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ABSTRACT 

There is a lack of procedures that can be used to find 

good internal state assignments for asynchronous sequential 

circuits operating in the non-normal mode. Presented here, 

are two generalized state assignments, which are functions 

only of the number of rows in a flow table. The suggested 

bounds for the generalized state assignments are m + [log2m] 

and m + [m/2] internal state variables for a 2m-row flow 

table, where [ 1 means "next lowest integer". Both general-

ized state assignments produce group (linear) codes. The 

algorithms for generating these internal state assignments 

are easy and straight-forward to implement. It is shown that 

each of these state assignments satisfactorily encode certain 

classes of flow tables. Even though a general proof has not 

been found to show that these assignments are standard, worst-

case situations have been constructed, and it has never been 

necessary to increase the suggested bounds. 

An internal state assignment procedure for obtaining 

non-standard or non-generalized state assignments is also 

presented. The internal state assignments, using the pro-

posed method, are obtained in a systematic manner; and 

generally require fewer internal state variables than other 

procedures presently available. 
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I. INTRODUCTION 

A sequential circuit denotes a class of devices whose 

outputs depend not only on the present inputs but also on pre

vious inputs. In order to keep track of previous inputs, a 

sequential circuit will assume one of a set of internal states 

that will "remember" necessary information regarding the pre

vious inputs. Changes in internal state permit the circuit to 

produce different outputs for the same inputs and in this way 

the circuit exhibits a memory quality. 

Sequential circuits can be divided into two basic cate

gories: synchronous and asynchronous. In the synchronous de

sign, clock pulses synchronize the operation of the circuit. 

In the asynchronous design a clock is assumed not to be avail

able or perhaps not desired. A desirable feature of the asyn

chronous design is that the resulting circuit may take full 

advantage of the basic device speed since the circuit does not 

have to wait for the arrival of clock pulses before effecting 

a transition. 

The operation of an asynchronous sequential circuit can 

be described by means of a flow table such as shown in 

Figure 1-1. A flow table is a two-dimensional array of next

state entries whose coordinates are present internal state and 

input state. Each column represents an input state; each row 

represents an internal state; and the table entries specify 

the next internal state. If the next internal state is equal 

to the present internal state, the state is said to be stable 

and is denoted by a circled entry. Uncircled entries are 



called unstable. The combination of input state and present 

internal state is called the total circuit state. Associated 

with each stable state is an output state. 

Il I2 I3 

1 @/1 3 5 

2 1 5 @!3 

3 1 Q)/2 2 

4 014 5 2 

5 4 @/1 @!2 

FIGURE 1-1. Flow table example 

The operation of the circuit shown in Figure 1-1 can be 

described in part as follows: if the present internal state 

is 1 and the input state is I 1 , the next internal state is 1 

and the circuit is in a stable condition with an output of 1. 

As long as the input does not change, the circuit will remain 

in internal state 1. If the input is changed to I 2 , the next 

state is internal state 3 and the circuit will experience a 

transition to state 3 and will remain in this state until the 

input is changed again; the output state would be 2. Note 

that if the input is changed back to I 1 , the circuit will 

return to internal state 1. 
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The output states are a function of the input and inter

nal states of the flow table. Since this paper is concerned 

only with the internal operation of a sequential circuit, the 

output states will be omitted in all future flow tables. 

In some flow tables, particular total circuit states are 



never entered and the corresponding next state entries are 

unspecified. The unspecified next state entry is called a 

"don't care" state. Flow tables with "don't care" states are 

called incompletely specified flow tables. Since a "don't 

care 11 state is never entered in the synthesis of the actual 

circuit, it is perrnissable to assign any value to a "don't 

care" state to simplify the final design. The material pre

sented in this paper applies to completely specified and to 

incompletely specified flow tables. 

Definition: An asynchronous sequential circuit is said 

to be operating in the fundamental mode if the inputs are 

never changed unless the circuit is in a stable condition. 

Fundamental mode operation is usually required in prac

tical design of these circuits and hence this paper will be 

concerned only with the design of fundamental mode circuits. 

3 

Definition: A flow table with the characteristic that 

each unstable state leads directly to a stable state is called 

a normal flow table. A non-normal flow table allows the cir

cuit to assume a sequence of internal states in going from an 

unstable state to a stable state. 

To illustrate the above definition, compare the flow table 

in Figure 1-1, where all unstable states lead directly to 

stable states, with that shown in Figure 1-2, where some un

stable states lead to other unstable states. 



4 

Il I2 I3 

1 0 3 5 

2 1 4 0 
3 2 0 4 

4 0 5 2 

5 4 ® ® 
FIGURE 1-2. Non-normal flow table 

Assume in both circuits that the present internal state 

is 3 with input I2; in both cases the circuit is in a stable 

condition. If the input is changed from I2 to I 1 , both 

circuits described by the flow tables would finally experience 

a transition to internal state 1. The difference in operation 

is that the circuit in Figure 1-1 will experience a direct 

transition from internal state 3 to internal state 1; where 

in Figure 1-2, the circuit of that flow table will first ex

perience a transition from internal state 3 to internal state 

2 and then to internal state 1. 

One of the basic steps in the synthesis procedure of 

designing an asynchronous sequential circuit is obtaining an 

internal state assignment. The internal state assignment 

problem consists basically of encoding each of the internal 

states of a sequential circuit with a q-tuple (binary code) 

or set of q-tuples. The q-tuples are encoded by q internal 

state variables, Yl,y2, ••• ,yq. With q internal state var

iables, at most 2q internal states can be encoded. 
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The values of the internal state variables for each state 

can be assigned in many different ways. The way in which these 

values are assigned can make vast differences in the logical 

structure of the circuit realization, in the operating speed 

of the actual circuit, and in the amount of circuitry required 

to implement the realization. In general, the state assignment 

method is chosen to achieve one goal or another, such as these: 

maximum operating speed; minimum hardware requirements for 

realization of the resulting circuit; or for even the greatest 

ease of design, which is necessarily a compromise between 

operating speed and economy for the sake of design simplicity. 

Definition: A ~ condition exists in an asynchronous 

sequential circuit whenever a transition between a pair of 

states requires the simultaneous change of two or more inter

nal state variables. If a race condition can lead to false 

operation of the circuit, it is designated as a critical race. 

Every internal state assignment must permit circuit 

operations free of critical races. One basic approach for 

doing this is to allow no races; therefore, there can be no 

critical races. The second approach is to obtain an assign

ment that permits races, where all races are non-critical. 

In an assignment which permits a circuit to operate in 

the normal mode, all internal state variables that are to 

change state during a transition from an unstable state to a 

stable state are excited simultaneously at the beginning of 

the transition. Such assignments are called single-transition

time assignments [1]. In an assignment which permits a circuit 
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to operate only in the non-normal mode, all internal state 

variables that are to change state during a transition between 

states do not have to be simultaneously excited at the begin-

ning of the transition. In many cases, only one internal state 

variable at a time is excited to effect a transition between 

a pair of states. If the average a~ount of time for an inter-

nal state variable to change state is ~t, then for normal 

operation the average time for each transition betHeen an 

unstable and stable state would be ~t. For non-normal opera-

tion, the average time for each transition between an unstable 

and stable state would be n·~t, where n is equal to the number 

of unstable states the circuit assumed before arriving at the 

stable state. It is clear, then, that an assignment which 

permits normal operation results in a circuit with faster 

operating speed than an assignment \vhich alloHs only non-

normal operation. 

Internal state assignment procedures for constructing 

critical-race-free assignments in normal mode flm·;r tables are 

well established [1,2,3,4]. Some of these procedures produce 

mini~um variable assign~ents that are dependent on the 

characteristics of the flow table. Computer programs are 

available that generate the state assignment and corresponding 

design equations [6,7,8]. On the other hand, relatively little 

has been published concerning the non-normal mode of operation. 

Definition: A standard stnte assignment is one wltich is 

a function only of the number of internal states that originally 

appear in the flow table and is independent of particular 
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internal state transitions, which may or may not be required. 

From the ease of design sta~dpoint, a standard state 

assignment might be the simplest to use: thus one can be 

assured that the resulting state assignment is critical-race 

free, and it takes minimal effort to obtain this assignment. 

On the other hand, standard state assignm8nts generally re

quire more internal state variables than non-standard assign

ments. For a 2m-row flow table, Huffman [2,3] has established 

upper bounds of 2m - 1 internal state variaLles for a circuit 

operating in the normal mode, and 2m - 1 internal state vari

ables for a circuit operating in the non-normal mode. The 

bounds associated with these different assign;rnents imply 

that the price usually paid for increased circuit speed is 

an incrc~ase in the number of internal state variables with a 

probable increase in circuit complexity. In general, fewer 

internal state variables are required to encode a non-normal· 

flow table than a normal flm·1 table. The most serious limi

tation in attempting to encode a non-nor~al flow table is the 

lack of technique~ that arc easy to apply in obtaining state 

assignments. 

At present, the non-norrnu.l standard assignr.'.ent developed 

by Huffman [ 2, 3) is the only straigi.Tt-for,vurd method for obtain

ing non-normal state assignments. Dounds of 2m - 1 internal 

state variables for non-normal 2m-row flow tables are asso-

ciated with these intermeshcd row-set assignments. There is 

a multiple coding of internal states in this assignment, where 

each state is assigned several codes. The structure of the 



intermeshed row-set assignment is such that at least one of 

the codes assigned to each internal state is adjacent to a 

code assigned to every other state in the assignment; there~ 

fore, it is clear that the resulting assignment is standard. 

Recently a standard assignment for an 8-row flow table 
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has been presented that requires only four internal state 

variables instead of five produced by Huffman [8]. This 

assignment was obtained by an exhaustive approach aided by a 

computer. Program run times imply that the exhaustive approach, 

used to verify that an assignment is standard, is impractical 

for larger flow tables. 

Hazeltine [9] also treats the internal state assignment 

problem for non-normal flow tables. Hazeltine's method con

sists of attempting to construct connecting sequences between 

all stable states and their corresponding unstable states. 

The circuit can make the required transitions within each 

connecting sequence through a change of a single internal state 

variable at a time. There is trial and error associated with 

obtaining the assignment and the connecting sequences. The 

upper bound for Hazeltine's method is also 2m- 1 internal 

state variables for a 2m-row flow table. 

Presented in this paper are two generalized state assign

ments which are generated in an easy and straight-forward 

manner. The suggested bounds for these assignments are 

m + [log2m] and m + [m/2] for a 2m-row flow table, where [ 1 

means "next lowest integer." Since these assignments are 

functions only of the number of rows in a flow table, they 
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have characteristics similar to that of standard assignments. 

Since a general proof has not been found to show that these 

assignments satisfactorily encode every flow table, they cannot 

be called standard assignments. 

Each of the generalized state assignments can be shown to 

satisfactorily encode certain classes of flow tables, and these 

proofs are given in the following chapters. Worst-case flow 

tables have been constructed, and it has never been necessary to 

exceed the suggested bounds. 

Both generalized state assignments seem to require fewer 

state variables to encode a 2m-row flow table than a Huffman 

assignment. Each generalized state assignment is much easier 

to produce and frequently requires fewer internal state varia

bles than assignments obtained with Hazeltine's method. For 

example, a five variable assignment is given for the flow 

table presented in Hazeltine's paper and both generalized 

assignments produce a four variable assignment that satis

factorily encode this flow table. 

Lastly, a non-normal state assignment procedure is pre

sented that is dependent on flow table structure. An algorithm 

for finding non-standard or non-generalized state assignments 

is given and applies to all types of flow tables. The al

gorithm is designed to be relatively straight-forward, but 

may not necessarily produce minimum variable assignments. 



II. GENERALIZED STl\.TE ASSIGNHENT 1 

A. Preliminaries 

Before specific details are given concerning either 

generalized state assignment, a few preliminary ideas and 

definitions will be presented which are common to both 

assignments for non-normal mode sequential circuits. 

Definition: A k-set of a flow table column consists of 

all k-1 unstable entries leading to the same stable state, 

together with that stable state. 

Definition: A column partition is a collection of the 

k-sets that appear in a column of a flow table. 

The flow table of Figure 2-1 illustrates the above 

definitions. 

.Il I2 

1 ,0 2 

2 1 0 
3 1 0 
4 0 3 

5. 4 ® 
6 ® 5 

FIGURE 2-1. Flow table to illustrate column partitions 

The column partition for the column under input state I1 is 

10 

{1,2,3; 4,5; 6} and the column partition for the column under 

input state I2 is {1,2; 3,4; 5,6}. Note that the last column 

partition is composed of only 2-sets. 
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Definition: A transition path is the set of states that 

the circuit assumes in undergoing a transition between an 

unstable and stable state. 

An internal state assignment is a satisfactory or valid 

assignment, if there are no critical races, and if the inter

section of the transition paths associated with states of 

different k-sets is the null set. Each transition path 

associated with the state assignments presented in this paper 

will be a sequence of unit-distance states where only one state 

variable is excited in effecting a transition between the 

states of the transition path. Since only one state variable 

is excited in effecting a transition from one state to another, 

no races, critical or otherwise, can occur. Therefore, in

suring that the t~ansition paths associated with different 

k-sets have no states in common is the only condition that has 

to be met in showing the existence of a valid assignment. 

Saucier [8], in showing that a state assignment for a 

12-row flow table is satisfactory for all column partitions 

which consist of only 2-sets, used a computer to verify that 

the transition paths of the different 2-sets were disjoint~ 

the run time associated with this program was in the order of 

five hours. This implies that it would be difficult to verify 

by an exhaustive approach that all column partitions of even 

this type for larger flow tables are satisfactorily encoded 

by a particular assignment. 

It would be highly desirable to show that the generalized 

assignments are standard assignments. From the above dis-
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cussion, certainly an exhaustive approach is out of the ques

tion due to excessive program run times. In an effort to show 

that the generalized state assignments satisfactorily code as 

many cases as possible, worst-case situations will be postu

lated and these cases will be given most of the consideration. 

Definition: If a transition is to be effected between a 

pair of states Sa and sb, .then the pair of states Sa,sb is 

called a transition pair. 

Both Hazeltine [9] and Saucier [8] imply that column 

partitions that consist of only 2-sets are the most difficult 

to encode. There seems to be more flexibility associated with 

establishing transition paths between the states of k-sets 

larger than 2-sets. The transition pairs associated with 

2-sets consist of a stable and an unstable state and there is 

one transition pair for each 2-set. The transition path for 

a 2-set must not contain any states in the state assignment 

other than those states of the 2-set. On the other hand, both 

states of a transition pair can be unstable states in k-sets 

larger than 2-sets. For example, consider a 3-set composed of 

states 1,2, and 3, with state 1 being the stable state. One 

set of transition pairs would be 1,2; 1,3 where the stable 

state is a member of each transition pair. Two other sets of 

transition pairs are 1,3; 2,3 and 1,2; 2,3. The operation of 

the circuit dictated by the set of transition pairs 1,3; 2,3 

for example, is described as follows: if the circuit assumed 

unstable state 2, it would experience a transition to state 3 
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and then to state 1. In general, for k-sets larger than 2-sets 

there are many sets of transition pairs that can describe the 

operation of the circuit. Furthermore, the transition paths 

associated with transition pairs of the same k-set can have 

states in common. Consequently, there are more possibilities 

available in finding a satisfactory transition path for k-sets 

larger than 2-sets. 

There also seems to be considerable flexibility associated 

with establishing transition paths in flow tables which have 

"don't care" states. During the design of the circuit, "don't 

care" states can be specified to any desired value to aid in 

the synthesis of the circuit, and therefore, can become members 

of any k-set to facilitate the construction of the transition 

paths. 

In this paper, most attention will be given to column 

partitions which consist of only 2-sets since they seem to 

constitute a situation where it is more difficult to construct 

a satisfactory set of transition paths. 

Definition: Mod 2 addition (exclusive OR) is defined as 

follows: 

0 e 0 = 0 

0 e 1 = 1 

1 e 0 = 1 

1 e 1 = 1 

The symbol denoting this operation is e. 

As noted in the definition, mod 2 addition is defined over 

the set of binary digits {0,1}. It can be seen that this 



operation is commutative, associative, and closed. 

Definition: Consider any sequence of binary digits 

a 1 , a 2 , ••• ,ay. The sequence possesses even parity if the 

number of l's in the sequence is even, and possesses odd 

parity if the number of l's in the sequence is odd. 

Consider a set of binary digits {a.}, i = 1,2, ••• ,s 
~ 

14 

where s is an even number. Let the mod 2 sum a 1 e a 2 e ... 

e a~ = b. Since the operation is closed, b E {O,l}. It has 

been established [12] that if a 1 ,a2 , ••• ,a~ possesses even 

parity, then b = 0 and if a 1 ,a2 , ••. ,a~ possesses odd parity, 

then b = 1. Therefore, the binary sequence a 1 ,a2 , ••• ,as' b 

will always possess even parity. 

B. Characteristics of Assignment 1 

Generalized State Assignment 1 {hereafter called Assign-

ment 1) requires m + [log2ml state variables to encode a 

2m-row flow table, where [ ] means the "next lowest integer." 

For example, for a 27 -row flow table, Assignment 1 requires 

nine state variables. One distinct advantage associated with 

this state assignment is the ease at which it can be generated. 

