequest(Channel, "FoundModules.Mod[" + H_STR + "].Path[" + M_STR + "].Len")

51

 For idx = 0 To StrLEN(1) Step 1
 IDX_STR = Trim(.Substitute(Str(idx), " ", ""))
 temp = DDERequest(Channel, "FoundModules.Mod[" + H_STR + "].Path[" + M_STR + "].DATA["
 + IDX_STR + "]")
 TempAry(idx) = temp(1)
 Next idx
 For idx = 0 To StrLEN(1) - 1 Step 1
 If idx <> 0 Then
 If TempAry(idx) = 18 And TempAry(idx - 1) <> 2 Then
 TestSTR = TestSTR + "2, "
 idx = idx + 2
 temp = idx + TempAry(idx - 1)
 While idx < temp
 TestSTR = TestSTR + Chr(TempAry(idx))
 idx = idx + 1
 Wend
 idx = idx - 1
 TestSTR = TestSTR + ", "
 Else
 TestSTR = TestSTR + Trim(.Substitute(Str(TempAry(idx)), " ", ""))
 If idx <> (StrLEN(1) - 1) Then
 TestSTR = TestSTR + ", "
 End If
 End If
 Else
 TestSTR = TestSTR + Trim(.Substitute(Str(TempAry(idx)), " ", "")) + ", "
 End If
 Next idx

 Range("B" + Trim(.Substitute(Str(RowCtr), " ", ""))).Value2 = ""
 Range("B" + Trim(.Substitute(Str(RowCtr), " ", ""))).Value2 = TestSTR
 RowCtr = RowCtr + 1
 Next M
 RowCtr = RowCtr + 1
 Next H

 RowCtr_STR = Trim(.Substitute(Str(RowCtr), " ", ""))
 Range("A" + RowCtr_STR).Value = "Comm Modules:"
 RowCtr = RowCtr + 1

 For H = 0 To NumComm(1) - 1 Step 1
 H_STR = Trim(.Substitute(Str(H), " ", ""))
 SN = DDERequest(Channel, "FoundModules.Comm[" + H_STR + "].SN")
 RowCtr_STR = Trim(.Substitute(Str(RowCtr), " ", ""))
 SerialNumber = SN(1)
 Range("A" + RowCtr_STR).Value = "0h" + Hex8(SerialNumber)
 RowCtr = RowCtr + 1
 NumPaths = DDERequest(Channel, "FoundModules.Comm[" + H_STR + "].NumPaths")

 For M = 0 To NumPaths(1) - 1 Step 1
 M_STR = Trim(.Substitute(Str(M), " ", ""))
 ValidPath = DDERequest(Channel, "FoundModules.Comm[" + H_STR + "].ValidPath[" + M_STR + "]")
 BPScanned = DDERequest(Channel, "FoundModules.Comm[" + H_STR + "].BPScanned[" + M_STR + "]")
 NetScanned = DDERequest(Channel, "FoundModules.Comm[" + H_STR + "].NetScanned[" + M_STR +"]")
 RowCtr_STR = Trim(.Substitute(Str(RowCtr), " ", ""))

 Range("C" + RowCtr_STR).Value = ValidPath(1)
 Range("D" + RowCtr_STR).Value = BPScanned(1)
 Range("E" + RowCtr_STR).Value = NetScanned(1)

 TestSTR = ""
 StrLEN = DDERequest(Channel, "FoundModules.Comm[" + H_STR + "].Path[" + M_STR + "].Len")

 For idx = 0 To StrLEN(1) Step 1
 IDX_STR = Trim(.Substitute(Str(idx), " ", ""))

 temp = DDERequest(Channel, "FoundModules.Comm[" + H_STR + "].Path["
 + M_STR + "].DATA[" + IDX_STR + "]")

 TempAry(idx) = temp(1)
 Next idx

52

 For idx = 0 To StrLEN(1) - 1 Step 1
 If idx <> 0 Then
 If TempAry(idx) = 18 And TempAry(idx - 1) <> 2 Then
 TestSTR = TestSTR + "2, "
 idx = idx + 2
 temp = idx + TempAry(idx - 1)

 While idx < temp
 TestSTR = TestSTR + Chr(TempAry(idx))
 idx = idx + 1
 Wend

 idx = idx – 1
 If idx <> (StrLEN(1) - 1) Then
 TestSTR = TestSTR + ", "
 End If
 Else
 TestSTR = TestSTR + Trim(.Substitute(Str(TempAry(idx)), " ", ""))
 If idx <> (StrLEN(1) - 1) Then
 TestSTR = TestSTR + ", "
 End If
 End If
 Else
 TestSTR = TestSTR + Trim(.Substitute(Str(TempAry(idx)), " ", "")) + ", "
 End If
 Next idx

 Range("B" + Trim(.Substitute(Str(RowCtr), " ", ""))).Value2 = ""
 Range("B" + Trim(.Substitute(Str(RowCtr), " ", ""))).Value2 = TestSTR
 RowCtr = RowCtr + 1
 Next M
 RowCtr = RowCtr + 1
 Next H
 DDETerminate Channel
 End With
 Next i
End Sub

53

BIBLIOGRAPHY

[1] R. W. Atherton, “Secure Manufacturing Control Systems and Industrial Java,”,
ARC Advisory Group Driving Operational Excellence in Manufacturing Forum
2003, February 12 – 13, 2003

[2] K. T. Erickson, Programmable Logic Controllers: An emphasis on design and

applications, Missouri; Dogwood Valley Press LLC, 2005, pp. 1231-1244.

[3] “Obtaining a Logix Processors Firmware Level Using a CIP Generic Message,”

Allen-Bradley Knowledge Base Document, no. 23386, February 2009.

[4] “How to Read SN From the Module?,” Allen-Bradley Knowledge Base Document,

no. 52870, February 2009.

[5] “Brief Summary to Clarify Message MSG Instruction CIP Paths and Pathing,”

Allen-Bradley Knowledge Base Document, no. 22562, February 2009.

54

VITA

Curtis Alan Parrott is the son of Chris and Jean Parrott. He was born on January

27, 1984 in Springfield, Missouri. He attended Hickory Hill Elementary and Middle

school while later attending Glendale High School, all in Springfield, Missouri. Curtis

graduated high school in May of 2002 and started college later that year. He earned his

Bachelor of Science in Electrical Engineering from the University of Missouri – Rolla in

2007. Once he completed his undergraduate studies he remained in Rolla, Missouri, to

attend graduate school. In 2009 he graduated with a Master of Science degree from

Missouri University of Science and Technology.

55

	Real-time reconfiguration of programmable logic controller communication paths
	Recommended Citation

	Microsoft Word - Revision_6.doc

