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ABSTRACT

We explore a relatively new concept in edge-colored graphs called conflict-free connec-

tivity. A conflict-free path is an (edge-) colored path that has an edge with a color that

appears only once. Conflict-free connectivity is the maximal number of internally disjoint

conflict-free paths between all pairs of vertices in a graph. We also define the c-conflict-

free-connection of a graph G. This is the maximum conflict-free connectivity of G over

all c-colorings of the edges of G. In this thesis we will briefly survey the works related

to conflict-free connectivity. In addition, we will use the probabilistic method to achieve a

bound on the c-conflict-free connection number of complete graphs.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

An edge-colored graph G is called rainbow connected if any two vertices are con-

nected by a path whose edges have pairwise distinct colors. An edge-coloring of a graph

G is called proper if any two adjacent edges in this coloring receive different colors. The

concept of rainbow connection was introduced by Chartrand et al. in 2008 [4]. These two

concepts served as the inspiration for conflict-free (edge-) coloring of graphs. In 2003,

Even et al. [9] introduced a version of conflict-free (vertex-) coloring involving hyper-

graphs, where a hyper-graph H is a pair H = (V,E) where V is the set of vertices and E is

the set of nonempty subsets of V called edges. The coloring was created to solve a problem

involving cellular networks. Seven years later, in 2010, Bar-Noy et al. [2] was one of the

first to define the concept of a conflict-free (edge-) coloring also involving hyper-graphs.

They defined a conflict-free coloring as follows.

Definition 1.1 ([2]). A proper coloring is called conflict-free if each (hyper-) edge contains

a color used only once on the (hyper-) edge.

We use a similar definition. However instead of looking at conflict-free colorings

of the entire graph we only consider conflict-free paths within them. A path in an edge-

colored graph G is called conflict-free, denoted by CF , if there exists a color that appears

exactly once in the path. Czap et al. [6] introduced the concept of conflict-free connection

of graphs on the basis of the aforementioned hyper-graph version. Li et al. [10] created a

counterpart to this called the conflict-free vertex-connection of graphs. In this paper, we

take this one step further by defining conflict-free connectivity (using edge-colorings). The

conflict-free connectivity is the maximum number k such that every pair of vertices has at

least k internally disjoint CF paths between them. This will be the main emphasis of our
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results later on, where we will seek to find the maximal conflict-free connectivity of G. A

formal definition is offered below.

Definition 1.2. The c-conflict-free-connection of a graph G, denoted by CFCc(G), is the

maximum conflict-free connectivity of G over all c-colorings of the edges of G.

To better understand the definitions above, we will first start by defining helpful ter-

minologies.

1.2 TERMINOLOGIES

Definition 1.3 ([12]). A simple graph G with n vertices and m edges consists of a vertex

set V (G) = {v1, v2, . . . , vn} and an edge set E(G) = {e1, e2, . . . , em} where each edge is

a distinct unordered pair of vertices. We write uv for the edge {u, v}. If uv ∈ E(G), then

u and v are called adjacent. The vertices contained in an edge are its endpoints; and the

vertices which are endpoints of an edge are said to be incident with that edge. The degree

of a vertex v is the number of edges incident with v.

Once we know what exactly a graph is we can than start classifying graphs by their

structure. Four of the most common graphs of these are Paths, Cycles, Stars, and Complete

graphs.

Definition 1.4 ([12]). A path in a graph is a finite or infinite sequence of edges which

connect a sequence of vertices which are all distinct from one another. A path with n

vertices is denoted by Pn

Figure 1.1: A P7
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Definition 1.5 ([12]). A complete graph is a simple graph in which every pair of vertices

forms an edge. A complete graph with n vertices is denoted by Kn.

Figure 1.2: A K5

Definition 1.6 ([12]). A cycle is a closed path of length at least 3 with no repeated edges

and whose “endpoint” is the only repeated vertex. A cycle with n vertices is denoted by

Cn.

Figure 1.3: A C7

Definition 1.7 ([12]). A star is a graph in which every vertex is connected to a single vertex

called the center. A star with n vertices is denoted by Sn.