Definition: A set of state variables {y1 ,y2 , ••• ,yk} 

is an independent set of state variables if no yi in the set 

is equal to the mod 2 sum of a subset of the other state varia-

bles of the set. 

To illustrate this definition, consider the following set 

of state variables. 
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y1 y2 y3 y4 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 0 

Since y2 $ y3 = y4, this set is not an independent set of 

state variables. An independent set would be y 1 and any two 

of the subset {y2 ,y3 ,y4 }. 

Definition: Consider a set of independent state variables, 

{y1 ,y2 , ••• ,y~} where~ is a non-zero even number (~ ~ 2). 

e y~ = yn, then the complete set {y1 ,y2 , ••• , 

y~,yn} is called a parity~· There are ~ independent and one 

dependent state variable(s) in each parity set. The dependent 

state variable yn of the parity set is considered as being 

generated from the independent state variables. 

From earlier discussions, each parity set will possess 

even parity. In the preceding example, state variables y 2 , y 3 , 

and y 4 form a parity set and y 4 is said to be generated from 

Y2 and Y3 (y4 = Y2 e Y3>· 

Following is an algorithm for generating Assignment 1 for 

a 2m-row flow table: 

Step 1. Form all possible 2m code words with m binary 
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independent state variables. Denote these as state variables 

yl,y2, • · .,ym. 

Step 2. The final code will have m + [log 2m] state varia

bles. Two slightly different procedures are given to determine 

Ym+l'Ym+2 ' • •• ,yn' n = m + [log2m]. 

a) If m is even, divide the set of state variables {y1 ,y2 , 

• • .,ym} into [log2ml nearly equal disjoint subsets, each sub

set containing an even number of state variables. The state 

variables in each of these subsets are considered as the in-

9ependent variables of a parity set and each of the variables 

Ym+l'Ym+2 ' • •• ,yn is considered as the dependent variable of 

one of the [log 2ml subsets. Therefore, each of the [log 2m] sub-

sets generates one of the variables ym+l'Ym+ 2 ' ••. ,yn. Every 

state variable is an element of some parity set. 

b) If m is odd, divide the set of state variables {y1 ,y2 , 

.,ym-l} into [log2ml nearly equal disjoint subsets, each 

subset containing an even number of state variables. With each 

of the [log 2m] subsets, generate one of the state variables ym+l' 

Ym+ 2 ' ••• ,yn as in step 2a above. State variable y is the m 

only state variable that is not a member of some parity set. 

To illustrate this algorithm, a number of assignments '\vill 

be generated. First consider the assignment for a 23-row flow 

table. Step 1 states that with y1 , y 2 , and y 3 , form 23 unique 

code words. This is shown in Figure 2-2. Since [log 23] = 1, 

one parity set needs to be formed. This parity set can be 

{y1 ,y2 ,y4 } and the additional state variable y 4 would be equal 

to y 1 ~ y 2 • The complete assig1~ent is shown in Figure 2-3. 



State 

1 

2 

3 

4 

5 

6 

7 

8 

yl 

0 

0 

0 

0 

1 

1 

1 

1 

y2 

0 

0 

1 

1 

0 

0 

1 

1 

y3 

0 

1 

0 

1 

0 

1 

0 

1 

FIGURE 2-2. First step in generating an assignment 

State 

1 
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yl 

0 

0 
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0 

1 

1 

1 

1 

y2 

0 

0 
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1 

0 
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y3 

0 

1 

0 

1 

0 

1 

0 

1 

y4 

0 

0 

1 

1 

1 

1 

0 
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FIGURE 2-3. Complete code for an 8-row flow table 
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An equally valid assignment would have parity sets of {y1 , 

y 3 ,y4 } or {y2 ,y3 ,y4} in which cases, y4 = y 1 e y 3 and y4 = y 2 

e y 3 respectively. Each of these assignments is similar to the 

standard assignment known to exist for an 8-row flow table and 

requires one less state variable than that produced by Huffman 

[8]. Saucier obtained and proved that this assignment is a 
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standard assignment by an exhaustive approach aided by a com-

puter. 

To illustrate the assignment ~lgorithm even further, the 

code for 5 a 2 -row flow table is shown in Figure 2-4. 

State yl y2 y3 y4 Y5 y6 y7 

1 0 0 0 0 0 0 0 
2 0 0 0 0 1 0 0 
3 0 0 0 1 0 0 1 
4 0 0 0 1 1 0 1 
5 0 0 1 0 0 0 1 
6 0 0 1 0 1 0 1 
7 0 0 1 1 0 0 0 
8 0 0 1 1 1 0 0 
9 0 1 0 0 0 1 0 

10 0 1 0 0 1 1 0 
11 0 1 0 1 0 1 1 
12 0 1 0 1 1 1 1 
13 0 1 1 0 0 1 1 
14 0 1 1 0 1 1 1 
15 0 1 1 1 0 1 0 
16 0 1 1 1 1 1 0 
17 1 0 0 0 0 1 0 
18 1 0 0 0 1 1 0 
19 1 0 0 1 0 1 1 
20 1 0 0 1 1 1 1 
21 1 0 1 0 0 1 1 
22 1 0 1 0 1 1 1 
23 1 0 1 1 0 1 0 
24 1 0 1 1 1 1 0 
25 1 1 0 0 0 0 0 
26 1 1 0 0 1 0 0 
27 1 1 0 1 0 0 1 
28 1 1 0 1 1 0 1 
29 1 1 1 0 0 0 1 
30 1 1 1 0 1 0 1 
31 1 1 1 1 0 0 0 
32 1 1 1 1 1 0 0 

FIGURE 2-4. State assignment for a 25-row flow table 

In this assignment, the parity sets are {yl,y2,y6} and {y3,y4' 

y7} where y1 ED y 2 = y 6 and y 3 ED Y4 = y7. 

In generating an assignment for a 26-row flow table, the 
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independent state variables are y1 ,y2 ,y3 ,y4 ,y5 ,y6 and the parity 

sets are {y1 ,y2 ,y7} and {y3 ,y4 ,y5 ,y6 ,y8} with y1 e y2 = y7 and 

Y3 e Y4 e Ys e Y6 = Ys· 

It will be shown that the code generated with the above 

algorithm constitutes a group. A group is a set of elements 

and an operation where -

1) the operation over the set of elements is closed, 

2) the operation is associative, 

3) there exists an identity element, 

4) each element has an inverse. 

In Assignment 1 for a 2m-row flow table, the elements of the 

group are the binary n-tuples (the codes for the states), n = 

m + [log2m], formed by the assignment algorithm and the operation 

is mod 2 addition (exclusive OR). 

Theorem 2-1: Mod 2 addition over any set of binary n-tu-

ples is commutative and associative. If the all-zero n-tuple 

s0 is in the set, then s0 is the identity element and each n

tuple is its own inverse. 

Proof: Since a. e b. = b. e a., where a. ,b. £ {0,1}, 
~ ~ ~ ~ ~ ~ 

s e sb = (al, a2, • • an) e (bl, b2' bn) = a . , • • • I 

(al $ bl, a2 e b2, • • • I a n $ b n) = 

{bl e al' b2 e a2' • . o I b n $ an) = sb e s a' 

and the commutative law holds. By definition, an identity 

element e of a set satisfies the relationship 

s. e e = e e s. = s., 
~ ]. ~ 

for all S. in the set. Since for a. £ {0,1}, 
~ ~ 

a. eo= o ea.= a., 
~ ]. ~ 
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n-tuple s = 
0 

(0, 0, . . , 0) is the identity element since 

so ED s = ( 0, o, . . 0) ED (al, a2, an) = a . , . . . , 
(0 ED al, 0 ED a2' • . . , 0 ED an) = (al, a2, . . . , an) = 

By definition, the inverse of element s. is -1 where s. , 
1 1 

s. ED -1 -1 ED s. = s. s. = s 
1 1 1 1 o' 

S0 being the identity element. Since a ED b = 0, a,b E {0,1} 

only when a = b, 

sa ED s = a (al, a2' . . . , an) ED (al, a2, . . . , an) = 

(al ED al' a2 ED a2, . . . , a n ED an) = ( 0, 0, . . . , 0) = 

sa. 

so, 

for all s a . Therefore each element is its own inverse. Since 

the associative law holds for mod 2 addition over the binary 

elements, all n-tuples under mod 2 addition satisfy the as-

sociative law. ti 

From theorem 2-1, only closure needs to be established to show 

that a set of n-tuples that satisfy the hypothesis of this 

theorem is a group. 

Lemma 2-1: 2m code words coded with m independent state 

variables and mod 2 addition constitute a group. 

Proof: From theorem 2-1, only closure need be shown. 

Since the maximum number of code words that can be generated 

with m state variables is 2m (all possible m-tuples) , closure 

must hold. #i 

Theorem 2-2: The 2m elements of the state assignment 

produced by As signment 1 together with the ope ration of mod 2 

addition form a group. 

Proof: From theorem 2-1, only closure need be shown. 



Consider the rn-tuples Si, s2, and Si, such that 

Si = {al' a2' ••• , am)' S2 = (bl,b2' • •• , bm) 

and 

Sl = (c1 , c 2 , ••• , ern). 

From lemma 2-1, since the set of rn-tuples is closed, there 

exists an S! such that 
~ 

or 

Then 

s• ED s• = s! 1 2 ~ 

{al' a2' . . 
(c1 , c2' . • 

a. 
~ 

ED b. 
~ 

= c. 
~ 

• I a ) m 

o I c ) • rn 

for all 

ED (bl I b2' . . o I b ) = m 

i, i = 1, 2, . . • I m. Let the 
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parity sets be {y1 ,y2 , • • ., yk,yrn+l}' {yk+l' Yk+2' • • ., 

yi, ym+2 } etc. Then the states s1 , s2 , and Si in Assignment 1 

are: 

ak+l ED ak+2 ED . . . EDa 1 , . 
52 = (bl 1 b2' • . • 1 brn' bl ED b 2 ED . • . ED bk' 

bk+l ED bk+2 ED . ED b1 , . . 
s. = (c1 1 c2' . . • 1 ern, c1 ED c2 ED . . . ED ck' ~ 

. 

. ) 

ck+l ED ck+2 e . . . ED c!, . . . ) . 
Since 

and 

(al ED a 2 ED • • • ED ak) ED (bl ED b 2 ED • • • ED bk) = 
{c1 e c 2 e ... ED ck) 

(ak+l e ak+2 e ... e a 1 ) ED (bk+l e bk+ 2 e ... ED b 1) = 

(ck+l ED ck+2 e ... ED c 1), 

s .. 
~ 

Since this is valid for all s1 and s2 in 

. ) 
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Assignment 1, closure is assured. ## 

Assignment 1 is denoted as group G. 

The state assignment produced by Assignment 1 forms a 

group with a maximum distance property. There are no states 

a distance greater than some maximum and it will be shown that 

this maximum value is m for the state assignment for a 2m-row 

flow table. 

Definition: The distance between two states s. and s. is 
1 J 

the number of state variables in which the binary code repre-

sentation of those states differ. The distance is also equal 

to the number of l's that appear in the mod 2 sum of s. and s .• 
1 J 

Let the distance between s. and s. be denoted as I Is. e s. I I· 
l. J 1 J 

If the distance between two states is d, then d state 

variables must be excited to effect a transition between the 

states. As the distance between states of a transition pair 

increases, the number of states in the resulting transition 

path also increases which means that more "spare" states are 

needed to produce a satisfactory transition. It will be shown 

later that it is desirable for the distance to be a minimum 

between states in a state assignment. 

The minimum maximum distance between states in a set of 

2m states is m. The "best" assignment that could be achieved 

is one which encodes the 2m states with m state variables. In 

this case, each m-tuple is a dista nce m from another m-tuple. 

It will be shown that encoding the states with Assignment 1 

does not increase the maximum distance. This means that the 
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same number of state variables must be excited to effect a 

maximum distance transition for states encoded with Assignment 

1 as if the states were encoded with m state variables. 

Encoding the states with Assignment 1 increases the number of 

"spare" states that are available, but does not increase the 

number of states needed in a transition path between maximum 

distance states. Following are some theorems which prove that 

the maximum distance between states encoded with Assignment 1 

is m. 

Definition: The weight of a state is equal to 

1 ls0 e sil 1, where s 0 is the identity element in the group. 

The weight is also equal to the number of l's in the code for 

states .• The weight is also denoted as I Is. II· 
1 1 

Theorem 2-3: If I ls0 e sil I ~ d, some distance, for all 

si in a group code, then I jsk e sjl I ~ d, for all sk and sj 

in the group. 

Proof: Since S0 is the identity element, S0 $ Si = Si 

for all s. in the group. From the closure property of groups, 
1 

there exists an si such that sk e sj = 

hypothesis, < d and 
=-

s .. 
1 

Then from the 

II S0 e si II = II S0 e sj e sk II = II sj ED sk II. 
Therefore, I lsj e ski I ~d. #i 

The significance of theorem 2-3 is that the maximum 

weight of a code word in a group is the maximum distance be

tween the code words. To show that the state assignment for 

a 2m-row flow table has a maximum distance of m, one need only 

show that the maximum weight of any code word is m. 
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Lemma 2-2: A parity set containing k independent state 

variables has a maximum weight equal to the number of indepen

dent state variables k. 

Proof: 

yk,yp}' where 

bles and y = 
p 

Let a parity set be composed of {y1 ,y2 , ••• , 

yl,y2 , • · .,yk are the independent state varia

yl e Y2 e · . · e yk. Since there is even 

parity over each parity set and there is an even number of 

independent state variables, the maximum weight of the parity 

set is k. (Since k+l is odd, k is the maximum number of l's 

that can appear in the parity set.) ## 

Theorem 2-4: The maximum distance between any pair of 

states in the state assignment obtained from Assignment 1 is 

m for a 2m-row flow table. 

Proof: Since every state variable is in one of the parity 

sets for a code for a 2m-row flow table when m is even, the 

maximum weight of a state is equal to the sum of the maximum 

weights of the parity sets. From lemma 2-2, the maximum 

weight of a parity set is equal to the number of independent 

variables in that parity set. It follows that since each 

parity set is disjoint, the sum of the maximum weights of 

several parity sets is equal to the sum of the independent 

state variables in these parity sets. Then for m even, there 

are [log 2m] parity sets, with m independent state variables 

in these parity sets and the maximum weight is m. For m odd, 

ym is not in any parity set; therefore the maximum weight is 

equal to the sum of the maximum weights of the parity sets 

plus the maximum weight of ym which is 1. Since the [log 2m] 
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parity sets are coded with m-1 independent state variables, 

the sum of the maximum weights of the parity sets is m-1. 

Therefore, the maximum weight of any state is m, for m odd or 

even. From theorem 2-3, if the maximum weight is m, then the 

maximum distance between states is m. i# 

As stated previously, a transition path is the set of 

states the circuit can assume during a transition from one 

state to another. For the assignment presented here, the 

transition paths are composed of a sequence of unit-distance 

states, where only one state variable is excited in going from 

one state in this sequence to another. For example, if a 

transition occurred between states Sa and Sb and the transi

tion path was sa,s1 ,s 2 ,s3 ,sb, with the circuit going from 

sa to s 1 , then to s 2 , then to s 3 , and finally to sb, then each 

state in the sequence sa,s1 ,s 2 ,s3 ,sb would differ in only one 

state variable in their binary code representations from the 

state immediately before and after it in the sequence. Sa is 

called the initial state and Sb' the final state. s 1 is called 

the first state in the transition path; s 2 , the second; and 

s3 , the third. With this type of transition path no races, 

critical or otherwise, can occur. Therefore, the only problem 

left to be concerned about in obtaining a valid assignment is 

to guarantee that the transition paths of different 2-sets in a 

column partition have no states in common. 

Definition: Let the distance between two states be d. If 

d state variables are excited, each one only once, in effecting 

a transition between the states, then the transition is called 



a minimum length (ML) transition and the transition path is 

called a minimum length (ML) transition path. Including the 

states of the transition pair, the number of states in a ~~ 

transition path is d + 1. 
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Non-ML transitions would require more states in the tran-

sition path than ML transitions and therefore, the latter are 

more desirable than the former. 

c. Principal-Column Partitions 

It can be shown that Assignment 1 satisfactorily encodes 

a type of column partition that is considered next. 

Definition: A principal-column partition of a flow table 

is composed of 2-sets for which the same set of state variables 

must be excited in a transition from the initial to final state 

of any 2-set. 

To illustrate a principal-column partition, consider the 

flow table and state assignment of Figure 2-5. 

yl y2 y3 y4 Il I2 

0 0 0 0 1 0 8 

0 0 1 0 2 @3 
0 1 0 1 3 6@ 
0 1 1 1 4 0 5 

1 0 0 1 5 4 ® 
1 0 1 1 6 ®7 
1 1 0 0 7 20 

1 1 1 0 8 1 ® 
FIGURE 2-5. Flow table with a principal-column partition 
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The column partitions under input I 1 and I 2 are a 1 = {1,8; 

2,7; 3,6; 4,5} and a 2 = {1,8; 2,3; 4,5; 6,7} respectively. In 

column partition a 1 , state variables y1 , y 2 , and y 3 must be 

excited to effect a transition from one state of any 2-set to 

the other state of the same 2-set. However, in column partition 

a 2 , a transition from state 1 to state 8 requires a change in 

variables y 1 , y 2 , and y 3 and a transition from state 2 to state 

3 requires a change in variables y 2 , y 3 , and y 4 • Therefore, 

a 1 is a principal-column partition and a 2 is not. 

