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ABSTRACT 

The current distribution for bent dipole antennas is 

numerically calculated by using a digital computer. A 

delta-gap at the center is assumed for the drive. Several 

different bend-angles are considered including the cases 

ii 

of the straight wire and the inverted-L. The total length 

of the wire considered is A/2 while the ratio of the bent 

portion over the vertical portion is varied. The method of 

solution is based on Mei's integral equation and the method 

of moments. The use of Mei's integral equation eliminates 

the need for the application of the boundary condition at 

the point of bending. For the basis functions, both the 

rectangular pulses and the piecewise sinusoids are used in 

order to compare the convergence. 

the Dirac delta functions. 

The test functions are 
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I. INTRODUCTION 

In treating wire antenna problems, the entire evalua­

tion of the electromagnetic field clearly depends on a prior 

knowledge of the distribution of current along the wire. 

This is why the determination of current in an antenna is 

of the utmost importance. 

In the late 1920's, a new phase began for antenna 

theory when the importance of the finite lengths of radiat­

ing element was recognized. However, no attempt was made 

to determine the actual distributions of current analyt­

ically. Instead, a convenient sinusoidal distribution was 

assumed, based in part on measured values and in part on 

its adequacy in special cases. 

However, the correct method for determining the proper­

ties of a wire antenna is to find the current distribution 

generating the electromagnetic fields that actually satisfy 

the boundary conditions. In order to have a mathematically 

tractable problem, it is frequently assumed that the per­

fectly conducting wire is electrically thin enough so that 

all the current is directed axially and is driven at the 

center across an infinitesimally narrow gap by a generator. 

Taking consideration of the boundary conditions and 

the above assumptions, approxi~ate solutions for the current 

distribution were obtained in 1937 with the work of L. V. 

King [l] and in 1938 with that of E. Hallen [2]. The latter 
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derived an integral equation for the axial current of a 

straight dipole using essentially the retarded-potential 

method of H. C. Pocklington [3]. Since then R. w. P. King, 

et al [4] have used the iteration method and Fourier series 

expansion to calculate the currents. In 1965, K. K. Mei 

[5] introduced a Hallen-type integral equation for an 

arbitrarily curved wire and investigated some special an­

tennas using this integral equation and a numerical method 

which may be termed as the subsection expansion point match­

ing method. This method is a special case of a general 

method called the method of moments {see Appendix A). In 

this method, an increase of number of the match points 

along the wire, where the equation is satisfied, improves 

the accuracy of the solution if the procedures converge. 

T. L. Simpson [6] obtained a solution for the current 

distribution and driving point admittance of top-loaded 

antennas such as inverted-L and T type antenna by using 

coupled integral equations. His solution requires separate 

sets of equations for each straight wire. The uses of these 

antennas are found where the height required to achieve self­

resonance is prohibitive at long wavelength and it is desired 

to reduce the effect of the ground plane for the ground-to­

ground communications. 

This paper obtains the current distribution of bent 

thin wire antennas by using Mei's integral equation for 

an arbitrarily shaped wire and the method of moments. Un­

like other methods, the use of Mei's form eliminates the 



need for the application of the boundary condition at the 

point of bending. The method of moments leads to a set of 

linear simultaneous equations for solving the unknown co­

efficients in the expansion of currents. Currents are 

calculated for several bend-angles and ratios of vertical 

portion over the bent portion of the wire. 

3 



II. FORMULATION OF THE PROBLEM 

Consider an arbitrarily curved thin wire of length 

L as shown in Figure 1 which is situated in a homogeneous, 

isotropic, nonmagnetic, and linear medium, characterized 

by the free space permittivity E
0 

and the free space per-

meability 1.1 • 
0 

The wire is sufficiently thin so that only 

the axial component of current need be considered. 

