Library and
Learning Resources

Conodonts from the Marathon basin, Brewster County, Texas

Roy William Graves Jr.

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Geology Commons

Department:

Recommended Citation

Graves, Roy William Jr., "Conodonts from the Marathon basin, Brewster County, Texas" (1941). Masters Theses. 7115.
https://scholarsmine.mst.edu/masters_theses/7115

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

CONODONTS FROM THE MARATHON BASIN. BREWSTER COUNTY, TEXAS.

BT

ROY WILLIAM GRAVES, Jj.

A

THESIS
submitted to the faculty of the
SCHOOL OF MINES AND METALLURGY OF TE UNIVERSITY OF MISSOURI in partial fulfilment of the work required for the Degree of MASTER OF SOIENGE IN GEOLOGY

Nola, Missouri
1941

Approved by

Approved by stammel ELlison
Instruetor of Geology

TABLE OF CONTENTS
Page
ACKNO詒EDGAENTS 『i 11
INTRODUCTION 1
GENERAL GEOLOGY 4
SMGATIGPAPHY 6
General Relationa 6
Dagger Flat Formation 8
General features 8
Location of amples 8
Insoluble residues 9
Correlation 10
Straticraphic relations 10
Marathon Formation 10
General featurea 10
Location of saraples 11
Insoluble reaidues 12
Correlation 22
Stratisraphic relations 12
Alsate Formation 15
General Peatures 15
Location of samples 15
Correlation 15
Stratigraphic relations 16
Fort Pena Formation 16
Page
General features 16
Location of samnles 17
Insoluble restaues 17
Correlation 17
Stiratisranhic relations 20
Wood's Hollow Formation 21
General features 21
Zocation of samples 21
Insoluble residues 21
Correlation 23
Stratigraphic relations 23
Maravillas Formation 24
General features 24
Location of samrles 24
Insoluble residues 26
Correlation 26
Stratigranhic relations 36
Caballos Formation 26
General features 36
Location of samples 27
Correlation 27
Stratigraphio relations 28
Tesnus Formation 28
General features 28

iv

Page
Location of samples 29
Correlation 29
Stratigraphic relations 30
Dimple Formation 30
General feetures 30
Location of samples 31
Insoluble residues 31
Correlation 31
stratizraphic relations 34
Haymond Formation 34
General festures 34
Location of samnles 35
Correlation 35
Stratifraphio relations 35
Gaptank Formation 35
General features 35
Location of samples 37
Correlation 37
Stratigraphic relations 37
DIECUSSION OF CONODONT FAUNAS 39
General Features 39
Camorłan 41
Dager Flat Iormation 41
Oriovician 42
V
Page
Marathon formation 42
Alsate formation 42
Fort Pena formation 42
Wood's Hollow formation 43
Marevilles formation 44
Devonion (?) 44
Caballos formation 44
Pennsyluanian 45
Tesnus formation 45
Dimple formation 45
Haymond formation 46
Gaptank formation 46
SYSTMATIC DESCRIPTIORS 47
Acodus dentyculatus 47
A. expansus 48
Acontiodus dubius 49
Bryantodina sinuosa 50
Gongyodus multidentatus 51
C. quadratus 52
Drepanodus striatus 53
Loxognathus, new genus 54
Loxognathus flabellata 55
O1stodus extensus 55
O. prodentatab 56
Page
Ozarkodina macrodentata 57
cavusinathus noaulifere 58
C. sinuata 60
Iciognathoaus sinuogue 62
Ligoncinta (8) peculiarts 63
I. suppressa 64
Polygnathodella, Eeneric revision 65
Polyenathodella attenueta 66
P- conyexa 68
P- ouachitensia 69
Streptocrathodus irroceiaris 71
S. 1?) nodosus 72
gynorioniodina (?) compressa 73
BIBLIOGUPHY 94
INDEX 98

GIPT OF ILEUSPRATIONS

Figure Page

1. Stratipranhic distrioution of Gonorionts in the narathon formation 13
2. Stratigraphic distribution of Conovonts in the $\begin{aligned} & \text { inarathon formation }\end{aligned}$ 14
3. Stratieraphic alatribution of Conodonts in the Fort Pena formation 18
4. Stratigraphic distribution of Concdonts in the Fort Fena formation 19
5. Stratifraphic alstribution of Concionts in the Hood's Hollow formation 22
6. Stratiferohic distribution of Conodonts in the Maravillas formation 25
7. Stratigraobic distrilution of Conodonts in the Bimule formation 32
B. Stratifraplic alstribution of Conodonts in the Dimple formation 33
8. Location of samples and index map of the Warathon region 38
Plate
I. Concdonts of the karathon formation 77
II. Conodonts of the Fort Pena and mood's $^{\prime}$ Hollow formations 81
III. Concicnts of the Meravillas formation 84
IV. Conodonta of the Dimple formation 87
V. Conodonts of the Dimple formation 90
VI. Conodonts of the Dimple formation 93

AOENOWLEDGUENTS

Abstract

The miter is greatly indebted to Dr. 8. 8. Goldioh, Absistant Profebsor of Geology, The Agricultural and Lechanioal College of Texas, whose generosity made possible the field work done in connection with this report; to Dr. S. P. Ellison, under hose supervision the paper bas been written, for bis inestimable help and encouragement both in the field and in the laboratory; to the varlous members of the staff of the department of geology, Misbourl Sohool of tines and wetallurgy, for their kind interest and encouragement during the preparation of the thesis.

Special thanks are due to George Eardin for bis assistance in the field, to Gilbert Gampbell for the use of his camera and adviee conceming the photographio ast-up, and to Morris Guggenheim for the use of his time and equipment in the making of one of the illuetrationa.

IMTRODUC YION

Conodonts were discovered in the limestones of the Narathon repion in the Pig Pend country, Rrewster County, Tezas, as a regult of field pork during the summer of 1939. This was not the first knomn occurrence of these 1 foseils from this rexion, however, as King earlier mentioned the occurrence of conodonts in siliceous shales of Devonian (?) age.

The discovery of conodonts in the Ordovician and Pennsylvanian ifmestones of the area had its inception In the attempt to determine whether the Dimple limestone (lower Pennsylvanian) or Karavillas limestone (upoer Ordovician) was involved in a fault that was heinc mapned. These limestones are similar lithologically and the nature of the outcrop along the fault trace was guch that the ape relations of the ilmestone involved could not be determined.

Samples were taken from localities of undoubted Dimole and Maravillas sections and these samples vere digested in hydrochloric acid. The insolutle residues were so nearly alike tiat it was impossible to make a distinotion on this basis. Acetic acid was then used and it wes found

1. King, P. B., Geolory of the Haration Region, Texas: ■. S. Geol. Survey Prof. Paper 187, p. 53, 1937.
that the two limestones could be distinfuished on the basis of the conodonts mbich remained in the residues.

Consequently, durins the summer of 1940 , collections were made from several limestone and shale formations in the sarathon recrion. In many instances the collections were made at the localities of measured stratigraphic sections published by Ring. These and the sections measured by the writer in 1940 are shown rraphically on the accompanyinfo oharts.

A total of 33 shale and 85 Ilmestone samples were collected. The shales mere treated by the boiling and flushing method as outlined by Branson and dehl but only four of them yielded conodonts. Sixty-three of the limestone samples contained conodonts. The limestones were broker into nieces one-eighth to one-fourth inch in diameter and dipested in 2.0 Nomal anid for about $4 R$ to 72 hours. The 2.0 Mormal acetic acid was found to be most efficient from the point of vies of time consumed for complete digestion. This subatantiates the work of 4 St. Clair who advocated a ratio of seven parts of water to one part of glacial acetic acia.

[^0]The acetic acid insoluble residues and the concentrated shale samples were furtber concentrated by means of acetylene tetrabromide (sp. gr. 2.7) and the heavy residues inspected for conodonts. Individual enecimens mere picked out of these residues and mounted on paper micropaleontological slides, whitened aith a sublimate of ammonium chloride, and photorraphed. The photorraphe were taken with a Leica 35 ma. camera on Rastman Panatomic-X fine \&rained film throuph a microtessar lens (anerfure f. 4.5) in a metallozranhic microsoope at a magnification of 20 diameters with an exposure time of 10 seconds. Enlarped prints with a masnification of BO diameters were made from the film and the prints arranged on black cardboard plates 10×14 inches. The plates aere nhotorraphed on 35 mm . film and printed to a size of 5×7 inches, giving a specimen mafnification of 40 diameters on the final plates.
?he stratigraphic distribution, systematic descriptions, and illustrations of conodonts of Ordovician and Pennaylvanion age from the marathon region form the basis of this thesis. In some instances, such as the ocurrence in the Dimple formation, conodonts are the only positively 1dentifiable fossils found in the rocks and, for this reason, have special significance in deteraining the age of these bedg. The Ordovician conodont faunas are of importance secause the occurrence in this resion extends their known geopraphic and reologic ranpe.

The Marathon region is structurally a broad dome, In the ceutral part of which are exposed Paleozoic rooks flanked by gently dipping Gretaceous strata. Topographically the area is a besin which has been formed by the. removel of the Cretaceous cover from the underlying highly folded and faulted Paleozolc 5 gediments.

The total thicknese of the Paleozoic Fooks exposed in the basin and including those in the class yountaing to the north 1a approximately 31,000 feet. Theae sediments are thought to have been deposited in a subsiding trough, the Llanoria geosyncilne. The oldest rocks exposed are sandstones and shales of upper Cambrian age. Overlying them are 2000 fect of limestones, shales, and cherts of Ordovician age. The Ordovician strata are oyerlain by approximately 500 feet of novaoulite and chert of probable Devonian age.

The novaculite and ohert beds are suoceeded by lower Pemnaylvanion clastica, which attain thicknesses up to 12,000 feet in the southeastem part of the basin but become thinner to the northrest. The lower part of
5. Eing, P. B., op. cit., pp. 7-141.
these bede consists of two series of sandstones and shales separated by a limestone facies. The upper part is mainly conglomerateg, sandstones, and limestones. All beds Pennaylvanian or older in age are deformed into a geries of northeast-sontimest trending olose folds whioh have been broken by numerous high and low angle thrust faults.

The Permian rocks, congisting of some 5000 feet of conplexly interfingering liwestones and shales, in the Glass Mountalne rest with anfular unconformity on the older beds. The gtrata are tilted away from the Marathon basin toward the northwest and are not so strongly folied as are the Pennsylvanian bers. Marine fossils similar to the Gugdalupian fauna of northern trang-Peoos Texas are developer in great abundanoe.

About 1200 feet of Cretaceous limestones surround the Marathon basin and dio gently away to the north, east and south. On the west side they are sharply folded, faulted and out by igneous Intrusions. Weat of the Marathon basin Tertiary lavas and tuffe overlie the Oretaceous lisestones and within the region iteelf gmall intrusions of glkalic igneous rooka penetrate the Paleozoic and Greteoeous sedinents. Gravel depoaits covering the lowlands appear to be the only rocks younger than the igneous intrusions.