Definition: A maximum-distance column partition is composed 

of 2-sets and the distance between the states of each 2-set is 

the maximum distance of the code. 

In Figure 2-5, both a 1 and a 2 are maximum-distance column 

partitions. Column partition a 1 can be called a maximum-dis

tance principal-column partition. 

From theorem 2-4, the distance between the states of any 

2-set is m for a maximum-distance column partition. For a max-

irnum-distance principal-column partition, the same m stat~ var-

iables would be excited in effecting a transition between the 

states of any 2-set. 

In an effort to describe a transition path in mathematical 

terms, the following notation and idea is presented. If Sa is 

an initial state, then p1 is defined as a quantity such that the 

first state A1 in the transition path can be expressed as 

p1 e Sa = A1 , where p 1 is an n - tuple. Since A1 is a distance 

of 1 from Sa' it follows that I IP1 1 I = 1. In a like manner, 
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the second state A2 in the transition path can be represented 

as p 2 ED Sa = A2 • p 2 is also an n-tuple, but has a weight of 

2 since A2 is a distance 2 from sa. In general, the i-th state 

A. in the transition path can be represented asp. ED Sa= A .• 
~ l. l. 

If the distance between the initial and final states is m, then 

the last unit transition can be expressed as pm ED Sa. The 

states of the transition path would be 

sa' P1 e sa' P2 e sa, • • ., Pm-1 e sa' Pm e sa. 

To illustrate this idea, let Sa = 1001 and Sb = 0111, 

where Sa is the initial and sb is the final state. Note that 

the first three state variables that code S must be excited a 

to effect a transition to sb. The transition path consists 

of four states, and for this example let them be (1001, 0001, 

0011, 0111) = (Sa' A1 , A2 , Sb). The first state in the tran

sition path is 0001 and can be expressed as p1 e sa' where p 1 

is 1000. In a like manner, A2 = p 2 ED Sa' where p 2 = 1010 and 

sb = p 3 ED sa' where p 3 = 1110. 

several characteristics may be noted concerning the pi's. 

It was noted above that I IP1 1 I = 1 and p1 is an n-tuple that 

contains a single 1. Likewise, p. is ann-tuple with i l's, 
~ 

but can be represented as a sum of n-tuples 

Q) C • 1 
~ 

where each c. is ann-tuple with a weight of 1. To show that 
J 

pi+l represents a unit transition from pi' consider P· ~ e pi+l 

p. ED pi+l = (cl Q) c2 Q) . . . $ c.) $ (c l e c 2 • . . $ ci+l)' 
~ l. 

then by the associative and commutative laws, this becomes 



which has a weight of 1. Therefore, I !Pie pi+ll I = 1, for 

all p .• 
l. 

Consider a set H to contain all the initial states of 
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a column partition that is associated with a 2m-row flow table. 

If the column partition contains only 2-sets, then there are 

m-1 . 2 states 1.n H. For principal-column partitions, it is pos-

sible to represent the i-th state in the transition path of 

each state in H as pi e h, for each h in H. For those column 

partitions where the same set of state variables are not excited 

in all the transitions, it is not possible to represent the 

states in the transition path in this manner. 

In the subsequent discussion, the bounds associated with 

Assignment 1 will be obtained, and a proof showing that all 

maximum-distance principal-column partitions are successfully 

encoded by Assignment 1. 

For maximum-distance principal-column partitions, the 

i-th state in the transition path for each state in the initial 

set H can be represented as p. e h for all h ~ H. The entire 
l. 

set of transition paths can be represented as 

• , p. e H, • 
l. 

. . , p e H, 
m 

where p. $ H means p. e h for all h E H. This allows all the 
J J 

transition paths to be found in a parallel fashion. 

The set of initial states is H and the set of final states 

m-1 must be p e H; each set contains 2 states. Each p. e H, m J 

j < m, must not contain any states of G. Since the transition 

paths cannot contain states of G (other than initial and final 

states), each pj e H ~ G, j < m. Therefore, each pj e H must 
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be an n-tuple of the n-cube, that is not a state of G, 

n = m + [log2m]. The elements of then-cube possess the group 

properties. 

Lemma 2-3: The set of all n-tuples of ann-cube N and the 

operation of mod 2 addition constitute a group of order 2n. 

Proof: Since all n-tuples of an n-cube, 2n of them, are 

in N, including the identity element, the closure property of 

groups is assured. By theorem 2-1, N and the operation of mod 

2 addition form a group. ## 

The state assignment is a group G and since the elements 

of G are a subset of the elements of N, G is a subgroup of N. 

If the set of initial states H has the properties of a 

group (i.e. a subgroup of G), then the i-th set of transition 

paths, pi e H, can be called a coset of the group N with· 

respect to subgroup H [10]. Each state of a transition path 

is an element of some coset of N with respect to subgroup H, 

and the set of transition paths can be considered as a set of 

cosets. The following theorems are proven in many abstract 

algebra or modern algebra textbooks and, therefore, are just 

stated [10,11]. 

Theorem 2-Sa: The number of elements in any two cosets 

of group N with respect to subgroup H is the same. 

Theorem 2-Sb: Any two cosets of group N with respect to 

subgroup H are either identical or disjoint. 

Theorem 2-Sc: The number of distinct cosets of group 

N with respect to subgroup H divides the order of N such that 

the number of distinct cosets = Ord(N)/Ord{H). 
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Definition: The set of all states in their respective 

transition path a distance i from the initial states are said 

to belong to the i-th level of the transition paths. This cor

responds to the set of states that result after each state in 

the initial set of states has experienced i unit transitions. 

From theorem 2-Sb, each level of the transition paths must 

be a member of a different coset to insure that the intersec-

tion of any two transition paths is the null set. The number 

of distinct cosets needed then is equal to the number of levels 

needed for the transition paths. Therefore, the maximum number 

of cosets needed must be equal to or greater than the maximum 

number of states in a transition path. The maximum number of 

states in a transition path correspond to those in a maximum-

distance column partition. Theorem 2-6 shows how the bound 

associated with Assignment 1 was arrived at. 

Theorem 2-6: If a se~ of initial states H form a subgroup 
m-1 n of order 2 of a group N of order 2 , then the minimum value 

of n to provide enough distinct cosets for a maximum-distance 

column partition is n = m + [log2m]. 

Proof: The order of the transition path of a maximum

distance column partition is m + 1. Let ~ denote the number of 

distinct cosets of the group N with respect to subgroup H. 

From theorem 2-Sc 

o•2m-l = 2n, 

or 0 = 2n-m+l. 

However, o must be greater than or equal to rn + 1, the number 

of states in a maximum-distance transition path, therefore, 



m + 1 < 2n-m+l: 
= 

This can be rewritten as 

log2 (m + 1) ~ n- m + 1, 

or n ~ m- 1 + log2 (m + 1). 

Since n must be an integer, 

n ~ m- 1 + [[log2 (m + 1)]], 

where [[ ]] means "next largest integer." The minimum value 

of n is 

n = m- 1 + [[log2 {m + 1)]]. 

It can be easily verified that for all m, 

[[log2 Cm + 1)]] - 1 = [log 2m], 

32 

where [ ] means "next lowest integer." Therefore, the minimum 

value of n is 

The set of transition paths can be obtained from the cosets 

of the group N with respect to H. The set of transition paths 

can be represented as 

••• , p. e H, ••• , p e H 
l. m 

for maximum-distance principal-column partitions. There are 

two conditions that must be placed on each pi to insure a valid 

set of transition paths. A valid transition path cannot share 

any states with another transition path (sometimes called "cross-

over") and cannot contain any states of G in the path, other than 

the initial and final states. Each transition path can be des-

cribed as follows: 

• , p. E9 h, ••• , p ED h, 
l. m 

where h is an initial state in H and prn e h is the final state 
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in the 2-set. To insure that a transition path does not contain 

a state of G, other than h and p e h, the following condition 
m 

must be met: 

p. e h ¢ G, j < m. 
J 

Since h e: G, 

.J. G J' < pj ,_ , m. 

Transition paths will have common states if two cosets are 

equal, or if p. e H = p. e H. This condition never occurs if 
l. J 

P· e p. ¢H. 
l. J 

In summary, the two conditions placed on the p. 's in order 
l. 

to produce a valid set of transition paths are: 

1) pi ¢ G, i < m 

2) pie pj t H, for all i and j, i 1 j. 

It should be noted that the pi's are a function of the subgroup 

H, which is the set of initial states. 

At this point it will pe shown that for each maximum-

distance principal-column partition a set of p. 's exist to obtain 
l. 

a set of transition paths. In a principal-column partition, the 

same set of state variables are excited to effect a transition 

from the initial to final state of each 2-set. 

Definition: If Sa and Sb are states of a 2-set, then 

sm = sa e sb. 

From the closure property of groups, it can be seen that 

sm must be an element of G since Sm = sa e sb. Also since, 

pm e Sa = Sb and Sm e Sa = Sb' it follows that pm = Sm. 

Let sa= (a1 , a 2 , ••• , an) and sb = (b1 , b 2 , ••• , bn), 

both being in the same 2-set and each coded with state variables 
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yl,y2, . . • 'y n • Then 

s = s $ sb = m a 

(a1 ED b1 , a2 ED 

If a. 
l. 

differs from 

same, a. ED b. = 0. 
l. l. 

(al, a2' . . a ) ED . ' n (bl' b2' . . . , b n) 

b2' . . . ' a n ED bn). 

b.' l. 
then a. 

l. 
ED b. 

l. = 1, and if they are the 

In general, S has l's in those bit posim 

= 

tions where ai and bi differ and O's where ai and bi are the 

same. If a. and b. differ, then in effecting a transition from 
l. l. 

Sa to sb, state variable yi must be excited. Therefore, S m 

indicates those state variables which are to be excited in a 

transition between the states of a 2-set by the presence of l's 

in those bit positions. 

Let s. and S. be elements of a 2-set in a maximum-distance 
l. J 

principal-column partition. It follows from the definition of 

a principal-column partition that Sm is the same for all Si and 

S. in the column partition, S. ED S. = S • Furthermore, since 
J l. J m 

the distance between the elements of each 2-set is m for a 

maximum-distance column partition of a 2m-row flow table, the 

weight of sm is m. For example, a maximum-distance principal

column partition and the corresponding state assignment for a 

4" 2 -row flow table is shown in Figure 2-6. Note that Sm = 
111100 and s = s. ED s., for all s. and S . which are members 

m l. J l. J 

of the same 2-set. 
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y1 y2 y3 y4 Y5 y6 

1 0 0 0 0 0 0 
2 0 0 0 1 0 1 

3 0 0 1 0 0 1 

4 0 0 1 1 0 0 

5 0 1 0 0 1 0 

6 0 1 0 1 1 1 
7 0 1 1 0 1 1 

8 0 1 1 1 1 0 

9 1 0 0 0 1 0 
10 1 0 0 1 1 1 

11 1 0 1 0 1 1 

12 1 0 1 1 1 0 

13 1 1 0 0 0 0 

14 1 1 0 1 0 1 

15 1 1 1 0 0 1 

16 1 1 1 1 0 0 

a= {1,16; 2,15; 3,14; 4,13; 5,12; 6,11; 7,10; 8,9} 

FIGURE 2-6. Principal-column partition for a 24-row flow table 

At this point, a particular maximum-distance principal-

column partition will be considered. This column partition 

has an Sm' denoted as Smp' where the first m bit positions are 

1 and the m+l through n bit positions are 0. This means that 

state variables y 1 ,y2 , ••• ,ym are to be excited during the 

transition between the states of all 2-sets. For a 24-row flow 

table, this Srn is 111100 and the principal-column partition 

is shown in Figure 2-6. After the p. 's have been determined 
1 

for this type of maximum-distance principal-column partition, 

a mapping of this case onto other maximum-distance principal-

column partitions will be established. 
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Since the pi's depend on the subgroup H, it is important 

to determine the characteristics of H and the method for 

generating this subgroup. The set of elements that compose H 

are to represent all the initial states of a column partition. 

Certainly then, H must not contain both elements of a 2-set. 

If the Sm of a maximum-distance principal-column partition is 

included in H, then from the closure property of groups, there 

exist a pair of states sa and sb in H such that Sa @ Sb = Sm. 

Clearly, this implies that sa and sb, which are in the same 

2-set, are both in H: therefore, Sm cannot be a member of H. 

Another point, not quite so obvious, is that states with 

a weight of 1 cannot be in H. For m-even there are no states 

with a weight of 1 in G, and therefore, none can ever appear in 

H either. For m odd, there is one state in G that has a weight 

of 1. Since state variable ym is not in a parity set, there is 

a state where y = 1 and all the other state variables are 0. m 
To see where the problem arises, one must consider the 

structure of the p. 's. From previous discussions, it was 
~ 

shown that I IPi e pi+ll I = 1, for all i. Sm is a maximum 

weighted code word of G, and from theorem 2-4, Ym = 1 in each 

maximum-weighted code word. This implies that in each maximum

distance column partition, state variable Ym is exciten in a 

transition between the states of each 2-set. Then someplace 

in every transition path, yrn will change state: let pi+l e H 

represent the set of states of the transition path just after 

ym has changed state. Then pi+l e pi is an n-tuple with a 

weight of 1 where ym = 1 and all other state variables are 0. 
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This n-tuple is a state of G. Therefore, a state of weight 1 

cannot appear in the subgroup H if the conditions on the p. 's 
1 

are to be met for maximum-distance principal-column partitions. 

For less than maximum-distance principal-column partitions 

where ym is not excited in the transitions, pi+l m pi can never 

equal the n-tuple with a weight of 1 where Ym = 1. Therefore, 

for those cases where y is not excited, the restriction of not m 

allowing a state of weight 1 in H can be removed. 

In summary, the two conditions placed on H, the subgroup 

containing all the initial states of a principal-column parti~ 

tion are: 

1) Srn for the column partition cannot be in H. 

2) No state with a weight of 1 can be in H when m is odd 

and y is excited to effect the transitions. rn 

The algorithm for generating H for the maximum-distance 

principal-column partition with an S , which has l's in the mp 

first m bit positions and O's in the rest is stated as follows: 

Step 1. With rn- 1 state variables y1 ,y2 , • • .,ym-l 

rn-1 generate 2 unique code words. This is all possible combina-

tions of the m - 1 state variables. Let state variable Ym = 0 

in all the code words. 

Step 2. Generate the parity sets for each state in an 

identical manner used in generating the total assignment. 

m-1 m The order of H must be 2 for a 2 -row flow table, and 

obviously the above algorithm produces the proper order for H. 

By the same means to show that G is a group (Theorem 2-2), H 

is also a group and since each element of H is contained in G, 
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H is a subgroup of G. 

Since the value of for s state variable y in the code m mp 

is 1 and the value of states of H is s y in m all the 0, mp can-

not appear in H. The only assignments which have a state in 

G with a weight of 1 are those when m is odd. The state with 

a weight of 1 has state variable y = 1 and all other state m 

variables are 0. Since y = 0 an all the states of H, no state m 

of weight 1 can appear in H. Therefore, the above procedure 

for generating H meets the two specified conditions. 

In Figure 2-7 is the subgroup H for the assignment as

sociated with the 24-row flow table and column partition shown 

in Figure 2-6. 

yl y2 y3 y4 Y5 y6 

1 0 0 0 0 0 0 

3 0 0 1 0 0 1 

5 0 1 0 0 1 0 

7 0 1 1 0 1 1 

9 1 0 0 0 1 0 

11 1 0 1 0 1 1 

13 1 1 0 0 0 0 

15 1 1 1 0 0 1 

FIGURE 2-7. Subgroup H for 
4 2 -row flow table and column 

partition of Figure 2-6 

In Figure 2- 8 is the subgroup for the assignment associated 

a maximum-distance principal-column partition o f a 
5 

with 2 -row 

flow table. The above algorithm is used to obtain this sub-

group. 
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yl y2 y3 y4 Ys y6 y7 

0 0 0 0 0 0 0 

0 0 0 1 0 0 1 

0 0 1 0 0 0 1 

0 0 1 1 0 0 0 

0 1 0 0 0 1 0 

0 1 0 1 0 1 1 

0 1 1 0 0 1 1 

0 1 1 1 0 1 0 

1 0 0 0 0 1 0 

1 0 0 1 0 1 1 

1 0 1 0 0 1 1 

1 0 1 1 0 1 0 

1 1 0 0 0 0 0 

1 1 0 1 0 0 1 

1 1 1 0 0 0 1 

1 1 1 1 0 0 0 

FIGURE 2-8. Subgroup H for a principal-column partition of a 
5 2 -row flow table. 

NOte that Ym = 0 in all the states of each H above, thereby 

making it impossible to have s or a state of weight 1 appear mp 

in H. 

From the constructed subgroup H, a set of p.'s can be ob-

tained. 

l. 

A satisfactory set of p. 's needed to generate distinct 
l. 

cosets of the group G with respect to the subgoup H must meet 

two conditions: 

1) 

2) 

P ""G i<m i ,_ ' 

p. e p. t H, for all i and j, i ~ j. 
l. J 

Theorem 2-7: If each p. has odd parity over at least one 
l. 

of the parity sets and does not have odd parity over the same 

parity sets as some other p., i ~ j, then both of the above 
J 



conditions are met. 