Hei's integral equation [5] for such a curved wire 

is 

J I(s') n(s,s') ds' 
L 

where 

( 1) 

n(s,s') = G(s,s') (s·s') - J5

{dG(i;,s') + ~t; [G(Cs')(f;•S)J} 
0 as' 

• cos k{s-~)d t,: . 

w is the angular velocity, G(s,s') is the free space 

Green's function, 

G(s,s') 
-jkR 

e 
R 

( 2) 

( 3) 

k = 2~ is the free space wave number, sand s' are the arc 

4 
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length measured from the coordinate origin somewhere along 

the wire, R = R(s,s') is the distance between the source 

point s' and the observation point s, and s and §' are axial 

unit vectors at sands', respectively. 

to be determined by boundary condition. 

The constant c is 

The derivation given by Mei is based on an auxiliary 

function which he defines and assumes at the outset the 

currents at end points vanish. We will give in this chapter 

an alternative derivation which we believe is simpler and 

more general in that the currents at end points do not have 

to be zero. We will first derive the Pocklington-type 

integral equation for the curved wire which will be sub­

sequently transformed to the Mei's equation by our method. 

Figure 1. An Arbitrarily Curved Wire 



A. DERIVATION OF POCKLINGTON-TYPE INTEGRAL EQUATION 

The magnetic vector potential at a point on the wire 

can be given by 

-+ 

= ~~ JLI(s') G(s,s') ds' 
-+ 

A (s) ( 4) 

-+ 

On projecting A(s) to the s-direction, the s-component of 
-+ 

A(s) becomes 

lJo J ~ LI(s')G(s,s') (S•S')ds' 

Substituting the Lorentz condition 

-+ 

V•A + jw~ s ¢ = 0 
0 0 

-+ 

into the usual definition of E in terms of potentials 

E -jwA 

gives in our case 

E (s) = 1 
-jwA(s) + jwJJ s 

0 0 

V [ V•A(s)] 

where the time dependence of ejwt is understood. The 

tangential electric field then becomes 

( 5) 

(6) 

( 7) 

( 8) 

6 



E ( s) 
s 

-jwA (s) + 
S j WJJ S 

0 0 

l V ['V•A(s)] 
s 

( 9) 

where 'V is the directional derivative in the s-direction. 
s 

Taking the divergence of (4) yields 

'V•A(s) ~0 I ~ = V•[4TT LI(s') G(s,s') ds'] 

1-10 J ~ = 4 TT LI(s') V• [G(s,s')ds'] 

1-10 f ~ = 
4

TT LI(s') V G(s,s') •ds' (10) 

The last step is based on the vector identity, 'V • (¢A)= 

'V¢•A + ¢'V·A. Noting the symmetry property of G or 

'VG = -'V'G, we have 

Thus 

'V•A(s) 
1J o f ~ = I(s') V'G(s,s') •ds' - 41T 

L 

1Jo Jr 
- 4n I(s') 

'V ['V ·A (s)] 
s 

L 

8G(s,s') 

8s' 
ds' (11) 

( 12) 

7 
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Putting (5) and (12) into (9) and rearranging gives 

JL I (s') [ 38 ~:,G(s,s') - k
2
G(s,s') (S•S')] ds'= -j4rrw E

0
E

8
(s). 

(13) 

For the total tangential electric field on the perfectly 

conducting wire to vanish, it is required that 

i 
E (s) + E (s) 0 

s s 

where Ei(s) is the s-component of the inpressed field of s 

the source if the antenna is transmitting, or it is the 

incident electric field when the antenna is receiving. 

Replacing E (s) by -E 1 (s), we finally obtain the 
s s 

Pocklington-type integral equation for an arbitrarily 

curved wire. 