STRATICRAPKY

General Relations

The stratiraphic relationships in the kiarathon 3 region are summarized in the following table:

Geologic formations in Harathon region

Age	Formation	$\begin{aligned} & \text { Thickness } \\ & (\text { feet }) \end{aligned}$
Recent	Alluvium	--------
Pleistocene (?)	Terrace gravel	10-100
Tertiaxy (Eocene)	Lave and tuff Unconformity	----x-m
Upoer Cretaceous	Eagle Ford formation	$200+$
Lower Cretaceour		
龶ssh1ta Group	Del Rio shale	20
	Georgetomi limestone	175
Fredericksburg Group	Rapards limestone	150
	Comanche Peak and Malnut	50
Trinity Group	Maxon sandstone	0-100
	Glen Rose formation Unconformity	0-500
Triossic (?)	Blagett conslomerate	700
	Unconformity	

6. Hodified from ting, P. B., op. ait, p. 21.

Geologic formations in marathon region (Continued)

Age	Formation	Thiokness (feet)
Permian	Tessey Ifmestone	1,000
	Capitan limestone	1,800
	Mord formation	1,500
	Leonard formation	1,800
	Unconformity	
	Fifolcamp formation	500
	Unoonformity	
Pennsylvanian	Gaptank formation	1.800
	Haymond formation	3,000
	Dinple Ifmestone	300-1, 000
	Tesnus fortation	300-7,000
	Unconformity	
Devonian (?)	Caballos novaculite	250-600
	Unconfoxmity	
Upper Ordovician	Maravillaschert	100-400
$\begin{aligned} & \text { Midde } \\ & \text { ordovieien } \end{aligned}$	Wooda Hollow shale	180-500
	Fort pene formation	175
Lomer Ordovioian	Alsate shale	25-100
	Earathon Iimegtone	350-900
Upper Cambrian	Dagger Flat sandstone (base concealed)	$300+$

Dagger Plat Formation

General Features.--The Deggex Plat formation was named by king ${ }^{7}$ in 1931. for rocks of late Cambrian age outo ropaing in Dagger Flat, 13 miles south of Maratbon. These rooks вere firet desoribed by Baker and Bownan ${ }^{8}$ in 1917, et which time the becis were not given a definite age agsignment.

The brees of the exposed seotiona of the Dagrer Plat fomation are predcalnately compact, sugarytextured, buff andstones which grade wward into shale and flaggy andstone interbedced with a few thin layers of inmestone. These are the oldest rocks found in the Marathon basin. The base of the formation is not exposed snd the rocks at all outcrops are so contorted that the true thickneas oamot be determined. The thickness of the beds on the south side of Dasger Flat is approximately 300 feet.

Location of gamples.-One ahale sample and one sample of dark gray, sandy, thin bedded limestone weatherfne chocolate brom, were collected at a looality

[^1]in the Marathon anticlinorium three and one-half milea southwest of Port Fena Colorada, on the south side of the road to Robert's ranch. The outorop is mapped by 9
King as Dagger Flat and the lithology is similar to that described as belonging to the Dagger Flat formation and occurring " 2 mles northwest of the fort, on the south side of the rodi to the Robert's ranch (P1. 24). The formation here consists of much ormpled and indurated greenish shale with several layers of fine to coarse-grained andatone, in part oalcareous. There are some arkosio pebbly layers and a fem nodular layers of very fine-grained dark-gray or blaok limestone, Weathering chocolate brown. These bede contain soattered fragmenta of brachiopods and trilobites." Roberta ranch 18 located about 10 miles southwest of old Fort Pena and the road to the ranch does not extend rorthwest of the fort. In all probability, the locality from wioh the above neationed samplea were taken is that deacribed by king, as gbove.

Insoluble residues.-The residues contein rounded to subrounded, frosted quartz sand graine, some porous silioeous material, a Pen
9. King, P. B., op, cit. (U. S. Qeol. Burvey Prof.
aponge spicules, black limonite pseudamorpiolo after pyrite, pyinte, and efe䨜grains of glauconite.

Gorrelation. The formation is acnsidered by 10
Zing, on the basio of the ocourrence of sfrostus, Lingula, and Obulus, as equivelent to strata of upper Ombrian age.
gtratigraphic relations.-SInce the base of the Dagger Flat fomation is nowhere spoosed, ita relstion ship to pre-Casbrian or Cambian formationa boneath is unknow. The upper contact with the warathon formation Is not a distinct one because folding has oomplicated the relationship. In places a thin conglomerate overlies the Dagger Flat shales and in others the contact is maxked by thin grantoliferous limestones resting on the green, upper shales of the Dagger ilat.

Marathon Formation

General festures. - Harathon limestone" is the name 11
given by Eing to the limestone and associated rocks Whioh outcrop in the tom of Marathon. The ters is a restriction of the name Marathon serieg" as applied by Baker and Bownan to the midde and lower Ordoviatan rooke
10. King, P. B., op. cit., 2. 23. 11. Xing, P. B., op. O1t., p. 26.
of the Marathon region.
The greater part of the fomation is comosed of dark gray to blak, flaggy limeatones that weather to an ash gray to bluish gray oolor. Light tan to buff to greenish shale partings separate most of the limestone beds and rake up one-third to one-half of the formation. There are a fer interbedded thin sandstones and generally five to six beds of intrafomational, edgewise conglomerates. Near the midde of the formation is the Honment Springe dolomite member which has been named 12
by King for the exposures near yonument Spring, 12 miles southwest of Marathon. It is a dense, dark bluish gray dolomitie limestone which meathers to light gray rounded boulders or diseonneated ledges. The member bas a maxirum thickness of 84 feet near Fort Pena Colorada but thins to 25 feet near אonament sorings.

The formation ranges betgeen 500 to 1000 feet in thickness over most of the ares but it decreases to a thiokness of about 350 feet in the southernmost part of the basin.

Location of samples.-Collections of limestone samples were made from two setiona of the formation at localities measured and described by Zing.
12. King, P. B., op. cit., p. 26.
13. Idem., p. 28.

One, a composite section, is located in the tills on the south side of the road to the Robert's ranch, six miles southwest of Narathon (figure 1). The other seetion is located nearby on the east side of the road, In the bed of Alsate Greek (Figure 2).

Insoluble residues.--The residues from the limestone samples of the karathon formation contain a groat number of slender, siliceous sponge spicules, very fine grained arober dolomite rhombohedrons, some organic material, a few glauconite grains, and a number of rounded to subrounded, moderately frosted quartz sand graing.

14
Correlation.-According to King ${ }^{\text {H }}$ the faunas of the upper and lower members of the Marathon Iimestone are similar in character, althouph they represent riatinct zones in the Deep Kill section of Kew York. The most common graptolite genera are Tetraprantug, Payllograptus, and Didymograptus, but at some looalities Goniograptus and Loganocraptur are also found."

Stratigraphio relationg. - In the sarathon anticlinoriam the top of the formation 18 marked by the digtinct basal oonglomerate of the overlying Alsate ghale.
14. King, P. B., op. ast., p. 30.

FIGURE 1

FIGUES 2

The upper limit in the Dagger Flat anticlinorium ia drawn at a conglomerate but the beds above and below are similar.

Al sate Formation

General features.- The Alate formation was named 15 by King for Alate Creek which empties into Pena Colorada Creek at old Fort Pena Oolorada. The formation 18 distributed widely throughout the Marathon and Dagger Fat anticlinoria. In most places the shale occupies a covered area between the outcrops of Marathon and Fort Pena limestone. The formation ranges in thickness from 35 to 100 feet, 18 predominately olive green shale to the north, and contains intexfingering gray lImestone beds toward the south.

Location of sampleg.-Two samples of Alate shale were collected from the bed of Alate Greek and one from outarops above the marathon section of figure 1. No limestone samples were taken. 16
Correlation.-Kiag reported that graptolite found In the Alate formation are of late Deapkill age and that a Macluriteb found in Alate Creek indicates that
15. King, P. B., op. oft., (Am. Assoc. Petroleum Geologists Bull.) p. 1089.
16. King, P. B., op. Cit., (U. S. Geol. Survey Prat. Paper 187), p. 33.
the formation should also be correlated rith some part of the latest Beeknantown.

Stratigraphic relations.- The Alsate shale is everywhere separated from the brt Pena above by conglomerate bede which are moat prominent in the Marathon anticlinoriun. The abrupt ohange in this area from Alsate shale below to the oherty limestones of the Frort pena above probably indicates a diatinot unconformity.

Tort Pena Pormation

Qeneral featureg. The Fort Pena formation is the ohlel ridgemaker in the lower Ordovician geotion of the basin and forms low hagbacks in the otherwise level country of the Dagger Fiat and Marathon antiolinoria. 17 It was named by King for exposares on one of the ridges, or hogroacke, immediately north of old fort Pena Colorada. The formation consists of alternating thick bedded, sandy, gray limestone and blae to gray ohert. Near the base are one or more beds of conglomerate separating the formation from the Alaate shale. Rear the top of
17. King. P. B., op. ©lt., (Am. AB80c. Petroleum Geologitati Bull.), p. 1070.
the formation the limestones are separated by numerous bluash to gray or brown shale partings. The formation ranges in thickness from 125 to 200 feet.

Loostion of samples.--Gamples were taken from one 18
section, measured and desoribed by king, three miles west-southwest of Fort Pena Colorada on the south side of the road to the Robert' a rench (Figure 3). Another section pas sampled in the bed of the nearby Alsate 19 Oreek (Figure 4).

Insoluble residues.--The residues contain very fine greined dolomite rhombohedrons, glauconite, large and mall aubangular slightiy frosted quartz sand graine, a few rather large flakes of blotite, numerous slender siliceous sponge spicules cemented Whth light blue chalcedonic quartz, some spongyappearing tan to cream to buff siliceous interstitial material, a fer graina of organic material, and numerous large and small grains of white to bluigh white, irregular, ropy to botryoidal masses of chalcedony. 20
Correlation.-King reported Dinlograptus, Ceraurus,

Bucania, a rafinesquinoid probably related to ptychoglpptus,

18. King, P. B., op. cit. (D. S. Geol. Survey Prop. Paper 187), p. 33.
19. King, P. B., op. cit., P1. 3, fig. D. 30. King, P. E., op. att., p. 34.

FIGURE 8

FIGURE 4

Cl1macograntus, Orthis of the type O. tricenaria, Tetragraptus, and Didymofaptus from the limestones of the Fort Pena fomation. As to correlation he renorted that most of this fauna is sufecestive of the Black River, but the oocurrence here and there of the two primitive genera last named, ... suggests that the forma tion is older and possibly Chazyan. The field relations of the Fort pena formation suggest that it is of 3 fidile rather then Lower Ordovician age, abite massive sandy Imestones rest with coarse basal conglomerate on digelmiler Lomer Ordovician strata and appear to yrade up into the $\mathrm{rood}^{\prime} \mathrm{s}$ Rollow shale.*

Stratigraphic relatione. - The contact of the fort Pena formation with the food'a Hollow shale is anoarently conformable. Near the top of the formation the beds pass from massive limestones to drab shales and thin flagay limestones whici, in turn, frade uppard into the olive drab ghales and scattered thin flaggy limestones of the Wood's Hollow. This relation is well shown at the type locality of the Mood's Rollow formation.

Mood's Gollow Pormation

General features.-The Hood's Hollow shale was named by King ${ }^{21}$ for exposures in the anticinal valley between Hood's Hollow and Little wood's Follow, six miles southeast of Marathon. The formation is composed of ollve drab indurated shales interbedded with thin laminated gray to light brown sandy limestones and caloareous sandstones. It has a thickness ranging from 300 to over 400 feet.

Eocation of sample日.--Samples were collected from the type locality of the formation, the line of the measured section muning nortbsest froa tise abandoned wildcat well, King and Frankiln Gage No. I (Pigure 5).

Insoluble restques.- The residues from the Hood's $^{\text {m }}$ Hollow limegtone are charaoterized by graing of white, ropy to botryoidel chalceacny, large ana salall subrounded, frobted quartz gand graing, some organc material, a few doubly terminated quartz crystala, and aome amber dolowite rhombohedrons. The siliceous sponge splcules so conspicuous in the Fort Pena are not found in the mood's Hollow samples.
21. King, P. B., op. Oit., (Am. Asboc. Petroleum Geologizts Bull.), p. 1071.

FIGURE 5

Correlation.-Fossila are poorly preserved probably due, in part, to the severe folding to which the beds 22 of the Hood' a follow have been subjected. King reported grantolites, bryozoans, trilobites, mollusks, and brachiopods and stated that most of the fossils in the Wood's Hollow shale sem clearly to be of middle Ordovician age and suggest what it be correlated with the Trenton. Some of the graptolite, however, such as Glossograptus echinatus, suggest a correlation with the Normanskill (Obazy), so that there is a possibility that the formation 18 older than Trenton. For the present the formation is classified as of rIddle Ordovician ape."