Proof: Since each state of G has even parity over the 

parity sets, if each p. has odd parity in at least one parity 
~ 
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set, the p. t G. If p. has odd parity in the same parity sets 
~ ~ 

as some p., then p. e p. has even parity in all parity sets. 
J ~ J 

However, if p. and p. do not have odd parity in the same parity 
~ J 

sets, the pi e pj would have odd parity in at least one parity 

set and therefore cannot be in H. ## 

From theorem 2-7, if the parity combination over the parity 

sets of two n-tuples, n 1 and n 2 , are different, then the codes 

for n 1 and n 2 cannot be the same. For example, assume there are 

three parity sets in n 1 and n 2 , and let 1 represent odd parity 

and 0 represent even parity in a parity set. If the parity corn-

bination for each n-tuple is described as follows: 

Parity Set 

~1 _ __;2..,___ 3 

0 1 1 

1 0 1 

The codes for n 1 and n 2 must be different. It should be pointed 

out that n-tuples with the same parity combination do not 

necessarily have the same code. 

Since the number of distinct coscts needed for a maximum-

distance column partition ism, m pi's are needed. Since Pm = 

Sm' a state of G, m - 1 pi's must have odd parity. Then to meet 

the conditions of theorem 2-7, at least m- 1 odd parity com

binations of the parity sets are needed. Since there are [log2ml 
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parity sets in each state of G, there are 2[log2m]_l different 

odd parity combinations available. For some values of m, there 

are not enough odd parity combinations available. For example, 

when m = 14, there are 2[log2l4] - 1 = 7 different odp parity 

combinations and 13 odd parity p.'s are needed. Let A= 2[log2m1. 
~ 

To solve this problem for those values of m where m > A, one 

first generates A - 1 pi's with different odd parity combinations 

with Ym = 0 in all pi's. To obtain pA, one lets ym = 1 in 

pA_1 • Since there are no states in H where ym = 1, pA e pi' 

i = 1,2, • • .,A-1, cannot be in H. The rest of the pi's, 

i = A+l, .,m, are generated in such a manner that each p. 
~ 

and p., i,j >A has a different odd parity combination. 
) 

There are two questions that still must be answered in 

using this procedure: 

1) For i < A and j > A, does there exist an i and a j 

such that pi $ Pj £ H. 

2) Are there enough p.'s available for maximum distance 
~ 

transitions. 

In those pi's where i <A ym = 0, and in those pj's where 

j > A y = 1, therefore p. e p. is ann-tuple with Ym = 1 and 
m ~ J 

is not in H. In the algorithm above, a maximum of 2•A or 

2[log2m] + 1 p.'s are available, and since 2[log2m] + 1 is 
~ 

always greater than m, enough p.'s can be generated for maximum
~ 

distance column partitions. 

Following is a general statement of a procedure to obtain 

a satisfactory set of p.'s: 
~ 

If A > m, determine m different ... 
parity combinations for the pi's. If A < m, first generate 
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A - 1 p. 's with different odd parity combinations keeping y = 0 
~ m 

in each pi; pA will b~ pA-l with ym = 1 •. Generate each pj' 

j =A+ 1, ••• ,m, such that they exhibit a different parity 

combination. 

Theorem 2-8: A satisfactory set of p. 's exist for a 
~ 

maximum-distance principal-column partition for 2m-row flow 

tables. 

Proof: The proof is included in the above discussion. ## 

To illustrate the above procedure, consider a maximum

distance principal-column partition of a 24-row flow table 

with Smp = 111100 of Figure 2-6. The parity sets are{y1 ,y2 ,y5 } 

and {y3 ,y4 ,y6 }. A satisfactory set of pi's are: 

Y1 Y2 Y3 Y4 Ys Y6 

pl = 1 0 0 0 0 0 

p2 = 1 0 1 0 0 0 

p 3 = 1 1 ~ 0 0 0 

p4 = 1 1 1 1 0 0 

The corresponding transition paths are shown in Figure 2-9. 

0 0 0 0 0 0 + 1 0 0 0 0 0 + 1 0 1 0 0 0 + 1 1 1 0 0 0 + 1 1 1 1 0 0 

0 0 1 0 0 1 + 1 0 1 0 0 1 + 1 0 0 0 0 1 + 1 1 0 0 0 1 + 1 1 0 1 0 1 

0 1 0 0 1 0 + 1 1 0 0 1 0 + 1 1 1 0 1 0 + 1 0 1 0 1 0 + 1 0 1 1 1 0 

0 1 1 0 1 1 + 1 1 1 0 1 1 + 1 1 0 0 1 1 + 1 0 0 0 1 1 + 1 0 0 1 1 1 

1 0 0 0 1 0 + 0 0 0 0 1 0 + 0 0 1 0 1 0 + 0 1 1 0 1 0 + 0 1 1 1 1 0 

1 0 1 0 1 1 + 0 0 1 0 1 1 + 0 0 0 0 1 1 + 0 1 0 0 1 1 + 0 1 0 1 1 1 

1 1 0 0 0 0 + 0 1 0 0 0 0 + 0 1 1 0 0 0 + 0 0 1 0 0 0 + 0 0 1 1 0 0 

1 1 1 0 0 1 + 0 1 1 0 0 1 + 0 1 0 0 0 1 + 0 0 0 0 0 1 + 0 0 0 1 0 1 

H 

FIGURE 2-9. Transition paths for a maximum-distance principal
column partition from Figure 2-6 
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The pi's for a maximum-distance principal-column partition 

of a 26-row flow table with S = 11111100 are shown next. The mp 

parity sets are {y1 ,y2 ,y7 } and {y3 ,y4 ,y5 ,y6 ,y8 }. A satisfactory 

set of p. ' s are: 
~ 

Y1 Y2 Y3 Y4 Ys Y6 Y7 Ya 

pl = 0 0 1 0 0 0 0 0 

p2 = 1 0 1 0 0 0 0 0 

p3 = 1 0 1 1 0 0 0 0 

p4 = 1 0 1 1 

p 5 = 1 1 1 1 

p6 = 1 1 1 1 

0 1 0 

0 1 0 

1 1 0 

0 

0 

0 

The p.'s for a maximum-distance principal-column partition 
~ 

with S of a 213-row flow table are shown next. The purpose mp 

is to illustrate the construction of a set of pi's for a rela-

tively large flow table. The parity sets are {y1 ,y2 ,y3 ,y4 ,y14 l, 

{y5,y6,y7,y8,yl5}, and {y9,ylo'Yll'Yl2'Yl6}. 

Y1 Y2 Y3 Y4 Ys y6 Y7 Ya Yg Y10 Y11 Y12 Y13 Y14 Y15 Y16 

pl = 1 0 

p2 = 1 0 

p3 = 1 1 

p4 = 1 

P5 = 1 

p6 = 1 

p7 = 1 

P8 = 1 

P9 = 1 

Plo = 1 

pll = 1 

pl2 = 1 

pl3 = 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 0 

0 0 

0 0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 0 0 0 

1 0 0 0 

1 0 0 0 

0 0 

0 0 

0 0 

1 0 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

0 0 1 0 

0 0 1 0 

0 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 1 1 

1 0 1 1 

1 0 1 1 

1 1 1 1 

1 1 1 1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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It has been shown that a satisfactory set of transition 

paths exist for maximum-distance principal-column partitions 

with S • mp The proof showing the existence of a similar set 

of transition paths for any other S of a maximum-distance m 

principal-column partition is identical to that for the one 

with S mp It is concluded then that Assignment 1 satisfac-

torily encodes all maximum-distance principal-column partitions. 

It is possible to find a subgroup H' and associated p. 's 
~ 

for any Sm of a maximum-distance principal-column partition 

from the subgroup H and associated p. 's of a maximum-distance 
~ 

principal-column partition with S • A mapping does exist mp 

between these two cases. For the example of Figure 2-6 with 

Sm = 111100, the question is how to map this case onto the 

case where Sm = 101011 for instance. In the first case, state 

variables y1 , y 2 , y 3 , and y 4 are excited to effect a transition 

between the states of each 2-set and in the latter case, y1 , 

y3 , y 5 , and y 6 are excited. Note that still two of the three 

state variables of each parity set are excited in a maximum-

distance transition. Almost obvious, the proposed mapping is 

a simple permutation of the state variables coding the parity 

sets. 

If there are k state variables in a parity set, then in 

a maximum-distance transition k - 1 of these state variables 

are excited. This means that only one state variable from each 

parity set is not excited in a maximum-distance transition. In 

the case already presented, the state variable that was not 

excited in each parity set is the dependent state variable. 
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In the case where the dependent state variable of a parity set 

is to be excited in a maximum-distance transition, the mapping 

is a permutation of the dependent state variable with the in-

dependent state variable that is not excited. The following 

theorem shows that after a permutation of this type, the result

ing n-tuple is a state of G. 

Theorem 2-9: The permutation of any two bits within a 

parity set of a state of G will produce a state of G. 

Proof: Let a pari~y set consist of bits {a1 ,a2 ••• ,ak,ap} 

which are values of the state variables {y1 ,y2 , .•. ,yk,yp}. 

Since y 1 ,y2 , .•• ,yk are the independent state variables, 

k 
a 1 ,a2 , ••• ,ak can assume 2 possible values in G. There-

lationship between the bits of the parity set is 

. . . = a • p 

Suppose that a. was permuted with a • The parity set would be 
J p 

{a1 ,a2 , ••• ,ap' ••• ,ak,aj}. This parity set is one of the 

2k parity sets if 

a 1 e a 2 e ••• e ape ••• e ak = aj. 

This must hold since {0,1} and e form an abelian group where 

each element ai £ {0,1} is its own inverse. The parity set 

f . . f h 2k . t d obtained a ter the permutat~on ~s one o t e par~ty se s an 

therefore, the resulting n-tuple is a state of G. ## 

To obtain the subgroup H' of any maximum-distance princi-

pal-column partition from the subgroup H that already has been 

generated for S , those dependent state variables that are 
mp 

excited are permuted with the independent state variable that 

is not excited in each parity set. The total number of 



46 

permutations is equal to or less than [log 2m], the number of 

parity sets. For example, consider the subgroup of Figure 2-7 

with the corresponding Sm = 111100. To obtain the subgroup H' 

for S 
m = 101011, simply permute state variables y 2 with y 5 and 

Y4 with y 6• This is shown in Figure 2-10. 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

0 1 1 0 1 1 

1 0 0 0 1 0 

1 0 1 0 1 1 

1 1 0 0 0 0 

1 1 1 0 0 1 

Subgroup H 

Y1 Y2 Y3 Y4 Ys Y6 

0 0 0 0 0 0 

0 0 1 1 0 0 

0 1 0 0 1 0 

0 1 1 1 1 0 

1 1 0 0 0 0 

1 1 1 1 0 0 

1 0 0 0 1 0 

1 0 1 1 1 0 

Subgroup H' 

FIGURE 2-10. Comparison of H with S = 111100 and H' with 
S = 101011 m 

m 

Simple permutation of the state variables within a parity 

set does not affect the group properties since the set is still 

closed under mod 2 addition. Also under this type of permutation, 

there are no states with a weight of 1 in H', and furthermore 

Sm is not a member of H'; therefore, H' satisfies the conditions 

for a subgroup that contains a set of initial states. 

In a similar manner, the set of p. 's for the subgroup H' 
~ 

are obtained from the p.'s for H by an identical permutation. 
~ 

This is illustrated in the following example where the p.'s for 
~ 
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H' of Figure 2-10 are obtained from the pi's of H by permuting 

y 2 with y5 and y4 with y6 • 

yl y2 y3 y4 Ys Y6 yl y2 y3 y4 Ys y6 

pl = 1 0 0 0 0 0 pl = 1 0 0 0 0 0 

p2 = 1 0 1 0 0 0 p2 = 1 0 1 0 0 0 

p3 = 1 1 1 0 0 0 p3 = 1 0 1 0 1 0 

p4 = 1 1 1 1 0 0 p4 = 1 0 1 0 1 1 

P· 's for H p' IS for H' 
~ ~ 

FIGURE 2-11. Comparison of pi's for H with pi's for H' 

The transition paths for the maximum-distance principal-

column partition with Sm = 101011 are obtained directly from 

the cosets. 

From the above discussions, a satisfactory set of transi-

tion paths can be obtained for any maximum-distance principal

column partition. Each of these transition paths is minimum 

length. There are some less than maximum distance principal-

column partitions where the transition paths cannot be minimum 

length. To demonstrate this, consider the assignment for a 

26-row flow table where the parity sets are {y1 ,y2 ,y7} and 

{y3 ,y4 ,y5 ,y6 ,y8 } (called parity set 1 and 2 respectively). A 

ML transition is not possible between states 00000000 and 

00111100. Note that in making this transition, only state 

variables that code parity set 2 must be excited. Let 00000000 

be the initial state and assume that state variable y3 is 

excited to obtain the first state A1 in the transition path. 

Thus, A1 = 00100000. Since there is odd parity in parity set 2, 
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A1 is not a state of G. If a ML transition path is desired, 

state variable y 4 , y 5 , or y 6 must be excited to obtain the 

second state A2 in the transition path. However, if any one 

of these state variables is excited to obtain A2 , even parity 

would result in parity set 2 and A2 would be a state in G which 

does not represent a satisfactory transition path. To insure 

that there is odd parity in at least one parity set of each 

state in the transition path, it will be necessary to obtain 

A2 by exciting a state variable from parity set 1. This results 

in a transition path that is not minimum length. 

The above situation occurs whenever four or more state 

variables from one parity set and no state variables from another 

parity set must excited in making a transition. All state as

signments for flow tables larger than 25-rows possess this 

characteristic. The transition path associated with this type 

transition cannot be minimum length. 

To illustrate a procedure for finding the transition paths 

associated with a principal-column partition where the transition 

paths cannot be minimum length, consider the assignment for a 

26-row flow table where Sm= 00111100; state variables y 3 , y 4 , 

y 5 , and y 6 must be excited in effecting each transition between 

the states of the 2-sets. If s. and s. are states of the same 
1 J 

2-set, then s1. $ s. = s . 
J m 

As stated before, the subgroup H 

must not contain S if it is to represent a set of initial states. 
m 

For this example, H can be obtained by generating 2 5 code words 

with state variables y 1 , y 2 , y 3 , y 4 , and y 5 • Then letting y 6 

= 0 in all the code words and generating the parity sets will 
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complete the codes for the states of H. Since y 6 = 0 in all 

the states of H, S cannot be in H, and therefore, H is a 
m 

satisfactory set of initial states. A satisfactory set of 

p. 's are: 
1 

Y1 Y2 Y3 Y4 Ys y6 Y7 Yg 

pl = 0 0 1 0 0 0 0 0 

p2 = 0 1 1 0 0 0 0 0 

p3 = 0 1 1 1 0 0 0 0 

p4 = 0 1 1 1 0 1 0 0 

= 0 0 1 1 0 1 0 0 

= 0 0 1 1 1 1 0 0 

Since each p. has odd parity in at least one parity set, 
1 

p. t G. Furthermore, it can be seen that each p. $ p. t H. 
1 1 J 

This meets the conditions placed on the p. 's. Note that there 
1 

are seven states in each transition path, including the initial 

and final states. This results from exciting state variable 

y 2 twice during the total transition. The complete set of 

transition paths are represented by 

H, pl $ H, p 2 $ H, p 3 $ H, p 4 e H, Ps $ H, p 6 $ H. 

Since p. e p. t H, i,j £ {1,2,3,4,5,6}, seven distinct cosets 
1 J 

(including H) are obtained and the set of transition paths is 

satisfactory. 

The number of p. 's that can be generated is 2[log2m] + 1 • 
1 

For maximum-distance principal-column partitions, the number 

of p.'s available is always equal to or greater than m. All 
1 

maximum-distance transitions can result in ML transition 

paths. For those transitions less than maximum distance which 
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cannot produce ML transition paths, it appears that the number 

of pi's needed is less than or equal tom. Even though a 

general proof is lacking, an extensive search has been made 

of principal-column partitions for flow tables up to and in

cluding 225-rows, and the number of pi's needed was always 

less than or equal to m. Due to the size of the problems, 

a less extensive search has been made for flow tables larger 

25 than 2 -rows, but the many flow tables checked confirm that 

the number of p. 's needed is less than or equal tom. There
~ 

fore, it seems safe to conclude that there ah1ays are enough 

pi's available to generate distinct co s ets to yield a satis

factory set of transition paths for those cases where ML 

transition paths are not possible. 

For less than maximum-distance principal-column parti-

tions where the transitions can result in ML transition paths, 

the number of p. 's neede d is less than m. Since 2[log2rn] + 1 
~ 

is greater than or equal tom, there are enough p. 's available 
~ 

to generate distinct cosets to yield a satisfactory set of 

transition paths, and therefore, Assignment 1 satisfactorily 

encodes this type of principal-column partition also. With 

this, it seems safe to conclude that all principal-column 

partitions arc satisfactorily encoded with Assignment 1. 

The procedure for obtaining a set of pi's for a principal

column partition (less than maximum distance) is identical to 

the procedure used in the maximum distance case. The only 

exception would occur for those cases where ML transition 

paths arc not possible, in which case, odd parity is produced 
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in parity sets where state variables originally were not to 

be excited. 