JL I(s') fas~s' G(s,s') - k
2
G(s,s') (S·S')]ds' j4nws Ei(s) 

0 s 

(14) 

B. DERIVATION OF MEI'S INTEGRAL EQUATION* 

Beginning with the Pocklington-type integral equation 

(14), let's change the variable s to ~' multiply both sides 

by sin k(s-~), and take the integration J
8

d ~ 
0 

*This derivation is due to my advisor, Dr. B. K. Park 
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= r sin k(s-<S:)dt,:. ( 15) 

0 

Applying integration by parts to the first and the 

second terms of the left hand side of (13) gives 

J
s 

~t,: G(t,:,s') sin k(s- t,: )dt,: 
0 

and 

= [G{i;,s') sin k(s-i;)]: + k rG(i;,s') cos k(s-i;}d t; 
0 

= -G(o,s) sinks+ k JsG{i;,s') cos k(s- t; )dt;, (16) 
0 

r G ( s, s • ) ( ~ .s . ) 
0 

sin k(s- t,: )d l; 

= ~ [G(t,:,s') <i·s') cos k(s-t,:)]~ 



1 
k Js ~t: [G( i;, s')( i; •§')] cos k(s-i;)d i; 

0 

= ~ G ( s, s ' ) ( s • s' ) - ~ G (o, s I ) ( 8. s r ) cos ks 

1 
- k J

s 3 
~ [G( E;, ,s') ( E;, •s')J cos k(s- E;, )d ~ . 

0 

(17) 

Substituting equation ( 16) and (17) into equation 

(15), we have 

I I ( s ' ) 11 ( s, s ' ) ds ' 
L 

j41TWE JS i . = D sinks+ c cos ks- k 0 E E;, ( E;, )s1n k(s- E;, )d E;, 

0 

where 

(18) 

n<s,s'> = G(s,s'> <S·s·>-r {a G< ~ ~~·> + ~t: rG< S. s'> <i ·s·> 1 }· 
0 

cos k(s- E;, )d E;, ( 19) 

C = JL I(s') G(o,s') (O•§')ds' (20) 

10 
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(21) 

Following Mei we leave out the first term of the right 

hand side o£ equation (18), D sinks, thus obtaining the 

usual Mei's integral equation. 

As shown above, our derivation does not require the 

introduction of an auxiliary scalar function as an inter-

mediate tool which is inevitable in Mei's derivation. 

C. CALCULATION OF CURRENTS BY THE 1'1ETHOD OF MOMENTS 

The general form of the bent wire antenna under study 

is illustrated in Figure 2. It consists of a vertical 

element of length H and a bent element of length L which 

forms an angle with the vertical element. The structure 

v is excited by a delta-gap generator of EMF strength 2 
just above the ground plane which is assumed to be an in-

finite and perfectly conducting plane. Based on the image 

theory, this structure can be considered as a symmetric 

center-driven dipole antenna as illustrated in Figure 3. 

The impressed electric field can then be given as 

( ~) 0 ( ~) (22) 

where o(~) is the Dirac delta function. Hence the right 

hand side of equation (1) becomes 



H 

Figure 2. A Bent Wire on a Ground Plane 

. ( 4 'IT) 
-J z 

0 J
s 

0 

E~ ( l;) sin k(s-l;)d t; 

· ( 2nV) sin ks -J -z-
o 

12 

(23) 

where Z = 120n is the free space wave impedence, and equa­
o 

tion (l) becomes 
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JL I(s') rr(s,s')ds' 

c cos ks - j (~0 ) sinks. (24) 

DELTA GAP 

2H 

Figure 3. A Symmetric Center-Driven Dipole Antenna 

We now seek a solution for the current I(s') which 

satisfies the integral equation (24) and the requirement 

that the currents be zero at the ends of wire. According 

to the method of moments (see Appendix) the first step is 

to assume that I(s') can be expressed as a linear combination 

of a finite number of expression functions I (s') in the form 
n 



I ( s ') = I 
n 

C I (s') n n 

where C 's are unknown coefficients to be determined. n 

14 

(25) 

Inserting the equation (25) into (24) and interchanging 

the order of summation and integration gives 

I ( s') 
n 

rr(s,s')ds' 

= c cos ks + j(~0 ) sinks. (26) 