Stratigraphic relations. -The Wood's Hollow formation is separated distinctly from the overlying karavillas limestone and chert by a sharp lithologic break from arab shale to dark gray, massive limestone. At some places the contact is marred by a basal conglomerate containing fragments of Wood's Hollow rocks.
22. King, P. B., op. cit., (U. S. Geol. Survey Prof. Paper 187), po. 35-36.

Maravillas Fomation

General features.-The Maravillas formation, or Haravillas chert, was named by Baker and Bownan for exposures in Marafillas Gap, in the Santiago Peak quadrangle, about 20 miles south of Marathon. The formation as originally described was sald to include strata of both Trenton and fachmond age and to attain a thickness of 800 feet. It has since been deolded that the foralation is entirely upper Ordovician in age and that the thickess ranges from 100 to 400 fest. The original conception of 800 feet for the thickress of the formation was probably due to duplication of beds by folding.

The formation oonelsts of interbedded dark gray. limestone and black, dull to V tireous chert. Some of the limestone beds are petroliferous. A few beds of fine conglomerate and thin, black, indurated shale accur through the section.

Location of gamples.-Limestone amples were collected from the cliff just east of the picnic grounds in the gap south of old Fort Pena Colorada (Figure 6).

FICURB 6

Insoluble reaiduea.-The residues consist of a few sponge apicules, some organio material, very small amber dolomite rhombohedrons, fine-crained, subrounded frosted quartz eand grains, amall, angular, ropy to botryoidal graine of wite chalcodony, and yellowish brom interatitial opaque silica (7).

Gorrelation,-The Maravillas has been varlously correlated with the Riobmond and the Trenton formations. 25 King has indioated a Cinoinnattian age for these beds. Stratigraphic relations. - The oontast of the Maravillas with the overlying Caballos novaculite is sharp and is marked in a few looalities by conglomerate. Generally, however, the gras to buff oolored oberts of the lower member of the Caballos overile the oitreous to dull black oherts of the upper Maravillas.

Oaballos Formation

General featureg.- The Caballos formation, or 26 Caballos novaculite, vas named by Eafer and Bowman In 1917 for the outorops on Horse, or Oabellos, yountain in the soutmwentral reotangle of the monument

```
25. King, P. B., op. citj, pp. 41-42.
26. Saker, C. L. and Bommen, W. F., op. cit., p. 93.
```

Springs quariangle about 14 miles southeast of Maration. 27
As redefined by Eing the formation consists of five members with an ageregate thickness ramging from 200 to 500 feet; three chert members, one at the base one at the top and one in the middle, are separated by a lover novaoulite neaber and an upper novaoulite membez. The mite noveculites are the chlef ridgemakers of the basin. In the northwegt part of the region the novaculite beds atve place to ohert whion containe some siliceous shale partings and few thin linestone beda. The oberts are varicolored and banded in dull piaite, blaok, brown, green, and pale blue. The novaculiter are white to cream colored, vitreous to subvitreous to poroelaneous vith ugually indistinct bedding planes and in most places are shattered. Looation of gemples.-No samples mere colleoted from the Caballos formetion. Correlation. Acoordinp to King the Oaballos novaculite is so strixingly similar to the Arkanaas novaculite of Oklahoma and Arkansss, not only in lithology but in the character of the members and their atratigraphic behavior, that there is a strong presumption
27. King, P. B., op. cit., pp. 49-48. 28. Idem. p. 52.
that the two are of the same age. The Arkansas novaculite hes yielded fossils of fiddle Hevonien and Upper Devonian age. Until further evidence is obtained, the Caballos novaculite may best be classifiea as Devonian (i)." 29
Baker has recently found evidence in the San andres sountains of Neg kexico whioh suggests a loaer wississippian age for the Caballos novacultte of that area. Stratigraphic relations. - The Tesmus formation overlies the Oaballos novaculite of th distinct unconformity. In the scutheastern part of the bagia in the Rough Greok area, the Tesnus overlaps the fbole sequence of Caballos ohert and novaculite ahich are folded into a steep anticline. Commonly, however, ibe differences in folding and the overlap are not pronomeed. The variance in thictness of the upper chert beds and the presence of thin, silicified, ohert conglomerates at the base of the Tegnus indicate an erosional break between the two formationa.

Pernue Formation

General feqtures.-The Tesnus formation is the oldest Carboniferous formation in the warathon region.

[^2]It was narged by Befer and Boman for the exposures of sandetone and shale near Tesmus station on the Southern Pacifio Railroad east of Haymond and about 15 miles eastmoutheast of Marathon. Tine formation 18 oompoged of a great thickess of interbedded bromish green, fine-grained sandstones and orkoses and black and olive drab shales with some chert and coriglomerate beds near the base. In the nortbwestem part of the area the Pormation is about 300 foet thick and 18 conposed rostly of black shale with a farg beds of sandatone. In the southeastem part of the besin the fomation exceeds 6500 feet in thickness and is made un mostly of sandstone and arkose.

Eoontion of namples. - Sampleg of Tesrus shale were collecten from the area of the outcrops 15 miles east of Marathon and from the gection beimeen Eagt and Fest 31 Bourland Fountains. Galcaroous shale und argillaceous limestone samples were colleoted near Three wile rill, or about 18 miles south of Marethon.

Coxrelation.-King reported that, according to Br. Bafid White, plant rewains from the Tenrus indicate
30. Baker, C. L. and Boman, 府. F., op. eft., F. 101. 31. King, P. B., op. oit., p. 59.
32. Idem. p. 61.
that the formation is undouivtedly fennsylvaniar in age, possibly raiddle Fottsoille, broadly jestohallan, younger than the Jackfork sandatone of Ciklahoma, and probably older than toke. Foraninlferm found by Bruce farlton
 Cañy shale in Oklabora.

3troilaraphic relationg. Whe contact betoen the Tabnus and the Maple formations is ararke by a transition źne of interbedecd limegtones and shales.

Dimple Formation

General features. --The formation was mamed by 33
Udien for tive exposures of moderately thiok limestone beds which form the Disple Hills, 20 miles northatat of faration. The fopmation is conposec of bede of dark gray, kranular ifanatone interbedded witi shale. phe upper and lower portions are parifoularly ehaley ruere the transiticn zones grude into the viaetic sediments of the Haymond acove anc the resnus below. The formation ranges from 300 to 2000 feet in thicmess and the contacts are dram at the hybest and lowest limeatone 34 bede.
33. Ddden, d. A., Baker, O. L., and Bose, Emil, Heview of the Geology of fexers: Texas Univ. Bull. 44, lst ed., $\mathrm{D}, 46,1915$,
34. King, P. B., op. eit., p. 62.

Locaticn of samples.-Samples of the Blmple fopma tion were eollected from the Dimple Ftilg (pipure 7) and from the road out on U. S. सigheray 90,15 miles east of Marathon (Figure 8).

Insoluble residues.--The residues from the maple limestones contain large single and branching sponge spicules, ostracod shells and gilicified tests of foraminifera, numerous grains of chalcedony which ocours in spongy masses or cements the sponge apicules, emall amber dolomite rbombohedrons, subrounded, frostod quartz sand graine, small grains of glauconite, mall pyrite cubes, and some orpanic material. 35
Oorrelation. King stated that "foraminifera (other than fusulinids) are reported by Harlton from ghales interbedded with the limestone layers of the Dimple Hilla and of the exposures 18 viles east of marathon. ... Harlton correlates the microfauna studied by him with that of the Marble Falls and Mapanucka limestones." Yegafossils from geveral localitlea were identified by Cirty who in gumarizing the collection stated: FThe fossils in the Dimple suggest a Pottsille age. At all events, they apparently must repreaent an
35. King, P. B., op. cits, p. 63.

FIGURE 7

PIGAES 8
unusual facies if the horizon from which they came is regarded as post-Pottsilile."

Stratigraphic relations. --The contact between the Dimple formation end the Faymond formation is apparently everywhere conformable. the two are separated by a transition zone of interbedded shale and limestone.

Raymond Formation

General features. -The Raymond formation mes named 37
by Baker in 1915 for the exposures of sandstone and shale in the syncing near Raymond station about 17 miles east-southeast of Marathon. The formation onsifts of approximately 3,000 feet of massive beds of sandstone and arkoge interbedded with carbonaceous whales a fraction of an inch to several inches in thickness. Near the middle and upper portions of the formation there is a boulder bed member made up of a complex group of interstratified. thick bedded sandstone and shale, massive arkose, and boulder-bearing mudstone, all of which may be locally as much as 900 feet in thiokese. There are a maximum of five mudstone lagers, each ranging from 25 to 150 feet in thickness.
36. King, P. B., op. cit., p. 64.
37. Eden, J. A., Baker, C. L. and Bose, Ball, op. oft., p. 46.

The boulders are generally of older rocks and any be ag much as 180 feat across.

Donation of ganples.-Mbree samples of weathered Haymond shale and two of weathered calcareous sandstone sere collected in the gyncline southeast of Raymond. 38
Corpelation.-King reported that fossil plants from several localities have been determined by Dr. David White to be definitely of pennsylvanian age and may possibly be correlated with those of upper Fotteville age, and that fusulinids collected by Gellarda and Baker indicate an early Pennsylvanian age for the Hammond formation.

Stratigrabia relationg.--The Hammond formation 18 apparently conformable with the overlying Gaptank as the immediate base of the Gaptank aphesis to be gradational and contains no baal conglomerate. Conglomerate bede In the overlying raptank are several humped feet above the base of the formation.

Gaptank Formation

General features. - The name "Gaptank Formsifon" was given by eden in 1916 to the exposures at Gap Tank In Stockton Gap, 23 miles northeast of Marathon.
38. King. P. B., op. cit., pp. 71-72.
39. eden, J. A., Baker, C. L., and Bose, Emil, op. cit., p. 47 .

The original definition included strata of Permian age now known as the polfcamp formation. These were separated by subsequent work and the formation name now includes only those pennsylvanian rocks which overlie the Hammond 40 formation.

The Gaptank formation is exposed only on the northern flank of the Marathon region. According to King "the Gaptank is the youngest Pennsylvanian formation in the area and the last to be involved in the Marath an disturbance. It is the only member of the series that containe fossils in any abundance. It is somewhat more variable in lithology than the formations below and consists of sandstones and shames, with interbedded conglomerates and limestone. The conglomerate fragments are derived from the karavillas chert, the Cabal los novaculite, and the Dimple limestone, which are thousands of feet lower in the section than the base of the Gaptank. They indicate the rise of local folds in the Marathon geosyncline in the middle part of Gaptank time." The formation has a thickness of about 1,800 feet.
40. Sellards, E. H., Pre-Paleozalo and Paleozoic Syetera, in Geology of Texas, Pl. I, Stratigraphy: Texas Univ. Bull. 3238, p. 148, 1933.
41. King, P. B., ap. ©1t.ep. 74.

Location of semples.-- Several eamples of shale and limestone were collected by Gamuel Ellison from the exposures near Gap Tank.

Correlation. - The Gaptsak formation is considered 48
by King to be appraximately of Des Motnes age.
Stratipranilo relationg.-In the southwestern part of the Glass kountains the Gaptank formation is separated from the overlying Wolfcamp formation by a marked angular unconformity. In the northeartern part the Folfoamp resta disconformably on the Gaptank.
42. King, P. B., op. oit., pr. 76-79.

FIGURE 8

LOCATYON OF GAKPLSS AND IMDEX MAP OF THE
 MARATHCN REGION

(Hap copied from, Xing, P. B., Qeology of the Karathon Region, Texas: U. S. Geol. Survey Prof. Pager 187, pl 23, 1937)

DISCUSSION OF CONODONT FAUNAS

General Features

Conodonts occur abondantly in the Ordovician and Pennaylvanian limestones in the Marathon region but are scaroe in beds of other ages.