The generation of a suitable subgroup of initial states 

for any principal-column partition will be discussed in detail 

in the subsequent chapter. 
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III. GENERALIZED STATE ASSIGNt1ENT 2 

A. Characteristics of Assignment 2 

Generalized State Assignment 2 (hereafter called Assign

ment 2) requires m + [m/2] state variables to encode a 2m-row 

flow table, where [ ] means the 11 next lowest integer ... Like 

Assignment 1, it has the distinct advantage in being easy to 

generate. An advantage Assignment 2 has in comparison to 

Assignment 1 is that all transitions are minimum length. 

Assignment 2 requires more state variables than Assignment 1 

5 for flow tables greater than 2 rows. In Figure 3-1 there is 

a comparison of the bounds associated with Huffman's inter-

meshed row-set assignment, Assignment 1, and Assignment 2 for 

various 2m-row flmv tables. 

m Huffman's Assignment 1 Assignment 2 

2 3 3 3 

3 5 4 4 

4 7 6 6 

5 9 7 7 

6 11 8 9 

7 13 9 10 

8 15 11 12 

• 

15 29 17 22 

m 2m-l m+[log 2m] m+ [m/2] 

FIGURE 3-1. Comparison of the bounds associated with Huffman's 
assignment, Assignment 1 and Assignment 2 
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The assignment algorithm for Assignment 2 is very similar 

to that of Assignment 1. The only difference is that each 

parity set is restricted to only three state variables - two 

independent and one dependent. Following is an algorithm for 

generating Assignment 2 for a 2m-row flow table: 

Step 1. Form all possible 2m code words with m binary 

independent state variables. Denote these as state variables 

yl,y2' • • • 'Yrn· 

Step 2. The final code will have m + [m/2] state varia-

bles. To determine ym+l'ym+2 ' ••• ,yn, n = m +[m/2], divide 

the set of independent state variables {y1 ,y2 , ••• ,ym} into 

[m/2] subsets, each subset containing two state variables 

y 2i_1 ,y2i' where i = 1,2, ••• ,[m/2]. The state variables 

in each of these subsets is considered to contain the indepen-

dent state variables of a parity set; and each of the state 

variables Ym+l'Yrn+2 ' ••• ,yn is considered as the dependent 

variable to one of the [m/2] subsets. Therefore, the indepen-

dent state variables in each of the [m/2] subsets generates 

one of the state variables Ym+l'Ym+2 ' • • . 'y • n 
If m is even, 

every state variable is in a parity set; if m is odd, ym is 

the only state variable that is not an element of some parity 

set. 

Since [m/2] = [log 2m] for m = 3, 4, and 5, Assignment 1 

and Assignment 2 are identical for these flow tables. 

Figure 2-3 and Figure 2-4 show the codes for 24 and 2 5-row 

flow tables respectively. To illustrate the assignment 
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procedure in a situation where it differs from Assignment 1, 

consider the code to be generated for a 2 6-row flow table. 

The independent state variables are {y1 ,y2 ,y3 ,y4 ,y5 ,y6 } and 

are used to generate 2 6 unique code words. Since [m/2] = 3 

for a 26-row flow table, there are three parity sets in this 

state assignment, {y1 ,y2 ,y7}, {y3 ,y4 ,y8}, and {y5 ,y6y 9 }, 

information the state assignment can easily be generated. 

It can be shown that the 2m states encoded by Assign-

ment 2 and the operation of mod 2 addition form a group. The 

proof is identical to that of theorem 2-2, except each parity 

set in Assignment 2 contains only three state variables. 

Let the group formed by Assignment 2 be denoted hereafter 

as G*. 

Even though Assignment 2 has more state variables asso-

ciated with it for large values of m, it still has the same 

maximum distance characteristic as Assignment 1. 

Theorem 3-1: The maximum distance between any pair of 

states in the state assignment obtained from Assignment 2 is 

m for a 2m-row flow table. 

Proof: The set of independent state variables is 

{y1 ,y2 , .•• ,ym}. Form even, each of the independent state 

variables is in one and only one parity set. Then, from lemma 

2-2 and the proof of theorem 2-4, the maximum weight is m. 

For m odd, each of the independent state variables, except yrn, 

is in one and only one parity set and yrn is not in any parity 
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set. Then the maximum weight of a state is m - 1 plus the 

maximum weight of ym which is 1; the maximum weight then is 

m. Therefore, the maximum weight of a state is m and from 

theorem 2-3, the maximum distance is also m. f# 

Since the distance between two states is equal to the 

number of state variables that must be excited in effecting a 

transition between the states, the number of state variables 

needed to be excited in effecting a transition between states 

that are a maximum distance apart is the same for Assignment 1 

and Assignment 2. For both assignments, the number of states 

in a ML transition path for maximum-distance states is the 

same. 

From theorem 3-1 and theorem 2-4, if a state variable 

is in at most one parity set, the maximum distance between 

code words is m. It can be shown that if a state variable is 

in more than one parity set, then the maximum distance is 

greater than m. Since the smallest parity set contains three 

state variables, while allowing a state variable to be in at 

most one parity set, the maximum number of these parity sets 

that can be obtained from m independent state variables is 

[m/2]. Since each parity set contains a generated or dependent 

state variable and Assignment 2 contains a maximum number of 

parity sets, then Assignment 2 generates the largest n-tuples 

(largest values of n) of any group code with the maximum 

distance being m for 2m code words. A group code, code words 

and an operation that constitute a group, is sometimes referred 

to as a linear code [12]. Assignment 1 and Assignment 2 
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produce linear codes that can be called maximum-distance codes. 

This appears to be the dual of the problem associated with 

producing error-detecting/error-correcting linear codes with a 

minimum-distance characteristic. 

B. Principal-Column Partitions 

Most of the ideas developed for Assignment 1 concerning 

principal-column partitions can be applied directly to Assign-

ment 2. In the treatment of Assignment 2, specific algorithms 

are given for the generation of the subgroup H of initial states 

and the associated pi's for any principal-column partition, 

Assignment 2 will be shown to satisfactorily encode all prin-

cipal-column partitions. 

If A. is the i-th state of a transition path and S is 
1 a 

the initial state (A = S ) , then A. will be represented as o a 1 

p. ~ S • The p. 's are used in an identical manner in finding 
1 a 1 

the transition paths of principal-column partitions for states 

of Assignment 2 as they were in Assignment 1. The set of 

transition paths are represented as 

H, pl ~ H, ••• ,pm $ H, 

where H is the set of initial states. 

In an effort to present a specific algorithm for obtain

ing the subgroup H for any maximum-distance principal-column 

partition, the following theorem will be utilized. 

Theorem 3-2: An even number of (zero or two) state varia-

bles in each parity set must be excited to effect a transition 

between any two states of G*. 
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Proof: Since every state of G* possesses even parity 

over each parity set, an even number of state variables must 

be excited in each parity set to effect a transition between 

any two states of G*. Since the number of state variables in 

each parity is three, there are either no state variables or 

two state variables from each parity set that must be excited 

to effect a transition between any pair of states. ii 

Let H represent a set of initial states. For principal-

column partitions, H can constitute a subgroup of the group 

G *· The conditions placed on the subgroup H are: 

1) Sm for the column partition cannot be in H 

2) If m is odd with state variable ym excited, then no 

state with a weight of_l can be in H. 

Two algorithms are given for obtaining the subgroup H, 

depending on whether m is even or odd. For m odd, the subgroup 

H for maximum-distance principal-column can be generated as 

follows: 

Step 1. With m - 1 independent state variables 

2m-l d. t• t d d •• ,ym-l generate ~s ~nc co e wars. 

variable y = 0 in all code words. 
m 

Let state 

Step 2. Generate the parity sets to obtain the rest of 

the code for each state in H. 

In maximum-distance transitions, state variable Ym must 

be excited and induce a 1 in the code for Sm. Since y = 0 m 

in all the states of H, S cannot appear in H, and for the m 

same reason there cannot be any states of weight 1 in H. 
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Therefore, both conditions placed on H are met. 

For m even, only Sm for the maximum-distance principal

column partition cannot appear in H. In a maximum-distance 

transition, m state variables must be excited. Since there 

are three state variables in each parity set and from theorem 

3-2, it follows that at least one independent state variable 

from each parity set must be excited in a maximum-distance 

transition. Let ye be any one of the independent state vari

ables that must be excited in every transition. Following 

is an algorithm for generating the subgroup H when m is even: 

St 1 G 2m-l d. · d d · ep • enerate 1st1nct co e wor s w1th the set 

of m- 1 independent state variables {y1 ,y2 , ••• ,ym}, where 

ye is not in the set. Let ye = 0 in all code words. 

Step 2. Generate the parity sets to obtain the rest of 

the code for each state in H. 

State variable ye induces a 1 in the code for sm and since 

y = 0 in all states of H, S cannot be in H; and therefore, a 
e rn 

suitable H is obtained with this algorithm. It should be 

pointed out that the above algorithm is not the only one that 

could be used to generate a suitable subgroup H. Any method 

is acceptable, as long as the set of initial states satisfy 

the two conditions stated earlier. 

4 5 
Examples of subgroups H for 2 and 2 -row flow tables are 

shown in Figure 2-7 and Figure 2-8 respectively, where the 

independent state variables are the excited state variables. 

To illustrate the algorithm more specifically, consider a 

maximum-distance principal-column partition of a 26-row flow 
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table with s = 101110101. The parity sets are {y~,y2 ,y7 }, m 

y1 y2 y3 y4 Ys y6 y7 Yg Yg 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 1 
0 0 0 1 0 0 0 1 0 
0 0 0 1 0 1 0 1 1 
0 0 1 0 0 0 0 1 0 
0 0 1 0 0 1 0 1 1 
0 0 1 1 0 0 0 0 0 
0 0 1 1 0 1 0 0 1 
0 1 0 0 0 0 1 0 0 
0 1 0 0 0 1 1 0 1 
0 1 0 1 0 0 1 1 0 
0 1 0 1 0 1 1 1 1 
0 1 1 0 0 0 1 1 0 
0 1 1 0 0 1 1 1 1 
0 1 1 1 0 0 1 0 0 
0 1 1 1 0 1 1 0 1 
1 0 0 0 0 0 1 0 0 
1 0 0 0 0 1 1 0 1 
1 0 0 1 0 0 1 1 0 
1 0 0 1 0 1 1 1 1 
1 0 1 0 0 0 1 1 0 
1 0 1 0 0 1 1 1 1 
1 0 1 1 0 0 1 0 0 
1 0 1 1 0 1 1 0 1 
1 1 0 0 0 0 0 0 0 
1 1 0 0 0 1 0 0 1 
1 1 0 1 0 0 0 1 0 
1 1 0 1 0 1 0 1 1 
1 1 1 0 0 0 0 1 0 
1 1 1 0 0 1 0 1 1 
1 1 1 1 0 0 0 0 0 
1 1 1 1 0 1 0 0 1 

FIGURE 3-2. Subgroup H for s m = 101110101 

{y3,y4,y8}, and {y5,y6,y9}; let them be denoted as parity set 

1, 2, and 3 respectively. The excited state variables are 

yl and y7 in parity set 1, y 3 and y 4 in parity set 2, and Ys 

and in parity set 3. The m-1 states can be generated with Yg 2 

the set of independent state variables {y1 ,y2 ,y3 ,y4 ,y6 }, let-

ting y 5 = 0, and forming the parity sets. This subgroup is 
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shown in Figure 3-2. Note that Sm does not appear in the sub

group H since ye = y 5 = 0. An equally valid subgroup could be 

formed by letting ye £ {y1 ,y3 ,y4}. 

From the constructed subgroup H, a set of p.'s can be 
1 

obtained. A satisfactory set of p.'s needed to generate dis-
1 

tinct cosets for principal-column partitions must meet two 

conditions: 

1) pi t G1 , i < m 

2) P, e pj t H, for all i and j, i f j. 

These are the same conditions placed on the pi's for Assign

ment 1. 

Obtaining a satisfactory set of p. 's for Assignment 2 
1 

is an easier task than that of Assignment 1. In Assignment 1, 

exciting y was a critical factor in larger flow tables. m 

For Assignment 2, one can rely almost completely on theorem 

2-7 for obtaining a satisfactory set of pi's. Theorem 2-7 

is restated below. 

Theorem 2-7: If each p. has odd parity in at least one 
1 

of the parity sets and does not have odd parity in the same 

parity sets as some other p., if j, then both conditions 
J 

placed on the p.'s are met. 
1 

From chapter 2, the number of pi's that can be generated 

for Assignment 1 is 2[log2m] + 1 , where the number of parity 

sets in the codes of Assignment 1 is [log 2ml. For Assignment 

2, the number of parity sets if [m/2]. By the same arguments 

used to determine the number of p.'s for Assignment 1, the 
1 

number of p.'s that can be generated for Assignment 2 is 
1 
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2 [m/2] + 1 
• The number of pi's needed in a maximum-distance 

principal-column partition is m; since [m/2] ~ [log2m] and 

2[log2m] + 1 > m, then 2[m/21 + 1 > m and there exist a set of - -
pi's to generate distinct cosets for each maximum-distance 

principal-column partition. 

In an effort to present a specific algorithm for obtain

ing a set of pi's that would apply for any maximum-distance 

principal-column partition, the following definition will be 

utilized. 

Definition: A parity set is said to be excited (sometimes 

called an excited parity set) if at least two of the state 

variables that code the parity set must change state in a transi-

tion. Those state variables that code the excited parity set 

and must change state to effect the transition are called the 

excited state variables. 

In maximum-distance column partitions there are [m/2] 

excited parity sets. The parity sets are to be numbered from 

1 to k, k = [m/2]. From theorem 3-2, there are two excited 

state variables in each excited parity set. In excited parity 

set i, the excited state variables are to be labeled yil and yi2 ' 

i = 1, 2, • • • , k. In the preceding example, the excited state 

variables are labeled y11 , y12 , y21 , y22 , y31 , and y32 with the 

following relationship: 

yll = yl 

Y21 = Y3 

YJl = Ys 

yl2 = y6 

y22 = y4 

Y32 = Yg• 
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Labeling the state variables in this manner allows a set of 

pi's to be directly for any sm. In Figure 3-3 is shown a set 

of pi's for maximum-distance principal-column partitions where 

m is even. All unexcited state variables are 0 in the p. 's and 
~ 

are not shown in Figure 3-3. 

Excited Parity Sets 

1 2 3 • . . k 

yll yl2 y21 y22 y31 y32 . ykl yk2 

pl = 1 0 0 0 0 0 . . . 0 0 

p2 = 1 0 1 0 0 0 . . . 0 0 

p3 = 1 0 1 0 1 0 . . . 0 0 

• • • 

• 

pk/2 = 1 0 1 0 1 0 . . . 1 0 

pk/2 = 1 1 1 0 1 0 • . . 1 0 
+ 1 

pk/2 = + 2 1 1 1 1 1 0 . . . 1 0 

• • • 

• • • 

• • • 

p2k = 1 1 1 1 1 1 . . . 1 0 
- 1 

p2k = 1 1 1 1 1 1 . • • 1 1 

FIGURE 3-3. Set of p. 's for principal-column partitions when 
~ 

m is even, and when m is odd if Ym is not excited 

For m odd, state variable Ym is not in any parity set. 

A set of p. 's is 
~ 

shown in Figure 3-4 for m odd with Ym excited 
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in each transition. All unexcited state variables are 0 in 

the p. 1 s 
l. 

and are not shown in Figure 3-4. 

Excited Parity Sets 

1 2 3 • . • k 

yll yl2 y21 y22 y31 y32 . ykl yk2 Ym 

pl = 1 0 0 0 0 0 0 0 0 . • . 
p2 = 1 0 1 0 0 0 0 0 0 . . . 
p3 = 1 0 1 0 1 0 0 0 0 . . . 

• 

pk/2 = 1 0 1 0 1 0 . . 1 0 0 • 

pk/2 1 = 1 0 1 0 + 1 0 . • . 1 0 1 

pk/2 = 1 1 1 0 
+ 2 

1 0 • • . 1 0 1 

pk/2 + 3 = 1 1 1 1 1 0 . . . 1 0 1 

• • 

• 

• • • 

p2k = 1 1 1 1 1 1 . . • 1 0 1 

p2k = 1 1 1 1 1 1 . • • 1 1 1 
+ 1 

FIGURE 3-4. Set of p • IS 
l. 

for principal-column partitions for 

m odd with y excited 
m 

For maximum-distance principal-column partitions, k = 

[m/2] • It will be shown shortly that the above p. 1 s are 
]. 

sa tis-

factory for any principal column partition. The distance be-

tween the states of each 2-set is 2k + 1 when m is odd with 
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Ym excited, and 2k otherwise. If ym must be excited and m is 

odd, then the pi's of Figure 3-4 are to be used; otherwise, the 

p.'s are obtained from Figure 3-3. 
~ 

In Figure 3-3 and Figure 3-4, one can note that each p., 
~ 

i < m, has odd parity in at least one parity set. In Figure 

3-3, each pi has a different parity combination from every 

other p., and therefore the conditions of theorem 2-7 are met 
J 

and the distinct cosets can be obtained. In Figure 3-4, each 

pi has a different parity combination from every other pj' ex

cept when i = k/2 and j = k/2 + 1. However, IIPk/2 $ Pk/2 + 1 11 

= 1, and since there are no states of weight 1 in H, pk/2 $ 

pk/2 + 1 cannot be in H. Therefore, the conditions placed on 

the pi's are met. Therefore, Assignment 2 satisfactorily en

codes all maximum-distance principal-column partitions. 