Figure 1.4: A S6
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Definition 1.8. A starlike tree is a collection of paths (not necessarily the same length)

which have an endpoint that is shared by all paths in the graph. A starlike tree with k paths

of length l is often denoted by S(l1, l2, ..., lk).

Figure 1.5: An S(3, 5, 4, 3)

It is interesting to note that other common graph structures such as Trees, are of similar

nature to Paths and Stars. Furthermore we have graphs like Brooms and Wheels, that are

simply combinations of a path/star, and cycle/star respectively. All of the graph structures

mentioned so far usually fall in a category of graphs that have “nice” structure. Graphs not

in this category are usually arbitrary, a conglomeration of graphs, hyper-graphs, digraphs,

or disconnected graphs, etc. Here we care only about graphs with “nice” structure that are

connected.

Definition 1.9 ([12]). A graph G is connected if it has a u, v-path for each pair u.v ∈

V (G). Otherwise, G is disconnected.

Definition 1.10 ([12]). A graph G is said to be k-connected if there does not exist a set of

k − 1 vertices whose removal disconnects the graph.

Definition 1.11 ([12]). An independent set in a graph G is a vertex subset S ⊆ V (G) such

that the induced subgraph G[S] has no edges.

All of the above definitions serve to build an understanding of how a graph is con-

structed. However, graph theory goes beyond just looking at dots and lines. It also takes us
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back to a simpler time of crayolas and art projects. That is, besides just creating or looking

at graphs, often times to describe certain properties of a graph it is best to color a portion of

it or even all of it to look at a certain feature. The beauty of this is that it often brings color,

or insight, into current problems, as well as introducing new problems like conflict-free

connectivity for instance. In this paper, we only look at edge colored graphs.

Definition 1.12 ([12]). An edge coloring of a graph G is an assignment of colors (which

are elements of some set) to the edges of G. A graph G colored with k colors would be

called a k-coloring of G

Definition 1.13. A graph G is considered to be rainbow colored if all edges in G have

distinct colors.

How exactly the edges of a graph are colored, while generally random, is often left up

to the ingenuity of the mathematician that is working on it. There are cases where a very

particular number of colors is needed or even a set number of colors given a set amount of

edges. In Chapters 3 and 4 you will see that we will completely color our graphs with a set

amount of colors. However, how it is colored is done randomly. We will see more on this

in the following chapters.

In Chapter 2, we will explore conflict-free graphs and conflict-free connectivity in

order to better understand what we hope to accomplish in Chapters 3 and 4. We will focus

on works by Xueliang Li and others [3, 5, 6, 8]. Finally in Chapters 3 and 4 we will provide

proofs of our main results, namely Theorem 1.14 and Theorem 1.15 below.

Theorem 1.14. Let n be the number of vertices of a complete graph Kn. Then for n ≥ 3

and t >
√

n ln( 7n
2

5
)

4
we get the following bounds on the 2-conflict-free-connection number of

Kn,
3n

4
− t ≤ CFC2(Kn) ≤

3n− 5

4
.
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In Theorem 1.14 we consider a very specific case of 2-coloring complete graphs and

examine the bounds of the c-conflict-free-connection number of them. Not only is the upper

bound stronger than the general bound for c ≥ 3 colors, this also sheds some light on the

structure of the proof of our more general statement below.

Theorem 1.15. Let n be the number of vertices of a complete graph Kn colored with c

colors such that n ≥ c, then for c ≥ 3, and t >

√
n ln(7n

2(c+1)
15

)

4c
− n(c− 2)

2c2
we achieve the

following bounds for the c-conflict-free connection number of Kn

(2c− 1)n

2c
− t ≤ CFCc(Kn) ≤

(2c− 1)n− c+ 1

2c
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CHAPTER 2

CONFLICT-FREE CONNECTION OF GRAPHS

In this Chapter, we will look at many of the characteristics of conflict-free colorings

and more importantly, the conflict-free connection of graphs. First, let us start with the

basics. In Chapter 1, we mentioned three definitions which are provided here for complete-

ness.