The Ordovician strata contain a group of closely related faunas pasaing fros the simpler types in the older rocks to the more complex types in the younger rocks. The chief charaoteristic of these fanag is the presence of many almple cone-type conodonts. A great पarlety of bladed and bar-ike fome ocour, but the development of complexity apparently oulminates in the earliest platform types in the Maravillas limestone. Theae \quad pecialized forms were apparently sbort lived and are important as a means of distinguishing faunas.

A profurion of platform typea, like Gnathodus, Qanagnathas, and Polyzcathodelia, occura in the Dimple formation and nothing comparable to these forme is found in the Ordovioian. The differences between the Ordovician and Penneylvanian faunas are clearly shown in the following table.

Distribution of Conodont Genere in the Marathon Region

Genera	Formation					
	$\begin{gathered} \text { Dagqer } \\ \text { Flat } \end{gathered}$	darathon	gort Pena	$\begin{aligned} & \text { Mood' a } \\ & \text { Hollow } \end{aligned}$	$\begin{gathered} \text { Kara- } \\ \text { villas } \end{gathered}$	Dimple
Acodus						
Acontiodus						
Ambalodus						
Amorpharnathus						
Eelodus						
Bryantodina						
Eryentodus						
Cavusgnathus						
Oordylodus						
Dreponodus						
Gnatboius						
Gondolella						
Heterognathus						
Mindeodella						
Idiognathodus						
Ledtochixomatmia						
Ligonodina						
Lonchocina						
Lonebocius						
Loxomathus						
fetalonchodina						
Oistodus						
Ozarkodina						
Palmatoleois						
Pal todub						
Phracroodue						
Polygna thodella						
Polygnathus						
Prionlodus						
Scol000du8						
Spathogna thodue						
8tereoconus						
9treptognathodus						
Symprioniodina						
Triohognathus						
Truchorognathus						
Ulriohodina						

Cambrien

Dagger Flat formation.-Conodonts obtained from one limestone sample in this formation oonsisted of 14 broken apecimens comprising four genera and five opeolea, as followe:

Oigtodus concapus Branson and kehl
olstodus sp.
Scolopodus quadraplicatus Branson and Meb1 AOodus ep.

Drepanodus $\mathrm{\varepsilon p}$.

The limestone in raich the conodonts were found 18 of a distinctly different appearance than the typical Marathon and younger limestones, in that the weathered surface is quite sandy and of a ohocolate brown color. It is possible, bowever, that the limestone belonge to the overlying warathon formation and has been included in the upper Dagger Flat beds by folding and thrusting.

The conodonts obtained are similar to those which occur in the Jefferson City, Shakopee, and Oneota formations of the visaissippi Valley region.

Marathon formation.-Nine genera and 21 gpecios of conodonts were found in the karathon limestones. Figures 1 and 2 show their distribution within the formation.

The fauna is made up mainly of atmple cone-type forme such as Drepanodug, Acodus, Paltodus, Soolopodus, and Q1atodus. However, the complex dentioulate blade and bar-type conodonts Coruplodus, Heterognathus, and Leptochiromathus make their appearance. One peculiar development is a posterior dentioulate blade extension on a laxge main conc, exemplified by oistodus extengus. Many of the goecies found in the earathon are also found in the Jeffergon City formation of wissouri, but the Marathon fana appeare to be silghtiy younger beoause of the occurrence of the more complex forme.

Alate formation. -Only four concdont fragments were found in the samples from this formation. Three of these appear to beloue to the genus Cordylodus and one to the genus Acodug.

Fort Pena formation.--frelve genera and 19 epeoieb of conodonts were obtained from the Fort Pena samples. Pigures 3 and 4 ghow their dietribution.

The fauna contains many oimple cone-type conodonts such as AOOdus, Dreparcãu, Oistodus, and Paltonius. Ofstodus prodentatus represents a development of additional gemtioles of the basic, simble cone. This srectes is aimh. Iat to O. extenaug but lacks the unusually long, compressed blade. The introduction of Loxogathus flabellata and ozaxkedina mscredentata fives the group a distinotive feature. Loxognathus flabellata is significant becaase it is not known from any other fauna in the warathon region. The complex bleded and bar-type conodonts Phrapodug, Bryantodina, and Leptochirognatmas appear iut aĩa alao found in succeding bede.

Many of the Fort Pena spectes are found elsexMere, ranging from the Shakopee into the Decorah. Hoperer, the assemblage is comparable to typical plattin and Decorah faunas.

Food's Hollow Pormation. - A emall fama consisting of seven genera and elght species was found in this fomation. Figure 5 shomb their distribution.

Except for the abeence of Loxprnathus fiabellata, the fauna is gimilar to that found in the Fort Pena beds and, similarly, may be correlated with the plattin and Decoran Paunar.

Maravillag Pormation.-Ten genera and 18 spectes of Conodonts were obtained frow the maravillas limestones. Figare 6 shows their diatribution.

The distinctive festure of tinis groun is the presence, in great abimdance, of Amorphomataus and Ambalodus. These genera wark the earliegt ocourrence of platform types of conodonts in the Marathon region and are important beaauge they are not known from any other fauna in the ragion. Other genera such as Cordylodus, O1stodne, Paltodue, Phregmodus, Scolopodus, Qeterponatmas, and Qzarkodina are found in these bede but are not significant becauge they occur in older formations.

In many respecta this faune is similar to that Found in the Nquucketa shales of the Hiesiselppi Valley.

Devonian (?)

Caballog formation.-Wc oamplee were collected by the writer from the Caballos formation. The conodonts 43
collected by Miser from the silioeous shales on Rast Bourland mountain are lost or misplaced. At the time the field work was in prorrese in 1940, the qriter mab
43. King, P. B., op cit., (D. S. Geol. Sarvey prof.
44. Pergonal commoicetion from P. B. King, February 27, 1941.
unamare of the colleotion from the Gaballos formation and no consideration was fiven to the possibility of the occurrence of conodonts in these beda.

Pennaylvanian

Temus formation.-None of the shale or Ilmestone samples colleated from this formation yielded conodonts.

Dimple formation--Eighteen genera and 46 species of conodonts mere found in this formation. Figures 7 and 8 show their diatribution.

Polgenathodella, Oavusgnathus, and Gnathodue are the most abundent and most charaoteristic genera of this fauna. the blade and bar-like genera Hindeodella, Qzarkodina, Bryantodus, Liqonodina, Lonohodina, Prioniodua, Spathogaathodus, Synprioniodina, Metalonchodina, and Tricognathus are common throughout the formation. Streptognathodus and Idlognathodus appear abundantly. Palmatolepis and Polygnathns ocour in several samples and one occurrence of Gondolella is noted. A few specimens of Leptochirognathus and Phragmodus were found in the lower trensition zome.

The occurrence of the typical Devonian genera, Palmatolenis and Polygnathas, and the typical Ordovicion genera, Leptoohtrognaths and Phragmodue 18 interpreted
as being due to the reworking of earlier assemblages and their inclusion in the tyoical lower pennsylvanian 45
faunas. According to Branson and Mehl, this is called a stratigraphtc adoixture. The occurrence of Gondolella may be intermreted either as an infiltration from younger beds with deposttion along the bedaing plane, or as a dompard extenation of its geologio range.

The Dimple feuma ia gimilar to those found in the Fapanucka formation and the lower Johng Valley gbale of Oklahoma. Samples of Smithorick limestone and shale from central Texas, contributed by Dr. Preston \mathbb{E}. Cloud, contained Polygnathodella and Gavasgnathus species Identical to those found in the Dimple formation.

Feymond formation.--The samples of shale and oalcareous gandetone from this formation contained no conodonts.

Gaptank formation. -None of the shale and limestone samplea collected contained conodonts.
45. Branson, E. B. and Mehl, ${ }^{\text {B. G., The recognition and }}$
interpretation of mixed conodont faunas:
Denison Univ. Bull., vol. $X X X V$, p. 197,1940 .

GYBTENATIC DESGRIPTIONS

Genus ACODUS Pander, 1856

Acodus dentioulatus Graves n. sp. Plate I, figure 18

Base deeply excavated, triangular in outline, the long base of the triangle exteads the base of the tooth posteriorly along its outer side and the obtuse apex of the triangle marks the position of a lateral keel on the blade of the tooth. Main cusp straight and inclined to the plane of the base at an angle of about 45 degrees. Cusp sharply keeled both anteriorly and nosteriorly, and ornamented on the inner side by a distinct, more or leas rounded carina; outer side olane to slightly convex bearing a faint carina; oross-section of tooth aerroviy rhomboid. Posterior keel widens at junction of cusp and base to form three laterally compressed, sharp-pointed, short, alscrete denticles.

Folotyoe. - Missouri Sohool of Mines G223 (figured).
Remarkb. This species differs from Acodug delicatus Branson and Mehl in that it has three sharp denticles developed on the posterior keel, and has a relatively larger base.

Ooourrence.-Maretion formation, Marathon region, Texas.

Acodus expansus Graves n. sp.
 Plate I, figure 6

Base deeply excavated, lachrymiform in outline, offaet posteriorly from the cusp; pit rounded at too. Tooth sharply recurved above the bage so that extension of tip makes a low angle witb the plane of the base, slender, laterally compressed with sharo, distinct, thin keels both anteriorly and posteriorly and extending from the base to the tip of the tooth. Ornamented laterally by a sharp carina wich extend from the top of the slightly inflated base throughout the entire length of the cusp. Cross-section of tooth roughly rhombo1d.

Holotype. - Misscuri Sohool of Hines G223 (ifgured).
Remarke. - This species differs from Acodus oneotensis
Furnigh in that the base is offset anteriorly, is lachrymiform rather than round in outline, and has prominent carinae on both sides of the tooth.

Occurrence.-Yarathon formation, Harathon region, Texas.

Genus ACONTIODUB Pander, 1856

Acontiodus dubius Craves n. sp.
Plate II, figure 1

Base roughly triangular in outline, shallowly excavated. Tooth triangular in cross-gection, with apex of triangle directed anteriorly, apparently straight and slightly inclined posteriorly from the axis normal to the plane of the base. Lateral marging of anterior face of cusp sharo edged; anterior face flat to slightly concave, having an indisiinot median carina. Structure of tooth evenly laminar as shom by a broken eage of the base. Cusp laterally ornamented xith a low but distinct carina on each side, parallel to the leteral margina and at about one-thira the width of tooth from anterior edges.

Holotyoe.-Missouri school of Mines G502 (figured).
Renarks.-This species differs from Acontiodus abnomalis Branson and Mehl in that the tooth is commonly much larger and the lateral faces are less omamented. Occurrence.--Wood's Hollow formation, Marathon region, Texas.

Genus BRYANTPDI\#A Stauffer, 1935

Bryontodina sinuosa Graves n. sp.
Plate II, figure 13

Blade tiln, laterally compressed; enteriorly, denticles are laterally compressed, fused for most of their lenfth, but have discrete termini; posteriorly, denticles are entixely fused forming a large, laterally compressed cusp. Basal part of blade bears a low flange its entixe length; aboral side of blade ghallowly grooved; lateral edges of aboral aide of blade stratght, except for a \quad fight convex flare on inner margin forming a small cavity fust anterior to the large fused cientiole; outer side correspondingly concave just anterior to fused dentiale giving a more or less sinuous outline to the aboral side of the bar.

Holotyoe.-Misgouri school of kinea G414 (figured). Remark apecies of Bryantodina in that the outline of the aboral surface 18 sinuous.

Occurrence. - Fort Pena formation, , $a r a t h o n$ region, Tex8s.

Genus GORDYLODUS Pander, 1856

Oordylodus multidentatus Graves n. sp. Plate I, Plgure 21

Oral bax straight, relatively thick, set with glightly compressed, somewhat posteriorly inclined, comparatively lone, sharp-pointed, closely staced but discrete denticles which are alternately large and amall; the anterior large denticlea are separated by two smaller denticles. Terminal denticle nearly erect, laterally compressed but with mell rounded anterior margin and flat, sharp odged, posterior margin. The aboral extension of the terwinal denticle bends posteriorly as it passeg onto the sheath and continues nearly straight, forming an angle of about 45 degrees with the oral bar. The aboral extension of the terminal denticle bifurcates below the oral bar forming a heary, rounded anterior keel segarated from the sheath by a thin plate; laminae connecting the other limb of the aboral extension of the terminal denticle are nearly straight to slightly convex.