The pi's associated with the previous example of a max-

imum-distance principal-column partition for a 26-row flow table 

with sm = 101110101 are shown in Figure 3-5. 

yl y2 y3 y4 Y5 y6 y7 Ya Yg 

pl = 1 0 0 0 0 0 0 0 0 

p2 = 1 0 1 0 0 0 0 0 0 

p3 = 1 0 1 0 1 0 0 0 0 

p4 = 1 0 1 0 1 0 1 0 0 

P5 = 1 0 1 1 1 0 1 0 0 

p6 = 1 0 1 1 1 0 1 0 1 

FIGURE 3-5. P· Is for principal-column partition with 
l. 

sm = 101110101 
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It has been established that a satisfactory set of transi

tion paths exist for all maximum-distance principal-column 

partitions. The next step is to show that a satisfactory set 

of transition paths exist for all principal-column partitions 

less than maximum distance. In Assignment 1, ML transition 

paths were not possible for certain transitions when there was 

five or more state variables in a parity set. However, with 

three state variables in each parity set in the codes for As

signment 2, all transitions will be ML transitions. Since all 

transitions are ML transitions, the number of p.'s needed for 
l. 

principal-column partitions is less than or equal to m. Then 

2 [m/2) + 1 
since the number of pi's that can be generated is 

which is greater than or equal to m, enough cosets can always 

be formed to obtain a satisfactory set of transition paths. 

Following are specific algorithm that can be used to generate 

the subgroup H of initial states and associated pi's for less 

than maximum-distance principal-column partitions. 

The conditions placed on the subgroup H for any principal-

column partition are: 

1) sm for the column partition cannot be in H 

2) If m is odd and y is excited, then no state with a 
m 

weight of 1 can be in H. 

The algorithms that are given for generating the subgroup H 

depend on whether m is even or odd. 

H can be generated as follows: 

For m odd with y excited, m 

step 1. With m - 1 independent state variables y1 ,y2 , • 

• • ,y 1 generate 2m-l distinct code words. Let state variable 
m-
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Ym = 0 in all code words. 

Step 2. Generate the parity sets to obtain the rest of 

the code for each state in H. 

Since state variable y is excited in each transition, m 

Ym induces a 1 in the code for sm. Since y = 0 in all the m 

states of H, Sm cannot appear in H and for the same reason, 

there cannot be any states of weight 1 in H. Therefore, both 

conditions placed on H are met. 

For m even, and for m odd where ym is not excited, only 

Sm of the principal-column partition cannot appear in H. Since 

there are three state variables in each parity set and from 

theorem 3-2, it follows that at least one independent state 

variable from each excited parity set must be excited. Let y e 

be any one of the independent state variables that must be ex-

cited. Following then is an algorithm for generating H: 

Step 1. Generate 2rn-l distinct code words with the set 

of rn - 1 independent state variables {yl,y2, . . .,ym}, where 

Ye is not in the set. Let Ye = 0 in all code words. 

Step 2. Generate the parity sets to obtain the rest of 
. 

the code for each state in H. 

The above procedures can be used for generating subgroups 

of initial states for principal-column partitions for Assign-

ment 1 without any modifications. 

To illustrate the procedure for generating a subgroup H, 

consider the state assignment for a 25-row flow table shown in 

Figure 3-6, and the principal-column partition: 
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a= {0,36; 1,37; 2,34; 3r35; 4,32; 5,33; 6,30; 7,31; 10,26; 

11,27; 12,24; 13,25; 14,22; 15,23; 16,20; 17,21}, 

where S = 1111000. The numbers of the states are octal rem 

presentations of the code associated with the independent 

state variables y 1 , y 2 , y 3 , y 4 , and y 5 • 

State 

0 
1 
2 
3 
4 
5 
6 
1 

10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 

0 0 0 0 0 0 0 
0 0 0 0 1 0 0 
0 0 0 1 0 0 1 
0 0 0 1 1 0 1 
0 0 1 0 0 0 1 
0 0 1 0 1 0 1 
0 0 1 1 0 0 0 
0 0 1 1 1 0 0 
0 1 0 0 0 1 0 
0 1 0 0 1 1 0 
0 1 0 1 0 1 1 
0 1 0 1 1 1 1 
0 1 1 0 0 1 1 
0 1 1 0 1 1 1 
0 1 1 1 0 1 0 
0 1 1 1 1 1 0 
1 0 0 0 0 1 0 
1 0 0 0 1 1 0 
1 0 0 1 0 1 1 
1 0 0 1 1 1 1 
1 0 1 0 0 1 1 
1 0 1 0 1 1 1 
1 0 1 1 0 1 0 
1 0 1 1 1 1 0 
1 1 0 0 0 0 0 
1 1 0 0 1 0 0 
1 1 0 1 0 0 1 
1 1 0 1 1 0 1 
1 1 1 0 0 0 1 
1 1 1 0 1 0 1 
1 1 1 1 0 0 0 
1 1 1 1 1 0 0 

FIGURE 3-6. state assignment for 25-row flow table 

The excited state variables are y1 , y 2 , y 3 , and y 4 when 

Sm = 1111000. In Figure 3-7 is the subgroup H for the above 
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State 

0 

1 

4 

5 

10 

11 

14 

15 

20 

21 

24 

25 

30 

31 

34 

35 

0 0 0 

0 0 0 

0 0 1 

0 0 1 

0 1 0 

0 1 0 

0 1 1 

0 1 1 

1 0 0 

1 0 0 

1 0 1 

1 0 1 

1 1 0 

1 1 0 

1 1 1 

1 1 1 

0 0 0 0 

0 1 0 0 

0 0 0 1 

0 1 0 1 

0 0 1 0 

0 1 1 0 

0 0 1 1 

0 1 1 1 

0 0 1 0 

0 1 1 0 

0 0 1 1 

0 1 

0 0 

0 1 

0 0 

0 1 

1 1 

0 0 

0 0 

0 . 1 

0 1 

FIGURE 3-7. Subgroup H for principal-column partition 
with sm = 1111000 

Note that y 4 = 0 in all states of H, thereby insuring that 

sm is not in H. 
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Obtaining the pi's is as straight-forward for the less 

than maximum-distance case as it is for the maximum-distance 

case. Figure 3-3 and Figure 3-4 can be used directly to find 

the pi's for any principal-column partition. The excited parity 

sets are numbered from 1 to k; these are the parity sets shown 

in Figure 3-3 and Figure 3-4. The excited state variables 

are labeled in the same manner as they were in the maximum-

distance case. The p.'s of Figure 3-3 and Figure 3-4 can be 
1 
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used directly regardless of which parity sets are to be excited 

or which state variables (dependent or independent) within 

each excited parity set are to be excited. If m is odd and 

state variable y is an excited state variable, then the p.'s m ~ 

of Figure 3-4 apply; otherwise, the p.'s of Figure 3-3 are to 
~ 

be used. The p.'s for the subgroup H of Figure 3-7 are: 
~ 

Y1 Y2 Y3 Y4 Ys Y6 Y7 

pl = 1 0 0 0 0 0 0 

p2 = 1 0 1 0 0 0 0 

p3 = 1 1 1 0 0 0 0 

p4 = 1 1 1 1 0 0 o. 
For this example, k = 2 and 

The corresponding set of transition paths is shown in Figure 

3-8. 

With the above discussions and algorithms, it is concluded 

that each principal-column partition is satisfactorily encoded 

by Assignment 2. Furthermore, the transition paths can be 

obtained in an easy, straight-forward manner. 
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0 0000000 -+ 1000000 -+ 1010000 -+ 1110000 -+ 1111000 36 

1 0000100 -+ 1000100 -+ 1010100 -+ 1110100 -+ 1111100 37 

4 0010001 -+ 1010001 -+ 1000001 -+ 1100001 -+ 1101001 32 

5 0010101 -+ 1010101 -+ 1000101 -+ 1100101 -+ 1101101 33 

10 0100010 -+ 1100010 + 1110010 + 1010010 + 1011010 26 

11 0100110 + 1100110 + 1110110 + 1010110 -+ 1011110 27 

14 0110011 -+ 1110011 + 1100011 + 1000011 + 1001011 22 

15 0110111 -+ 1110111 + 1100111 -+ 1000111 + 1001111 23 

20 1000010 -+ 0000010 + 0010010 -+ 0110010 + 0111010 16 

21 1000110 -+ 0000110 + 0010110 -+ 0110110 + 0111110 17 

24 1010011 -+ 0010011 + 0000011 -+ 0100011 + 0101011 12 

25 1010111 -+ 0010111 -+ 0000111 .... 0100111 + 0101111 13 

30 1100000 -+ 0100000 + 0110000 -+ 0010000 .... 0011000 6 

31 1100100 -+ 0100100 .... 0110100 .... 0010100 + 0011100 7 

34 1110001 .... 0110001 -+ 0100001 -+ 0000001 + 0001001 2 

35 1110101 -+ 0110101 -+ 0100101 .... 0000101 -+ 0001101 3 

H p1 $ H p2 $ H p3 $ H p4 $ H 

FIGURE 3-8. Transition paths for less than maximum-distance 

principal-column partition 
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IV. TRANSITION PATHS - GENERAL CASE 

The comments of this section pertain to both Assignment 

1 and Assignment 2. The most general case includes column 

partitions which are composed of k-sets, some or all of which 

may be larger than 2-sets. Also the set of state variables 

that must be excited in effecting transitions may vary from 

k-set to k-set. Since the same state variables are not ex-

cited to effect the transitions between the states of all the 

k-sets, forming a subgroup H of initial states and obtaining 

a set of p. 's provides little help in finding the transition 
~ 

paths for the general case. 

Trial and error is involved in finding the transition 

paths for the more general cases. Of course, a certain amount 

of checking is associated with a trial and error approach, and 

any means that can reduce the number of checks that have to be 

made is usually welcomed. ~he checking that must be done in 

finding a set of transition paths is to insure that crossover 

does not occur. 

Definition: When transition paths of different k-sets 

have a state in common, it is called crossover. 

A trial and error approach for finding the transition 

paths of a column partition in its crudest form would involve 

checking each state of the transition paths associated with 

each k-set with every state in the transition paths of all 

other k-sets. With the codes produced by Assignment 1 and 

Assignment 2, it is not necessary to do quite as much check~ 
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ing. 

Theorem 4-1: If the parity combinations of two n-tuples 

are different, then the n-tuples cannot have the same code. 

Proof: If there is just one parity set which has odd 

parity in one n-tuple and even parity in another, then the 

codes for these parity sets are different and the correspond

ing n-tuples also have different codes. i# 

From theorem 4-1, only those states with the same parity 

combination need be checked for possible crossover. The con

verse of the above theorem does not hold, for two n-tuples can 

have the same parity combination and still have different 

codes. For example, let n-tuple n1 = 010000 and n 2 = 101100 

which are encoded by y1 , y 2 , y 3 , y 4 , y 5 , and y 6 , with parity 

set 1 and 2 being {y1 ,y2 ,y5 } and {y3 ,y4 ,y6 } respectively. 

Both n-tuples have the same parity combination (odd parity in 

parity set 1 and even parity in parity set 2), but certainly 

they have different codes. 

Two n-tuples with the same parity combination could be 

thought of as being in an equivalence class. Let the following 

define the relation between n-tuples. 

Definition: Let the symbol ~ denote a specific relation 

defined on the set N (all n-tuples on then-cube). Let n1 

and n 2 be any two n-tuples. n 1 ~ n 2 if n1 has the same parity 

combination as n 2 • 

A relation is an equivalence relation if the relation is 

reflexive, symmetric, and transitive [10]. It can be seen 



that the above defined relation is an equivalence relation. 

An equivalence relation partitions the set it is defined on 

into equivalence classes [10]. Then-tuples in each equi

valence class here have the same parity combinations. 
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Theorem 4-2: The number of n-tuples in each equivalence 

class is 2m for both Assignment 1 and Assignment 2. 

Proof: The number of n-tuples in the n-cube associated 

with Assignment 1 is 2m+[log2m1. In Assignment 1 there are 

[log2m] parity sets. The number of parity combinations that 

can be assumed by each n-tuple is therefore 2[log2m]. Then, 

the number of n-tuples in each equivalence class in the code 

for Assignment 1 is 

2m+[log 2m] 
= 2 [log 2m] 

For Assignment 2, the number of n-tuples in the associated 

n-cube is 2m+[m/2l. In Assignment 2 there are [m/2] parity 

sets. The number of parity combinations that can be assumed 

by each n-tuple is 2[m/21. Therefore, the number of n-tuples 

in each equivalence class in the code for Assignment 2 is 

2m+ [m/2] m 
---- = 2 • ti 
2 [m/2] 

In each assignment, the number of n-tuples in each equi

valence class is the same. Since [m/2) ~ [log2m1, the number 

of equivalence classes in Assignment 2 is greater than or 

equal to the number of equivalence classes in Assignment 1. 

The number of states encoded by both assignments is 2m, and 

each of these states has even parity in each parity set. 
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Therefore, the states encoded by each assignment make up one 

of the equivalence classes. 

Since each equivalence class represents a disjoint set 

of n-tuples, crossover only has to be checked between n-tuples 

of the same equivalence class. The number of n-tuples in each 

equivalence class that must be checked then is 2m. This is 

significantly less than having to check 2n n-tuples. 

For the general case, the process of obtaining the transi

tion paths consists mainly of trial and error. Each n-tuple 

in the transition path of a k-set must be checked with the 

n-tuples in the transition paths of all other k-sets. The 

checking for crossover only needs to be done between n-tuples 

of the same equivalence class. 

For column partitions that consist of only 2-sets with 

the states of each 2-set a maximum distance apart, a slight 

modification of this approach can be taken. If all, or at 

least most, of the states of each level of the transition 

paths are n-tuples from the same equivalence class, then the 

checking is primarily restricted to the levels of the transi

tion paths. If the states at different levels of the transi

tion paths belong to different equivalence classes, there can 

be no crossover between levels. The advantage of this method 

is that it allows the transition paths to be generated in a 

parallel fashion. To illustrate this procedure , two examples 

are presented. 

The first column partition for consideration is 

a 1 = {1,17; 2,10; 3,5; 12,14; 4,11; 6,15; 0,13; 7,16}, 
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where the state assignment is shown in Figure 4-1 with the 

states given the octal number associated with the independent 

state variables y 1 , y 2 , y 3 , and y 4 • 

State 

0 

1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

Y1 Y2 Y3 Y4 Ys Y6 

0 0 0 0 0 0 

0 0 0 1 0 1 

0 0 1 0 0 1 

0 0 1 1 0 0 

0 1 0 0 1 0 

0 1 0 

0 1 ~ 

0 1 1 

1 0 0 

1 0 0 

1 0 1 

1 0 1 

1 1 0 

1 1 0 

1 1 1 

1 1 1 

1 1 1 

0 1 1 

1 1 0 

0 1 0 

1 1 1 

0 1 1 

1 1 0 

0 0 0 

1 0 1 

0 0 1 

1 0 0 

FIGURE 4-1. 24-row state assignment 

The two parity sets are {y1 ,y2 ,y5 } and {y3 ,y4 ,y6 }; let them 

be called parity set 1 and 2 respectively. Listed are the 

2-sets and the state variables that are to be excited in the 

corresponding maximum-distance transition along with the 

corresponding Sm. 
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2-sets Excited Variables s m 
1,17 yl, y2, y3, y6 111001 

2;10 y1, y3, Y5' y6 101011 

3,5 & 12,14 y2, y3, Y5' y6 011011 

4,11 y1' y2, y4, y6 110101 

6,15 & 0,13 yl, y3, y4, Y5 101110 

7,16 y1, y3, y 4' Y5 100111 

In maximum-distance principal-column partitions, the same 

set of state variables is excited in each 2-set. This example 

represents the opposite extreme with different sets of state 

variables being excited in almost every 2-set. Figure 4-2 

shows the set of transition paths for this column partition. 

The bar (-) denotes those bits in the code for a state which 

are to change state at some point in the total transition. 

The first level of the transition paths is obtained from 

the initial set by changing a bit in parity set 2 such that 

there would be no crossover within the first level of the 

transition paths. The first level then has even parity in 

parity set 1 and odd parity in parity set 2. An appropriate 

bit in parity set 1 is changed in each of the states of level 

1 to obtain the states of level 2. In level 2, there is odd 

parity in both parity sets. Level 3 is obtained from level 2 

by changing the last bit to be changed in parity set 2, except 

for the state associated with 15 which had a bit changed in 

parity set 1. This is necessary to produce a set of states 

at level 3 where there is no crossover. The state at level 

3 associated with 15, marked with an asterisk, has the same 



0 0 0 0 0 0 0 + 0 0 1 0 0 0 + 1 0 1 0 0 0 + 1 0 1 1 0 0 + 1 0 1 1 1 0 13 

3 o o I 1 o o + o o o 1 o o + o o o 1 1 o + o o o 1 1 1 + o 1 o 1 1 1 5 

4 o I o o 1 o + o I o 1 1 o + 1 I o 1 1 o + 1 1 o 1 1 1 + 1 o o 1 1 1 11 

7 o 1 1 I I o + o 1 1 I I 1 + o 1 1 1 o 1 + o 1 1 o o 1 + 1 1 1 o o 1 16 

12 1 o 1 o 1 I + 1 o o o I I + 1 1 o o 1 1 + 1 1 o o 1 o + 1 1 o o o o 14 

10 I o o o I o + 1 o 1 o I o + o o 1 o I o + o o 1 o I 1 + o o 1 o o 1 2 

17 I I I 1 o o + I I I 1 o 1 + I o I 1 o 1 + I o o 1 o 1 + o o o 1 o 1 1 

15 I 1 o I o 1 + I 1 o o o 1 + o 1 o o o 1 + o 1 o o 1 1*+ o 1 1 o 1 1 6 

Initial set First level Second level Third level Final set 

FIGURE 4-2. Maximum distance example for 24-row flow table 



78 

parity combination as those states at level 1. However, there 

is ~o crossover. Note that the states at the different levels 

belong to different equivalence classes with only one exception 

at level 3; and therefore, there is no crossover between levels. 