Definition 2.1. A path in an edge-colored graph G is called conflict-free, denoted by CF,

if there exists a color that appears exactly once in the path.

An example of a conflict-free path can be seen below.

Figure 2.1: A conflict-free P7 with the unique color green.

Definition 2.2. The conflict-free connectivity is the maximum number k such that every

pair of vertices has at least k internally disjoint CF paths between them.

Definition 2.3. The c-conflict-free-connection of a graph G, denoted by CFCc(G), is the

maximum conflict-free connectivity of G over all c-colorings of the edges of G.

We also add two more definitions for better clarity on conflict-free connected graphs.

Definition 2.4. A graph G is conflict-free connected (with respect to the edge-coloring) if

for every pair of vertices of G, there is a conflict-free path connecting them.
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Definition 2.5 ([6]). For a connected graph G, the conflict-free connection number of G,

denoted by cfc(G), is defined as the minimum number of colors that are required to make

G conflict-free connected.

From Definition 2.5 we can construct a more general version of the conflict-free-

connection number. We call this new term the the t-conflict-free connection number.

Definition 2.6. For a connected graph G, the t-conflict-free-connection number of G, de-

noted by cfct(G), is defined as the minimum number of colors needed for a coloring of G

to exist so that there are at least t CF paths between every pair of vertices.

Looking at Figure 2.1, we can clearly see that in this coloring, there exists sub-paths

of the P7 that are not CF . Consider the first two blue edges for example, Is there such a

coloring of this path such that every pair of vertices is CF ? The answer is yes. An example

is pictured below.

Figure 2.2: A CF P7 with every pair of vertices having a CF-path.

From the above definitions, we can also construct other colored graphs that are CF .

For instance, a CF-cycle and a CF-star.

Figure 2.3 is not hard to construct. It is simply a CF-path where we create an extra

edge connecting the first vertex and last vertex of said path. In addition, we can clearly

see that Figure 2.3 is conflict-free connected. What about the conflict-free connectivity of

Cycles? Well by Definition 2.2 the maximal number is two because there are only two

possible paths between every pair of vertices. However in order to obtain this value, what
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Figure 2.3: A conflict-free C7 Figure 2.4: A conflict-free S6

is the minimal number of colors needed? To answer this question we use the following

theorem provided by Czap et.al.

Theorem 2.7 ([6]). cfc(Pn) =
⌈
log2(n)

⌉
.

This theorem tells us that the minimum number of colors needed to guarantee that

every pair of vertices in a Pn has a CF path between them is
⌈
log2(n)

⌉
. From this theorem

we can obtain several interesting results.

Proposition 2.8. There minimum number of colors c such thatCFCc(Ck) = 2 is
⌈
log2

(
n
2
+

1
)⌉
≤ c ≤

⌈
log2(n)

⌉
+ 1.

Proof. By Theorem 2.7 we can easily obtain an upper bound. Since a cycle is simply a path

with an extra edge as mentioned before. We can state that the cfc(Cn) ≤
⌈
log2(n)

⌉
+ 1

where all we need is one extra color for the new edge.

For the lower bound pick a vertex v then following along the edges select the vertex

with the maximal number of edges from v, say u. The number of edges between u and v

form a path, call it P , with
⌊
n
2

⌋
+ 1 vertices. Seeing that we now have a path, applying

Theorem 2.7 gives us cfc(P ) =
⌈
log2(

n
2
+ 1)

⌉
. We can guarantee that the other half of the

cycle is also cfc, because it forms a path of shorter length than P . Thus, we need at least⌈
log2(

n
2
+ 1)

⌉
colors proving the result.
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Proposition 2.9. The c-conflict-free connection of a star with k vertices is equal to 1 if and

only if the number of colors used is greater than or equal to k − 1. In other words,

CFCc(Sk) = 1⇐⇒ c = k − 1.