Holotyoe.-Missouri school of Mines G227 (figured).
Remarks. - Oordylodus multidentatas differs from other species of Cordylodus, mainly, in that it has a oomparatively large number of dentioles on the oral bar.
ocourrence.-Marathon formation, Harathon region, Texas.

> Cordylodus quadratus Graves n. sp.
> Plate I, figures 22,25

Oral bar convez orally, relatively thick with convex sides, oral edge set with laterally compreased, wide aharp-pointed, discrete denticles on the posterior portion; at the junction of the oral bar and the terminal ousp, the oral denticles are smaller, six to eight in number, closely crowded, laterally compressed, in part fused, but with discrete termini. The terminal denticle is sherp edged, quadrate or roughly diamond-shaped in crosa-section, with anterior and posterior keels; the anterior keel continues aborally to form a rather wide buttress anterior to the sheath; at midwidth on each side of the terminal denticle there is a hirh, sharp carina which forms a flange on the aboral extension of the terminal denticle. The terminal denticle extends a short distance posteriorly beneath the oral bar at an angle of about 30 degrees. The sheath laminae are nariow, extending from the flanges to the oral bar.

Helotype.-Missouri Sohool of Mines G301 (figured). Paratype, Miesouri School of Hines G323 (figured).

Remarks.-Thls species differs from Cordylodus multidentatus in that the oral bar is slightly curved, the denticles on the oral bar are more laterally compressed, the crose-section of the terminal denticle is roughly quadrate, the angle between the oral bar and the aboral extension of the teminal denticle is approxinately 30 degrees.
occurrence.--Karathon formation, warathon repion, Texas.

Genus DPbpanodes Pander, 1856

Drepanodus etriatua Graves n. sp.
Plate I, figures 3, 12

Base slightly expanded postericrly, deeply excavated, the conlcal concavity as high as its basal length with the sharp apex near the anterior surface of cone; basal outline quadrate to aubrounded. Tooth subrounded in upper part, slender, sharp-nointed, recurved with slight flexure near base; upper part nearly straight making a high angle with the plane of the base. The cusp is longitudinally ornamented $\begin{gathered}\text { ath fine, parallel }\end{gathered}$ striae throughout its entire length; growth oxis inconspicuous.

54

Folotyne.-Missouri School of Mines G225 (figured). Paratype, Mssouri School of Mines G223 (figured).

Remarks.-Thia species differs from Drepanodus arouatus Branson and Mehl in that it lacks the faint keals, 1s less compressed laterally, and is longitudinally finely striated whereas the latter is smooth.
occurrence.-Marathon formation, Marathon region, техав.

Genus LOXOONATHUS Graves n. gen.

Complex, denticulate bladed unit th a large denticle at the enterior end of an arched blade; basal portion of the main cusp expanded on the outer side into a thin, posteriorly curved, denticulate blade making an angle of about 60 degrees with the main blade; aboral portion extended into a pick-shaped antlcusp. Aboral attachment scar largest under main denticle and extending as a groove on the two limbs. The denticles on the rain limb are inclined anteriorly, closely oppressed and coalesced. Oross-section of the superior denticle is triangular, with gnsrg anterior and nosterior edges and an outer keel.

Genotype.--Loxognzthus flabellata.

Loxognathus Ilabell.nta Graves in. op. Plate in, Plgures 39, 31, 33

Dentioulate blade composed of seven or more coaleaced but distinct, subparaliel denticles inolined to the bage of the blade at an angle of about 45 degrees; blade joina the superior dentiole at an angle of 90 degrees or less, Porming a P-shaped notoh with its apex upward. Crose oection of main ousp triangular with flat to alightly convex sider.

Genoholotype.-Missouri sonool of Mines G421 (figured).

Oeourrence, Fort Pena formation, Marathon region, Texas.

Genue 01sT0108 Ponder, 1850

01 stodus extensus Graves n. sp.
Plate I. IIgures 16, 88

Base deeply excapated, laterally compressed, elongate anteromposteriorly, with a long, laterally oompresged, dentioulate bar extending anteriorly, making a large obtase angle with the vertioal plane of the tooth; denticies on upper portion of bar compreseed laterally, fused, inolined posteriorly to the plane of the base at a 10 w angle; begal excavation of main cusp continues onto the bage of
the bar an a shallow, narrow groove. Junction of bar and main ousp is wide, thick, inflated area, Tooth sharply recurved just above base so that main cusp is almost narallel to the plane of the base. Kain ousp thin, short, sharply pointed, lentioular in crosemeotion.

Holotype.-Missouri Sohool of Mines G201 (figured). Paratype, Miasouri School of Mines G209 (figured).

Remarke. This opecies is dietinctly different from any prefiously deecribed species, in that it bas a long, laterally oompressed, denticulate anterior bar extension. The general outline of the main cusp and the shape and position of the base are suoh that the specimens are placed in this genas.
pocurfenae - Xarathon romation, Hersthon region, Texza.

O18todns prodentstus Graves n. sp. Plate II, Itgares 6, 22, 23, 2 B

Outlins of bage markedly elongate beoause of its anterior and manually long pogterior extensions bejond the blade; extenolons of base thin and straight; base flares conspiowougly jugt posterior to ite junction wth the casp; width less than one-quarter length of base. Anterior extenaion of base beara three to four laterally oompresaed, fuaed dentioles whiob may have disorete temini.

Flongate excavation about same depth as the base fidt. Blade nearly gtraight ita entire lengtr, sharply bent back slightiy anteriorly above excavation making an angle of about 45 degrees orith the basal plane, long and slenderly tapering, gharn entertor and posterior equeg, outer face flat to glightly conver laterally. Inaer face strongly convex with slightly depressed magine, prestest width In most grecimeng ellehtly above the sharp pogterior ilexure.

Rolotyne. Missouri sohool of Mines 0413 (figured). Pametyee, Misecuri gohool of Mines G504, a414, 6407 (sigured).

Remarkem This gocoles differs frow OLgtadus abundana Branson and Mehl in that it has a longer posterior extension of the base and has a dentioulate anterior basal extengion,

Oqourpence. Fort Pena and wond s Rollow forations, Marathon region, fexpa,

Genrs OZABTODI的A Branson and Mehl, 1933

Ozarkodina macrodentata Graves n. ap.
Plate II, Kigures 33, 35, 36

Base atralght to slightiy arohed, broasily flexed anterompoteriorly. Aboral edge excavated by a narrow,
very ghallog froove extending from the central cavity to near the extremities; attachment scar has slightly flaring, convex sides. Main denticle extremely lonk and about three times as mide as minor denticles, sharp edged, with one flat to slightly convex surface and one marxediy convex surface which is depressed near the edges forming congolcuous keels, located slightly off center direatly above the basal excavation, ani inclined at an angle of about 60 degrees to the blademike bar. Hinor denticles gubequal, inclined parallel to main denticle, laterally compressed, only partly fused, fith discrete termini; two to three minor denticies anterior and three to five poaterior to the main cusp.

Holotype.-Missouri School of Mines G414 (figured). Paratype, Misgouri School of Mines G414 (figured). Remarks.-This epecies differs from Ozarkodina tyoica Branson and kehl in that it bas fewer, relatively lerger aenticles, and is not as greatly arched. Occurrence.-Fort Pena formation, Marathon region, Texas.

Genus CAVUSGNATHUS Harris and Hollinesworth, 1933

Capusgnathus nodulifera Graves n. sp. Plate VI, figure 4

Platform long, lanceolate, posteriorly pointed; inner and outer parapets ornamented th regularly spaced alternating nodes; outer row of nodes continues anteriorly as a thin blade mith laterally compressed, short, sharp-pointed, discrete denticles; outer side of platform set with one or more (usually three) nodes mhich extend posteriorly from the junction of the blade and platform; oral surface of platform traversed by a deep, median, longitudinal trough, continuous the length of the platform; aboral attachment scar slender to moderately flaring.

Polotype.-Missourl Sohool of Mines G923 (figured).
Remarks.-Cavagenathus nodulifera differs from
Q. sinuata and C. Iauta in that its paranets are of about equal elevation and in the development of the outer accessory nodes. The postexict development of the accesgory lobes and a partial longitudinal and lateral fusion of the nodes on the main parapete with a corresponding partial filling of the median trough, way give rise to Gnathours. The speciaen shom on Plate VI, figure 6, posaibly represents such a development.
dcourrence. -Dimple formation, Marathon region, Texas.

Cavisgrathus sinuate (Harris and Hollingsworth) Plate VI, figures 1, 5, 7

Idiognathoides sinuata Hzrris end rollingerworth, 1933,
An. Jour. sci., 5th ser., vol. 25, p. 301, pl. 1, fig. 14.

Polygnathodella sinueta (Rarris and Hollingsworth)
Gransun and mehl, 1941, Jour. Paleontology,
rol. 15, p. 105.

Rarifs and Rollingeworth's description:

${ }^{\text {a }}$ Tooth swall, narrom, slender, acutely pointed antericrly, concave anteriorly along rargin of inside edge and nosteriorly along margin of outside edge, the whole resulting in a sinuour outline, plate high and steep laterally, aboral face of plate chanrieled longitudinally why eymetrioal curvature, greatest depth centrally, flanges prominent, concentrically ringed, posterior end of plate diatinctly sminging dommard and backward, especially noticeable along the ventral outline, giterior one-third of oral surfece of plate flat and traverged by two or three short, low, transverse ridges, behind thege are three or four heritransverse ridgee gently sloping inwardly and downwerdly from either side, thus defining the anterior limitation of a median ohannel which increases in depth moteriorly, marginal rime bordering eithex side of the channel steeply sloping inwardly and bearing elght to ten ill definea dentioulations, fim of outside one-half of plate bigh, produoed posteriorly to form the thin, straight, denticulate bar."

Reyised degeription.-Platfom long, lanceolate, posteriorly pointed, imer and outer parapets ornamented with regularly speced nodes in alignment with each other
transvergely; inner parapet commonly lower in elevation, panticularly in the anterior portion, than the outer parapet; posterior one-third of platform may bear completely to partially fused nodes forming transverse ridges across the oral surface. Oral surface of platform traversed longitudinally by a deep median sulcus phich becomes gradually more shallow as it anproaches the posterior tip of the platform; sulcus may extend wore than two-thirds the length of platforra. Outer parapet is contiqued anteriorly into the thin blade bearing laterally compressed, subequal denticles rising only a short distance above the platforw; aboral attachment scar slender, widely flaring on the inner side; sides of platform almost vertical.

Plesiotypes.-M1s8ouri sohool of Hines G903, G926 (figured).

Remarks.- Oemusgathug sinueta (Herris and Hollingsworth) differs from Q. Lauta in that the elevation of the parapets of the latter are about equal end the ornamentation is tyoically one of transverse midges rather than nodes,

The aividing line betwoen speoimens placed here and those assigned to polygnathodella owachitensie is an arbitrary one, as soecimens are kown that show all
gradational forms from Cavuggnathus sinuata through Polygnathodella ouschitensis to F. attenuata and P. Convexa. Tbose snecimens having the longitudinal median trough extending posteriorly past the midpoint of the platform have been assigned to Cavusgnathus sinuata.

Occurrenoo- Hapanucka formation, Oklaboma; Dimple fomation, warathon region, Texas.

Genus IDIOGHATHODUS Gunnell, 1931

Idiognathodus sinuosus Graves n. sp. Plate VI, figure 22

Outine of platform in oral View, long, slender, sinuous, posteriorly pointed, greatest width near midlength; accessory lobes on inner margin mostly anterior to junction of blade and platform; transverse section of oral aurface flat; oral surface ornamented with 10 to 14 parallel tranaverse ridges complete from one margin to the other, normal of slightly oblique to axis. Blade of average length ending abruptly againgt the first continuous transverse ridge; set off from the platfom on either side by deep, laterally constricted suici so that lateral marging of the anterior portion of the platform extend as free edges.