For m odd, state variable ym is not in a parity set, and 

when Ym needs to be excited to effect a transition greater than 

a distance 1, a special problem occurs. For 2m-row flow tables 

state variable y cannot be the first or last state variable m 

excited in effecting a transition, unless it is the only one 

that has to be excited. Since state variable y is not in a m 

parity set, exciting ym first produces an n-tuple that has even 

parity in all parity sets and isinG (or G*); this represents 

a crossover if the transition is greater than a distance of 1. 

If ym is the last state variable that is excited, then the 

resulting n-tuple has even parity in each parity set, which 

again isinG (or G*); this represents a crossover also. 

Therefore, for 2m-row flow.tables, if Ym is to be excited in 

a transition greater than a distance 1, then it cannot be the 

first or the last state variable excited. For flow tables 

that do not contain exactly 2m-rows, and for incompletely speci

fied flow tables, y can be excited first or last in certain m 

transitions. 

The second maximum-distance example illustrating the idea 

of attempting to keep the n-tuples of the same level of the 

transition paths in the same equivalence class is a column 

partition from a 25-row flow table. 

a2 = {0,13; 26,35; 2,11; 1,16; 32,25i 34,23; 10,5; 22,37; 

15,36; 4,21; 20,7; 14,33; 24,17; 3,30; 6,31; 12,27}. 
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The state assignment for the 25-row flow table that cor-

responds to these numbered states is shown in Figure 3-6. First 

a word about this particular example. Several algorithms were 

developed to obtain the transition paths in a straight-foward 

manner involving as little trial and error as possible. Some 

of these algorithms worked reasonably well for a limited number 

of cases. Every method developed failed to produce the transi~ 

tion paths for this example, except one which becomes so in-

valved that it is questionable as to its value. Therefore, 

this column partition seems to constitute a worst or near-

worst case. The set of transition paths are shown in Figure 4-3. 

If parity set 1 is {y1 ,y2 ,y6} and parity set 2 is {y3 ,y4 , 

y7}, the parity combinations for the different levels of the 

transition paths are shown next, where 0 represents even parity 

and 1 represents odd parity. 

Level Paritl set 1 Paritl set 2 

0 0 0 Initial set 

1 0 1 

2 1 1 

3 1 1 y 5 excited to produce level 
3 from level 2 

4 1 0 states 0 and 37 have parity 
01 at this level 

5 0 0 final set 

From the above parity combinations, it can be seen in which 

parity set the state variables were changed to produce a suc

ceeding level of states in the transition path. Except for 

level 2 and 3, the parity combinations are different, insuring 



0 0000000 + 0001000 + 0101000 + 0101100 + 0101110*+ 0101111 13 

2 oooiooi + ooooooi + 0100001 + 0100101 + 0100100 + 0100110 11 

14 o1Iooi1 + o1Iloi1 + o1I1oo1 + 0111101 + 0101101 + 1101101 33 

16 oiiioio + oiiooio + oo1oo1o + ooio1Io + oooo11o + oooo1oo 1 

2o Iooooio + Ioo1oio + ooo1o1o + ooo11Io + oo1111o + oo111oo 1 

26 101Ioio + 101ooio + 101oooo + 101o1oo + 1010101 + 1110101 35 

32 1Ioioo1 + 1Ioooo1 + 1Iooo11 + llOOlll + 1110111 + 1010111 25 

34 1IIooo1 + 1II1oo1 + 10I1ool + lOlllOl + 1001101 + 1001111 23 

3 oooiioi + ooooioi + lOOOlOl + lOOOOOl + 1000000 + 1100000 30 

5 OOlOlOl + OOlOlOO + OllOlOO + 0110000 + 0100000 + 0100010 10 

15 011oiii + 011oiio + 111oiio + 111ooio + 1111010 + 1111000 36 

17 OlllllO + Ollllll + OOlllll + OOllOll + 0010011 + 1010011 24 

21 Ioooiio + Ioooiil + ooooiil + OOOOOll + OOlOOll + 0010001 4 

27 Ioi1I1o + Ioo1I1o + llOlllO + I101010 + llOlOll + 0101011 12 

31 IIooioo + IIo1Ioo + Ioo1Ioo + Ioo1ooo + Io11ooo + oo11ooo 6 

* 37 1II1Ioo + 1II1Io1 + 1II1I11 + 1II1011 + 1011011 + 1001011 22 

Initial 
set 

Level 1 Level 2 Level 3 Level 4 Final set 

FIGURE 4-3. Maximum distance example for 25-row flow table 
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that there can be no crossover between those levels. Level 

3 was obtained from level 2 by chang~ng only state variable 

y5 • Level 2 had to be obtained such that this could be done. 

The states of level 2 and level 3 are all 25 n-tuples that are 

contained in the equivalence class that has odd parity in both 

pari~y sets. State 0 and 37 have a different parity combination 

at level 4 than the other states of that level; they are mark

ed with an asterisk. It was necessary to check these two n-

tuples with the n-tuples of level 1 to insure that there is 

no crossover. 

The advantage of the method illustrated in the two examples 

above is that it allows one to produce the transition paths in 

a parallel fashion for maximum distance column partitions. 

In principal-column partitions, the same set of state 

variables are excited in a transition between the states of 

each 2-sets. For 24 and 25-row flow tables, many maximum-

distance column partitions were considered where the state 

variables that must be excited in the transitions varied as much 

as possible. These problems were constructed to represent the 

opposite type of situation presented by principal-column parti

tions. Two examples have been shown. In every case, there was 

a non-unique solution with considerable flexibility associated 

with generating a set of transition paths. Also, finding a 

set of transition paths was relatively easy~ 

A procedure which involves trial and error must also be 

used for column partitions where k-sets are not restricted to 

2-sets. The first step in obtaining the transition paths is . 
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to form a set of transition pairs for each k-set, and general

ly the transition pairs are selected such that the total num

ber of states in the resulting transition path associated with 

the states of each k-set is minimal. For example, consider a 

k-set that consits of the states S , ~b' and S , with s being 
a c a 

the stable state. If the distance between sa and sb is 2, be-

tween S and S is 4, and between Sb and s is 2, then one 
a c c 

might form transition pairs of sa,sb and Sb,sc where there 

would be a transition path between each pair of states of the 

transition pairs. In this example, the total number of states 

in the transition path for this k-set is 5. If the transition 

pairs were s ,sb and S ,s , the total number of states in the 
a a c 

transition path could be as large as 7. It should be pointed 

out that the pairing of the states in forming a set of transi-

tion pairs for a k-set can be changed if it is discovered that 

another set would produce a satisfactory transition path. 

The transition paths associated with transition pairs of 

the same k~set can have states in common. In fact, it is 

desirable for transition pairs of the same k-set to share 

states in the transition path since this would result in fewer 

total states in the transition path for the k~set. Trial and 

error is involved in finding the transition paths for each 

transition pair. The only checking that needs to be done 

is between n-tuples in the same equivalence class. Experience 

indicates that it is easier to find a set of transition paths 

for this case than for maximum-distance column partitions. 
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V • NON-GENERALIZED STATE ASSIGNr~ENT 

The only method for finding non-standard state assignments 

presently available that is partly systematic is that presented 

by Hazeltine [9]. Even though the general approach is system

atic, a significant amount of trial and error frequently results 

in finding the t1~ansition paths and state assignment. The up-

per bound associated with this method is 2m - 1 state variables 

m for a 2 -row flow table. 

In this chapter, a method is presented for finding non-

standard or non-generalized state assignments for flow tables. 

The state assignment is a function of the characteristics of a 

flow table. The method presents a systematic means of obtain-

ing the state assignment, but may not produce minimum variable 

assignments. Trial and error is required in finding the transi

tion paths but not in generating the state assignment. The as

signment procedure has a suggested upper bound of m + [m/2] 

state variables for a 2m-row flow table, which is Assignment 2. 

The basis of the assignment procedure is to find a state 

assignment where all, or at least most, of the transitions c a n 

be accomplished such that the resulting transition paths are 

minimum length. ML transitions are desirable in tha t the state 

variables which must change state are the only ones excited in 

effecting a transition. Also the number of states in a }~ 

tra nsition path is less than the number o f states in a non-t·1L 

transition path for the same transition pair. Since a satis

factory set of transition paths is more likely when fewer 
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states are required in the corresponding transition paths, ML 

transitions are more desirable. 

In general, flow tables may not contain 2m rows, but 

th h . m-1 m 
ra er somet ~ng between 2 and 2 rows where at least m 

state variables are needed to encode it. The procedures pre

sented are designed to encode 2m-row flow tables. Certainly 

these procedures will apply, perhaps in an easier fashion, to 

flow tables where the number of rows is between 2m-l and 2m 

rows. The procedures are also applicable to incompletely 

specified flow tables. 

The first step in finding an assignment is to encode the 

states of the flow table with m state variables y1 ,y2 , ••• , 

Ym· This corresponds to assigning codes of a m-cube to the 

states of the flow table. The m state variables that encode 

the m-cube are considered as a set of independent state 

variables. This encoding is called the initial code. 

State variables are added to the initial code in such a 

manner that transition paths between states can be minimum 

length. Each state variable added to the assignment is a 

dependent state variable and it, with the independent state 

variables that are used to generate it, form a parity set. 

As stated before, the primary goal is to achieve an 

assignment such that all or at least most of the transitions 

between the states are minimum length. Since there exist states 

where it is impossible to obtain ML transition paths in state 

assignments, which have five or more state variables in a parity 

set, the parity sets will be restricted to containing only 
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three state variables. 

Initially a procedure will be developed for column par

titions that consist of only 2-scts. The states of a 2-set 

are a transition pair and each 2-set has only one transition 

pair. Necessary modifications of this procedure will be made 

to apply to the more general case where k-sets are not re

stricted to 2-sets. 

The first step in the assignment procedure is to encode 

the states with m independent state variables. Each state is 

given a specific m-tuple in the m-cube. The procedure works 

even if the codes for the states arc assigned arbitrarily, 

but a judicious selection of codes for the states can reduce 

the number of state variables in the final code. The number 

of states in the transition paths of a transition pair is 

directly proportional to the distance between the states of 

a transition pair. If the distance between the states of a 

transition pair is d, then the number of states in a ~~ 

transition path is d + 1, and in a non-ML transition path, 

it is greater than d + 1. More states in a transition path 

generally imply that it is more difficult to construct transi

tion paths that are void of crossovers. In general then, 

the closer one can encode the states of transition pairs, the 

easier it is to construct a satisfactory set of transition 

paths. 

Transitions are not usually required between all pairs 

of states in a flow table. A judicious initial code would 

assign those states, between which transitions are not re-
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quired, m-tuples that are relatively far apart. Certainly, 

one should attempt to avoid assigning stnte s of a transition 

pair m-tuplcs which are maximum di s tance apart. In general, 

fewer state variables are required in the final code, if the 

states of the transition pairs are give n codes close together. 

It is hard, sometimes, to determine how much effort should 

go into trying to find a good initial code. A minimal effort 

would involve attempting to keep the distances between the 

states of the 2-sets less th;.:m maximum. 

One further point is worth mentioning. If particular 

transitions appear in the flow table many more times than 

others, then there is some positive value in assigning adja-

cent codes to these states. This will in s ure that these tran-

sitions can always be accomplished and, since they are rela-

tively large in numbe r, this initial coding may reduce the 

problem complexity. 

If the initial coding produces an assignment such that 

there exists a satisfactory set of tra.nsition puths for each 

column of the flow table, then the assignment proce ss js com-

plete and no additional state variables have to be added. In 

most cases, the initial coding will not produce a satisfactory 

set of transition paths a nd additional state variables must 

b dd , Each r,·t~tD vari able that is add e d is a depe nde nt e a co. . -.. ---

or generat:c d state vari a ble of a pa r ity s et. 'l'he t\\' 0 in(lc-

pende nt sta te v a rinbl e s and the generated sta te vari a bl e 

form a parity sc·t, with each parity set po s s n ssing evc·n parity. 

The two independent state variables, whicl1 arc used to genera te 
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the dependent state variable, are selected such that a maximum 

number of transitions result in ML transition paths. 

The final code will consist of a set of n state variables 

State variables y 1 , ••• , m+ 

Yn are the dependent state variables generated by the indepen

dent state variables of the parity sets. In general, there 

would be some state variables that do not belong to any parity 

set. Since the final code is formed in a manner similar to 

that of Assignment 2, the code for a 2m-row flow table would 

constitute a group code. Since there is an effort to keep the 

distance between states of transition pairs as small as 

possible, the final code should not have a maximum distance 

greater than m. This implies that an independent state varia-

ble can be in at most one parity set, for if a state variable 

could be in even two parity sets, the maximum distance would 

be greater than m for 2m-row flow tables. 

Definition: Those state variables that must be excited 

to produce a ML transition path between the states of a 

transition pair are called the excited state variables. 

To emphasize the above definition, consider the following 

assignment and the transition pair consisting of states 0 and 

3. The assignment is shown on the following Karnaugh map. 
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01 11 10 

• 4 

• 5 

• 7 

6 

A transition path for the transition pair, 0,3 could be denoted 

by the sequence 

0000 ~ 0100 ~ 0101 ~ 0111 ~ 0011 

and is shown by the dotted line on the Karnaugh map. The excited 

state variables are y 3 and y 4 , even though state variable y 2 

was excited in the transition path. The transition path is 

not minimum length. 

Transition paths, associated with states that have adja

cent codes, consist of just the adjacent states, and no cross

over can possibly result. ·Furthermore, these are ML transi

tion paths. Therefore, the only type of transitions that 

could result in non-ML transitions are those between states 

which are a distance 2 or greater. 

Theorem 5-l: Consider a transition pair Sa,sb, where the 

distance between Sa and Sb is greater than 1. (There are at 

least two excited state variables.) If, for this transition, 

there is at least one excited state variable in at least one 

parity set, then a ML transition path exists for Sa,sb. 

Proof: A ML transition path would not be possible, if 

in changing the state of the excited state variables, one 

could not avoid producing a n-tuple that is a state encoded 
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by the state assignment. From theorem 3-2, there must be two 

excited state variables in a parity set. The first n-tuple in 

the transition path can be obtained by changing state of one 

of the excited state variables in a parity set; this n-tuple 

then has odd parity in a parity set. All the states encoded 

by the assignment have even parity in the parity sets. There

fore, the first n-tuple in the transition path cannot be a 

state encoded by the assignment; furthermore, if all the n-

tuples of the transition path have odd parity in a parity set, 

then they cannot be states encoded by the assignment. Producing 

the rest of the transition path where there is odd parity in a 

parity set of each n-tuple can be accomplished simply by chang-

ing state of all the other excited state variables, except the 

one in the parity set; the last state in the transition path 

is obtained by changing the state of the last excited state 

variable in the parity set. Since only those state variables 

which must change state are excited in the transition, a ML 

transition path results. ii 

Theorem 5-l does not imply that it is impossible to have 

a ML transition path if none of the excited state variables 

are in a parity set,but rather that a ML transition path is 

always possible if an excited state variable is in a parity 

set. For incompletely specified flow tables and in flow tables 

m 
where there are not exactly 2 states, it is possible, in some 

cases, to obtain ML transition paths without having an excited 

state variable in a parity set. For 2m-row flow tables with-

out "don't care" states, a state variable in a parity set must 
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be excited to effect a distance greater than 1 transition. 

Theorem 5-l does not imply that if there is at least one 

excited state variable in a parity set for each transition pair, 

then a satisfactory set of transition paths exist. counter 

examples can be easily constructed to show this. 

All transition pairs do not have to produce ML transition 

paths in a satisfactory state assignment. Since ML transitions 

require fewer states in transition paths, it is more likely to 

obtain a satisfactory set of transition paths if most of the 

transition pairs produce ML transitions. Therefore, each gen

erated state variable is added in such a manner that most of 

the transitions produce ML transition paths. This is done by 

first counting the number of times each state variable must be 

excited in effecting transitions between states a distance 

greater than 1. This is referred to as the count list; the 

state variables that have ~he highest value in the count list 

are excited most often. The first parity set is formed from 

the two highest value state variables in the count list. These 

two state variables are used to generate a dependent state 

variable, and the three state variables form a parity set. 

Forming a parity set in this manner allows a maximum number of 

transitions to result in ML transition paths. 