Proof. Suppose by way of contradiction that we can color a Sk with less than k − 1 colors

and it remain conflict-free connected. Call the center vertex s. Pick two vertices that are

not the center of the star, say u and v. Color the edges, su and sv with 2 of our colors. Pick

a new vertex u1 that is also not the center. We could color u1 in one of our previous two

colors, however this would result in one of the paths between u1 and u or u1 and v to not

be conflict-free. So we must color the edge su1 a new color. Repeating on in this fashion

reveals that for each of the k − 1 vertices the edge between s and that vertex must be a

unique color in order to remain conflict-free with every other vertex, a contradiction. In the

other direction, if we color an SK with k−1 colors it will then be conflict-free trivially.

Proposition 2.10. The c-conflict-free connection of a star-like tree with n vertices is equal

to 1 if the number of colors used is greater than or equal to k +
⌈
log2(l − 1)

⌉
. Where k is

the number of paths from the center, and l is the length of the longest path. In other words,

CFCc(S(l1, ..., lk)) = 1 if c ≥ k +
⌈
log2(l − 1)

⌉
.

Proof. Let G be a coloring of a Star-like Tree S(l1, ..., lk). Let u be the center vertex of G.

Let the length of the longest path be l. By Proposition 2.9 we have that the number of colors

needed to guarantee that each pair of vertices in the star part (any vertex that is of distance 1

from u) of G is k since there are k vertices that are connected to the “center” vertex. Color

the star-part in k colors. Then, by Theorem 2.7 we also have that the necessary number of

colors needed to color our longest path is
⌈
log2(l)

⌉
. Now, one of the colors needed to color

our longest path is already present in the star part of G. To avoid re-coloring any edge, we

reduce the length of our longest path, and subsequently every other path, by 1. This means

that our longest path is actually l − 1.
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Finally, color every path, excluding the edge connected to u, from the list of
⌈
log2(l−

1)
⌉

colors. Now choose two vertices, say u1 and u2. If u1 and u2 lie on the same path then

we know there exists a coloring using
⌈
log2(l − 1)

⌉
colors that guarantees they are CF. If

u1 and u2 lie on different paths then the path between them is guaranteed to be CF by the

coloring of the star-part of G. If either u1, u2 or both lie on the star-part of G we are also

guaranteed a CF-Path by the way it is colored. Therefore the minimal number of colors

needed is the number of colors needed to color the star-part of G plus the number of colors

need to color our longest path of length l − 1. This completes the proof.

Before moving on to our main results, we now look at a brief survey of other works

on the topic.

2.1 OTHER WORKS

While the following Lemmas and Theorems are not specifically used in this paper,

they are worth mentioning as important results related to the subject of conflict-free.

Lemma 2.1.1 ([6]). If G is a 2-connected and non-complete graph, then cfc(G) = 2

Lemma 2.1.2 ([6]). If cfc(G) = 2 for a graph G with cut-edges, then C(G) is a linear

forest whose every component has at most three edges.

Theorem 2.11 ([6]). If G is a connected graph and C(G) is a linear forest whose every

component is of order 2, then cfc(G) = 2.

Let G be a connected graph and h(G) = max{cfc(K) : K is a component of C(G)}.

Theorem 2.12 ([6]). If G is a connected graph with cut-edges, then h(G) ≤ cfc(G) ≤

h(G) + 1. Moreover, these bounds are tight.

Theorem 2.13 ([3]). Let G be a connected non-complete graph of order n ≥ 25. If C(G)

induces a linear forest and δ(G) ≥ n− 4

5
, then cfc(G) = 2.
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Theorem 2.14 ([3]). Let G be a connected non-complete graph of order n with 4 ≥ 8. If

C(G) induces a linear forest and δ(G) ≥ 2, then cfc(G) = 2.

Theorem 2.15 ([3]). Let G be a connected non-complete graph of order n ≥ 33. If C(G)

induces a linear forest and deg(x)+deg(y) ≥ 2n− 9

5
for each pair of two non-adjacent

vertices x and y of V (G), then cfc(G) = 2

Theorem 2.16 ([8]). Let G be a connected claw-free graph. Then G must belong to one of

the following four cases:

i. G is complete;

ii. G is non-complete and 2-edge-connected;

iii. C(G) has at least two components K satisfying cfc(K) =
⌈
log2(p+ 1)

⌉
iv. C(G) has only one component K satisfying cfc(K) =

⌈
log2(p+ 1)

⌉
.