By enforcing this integral equation to satisfy at a 

specified number of match points along the wire, we obtain 

a set of linear simultaneous equations to solve for unknown 

coefficients C . 
n 

This step amounts to choosing Dirac delta 

functions for test functions in the general method of 

moments. If we choose the number of expansion terms in 

equation (25) to be M+N where M and N are defined in the case 

of pulse expansion functions by 

!::.s' - H 
-(M-1) 

L 
N 

This is illustrated in Figure 4. In the case of piecewise 

sinusoidal expansion functions, the definitions of M and N 

are slightly differ e nt from the above definition and are 

given by 

!J.s' = H L 
= 

(N-0.5) (M-0.5) 
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which is shown in Figure 6. Since the expansion functions 

are constrained to satisfy the condition that the currents 

at wire enas be zero a priori, we set CM+N to zero. Since 

at the same time C must take on the correct value associated 

with this condition, we treat C as another unknown in the 

system of linear equations. With CM+N = 0 and C assuming 

the role of another unknown, the system has M+N unknowns. 

Thus to render the system solvable, we choose the number of 

match points to be equal to the number of unknowns M+N 

and we locate them as shown in Figures 4 and 6. 

We then have the following set of simultaneous linear 

equations 

pll pl2 

p21 p22 

PM+N,l PM+N,2. 

where 

p 
1 ,1'·1+N-l Ql 

p 
2,M+N-l Q2 

. PM+N,M+N-1 ~M+j 

I ( S 1
) 

n 
n(s s')ds' 

rn' 

cl 

r 
vl 

c2 - v2 

CM+N-1 

c VM+N 

(27) 

(28) 

( 2 9) 
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V = -j (~) sinks 
m 60 m 

( 3 0) 

evidently depend on the choice of expansion set and the 

location of match points. For the integration of the right 

hand side of equation ( 28), Weddle's rule (see Appendix B) 

is used. 

Finally by inserting c obtained from equation (27) 
n 

into equation (25), the current distribution for the problem 

can be obtained. 

The input impedance z. is given by 
lD 

z. 
lD 

v 
c:· 

1 

In what follows, we will consider the case with 

( 31) 

rectangular pulses and piece1vise sinusoids as the expan-

sion sets for the currents. 

l. RECTANGULAR PULSE EXPANSION FOR THE CURRENT 

Pulse functions are defined in such a way that each 

term of the current expansion is zero except in a specific 

subsection 6.s' as depicted in Figure 4. For example, the 

pulse function p (s 1 ) is unity over the increment, 6.S' = 
n 

s~+1 -s~, and is given by 

P (s I) 
n 

( 3 2) 



where U(s') is the familiar unit step function, 

p ( S I) 
n 

U(s') =< l 

0 

s'>O 

s'<O ( 3 3) 

l --·------------------
Ills,____., 

Figure 4. 

s' 
n 

s' 

Representative Subsection of a Pulse Function 
Expansion 

Figure 5 illustrates the form of the pulse function 

17 

expansion for the current along the antenna from the delta-

gap to the end of the wire. Thus each C specifies the value 
n 

of a constant current over the interval. We then have 



.---1 
I 
~ 

u 

N 
u 

,' 

u 
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• match points 

N 
[/} 

DELTA GAP 

Figure 5. Pulse Function Expansion for the Current Distri­
bution 
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M+N 
I(s') I cn[U(s'-s~)- U(s'-s~+l)]. 

n=l 
(34) 

By insert1ng equation (34) into equation (25) and choosing 

match points as shown in Figure 5, we have the M+N simultaneous 

linear equations for the M+N unknowns. In this case, the 

specific values of matrix elements P are of the form mn 

p = Js~+l ~(s ,s')ds'. 
mn m 

s' 
n 

( 3 5) 

2. PIECEWISE SINUSOIDAL EXPANSION FOR THE CURRENT 

Generally it is understood that the piecewise sinusoidal 

expansion as shown in Figure 6 is more similar to the exact 

shape of the current distribution and hence will require 

fewer terms to accurately calculate the current than the 

pulse function expansion as shown in Figure 4 [7]. 