After generating each new state variable, one should at

tempt to find a satisfactory set of transition paths for each 

column partition of the flow table. Even though some of the 

transition pairs may not produce ML transition paths, it still 

may be possible to find a satisfactory set of transition paths. 

Producing the transition paths is mostly a trial and error 
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process. If all the transition paths can be obtained without 

any crossover, then the process is complete, and the state as

signment is valid for that flow table. If there are some tran

sition paths that cannot be obtained, then there are two pro

cedures one can use. The easiest would be to generate another 

dependent state variable from the two highest value state vari

ables in the count list that are not yet in a parity set. This 

forms another parity set. The next step would again attempt to 

obtain a satisfactory set of transition paths. The process con

tinues until one reaches the suggested bound associated with 

Assignment 2, m + [m/2], or finds a satisfactory set of transi

tion paths. 

A second method of determining which independent state 

variables are to be used in generating an additional state var

iable would be particularly useful if there is only one or just 

a few column partitions for which a satisfactory set of transi

tion paths cannot be obtained. If this is the case, then re

count the number of times each state variable, that is not in 

a parity set yet, needs to be excited in effecting a transition 

between states of those column partitions for which a satis

factory set of transition paths cannot be found. Select the 

two state variables that are excited most frequently to gener

ate another state variable, and form a new parity set. After 

this is done, attempt to find a satisfactory set of transition 

paths for all column partitions. The process continues until 

the upper bound is achieved, or a satisfactory set of transi

tion paths is found. 

To illustrate the above procedure somewhat, consider the 



states of a 4-cube, numbered as shown in Figure 5-l. 

00 01 10 

00 0 4 12 8 

01 1 5 13 9 

11 3 7 15 11 

10 2 6 14 10 

FIGURE 5-l. States of a 4-cube 

Note that the only transitions that can be accomplished are 

those between states which have adjacent codes. Suppose 

that it was determined that state variables y 1 and y 2 were 

excited most often in effecting transitions between states. 

From the above method, state variable y 5 would be generated 

such that y 5 = y 1 e y 2 • The Karnaugh map representation of 

the 16 states from Figure S-1 would now appear as shown in 

Figure 5-2. 

00 

01 

11 

10 

y5 = o 

yly2 

00 01 11 10 

0 12 

1 13 

3 15 

2 14 

00 

01 

11 

10 

y = 1 5 

yly2 

00 01 11 10 

4 8 

5 9 

7 11 

6 10 
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FIGURE 5-2. States of Figure 5-l in a 5-cube with Ys = y 1 $ y 2 
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Note that each of the transitions, where state variables in 

the parity set {y1 ,y2 ,y5 } are excited, can be accomplished in 

a fashion such that a ML transition path can be obtained. 

In those transitions where y3 and y4 are the excited state 

variables, it is impossible to obtain ML transition paths. 

In particular, note that a ~1L transition path between states 

0 and 3 would contain state 1 or 2. 

Following is a complete statement of the procedure for 

finding a non-standard or non-generalized state assignment 

for column partitions that contain only 2-sets: 

Step 1. Code the states with m state variables y1 ,y2 , 

••• ,ym in such a manner that one tries to avoid assigning 

codes to states in 2-sets which are maximum distance apart. 

In general, best results are obtained if the states of the 

2-sets can be assigned codes which are close together. 

Step 2. Count the number of times each state variable 

y., i = 1,2, ••• ,m, must be excited to effect a distance 2 
~ 

or greater transition. This forms the count list. 

Step 3. Let yj and yk be two highest value state var

iables in the count list that are not yet in a parity set. 

Generate a new state variable with yj and yk (yj $ yk) which, 

together with yj and yk, form a parity set. 

step 4. Attempt to find the transition paths for each 

column partition. If a satisfactory set of transition paths 

exist, then the assignment procedure is complete. If not, 

then return to step 3 and generate another state variable. 
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The process continues until a set of transition paths is 

found, or the suggested upper bound of m + [m/2] is obtained. 

For an 8-row flow table, one has a choice of trying to 

find a three-variable assignment, which. in most problems is 

impossible, or to use a four-variable standard assignment. 

Unless the number of columns in the flow table is small, there 

is not much hope in easily finding a three-variable assignment. 

In most cases, it may be easier to use the standard four

variable assignment. The above procedure, however, will al,~ays 

generate this standard assignment. 

Following is an example to illustrate the above procedure .• 

Consider the six column partitions which were obtained from a 

flow table called Machine A. 

al = {0,9; 7,13; 3,1; 10,4; 2,8; 11,15; 6,14; 5,12} 

a2 = {0,6; 2,7; 3,13; 9,1; 10,15; 4,12; 14,8; 11,5} 

a3 = {9,4; 7,10; 0,12; 3,2; 15,6; 5,13; 8,14; 1,11} 

a4 = {0,14; 7,15; 9,12; 3,5; 4,6; 11,13; 10,8; 1,2} 

as = {7,10; 2,4; 15,12; 0,6; 3,13; 1,9; 8,14; 11,5} 

a6 {0,13; 7,15; 3,5; 9,14; 4,8; 1,11; 10,12; 6,2} 

The codes assigned to the states of the m-cube (4-cube) are 

shown in Figure S-3. No states that are in a 2-set are a 

maximum distance apart. 
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00 0 9 13 14 

01 6 11 1 2 

11 15 4 5 7 

10 12 10 3 8 

FIGURE 5-3. Initial coding for Machine A 

The number of times each state variable is excited in a 

distance 2 or greater transition is tabulated next. 

State Variable Number of Times Excited 

yl 14 

y2 15 

y3 12 

y4 16 

On the basis of this count list, a new state variable y 5 

should be generated from state variables y 2 and y 4 • Therefore, 

y5 = y 2 m y 4 ; the Karnaugh map representation of this assign

ment is shown in Figure 5-4. 

y5 = o 

yly2 
00 01 11 10 

0 14 00 00 

11 1 01 01 

4 5 11 11 

12 8 10 10 

Y5 = 1 

yly2 
00 01 11 10 

9 13 

6 2 

15 7 

10 3 

FIGURE 5-4. State assignment for Machine A 
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It can be shown that a set of satisfactory transition paths 

exist for each column partition, and therefore, the assign

ment is satisfactory. The amount of work involved in finding 

this state assignment is significantly less than that associ

ated with using Hazeltine's method, or a completely trial and 

error approach. 

For the more general case where k-sets are not restricted 

to 2-sets, the above algorithm can be modified by considering 

transition pairs instead of 2-sets. Each k-set can be des

cribed by a set of transition pairs. For example, consider a 

3-set consisting of states 1, 2, and 3, with state 1 as the 

stable state. There are three possible sets of transition 

pairs for a 3-set: ( 1, 2) ( 1, 3) ; ( 1, 2) ( 2, 3) ; (1, 3) ( 2, 3) , where 

the parenthesis ( ) denotes the transition pair. On the other 

hand, there is only one transition pair for each 2-set. It 

is apparent that more flexibility is associated with k-sets 

larger than 2-sets. To account for this, in the initial coding, 

attention is given primarily to keeping the codes of the 2-sets 

as close together as possible. Little effort is applied to 

keeping the states of the k-sets larger than 2-sets close to

gether. 

From the initial coding, a set of transition pairs is 

obtained for each k- set. The transition pairs are selected 

such that the total number of sta t e s in the resulting transi

tion pa th a s socia t ed with each k- s e t i s mini mal. Consider 

a 3-set of states 1, 2, and 3 to illustrate this point. The 

states are encoded in the following 4-cube and all other states 
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00 

01 

11 

10 
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1 2 
r--

3 

Let state 3 be the stable state. If the transition pairs for 

this k-set arc (1,3) (2,3) and each tranE.~ition pair has an 

independent path, the totnl number of states in the transition 

path would be 7. Hm1cver, if the transition pairs were 

(1,2) (2,3), the tot.J.l number of states in the tr.J.nsition path 

would be 5. Therefore, the second set of transition pairs 

is preferred. 

Transition pairs which consist of states that are adjac-

cnt are mos·t desirable in that the resulting transition path 

contains just the two st.J.tcs. It should be pointed out that 

the pairing of the states in forming the transition pairs for 

a k-sct can be changed, if it is discovered that another set 

would produce a satisfactory set of transition paths. 

The means of determing which independent state variables 

arc to be used in generating the additional state variables 

is identical to the proccc1urc already discussed. 1'hc~ t•.-?o st.:c~h.: 

variu.blc~; th~1t are e::.citcd mos·t frcrJucntly in e:Cfcctin(; Ll 

clistu.ncc 2 or grcute:r transition, and not <llreody in a pz1ri ty 

set, art; u~-;cd to generate cuclJ ac1c1i tional ~-;tate vari;1l1le. 

After each addi t.ionz1l state VJriu.blc i~::; obtained, an :1.ttcrqpt 
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is made to find a satisfactory set of transition paths for 

each column partition. The transition paths ussociatccl Hi th 

transition pairs of the same k-set can ha.ve states in common. 

In fact, it is desirable for transition pairs of the same 

k-set to share states in the transition path, since this would 

result in fewer total states in the transition path for the 

k-set. Trial and error is involved in finding the transition 

path for each transition pair. 

Following is the complete procedure for finding the as-

signment for the general case: 

Step 1. Code t.hc states with m state variables in such 

a manner than one tries to av6id assigning code words a max-

imum dist.ance apart. to states of 2-sets. Little attention is 

given to k-scts larger than 2-sets other than a small effort 

to keep the stai:es of the k-scts as clo[>e together as possible. 

Step 2. A set of transition pairs is obtained for each 

k-set in a column partition and is selected in such a manner 

that the total number of states in the resulting transition 

path for each k-set would be minimal. One can chan~re the 

pairing of transition pairs for a k-set at any point in the 

procedure, if it appears that a different set of transition 

pairs is more desirable. 

Step 3. Count the number of times cnch stnt~ vnri ub l e 

must be e;.:citcd to effect a di~.:;t.;:mc(3 2 or qrc ~·tcr tr.-t.tn ~~it ion. 

This forms the count list. 

Step 4. Let y j and yk be the hm highc~~~t value state var

iables in the count list that arc not yet in a parity set. 



99 

Generate a new state variable withy. and yk (y. $ yk) I \vhich 
J J 

together '\vith y. 
J 

and yk, form a parity set. 

Step 5. Attempt to find the transition paths for each 

column partition. If a satisfactory set of transition paths 

exist, then the assignment procedure is complete. If not, 

return to step 4 and generate another state variable. The 

process continues until a set of transition paths is found, 

or the suggested up: ~r bound m + [m/2] is obtained. 

To illustrate this procedure, consider the five column 

partitions taken from a flow table called Machine B. The 

stable state of each k-set is underlined ( ). 

a 1 = {0,1; 3,4,5; 6,I; 8,~,10; 12,13,~; 11,15,~} 

a2 

a3 

a4 

as 

= 

= 

= 

= 

{3,15; 5,10,12; Q_,9; G,Q_,l4; l,I,ll; 13,2,4} 

{_!,14,8; 2,12,~; 1,11,5; l,l3,15; 7,2_; 0,10} 

{2,_!; 6,~; 10,11,12; 14,15; 1,13,7; Q_,3,5,9} 

{10,9,~; 4,5,13; 11,12,~; O,l,7; !,13,14,15} 

The first step is to encode the states into a 4-cube. 

Since there are few 2-sets, it is possible to place the states 

of each 2-set adjacent in the 4-cube. The rest of the states 

are encoded at a somewhat random manner with some attention 

being given to states that appear in the same k-set. It is 

desirable to give the states in the same k-set codes which 

are a minimum distance apart. In this example, it is done to 

some extent, but not much effort was made in this direction. 

The initial code is shown in Figure 5-5. 
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yly2 

y3y4 00 01 11 10 

00 0 10 8 14 

01 1 5 4 15 

11 13 11 2 3 

10 9 12 6 7 

FIGURE 5-S. Initial code for t-1achine B 

A set of transition pairs for the states of each column 

partition is obtained in accordance with step 2. States that 

are adjacent make ideal transition pairs. In column partition 

a 3 it turned out, somewhat unexpectedly, that the states in 

each transition pair of all the k-sets are adjacent. Following 

are the column partitions, where the parenthesis ( ) denotes 

the transition pairs in each k-set. 

a1 = {{0,1); {3,4) (4,~)·; (6,z_); (2_,10) (10,8); (12,!i_) (!i_,l3); 

(11,~) (~,15)} 

(X2 = { {3,15); {5,10) (10,12); (Q_,9); (ll,z.> (1,2.); 

(6,~) {~,14); (4 ,2) (2,13)} 

(X3 = { <!,8) {8,14); {2,£_) {.§_,12); (1,5) (5,11); (13,l) <l,l5); 

(7,~>; (0,10)} 

(X4 = {(2,!); (6,~); (11,12)(12,10); <!.,13)(13,7); (14,15); 

( 9 1 Q.> (Q_, 5) ( 9 1 3) } 

a 5 = {(10,9) (10,~); (4,5) (5,!.2_); (11,12) (12,.§_); {0,7) (~,7); 

(.!_,13) <!.,15) (15,14)} 

The next step is to count the number of times each state 
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variable y 1 , y 2 , y 3 , and y 4 must be excited to effect a transi

tion between states of the transition pairs that are a distance 

2 or greater. State variables, which must be excited to effect 

a transition between states of transition pairs that are adja-

cent, are not counted in this procedure. Note that the tran-

sitions of column partition ~ 3 add nothing to this count. List

ed is the count obtained in this step. 

State Variable Number of Times Excited 

yl 7 

y2 9 

y3 9 

6 

on the basis of this count list, state variable y 5 can be 

obtained from y 2 and y 3 ; therefore, y 5 = Y2 ~ y 3 • Shown 

below is the Karnaugh map representation for this assignment. 

It turns out that all transition paths are obtained easily. 

y 
I 

00 01 11 10 

0 14 00 00 

1 15 01 01 

11 2 11 11 

12 6 10 10 

Ys = 1 

yly2 

00 01 11 10 

10 8 

5 4 

13 3 

9 7 

FIGURE 5-6. State assignment for Hachine B 
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The final code depends on the flow table characteristics 

and the initial encoding. On some occasions, when only one 

or very few transitions in a column partition cannot produce 

a set of transition paths, there might be some advantage in 

considering a slight change in the initial code. A slight 

change in the initial code may produce a satisfactory assign

ment and avoid the addition of another state variable to the 

assignment. 
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VI. SUMMARY 

All the research effort was concerned with finding state 

assignments for non-normal asynchronous sequential circuits. 

Generally, state assignments for flow tables that may operate 

in the non-normal mode require fewer internal state variables 

than assignments for flow tables that operate in the normal 

mode. There is a lack of techniques for finding good assign-

ments for the non-normal mode case. Presented in this paper 

are two generalized state assignments, which are functions only 

of the number of rows in a flow table, and an assignment 

method for finding non-standard or non-generalized assignments 

for non-normal flow tables. 

Assignment 1 has a suggested bound of m + [log2m] state 
m variables for a 2 -row flow table, where [ 1 means "next 

lowest integer". The algorithm for generating the codes is 

easy and straight-forward to implement. It is shown that 

Assignment 1 satisfactorily encodes all maximum-distance 

principal-column partitions, and the less than maximum-distance 

principal-column partitions that produce ML transition paths. 

An extensive search was made of flow tables up to and including 

225 states where ML transitions are not possible, and it was 

found that Assignment 1 also satisfactorily encodes these 

cases. From this, it seems safe to conclude that Assignment 

1 satisfactorily encodes all principal-column partitions. 

Assignment 2 has a suggested bound of m + [m/2] state 

variables for a 2m-row flow tables. In addition to being easy 
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to generate the code, all the transitions between states en-

coded by Assignment 2 c~n be ML transitions. Assignment 2 

satisfactorily encodes all principal-column partitions, and 

furthermore, the transition pa·ths arc easy to obtain for this 

case; specific algorithms are given to accompli s h this. 

Both generalized state assign~ents are group (linear) 

codes with the maximum distance being m for states of a 2m-

row flow table. A general proof showing that these assign-

ments are standard assigmnc~nts has not been found; ho\.'cver, 

it is the author 1 s opinion thu.t these as~3i<Jnmcnts are standCJ. l_-d. 

Worst-case situations have been constructed c:wd it h0. s never 

been necessa ry to excee d the sugges t ed bounds. 

Trial and error is mainly used in finding the transition 

paths for the general case. Both genera lized state assign-

ments h a ve a desirable feature of allowing the n-tuple~ of the 

n-cube to be partitioned into equivalence classes according to 

parit.y combinations in the parity sets. Crossover can occur 

only between n-tuplcs (states of tran ~ition paths) th a t a rc 

in the same equivalence class . This significantly rcc1uccs the 

amount of work involved in finding the trt' .. nsition paths. 

Good techniques for finding s t a te assignment~ for non-

normal flow tables, \·lhich are not ste1ncL:.:.rd as::>i c;nr:v~nts, do not 

exist in the litcr~turc . a ssi o nr::cnt tcchn icj~uc i s nrc -
- ;_) - ~ 

sen ted that, in the a u tllo l: 1 s opinio n, i ~; bet tc~- thzm U. P.Y U ' inq 

previously dcvc lope d. The a:-; s ignmcnt procedure gcncr ally pro-

duces assignments wl1ich r equire fewer state variobJcs, and is 

more systematic than the procedures presently ava ilable . 
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