Theorem 2.17 ([8]). . Let G be a connected claw-free graph of order n≥ 2.Then, wehave

i. cfc(G) = 1 if G is complete;

ii. cfc(G) = 2 if G is non-complete and 2-edge-connected, or p = 1 and n ≥ 3;

iii. cfc(G) =
⌈
log2(p+1)

⌉
+1, ifC(G) has at least two componentsK satisfying cfc(K) =⌈

log2(p+ 1
⌉
; otherwise, cfc(G) =

⌈
log2(p+ 1)

⌉
, where p ≥ 2.
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CHAPTER 3

2-COLORED CONFLICT-FREE-CONNECTION OF COMPLETE GRAPHS

It would be nice to have an exact answer to every question, but an answer is not

always immediately obtainable. However, if the probability of there being no outcome is

less than 1, then that is good enough. In other words, probability, when used in graph

theory, is often used as a tool to conclude that the outcome we seek does exist. This is a

necessary tool that can help obtain bounds on problems where we might not even know

where to start. This method is often known as the Probabilistic Method. Its use in Graph

Theory was popularized by Paul Erdős [1]. In this Chapter and Chapter 4, we use this

method to complete the proofs of our main results. First, however, we must define some

key probability terms that will be used throughout the proof.

3.1 PRELIMINARIES

Definition 3.1. A probability is the extent to which an event is likely to occur, measured by

the ratio of the favorable cases to the whole number of cases possible. The probability of

an event is denoted P(event).

Definition 3.2. A binomial distribution is a two-possible-outcome event, repeated a certain

number of independent times. The distribution has as a variable k which denotes the num-

ber of successes. The other required parameters are N , the number of independent trials,

and p, the probability of success on each trial. A binomial distribution with N trials and

probability p is denoted Bin(N, p)

The binomial distribution with parameters N = the number of trials and k = the

number of successes is calculated by the following formula:(
N

k

)
pk(1− p)(N−k)
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Even though this formula isn’t explicitly used in either proof, it is important to note

that from the binomial distribution we can obtain the following Lemma.

Lemma 3.1.1 ([11]). Let X be a binomial random variable with n number of trials and

probability of success p, denoted by X ∼ Bin(n, p). Then for p = 1
2

and r in the support of

X ,

P(X ≤ r) ≤ 14

15
exp

(
−

16(n
2
− r)2

n

)
This lemma and the following theorem are both crucial to the proof of both Theorem

1.14 and Theorem 1.15.

Theorem 3.3 ([7]). Every c-coloring ofKn contains two vertices u and v such that between

u and v, there are at most n(c−1)−1
c

rainbow paths of length at most 2.

Each of these things allows us to construct one half of the bound easily. Lemma 3.1.1

will be used to construct the lower bound and Theorem 3.3 will be used to construct the

upper bound.

3.2 BOUNDING 2-COLORED CONFLICT-FREE-CONNECTION NUMBERS

Proof of Theorem 1.14. For the upper bound, let Gn be a 2-coloring of Kn and let u and

v be the two identified vertices in Gn provided by Theorem 3.3. Note that the edge uv is

one of the rainbow paths from u to v. If we let A be the internal vertices of the rainbow

paths of length 2 from u to v, then each vertex of A represents a CF-path from u to v. If we

further let B = Gn \ (A∪ {u, v}), then any CF-paths of length at least 2 that are internally

disjoint from A and that go from u to v must use at least two vertices of B each. Since

|A| ≤ n−1
2
− 1, there are at most

|A|+ |B|
2

+ 1 ≤
(
n− 1

2
− 1

)
+

(
n−1
2
− 1
)

2
+ 1 ≤ 3n− 5

4

CF-paths between u and v.
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For the lower bound we randomly 2-color the edges of a copy ofKn. Now choose two

vertices in Kn, call them u and v. Let Bu and Ru be the vertex sets of Kn − {u, v} that

have blue edges and red edges to u respectively. Let Auv be the event that there are fewer

than 3n
4
− t CF paths from u to v. We now break up Auv into three separate events; Cu,

Duv, and Fuv.