Holotyoe.-Missouri School of Mines G906 (figured). Qccurrence.-Dimple f゙ormation, Karathon region, Texas.

Genus EIGONODINA Ulrich and Bassler, 1926

Ligonodina (?) peculiaris Greves n. sp. Plate IV, figure 17

Terminal fang laterally compressed mith rounded anterior and posterior edges giving an elliptical crossseotion outline near base but having a tendency to develop a sharper anterior edge in upper two-thirds. Antero-inferior process short, directed domnard, inward, and slightly backward; dentlcles about four, the middle two offset and aligned in a plane et right angles to the plane of the process, rounded in crosssection, in general, directed uphard and invard. Poaterior bar wide, laterally compresed, at right angles to superior dentiole; denticles small, round, nodemike, widely separated, fetin number. Aboral side of unit only shallowly excavated, with a small pit beneath the main cusp extending as a narrow groove along the bage of the posterior bar.

Folotype,-Hissouri sohool of mines G907 (figured). Qccurrence.--Dmple formation, Harathon region, Teres.
Ligonodina suppressa Graves n. sp.
Plate IV, figure 16
Superior denticle long, straight to slightlyrecurved, lentioular in cross-section near the base,compressed in upper portion to a sharply pointed cross-section outline: inner surface of denticle smoothlyconvex; outer surface more sharply convex at mividthbut depressed along edges forming broad, almost imper-coptible, grooves on outer surface. Base of cusp onlyslightly expanded and subcircular in outline; aboralcavity moderately deep 1 th a deep pit beneath thesuperior denticle traversed by a groove extending alongthe aboral edge of the two limbs.Holotype. Miseourl Sohool of Mines G923 (figured).Remarks.-Migonading suppressa differs from
L. tyon (Gunnell) and L. Lexingtonensis (Gunnell), mainly,
in that the outer face of the superior denticle bears
two shallom grooves.
Ocourrence.-Dimple formation, Marathon region,
Texas.

Gerus POLYGNATHODELLA Fgrlton, 1933

Polygnathodella Harlton, 1933, Jour. Paleontology,
vol. 7, p. 15.
Idiognathoides Harris and Follingsmorth, 1933, Am. Jour.
Sci., vol. 35, pl. 1, fig. 14.
The following is the description of the gerius 46
Polygnathodella as revised by Branson and Mehl;
parenthetical expressions are additions by the writer
to the revised description:
"platform-like teeth with antero-posteriorly elongate orel surface, flat, (convex), shallowly (to deoply) trenched longitudinally, (or having a-deep median, ohennei extending posteriorly from the anterior edge and dying out at a point near the center of the nlatiora), with fine transverse corrusations (continuous across the plate or interrupted at the median ohannel); outer side of nlatform produced enteriorly into a free blade without vertical differentation at the confluence of the blade and lateral marsin; aboral side deecly exeavated with lateral sides widely flared to produce a bilaterally abymmetrical cup, somewhat longer than wide, with lateral halves antero-postericrly offset.

Genotype.- Polygnathodella ouachitensis Harlton.
Remarks.-- The above additions bave been made to the revised description of this penus because the genoholotype bears a skort median trough and because of the development of a convex surface on the platform of

Polgonathodella convexa Fraves n. sp.
46. Branson, E. B. and Mehl, M. G., New Oarboniferoug conodont genera: Jour. Paleontology, vol. 15, p. 103, 1941.

Polygnathodella attenuata (Harris and Holliageworth) Branson and Mehl
 Plate FI, figures 11, 13-15

Idiormathodug attenusta Rarris and Fol.I1ngsworth, 1933, Aan. Jour. Sci., 5th ser., vol. 25, p. 203, p1. 1, figs. $9 \mathrm{a}, \mathrm{b}$.

Polygnathodella attenaata (Harris and Hollingsuorth)
Branaon and kehl, 1941, Jour. Paleontology, vol. 15, p. 104.

Rarris and Pollingeworth s degoription:
*Tooth small, narrow, slender, elongate, anteriorly sharnly pointed, inner edee of plate straght, or very slightly concave, outer edge diatinctly concave, etrongly so around the posterior oorner, thus ceusing the entire form to appear curved inwardly; plate approximately uniform in latexal height, in gide view oral face flat and tending to undulate longitudinally in old age; oral platfora of adult traversed by fifteen or sixteen low unbroken riages, extreme pesterior extremity of plate oentrally channeled , the channel rims bearing six or seven denticles, the rim of outside half of plate produced posteriorly to form the thin denticulate bar. ${ }^{\text {a }}$

Revised description.- Outline of platform in crel Ylew long, width variable, and posteriorly acutely yointed; oral surface flat to slightly conoave, ornamented with eight to 20 contimuous transverse ridges; anterior margin of platform may have a short, median, oballow trough; in side view oral face flat to slightly concave
and tending to undulate longituiinally in old age; outer edge of platform oontinues anteriorly as the laterally compressed, denticulate blade; inner edge continues anteriorly as a free edge hearing four to eight short, transperse ridges, and separated fror the blade by a deep, domward, anteriorly plunging trough Which may continue posteriorly onto the platform for a short distance separating the first three platform ridgea.

Plesiotypes.--Missouri Sohool of Mines G906, G912, G917 (figured).

Remarks.-This species differs from P. ouachitensig in that the latter bears a longitudinal oral trough on the anterior half of the platform and has a concave oral surface. Polggnathodella attenuata is the typical Polygnathodelia and may represent a climax in development in that the oral trough has almost completely disappeared. Ocourrence.-- Papanucka fornation, Oklahoma; Dimple formation, karathon region, Texas.

Polygnathodella convexa Graves n. sp. Plate VI, figures $10,12,15$

Platform long, lanceolate and posteriorly pointed to slipper-shaped. Oral surface markedly convex laterally and slightly convex longitudinally, bearing straight to posteriorly oonvex transverse ridges; outer edge of platform continues anteriorly as a thin, denticulate blede with laterally compressed, sharp pointed, discrete denticles; inner edge continues anteriorly a short distance forming a free edge traversed by two to seven short ridges, and separated from the blade by a deep, downard plunging gulous wich may continue posteriorly on to the platform as a sballow trough separating the transverge ridges on the anterior onethird of the platform. In some specimens the two transverse ridges just posterior to the terminus of the trough are bifurcated near the outer side of the platform.

Rolotype.-Wissouri Sohool of Mines G907 (figured). Paratypea, Missoivi Gchool of Kines G908, G918 (figured).

Remarks.- Polygnatbodella gonvera differs from Other species of Rolygnathodella in that its oral surface 1s markedly convex both laterally and longitudinally.

This species probably repreaents a stage equal to P. attenuata in development from Cavusgnathus sinuata through Polymathodella ouaohitensis.

Oocurxence.-Dimple formation, Warathon region, Texas.

Polygnathodella ouschitensis Herlton

$$
\text { Plate VI, figures } 8,9
$$

Polygnathodella ouachitensis Farlton, 1933, Jour. Paleontolopy, vol. 7, p. 15, pl. 4, figs. 14a-o. Idiognathodus corrusata Harris and Hollingsworth, 1933, Am. Jour. Sci., 5th ser., vol. 25, p. 302, pl. 1, fige. 8a, b.

Polygnathodelia corrugata (Harris and Hollingsmorth)
Branson and Keh1, 1941, Jour. Paleontology, vol. 15,
p. 105.

Karlton'g degcription of polyguathodelle ouachitengis:
"Plate lanoeolate in outline, posterior bar with denticlea; oral surface mith transversed distinct carinae; posterlor bar conneoted with upper marein of oral surface. The carinae at lower oral surface colncide with the upper onea, nosteriorly it has the tendency to incurve."

Harris and Hollingsworth's desoription of Idiognathodus corrugata:
"Flate flat, Iow, subsymatirically lanceolate in oral view, beooming braader with age, in aboral view deeply concave with greateat depth at posterlor end of plate, in side viem oral face of plate flat, becoming slipper-shaped or undulating orally in old age;
plate midest immediately behind center, inner onemalf of plate bending dommerd and inmard posteriorly at an angle of apnroximately 20 degrees to form a distinct, short, posterior channel, aine to eleven low unbroken ridges extend subparallel across the antexior trouthirds of the plate, the first three or four of which arch formard at the margins; on the posterior end of the inner one-half of the oral face are aporoximately six to eight short, corruqated ribs; the posterior projeoting bar is formed by the continuation of the outgide onehalf face of plate, it is thin, hierh, and coarsely denticulate."

Revised 良escription.- Plate lanceolate to slippershaped in outline; oral surface flat to deeply concave, bearing; a median trough from the anterior edge to about the midpoint of the platform, having siz or more continuous transverse ridges on the posterior portion of the platform; the anterior portion of the platform bears six transverse ridges which are interrupted at the median trough. The outer side of the platform continues anteriorly as a laterally oompressed, denticulate blade With sharp-pointed discrete termini; inner aide of platform continues a short distance anteriorly as a free edge bearing three to five short transuerse ridges, and separated from the blade by a deep, domward plunging continuation of the median, platform trough.

Rlesietypes.--Hissouri school of kines G926 (figured).
Remarke. - Polygnethodella ousenttersis is not the typical Polygrathodelia even though it ig the genotype.

The tyolcal forms do not show the marked loneitudnal oral troush and are only slightly concove to flat on the oral surface. It differs from P. convera in that the latter has a convex oral surface. P. ouachitengig may represent the transition in form between Cavugonathus and the more tynicel Polygnathodellas such as P. attenuata and P. oonvexa. Oocurrence.-- Hapanucka formation and Johas Talley ghale of Oxlahoma; Dimple formation, Marathon region, rexas.

Genus STPEPTOGNATHODUS Stauffer and Plummer, 1932

Streptognathodus irregularis Graves n. sp.
Plate VI, figures 17, 21, 24

Outline of platform in oral view, short, thin, posteriorly pointed, preatest width at anterior end; inner side of platforn strajght to slightly convex; outer side moderately convex; two accessory lobes with two to five nodes developed on each lobe; oral surface traversed by subequal ridges on each side of a shallow, inperdiy curped eccentric median trough whioh terainatea at both ends argingt complete tranaverse ridges. Blade median, thin, bearing laterally compressed, short, discrete denticleg and set off from platform on either
side by deep sulci whioh terminate against the continuous transverse ridge on the anterior margin of the platform; lateral edges continue anteriorly as free edges bearing four to eight nodes.

Rolotype.-Miseouri Sohool of Eines, G901 (figured). Paratypes, Kissouri School of Minea G906, c910 (figured).

Occurrence. -Dimie formation, farathon region, Texas.

Streptognethodus (?) nodogus Graves n. sp. Plate V, Pigure 29

Outline of platform in oral viev, long, alender, lanceolate, posteriorly pointed, greatest width near midlength; oral surface ornamented with parallel rowa of nodes on either side of carina, nodes alternate in position with those of the oarina. An accessory lobe consisting of a row of two to five nodes flanks each side of the platform; denticulate blade joins platform at a median position and continues as the central row of nodes; shellow suloi are continuous anteriorly on either side of the carina so that the oral surface of the anterior portion of the platform extenda as free edges.

Holotype.-M1 ssonzi school of Mines G907 (figured).

Remarkg.-This speotes has been referred to Streptopnathodus rather than to Gnathodus because of the accessory lobes which cour on both sides of the oral surface.

Ocourrence. Dimple formation, Marathon region, Texas.