Let Cu be the event that either |Bu| < n
2
− t or |Ru| < n

2
− t. Let Duv be the event

that v has less than n
4
− 2t red edges to Bu and Fuv be the event that v has less than n

4
− 2t

blue edges to Ru. This means Cu
c ∧Duv

c ∧ Fuv
c implies Auv

c, so

P(Auv) ≤ P(Cu) + P(Duv) + P(Fuv). (3.1)

Now we associate Cu, Duv, and Fuv with random variables XC , XD, and XF respec-

tively so

XC ∼ Bin
(
n,

1

2

)
XD ∼ Bin

(
n

2
− t, 1

2

)
XF ∼ Bin

(
n

2
− t, 1

2

)
Then by applying Lemma 3.1.1, using r = n

4
− 2t for XD and XF and r = n

2
− t for XC

we get:

P
(
XD ≤

n

4
− 2t

)
+ P

(
XF ≤

n

4
− 2t

)
≤ 28

15
exp

(
− 72t2

n− 2t

)
and

P
(
XC ≤

n

2
− t
)
≤ 14

15
exp

(
−16t2

n

)
Then using (1) and the above inequalities we get



22

P(Auv) ≤ P(Cu) + P(Duv) + P(Fuv)

≤ 28

15
exp

(
− 72t2

n− 2t

)
+

14

15
exp

(
− 16t2

n

)
≤ 28

15
exp

(
− 16t2

n

)
+

14

15
exp

(
− 16t2

n

)
≤ 14

15
· 3 exp

(
− 16t2

n

)
=

14

5
exp

(
− (4t)2

n

)
.

Thus, we have shown that P(Auv) ≤ 14
5
exp

(
− (4t)2

n

)
. It now suffices to conclude

that P(∪u,v∈V (G)Auv) < 1 because then there exists a coloring where Auv does not hold for

any pair of vertices. In other words, it suffices to show that the sum of all events, for some

values of t, between each set of two vertices is less than 1. This comes directly from the

way t was defined. That is, we have:

t >

√
n ln

(
7n2

5

)
4

Getting the natural logarithm expression by itself we obtain:

⇒ (4t)2

n
> − ln

( 5

7n2

)
Then we take the exponential of both sides:

⇒ exp
(
− (4t)2

n

)
<

5

7n2

Next we multiply both sides by
7n2

5

⇒ 7n2

5
exp

(
− (4t)2

n

)
< 1

Then since
(
n
2

)
∼ n2

2
we finally obtain:(

n

2

)
14

5
exp

(
− (4t)2

n

)
< 1.

This means that P(∪u,v∈V (G)Auv) < 1 completing the proof.
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CHAPTER 4

GENERAL CONFLICT-FREE-CONNECTION NUMBERS OF COMPLETE GRAPHS

The proof of Theorem 1.15 follows similarly from that of Theorem 1.14. Specifically

we can obtain an upper bound in the same manner. The lower bound also follows similarly,

but it requires the construction of many more events.

Proof of Theorem 1.15. For the upper bound, let Gn be a c-coloring of Kn and let u and

v be the two identified vertices in Gn provided by Theorem 3.3. Note that the edge uv is

one of the rainbow paths from u to v. If we let A be the internal vertices of the rainbow

paths of length 2 from u to v, then each vertex of A represents a CF-path from u to v. If we

further let B = Gn \ (A∪ {u, v}), then any CF-paths of length at least 2 that are internally

disjoint from A and that go from u to v must use at least two vertices of B each. Since

|A| ≤ n(c−1)−1
c

− 1, there are at most

|A|+ |B|
2

+ 1 ≤
(
n(c− 1)− 1

c
− 1

)
+

(
n(c−1)−1

c
− 1
)

2
+ 1 ≤ (2c− 1)n− c+ 1

2c

CF-paths between u and v.