Genus SYNPRIONIODINA Ulrich and Basslex, 1926

Gypprioniodina (i) compresal Graves n. sp. Plate VI, figure Il

Two wide, blademike bars in a common plane meet at an angle slizibtly greater than 90 degrees; both bars of equal lengti, widen perceptibly near the extremities, contain many subequal closely spaced, laterally compressed, denticles partly coalesced at junction with bar and inclined anteriorly at an engle of about 45 degrees; denticles on both barg parallel. A superior denticle about three timeg piath of gmaller denticles occupies central position at function of bars. Pit direotly beneath superior denticle laterally oompressed, shallow, extending equal ijatancea on the aboral side of each bar.

Holotype-mifesouri sohool of wines G903 (figured).

74

Remarke.- The feneric affinity of this species is In doubt because of the equal length of the baxs and because it lacks the prominent median pit with flaring sides.

Occurrence.--Dimple formation, warathon region, qexą.

EXPLATATION OF PLATE I
(All figures 840)

Figures I, 7, 23 - Drepanodus arcuatus Branson and Mehl.
1, 7, Sample G218. 23, Sample G213. 2, 31, 34 - Oistodus pandus Branson and Mehl.

2, 34, Sample G203. 31, Semple G225.
3, 12 - Drepanodus gtriatus Graves n. sp.
3, Sample G323. 12, Holotype, Sample 0225.
4, 11 - Gordylodus simplex Branson and wehl.
Sample GZ27
5, 9 - Heteronathus idoneus Stauffer. Sample G227.
6 -- Acodus expansus Greves n. sp. Holotype,
Sample G223.
8 - Qistodus curvatue Eranson and $4 e h l$.
Sample G218.
10 - Scolopodus quadraplicetus Branson and Mehl.
Sample G230.
13 - Drepanodus parallelus (?) Branson and Mehl. Sample G213.

14 -- Scolopodus pseudoquadratus Branson and keht.
Bample G323.
15, 17 - Oiatodus fornicalus Stauffer.
15, Sample G203. 17, Sample G225.
16, 28 - Oistodus extengus Graves n. sp.
16, Holotype, Sample G201. 28, Sample G209.

Figure 18 - Acodus denticulatue Graves n. sp. Holotype, Sample G223.

19 - Paltodus distortus Branson and sehl. Sample G209.

20 -- Leptochirognathug Bp. Brangon and kehl. Sample G209.

21 -- Cordylodus multidentatus Graves n. gp. Holotype, Sample G227.

22, 25-Cordylodus quadretus Graves n. op. 22, Sample G223. 25, Holotype, Sample G201.
34 - Cordylodus (?) sourius Branson and Mehl. Sample G237.

26, 30, 33-0i8todue grailits Branson and Kehl. 26, 33, Sample G209. 30, Sample G204.

27 - Prioniodug (i) flezuosus Branson and Mehl. Sample G331.

39 -- Stereoconas robustus Branson and vehl. Sample G208.
32 - Oistodus guberectus Branson and Meh1. Sample G209.

PLAPE I

COMODOATS OF THE MARATHON FORMA MION

Explanation of plate it

(All Pigures 840)

Figures 1 -- Acontiodus dubius Graves n. sp. Holotype, Sample G502.

2, 9, 10 - Phragmodue undatus Branson and Hebl. 2, Sample G504. 9, Sample 0506. 10, Sample G501.

3 - Trucherognathus ginuosa Branson and Hebl. Sample G502.

4 - Leptochirognathus sp. Branson and vehl. Sample G506.
5.- Paltodue praoilie (p) Branbon and Mehl. Sample G502.
$6,22,23,28-01$ otodus prodentatus Graves n. sp.
6, Sample G504. 22, Sample G414. 23, Sample
G407. 28, Holotype, Sample G412.
7 - Paltodus distortus Branson and Mehl.
Sample G502.
8 - Cordylodua plattinensis Branson and Mehl. Sample G504.
11 - Tlitichodine sp. Aurnish. Sample G408.
12 - Drepanodus subarcuatus Furnish.
Sample G421.

Pigurea 13 -- Bryantodina sinuosa Gravea n. sp. Holotype, Sample G4l4.

14 - Oistodue pulgaria Branson and Mehl. Sample G414.

15, 18 - Oistodus fornicalus Stauffer. 15, Sample G407. 18, Sample G414. 16 - Oistodus inclinatus Branson and Mebl. Sample G500.

17 - Paltodus variabilis Farnish. Sample G4l4.
19, $20-$ Olatodus abundans Branson and Mebl.
19, Sample G421. 20, Sample G414.
21 - Leptochirognathus sp. Branson and MehI. Sample G412.

34 - Acontiodus sp. Sample G409.
25, $30-$ Gordylodus (?) Bourlus Branson and Mehl. 25. Somple G407. 30, Sample G406.

26 - Phragmodus undatus Branson and Mehl.
Sample G412.
87 - Dichognathus typice Branson and Mehl. Sample G500.
29, 31, 32 -- Loxognathus flabellata Graves a. sp. 39, Sample G414. 31, Holotype, Sample G421. 32, Senile specimen, Sarole G414.

Figures 33, 35, 35 -- Ozarkodina macrodentata Craves n. sp. 33, 36, Sample G414. 35, Holotype, Sample (:414.

34 -- Oistodus pandus Branson and $\mathcal{F e b l}$. Sample G416.

37 -- Acodus bicostatus Brensen and Kehl.
Samole ©414.

81
PLAT II

EXPLANATION OT PLATT III
 (All figures X40)

Figures 1 -- Phragmodug Insculotag Branson and Kehl. Sample G611.

2, 5 -- Scolopodus quadraplioatus Branson and lahl. Sample G610.

3, 6 - Ozaricodina tenuiz Branson and hehl.
Semple G614.
4, 10, 22 - Paltodus gracilia Branson and kehl.
4. Sample G614. 10, Sample G615.

22, Sample G611.
7, 8 - Phregmodus undatus Branson and Kehl. Sauple G611.

9 - Phrapmodus dissirailaris Branson and Wehl. Sample 6614.

11 - Oordyloous nlattinensis Branson and Mehl. Sample G614.

12, 13 - Phragmodus delicatus Branson and Mehl. Sample G602.

14 - Belodus (?) sp. Sample G610.
15 - Oordylodus (?) so. Somple G614.
16 - Oibtodus gracilis Branson and Mehl. Sample G611.
17, 21, 24, 27- Oletodus curvatue Bronson and Kehl.
17, Sample i:0m Fiolnity of Heart kountain.
21, Sample G606. 34, 27, Smple G616.

Figures 18 - Oistodus inclinatus Branson and Meht.
Sample GAO7.
19, 20, 25 - Heterognathus (?) sp.
19, Sample G602. 20, 25, Semple G605.
23 - Cordylodus (r) delioatus Branson and wehi.
Sample G614.
26 - Belodus whoffensis Stauffer. Sample G601.
38 - Trichognathus tenuis Branson and beh1.
Sample G605.
29, 33-35 - Ambalodus triangularig Branson and
Mehl. 29, 33, oral and lateral pieve, separate specimens, Gample G616. 34, aboral

View, sample from vioinity Heart Kountain.
35, 1ateral viev, Sample G614.
30 - Cordylodus (i) concinnas Branson and Kehl.
Sample G616.
31 -- Paltodus sp. Sample G615.
32. 36-38 - Amorphoprathus ordoviota Branson and

Mehl. Sample from vicinity Geart Mountain.
32, aboral viefs. 36-38, oral flews of
separate specimens.

PLATTITI

GONODONTS OF TEE KARAVILLAS FORWATION

EXPLAAATIOH OT PLATE IV

(All figures X40)

Figures 1 - 7 - Mindeodelle sp. I, Sample G804. 2, Sample 9902 . 3, 5, Sample G910. 4, Sample 9903 . 6, Sample 9906.7 , Sample G901.

8 -- Syaprioniodina alternata Ulrioh and Bassley.

- Sample G908.

9 - Metalonchodina tenora Ellison. Sample G908.
10 - Bymprioniodina microdenta Ellison. Sample G919.
11 - Symprionioding (?) oompressa Graves n. sp.
Holotrpe, Sample G903.
12-14- Ozarkodina delicatula (Struffer and Plumer). 12, Garple G926. 13, Sample G917.
14. Sample C9O7.

15, 23 - Lonohodina claris (Gunnell). Sample G912.

16 - Liqonodina suppressa Graves n. sp.
Holotype, Sample G923.
17 - Ligonodina (?) peculiatig oraves n. sp. Holotype, Stmple G903.

18 - Bryantodus egullaterug Brenson and Mehl. Bample 0926.

19 - Telohogathus subacode (Gwanell). Gample G905.

Figures 30 - Metalonohodina sp. Sanole G907. 21 -- Lonchodue gimplex Pandér. Sample G936. 23, 24 - Ligonodina lexinftonensis (Gunnell). 23, Sample G913. 24, Savaple 9926. 25, 27 - Prioniodue barbatus Branson and Kebl. 25. Ggaple G923. 27, Sample G928. 26 -L Lon chodina (?) sp. Semple G910.

PLATE IV

ONODOBTG OF THE DIKPLE FORMATION

EXPLANATION OF PLATE

(All figures X40)

Figures 1, 3, 5- Spathognathodus minutus (Elilion).
1,5, lateral vieme, Sample 0903.
3, lateral viem, Sample G907.
2 - Spathognathodus disparilis Branson and Mehi.
Oral view, Sample G921.
4, 6 - Soathognathodus commutatus Branson and
Mehl. 4, Sample G901. 6, Sample G906.
7, 23 - Polygnathus brevilamina Branson and Heh1.
7, Sample G927. 22, Sample G933.
8 - 10, 12-Gnathodus texanus Roundy.
8, 10, Sample G908. 9, Sample G912.
13, 9926.
11 - Gnathodas ap. (imenature speolmon) Sample
G902.
13-17-G Gathodus mapanuckensis (Harlton).
13, Sample G918. 14, Sample G917.
15, 17, Sample G912. 16, Sample G902.
18 - Polygnathas triangularis (?) Branson and
Kehl. Sample G910.
19 - Streotognathodue (9) nodosus Graves n. sp.
20 - Gondollela sp. Sample G938.

Pigures 21 - Polygnathus angueta Branson and Mehl. Sample G910.

23 - Palmatolepia rugosa (?) Brancon and Mehl. Sample G923.

24 - Polygnethus sp. Sample G901.
25 - Palmatolepis minuta Brangon and Rebl. Gample G919.

26 - Palmatolepls (i) sp. Sample G917. 27, 29 - Palmatoleois superlobata Branson and Mehl. 27, Sample G923. 29, Sample G902.

28 - Palmatolepls quadrantinodosa Branson and Kehl. Sample G908.

PLATEV

OOWODONTS OF THE DTAPLE FORXAPION

EXPLANATION OF PLATE VI

(All figares $\mathbf{x 4 0}$)

Figures 1, 5, 7 - Gerpapgathus sinuata (Harris and
Hollingeworth). 1, Sample G926.
5, 7, Sample G902.
3 - Camsenothus lauta Gunnell. Sample G907.
3 - Cavasgnathus giganta Gunnell. Sample G930.
4, 6 - Gavusgathus nodulifera Graves n. sp.
4, Holotype, Sample G923. 6, 日enile specimen
(10entification questionable), Gample G919.
8,9- Palypnathodella ouachitensis Farl ton.
Somple G926.
10, 12, 16 - Polggnathodella oonvexa Graves n. sp.
10, Holotype, Sample G907. 12, Sample G906.
16, Semple G918.
11, 13-15-Polypnathodella attenuata (Haris
and Hollingevorth). 11, Semple G906.
13, Зample G917. 14, 15, Sample G912.
17, 21, 24 -- Streptognathodus 1rregularis
Graves n. 日p. 17, Holotype, Sample G903.
21, immature specimen, Sample G910.
24, immature specimen, Ssmple 0906.

Figures 18 -- Streptognathodus asncellosus (Guanell). Sentle specimen, Sample G909. 19 - Streptognathodus (?) sp. Sample G912. 20,23 - Idiognathodug delicatus Gunnell. Imature specimens, Sample G912. 22 - Idiogothodus sinuosus Graves n. sp. Holotype, Bample G908. 25-27 -- Idiognathodus magnifious. 25, 26, Sample G912. 27, Eample C904.

PLETEVI

COMODONRS OF THE DIMPLE FGRAA TION

BIBLIOGRAPEY

Baker, C. L., Structural Geology of Trang-Pecos Tezas:
Un1v. Bull. 3401, pt. 2, 1934.
, Probable lower Miselssipplan age of the Caballos Novaculite, New Mexico: Am. Assoc. Petroleum Geologisto Bull., vol. 24, pp. 1679-1681, 1940. Baker, C. L. and Bownan, w. F., Geologio Rxploration of the southeastern Front Range of Trans-Pecos Texas: Texas Univ. Bull. 1753, 1917.

Branson, E. B. and Mehl, M. G., Conodont Studes: Univ. of H 1 esouri Studies, vol. 8, 1933.

Caney conodonts of apper Misaissippian age: Denison Univ. Bull., vol. 35, pp. 167-178, 1940. , Conodonts from the Keokuk formation: Dention Vniv. Bull., vol. 35, pp. 1F9-188, 1840. , The recognition and interpretation of mixed conodont faunas: Denison Univ. Buli., vol. 35, pp. 195-209, 1940.
, Hew and little known conodont genera:
Jour. Paleontology vol. 15, pp. 97-106, 1941.
Cooper, C. L., Conodonts from the Arkangas Novaculite, Moodford formation, Obio shales, and Sumbury shale: Jour: Paleontology, vol. 5, pp. 143-151, 1931.

Cooper: C. L., Conodonte from the woodford formation of Oklahoma: Jour. Paleontology, vol. 5, pp. 330-245, 1931.

Oullison, J. S., Dutchtown fauna of southeastern Missouri: Jour. Paleontology, vol. 12, pp. 219-228, 1938.

Flligon, Sanuel, Revision of Penasylvanian conodonta: Jour. Paleontology, rol. 15, pp. 107-143, 1941.

Furnish, 预. M., Barragy, H. J., and willex, A. K., Ordovician fossilg from the upper part of the type section of the Deadwood formation of South Dakota: Am. Assoc. petroleum Geologists Bull., vol. 20, pp. 1329-1341, 1936.

Furaish, $\#$. M., Conodonts of the Praifie du Ohien
 valley: Jour. Paleontolory, vol. 12, pp. 318-340, 1938.

Gunnell, F. H., Oonodonts from the Ft. Soott limestone of Miesouri: your. paleontology, vol. 5, pp. 244 255, 1931.

Harlton, B. H., kicropaleontology of the Pennsylvanion Johns Valley shale of the ouachita Hountains, 0klahoma: Jour. Paleortology, vol. 7, pp. 3-29, 1933.

Harris, R. झ., and Hollingsworth, R. V., New Pennsylvanian conodonts from O\&lahoma: Am. Jour. Sci., 5th ser., vol. 25, pn. 193-204, 1933.

Ginde, G. J., Conodonts from the Chazy and Gincinnatian: Quart. Jour. Geol. Soo. London, vol. 35, pp. 351369, 1879.

Holmes, $6.8 ., A$ bibliograplay of the conodonts with descriptions of early Mississippian apecies: U. S. Nat. Kus. Proc., vol. 72, no. 2701, art. 5, pp. 1-38, 1928.

Fuddle, J. H., Conodonts from the New Albany shale of Indiana: Bull. Am. Paloontology, vol. 21, no. 72, 1934.

King, P. B., Pre-Carboniferous stratigraphy of the Marathon Uplift: gm. Assoc. Petrolew Geologigts Bul1., vol. 15, pp. 1059-1085, 1931. , Geology of the Marathon Region, Texas: U. S. Geol. Sarvey Prof. Papex 187, 1937. Roundy, R. V., The microfama in the Mississippian Pormations of San Saba County, Texas: U. S. Geol. Survey Prof. Paper 146, 1926.

Sellatde, E. F., Pre-Peleoroic and Paleozoio Syateme in Texas: Texas Univ. Bull. 3832, pt. 1, 1932.

Stauffer, C. \mathcal{R}. , Conodonts from the Decorah sbale:
Jour. Paleontology, षo1. 4, pr. 181-138, 1930.
\qquad , Decorah ghale conodonts frow Kansas:
Jour. Paleontology, vol. 6, pp. 257-364, 1932.
\longrightarrow Conodonts of the Decorah shale (Ordovician):
Joux. Faleontology, vol. 9, pp. 595-620, 1935. —_ Conodonts of the Glenwood beds: Bull. Geol.

SOC. Ang., vol. 46, pp. 125-168, 1935.
Stauffer, C. R., and Plummer, E. J., Pexas Pennsylvanian
conodonts and their gtratigraphio relations:
Texas Univ. Bull. 3201, pp. 13-50, 1932.
St. Clair, D. W., The use of acetic acid to obtain insoluble residues: Jour. Sed. Petrolosy, vol. 5, pp. 146-149, 1935.

Ddden, J. A., Baker, G. L., and Bose, Emil, Revien of the geology of Texas: Texas Univ. Bull. 44; 1st ed., 1916.

Ulrich, E. O. and Baseler, R. S., A clsasification of the tooth-like fosgil conodonts th degcriptions of American Devonian and kississippian species:

ㄹ. ․ Nat. Mra. Proc., vol. 58 , art. 18,
pp. 1-63, 1926.

INDEX

Acodus 40-43, 47 b1costetus 19
denticulatus 13. 47 expansus 13,48
Acontioaus 18, 40, 49
dubiua 22, 49
Agnostus 10
Alsate 7, 22-19, 40, 42
Ambalodus 40, 44
triengularis 25
Amorphograthua 40,44
oxduvicica 25
Beekmentown 15
Belodus 25, 40
wykoffenais 25
Bourland inta. 29, 44
Eryantodina $40,43,50$ sinuose 18, 19, 50
Bryantodus 40, 45 equilaterus 33
Bucania 17
Cabsilos 7, 25-28, 36, 44, 45
Cambrian 7, 10, 41
Caney 30
Carboniferous 28
Cavusgnathus 39, 40, 44-46, 58
gigenta 33
lauta 32
nodolifera 32, 33, 58 gimuata $32,33,60$
Ceraurus 17
Chazyan 20, 23
Cincinnatian 26
Climacograptus 20
Cordyločus 40-44, 51
concinnus 25
delicatus 25 multidentatus 13, 14, 51 plattinensis 22, 25 quadratus 13, 14, 52 eimplex 13 spurius 13, 18
Dagger flat 7-10, 13-15, 40, 41

Decorah 43
Deep Kill 12, 15
Des Hoines 37
Devonian 8, 28, 44
Didymorraptus 11, 14, 20
Dimple $1,8,30-36,40$, 45, 46
D1plogreptus 17
Discuesion of faunas 39
Distribution of conodont genera 40
Drepanodus 40-43, 53 arcuatus 13, 14 parallelu8 13, 14 striatue 13, 14, 53 subarcuatus 19
Edêuise conclornerate 11
Formations in farathon region 6, 7
Fort Pena 7, 11, 15-25, $40,42,43$
Gaptank 7, 35-37, 46
General Geology 4
Glase Mts. 4
Glossograptus 23
Grathodue 39, 40, 45 texanus 32, 33 wapanuckens1s 32, 33
Gondolaila 33
Gonjograptua 12
Fáymond 7, 29, 33-35, 46
Heterognathug 40, 42, 44 1aoneus 13, 25
hindeodelia 32, 33, 40, 45
Ioloznathodus 40, 45,62 delicatus 32, 33 magnificus 32, 33 S1nLoste $32,33,62$
Insoluble residuea 9, 12, 17, 21, 26, 31
Introduction 1
Jackfork 30
Jefferson City 41, 42
Johns Valley 46
Leptochiropmathus 13. 14, 19, 22, 42-45

Ligomodina 40, 45, 53
lexinftonensts 33 pecullaris 32, 63 suppressa 33,64
Lingula 10
Loganograptus 12
Lonchodina 40,45
clarki 33
Lonchodus 40, 45
gimplex 33
Loxomathus $40,43,54$ flabellata 18, 19, 43. 55
Maolurites 15
Maquoketa 44
Marathon formation 7, 10, 13-15, 40
daravilias formation 1,7, $2.2-26,36,39,40,44$
Karble Falls 31
Metalonehoding 40, 45
tenara 32
Jisalagippian 28
Monument Springs dolomite 11, 14, 26
Normanskill 23
Novaculite 4, 26-28, 36
obulus 10
01stodus 40-44, 55
abundans 19
congavus 41
curvatue 13, 25
extengue 14, 43,55
fornicalus 13, 14, 18, 19
spracilis 13, 14, 19, 25 Inclinatus 18, 25 pandus 13, 14, 18, 19 2rodentatug 18, 19. 22, 43, 56
suberectus 14
gulgaris 19
Oneota 41
Ordovician 1, 4, 7, 10, 16, 20, 23, 39
Orthis 20
ozerkodina 40, 44, 45,57
dellcatula 32, 33
macrodentata 18, 19, 43,
57
tenuis 25
Palmatolep1s 40,45 m1nuta 33
magose 33
guperlooeta 32, 33
quadrantinodosa 32
paltodus 40-44
21stortue 14, 22
gracilis 19, 22, 25
VErtabilis 19
pennsyluanian 2, 4, 5, 7, $30,35,36,39,46$
Fermian 5, 7, 36
Photographic techaique 3
Phrapmodus 40-45
delicatus 25
dissimilaris 25
insculptus 25
undatus 19, 22, 25
Phyllograptus 12
Flattin 43
Polysmathodella 39-45, 65
attenuata $32,33.66$
convexa 32, 33,68
ouachitens1s 33. 59
Polynnathus 40, 45
brevilamujna 32, 33
triengularig 33
Pottsville 30-35
Properation of amples and specimens 2, 3
Prioniodua 40, 45
barbatus 33
Ptjohogiyotus 17
Richmond $\hat{2} 4,26$
Scolopodus 40-44
pseunoquactatus 13
quadripl1catus 13, 25
Shakopee 41, 43
Smithuick 46
Spathergathadus 40, 45
comantatug 32
dispareils 33

Spatiognathodug (cont.)
minutus 32
Sponge spicules 10, 26
Stockton Gep 35
Stratigrepky 6
StroptoEnathodus 40, 45,71 cancellosua 32, 33 Eracilis 33 1rregularie 32, 33,71 nodosus 32, 71
Synorioniodina 40, 45,73 altemata 32, 33 compresse 32,73 macrodenta 33

Syetematic descriptions 17
Tesnus 7, 28-30, 45
Tetresraptus 12, 20
Trention 23, 24, 26
Srichognathus $40,4,5$
subacoda 32,33

Trucherognathus 22,40
Ulichoding 19, 40
Hapanucka 31, 45
Mestphalian 30
Molrcanp 7, 36,37
Wood's Hollow 7, 18-25.

[^0]: 2. King, P. B., op. cit., pp. 28-59.
 3. Branson, E. B. and Mehl, K. G., Conodont Studies: University of hissouri studies, vol. R, po. 1-19, 1934.
 4. St. Clair, D. 多., The use of acetic acid to obtain insoluble residues: Jour. Sed. Petr., vol. 5, pp. 146-149, 1935.
[^1]: 7. King, P. B., Pre-Garboniferous stratigraphy of the Harathon uplift: Ars. Asso0, Petrolegr Geologists Bull., vol. 15, pp. 1064-1065, 1931.
 8. Baker, C. L. and Bowman, w. F., Geologie exploration of the southeastern front range of trans-Pecos Texas: Texas Oniv. Bull. 1753, p. 83, 1917.
[^2]: 29. Baker, C. L., Probable lower Hisgisaippian age of Oaballos Noveculite, Mew Mexico: Am. Assoo. Petroleun Geologists Bull., vol. 24, pp. 1879 1881, 1940