For the lower bound we randomly c-color the edges of a copy of Kn. Now choose two

vertices in Kn, call them u and v. Let Wai , where ai represents the color i ∈ (1, ..., c), be

the vertex sets of Kn − {u, v} that have ai edges to u respectively. Let Auv be the event

that there are fewer than (2c−1)n
2c
− t CF paths from u to v. We now break up Auv into c+ 1

separate events; Cu, D1,uv, . . . , Dc,uv.

Let Cu be the event that any one of |Wai | < n
c
− t. Let Di,uv be the event that v has

less than n
2c
− ct aj (j 6= i) edges to Wai . This means Cu

c ∧D1,uv
c ∧ ... ∧Dc,uv

c implies

Auv
c, so

P(Auv) ≤ P(Cu) + P(D1,uv) + ...+ P(Dc,uv). (4.1)
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Now we associate Cu and the Di,uv events, with random variables XC , XDi, respec-

tively so

XC ∼ Bin
(
n,

1

2

)
XDi ∼ Bin

(
n

c
− t, 1

2

)

Then by applying Lemma 3.1.1, using r =
n

2c
− ct for XDi and r =

n

c
− t for XC we

get:

P
(
XD1 ≤

n

2c
− ct

)
+ ...+ P

(
XDc ≤

n

c
− ct

)
≤ 14c

15
exp

(
−
c(2n( c−1

c
) + 4ct)2

n− ct

)
and

P
(
XC ≤

n

c
− t
)
≤ 14

15
exp

(
−
16(n(c−2)

2c
+ t)2

n

)
Then using (1) and the above inequalities we get

P(Auv) ≤ P(Cu) + P(D1,uv) + ...+ P(Dc,uv)

≤ 14c

15
exp

(
−
c(2n( c−1

c
) + 4ct)2

n− ct

)
+

14

15
exp

(
−
16(n(c−2)

2c
+ t)2

n

)

≤ 14c

15
exp

(
−
16((n(c−2)

2c
) + ct)2

n

)
+

14

15
exp

(
−
16(n(c−2)

2c
+ t)2

n

)

=
14(c+ 1)

15
exp

(
−
16((n(c−2)

2c
) + ct)2

n

)
.

Thus, we have shown that P(Auv) ≤ 14(c+1)
15

exp

(
−16((

n(c−2)
2c

)+ct)2

n

)
. It now suffices

to conclude that P(∪u,v∈V (G)Auv) < 1 because then there exists a coloring where Auv does

not hold for any pair of vertices. In other words, it suffices to show that the sum of all

events, for some values of t, between each set of two vertices is less than 1. This comes

directly from the way t was defined. That is we have:
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t >

√
n ln(7n

2(c+1)
15

)

4c
− n(c− 2)

2c2

Getting the natural logarithm expression by itself we obtain:

⇒
16(n(c−2)

2c
+ ct)2

n
> − ln

( 15

7n2(c+ 1)

)
Then we take the exponential of both sides:

⇒ exp
(
−

16(n(c−2)
2c

+ ct)2

n

)
<

15

7n2(c+ 1)

Next we multiply both sides by
7n2(c+ 1)

15
:

⇒ 7n2(c+ 1)

15
exp

(
−

16(n(c−2)
2c

+ ct)2

n

)
< 1

Then since
(
n
2

)
∼ n2

2
we finally obtain:(
n

2

)
14(c+ 1)

15
exp

(
−

16(n(c−2)
2c

+ ct)2

n

)
< 1.

This means that P(∪u,v∈V (G)Auv) < 1 completing the proof.
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[11] Jiřı́ Matoušek and Jan Vondrák. The probabilistic method(lecture notes). 3, 2008.

[12] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September
2000.


	Conflict Free Connectivity and the Conflict-Free-Connection Number of Graphs
	Recommended Citation

	tmp.1556288430.pdf.9DbRL