Therefore, by assuming the current distribution as 

depicted in Figure 7, equation (25) can be written as 

I ( s I) 
cl 

= 6 sin k(s2-s') U(s2-s') 

1 
+ 6 

M+N-1 
I Cn{sin k(s'-s~_ 1 ) [U(s'-s~_ 1 )-U(s'-s~)] 

n=2 

+ sin k (s' -s') [U(s'-s')-U(s'-s' ) ] } 
n+l n n+l 



I ( s') 

Figure 6. 

c 
n 

I ( s') 

s' 
n 

, 
/ 

c n+l 

s' n+l 

Representative Subsection of a Piecewise 
Sinusoidal Current Expansion 

20 

s' 



Figure 7. 
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• MATCH POINTS 

DELTA GAP 

Piecewise Sinusoidal Expansion f or the Current 
Distribution 
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( 3 6) 

where 

6 sin k6s 1
• 

Using a procedure similar to that used for the pulse 

expansion case, a set of simultaneous linear equations is 

obtained which has the same form as the equation {27). 

However, the implicit matrix elements P will be different. 
mn 

In this case, they are given by 

p 
rnl 

p 
mn 

where 

m 

1 r2 = n(s ,s') sin k ( s '-s 1
) ds' 

6 m 2 s' 
1 

1 r~ = 
6 sl 

n-1 

+ ~ Js~+l 
S I 

n 

1,2,3 

n(s ,s') 
m 

n (s ,s') 
m 

. i'-1+N 

sin k(s'-s' )ds' 
n-1 

sin k(s' -s')ds' 
n+l 

n = 2,3,4 

{ 3 7) 

(38) 

. M+N-1. 



23 

III. RESULTS AND CONCLUSIONS 

The necessary calculations were programmed in FORTRAN 

IV (single precision) and carried out on IBM 360/50 digital 

computer at the University of Missouri - Rolla. The results 

are given in Figures 8 through 11. In all cases, the total 

A length of the dipole considered is 2 or the monopole length 

A 
4• 

Figure 8 shows the current distribution for the case of 

bend angle zero. This special case corresponds to the funda-

mental case of straight dipole and results are in close 

agreement with the known values. In obtaining these results 

the total number of subsections used was 20 for piecewise 

sinusoids and rectangular pulses, the corresponding computa-

tion time being approximately 3 minutes and 4 minutes, 

respectively. The purpose of investigating this special 

case was to make a specific comparison between the two 

expansion functions and the results indicate that the piece-

wise sinusoids give a considerably faster convergence than 

the rectangular pulses. 

The effect of changing the proportions between the 

vertical element and the bent element was investigated for 

the case of 8 = ; (the inverted-L antenna) and it is illus­

trated in terms of input impedance in order to compare 

with another data obtained by Simpson [6] in Figure 9. 

Simpson's datas are based on a formulation which has two 

separate sets of integral equations on the vertical and the 
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horizontal elements which are to satisfy the boundary con­

dition at the bend point. It is seen that while the imaginary 

part of the current is a reasonably good agreement between 

Sinpson's results and our's, the real parts are considerably 

different except two special cases corresponding to the 

vertical dipole and the horizontal dipole. However, it can 

be seen that the input impedance increases as the horizontal 

portion of the wire decreases. 

The current distribution for the inverted-L wire is 

plotted in Figure 10 for several different combinations 

of vertical and horizontal elements. A sharp spike may be 

noted in the neighborhood of bend point which is under­

standable on the basis of strong mutual coupling between 

currents in this region. 

Figure 11 shows the effect on current distribution as e 

is changed from zero to several different values. It can 

be seen that the increase in bend angles tend to amplify 

the overall current including the sharp spike in the bend 

region. Computer programs are given in Appendix D. 
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Various Ratio~ of the VXrtical Portion Over the 
Total Length 4 . (A = 250 , N=20, NX=7) 
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APPENDIX A 

THE METHOD OF MOMENTS [8] 

The method of moments is a procedure to reduce an 

operator equation to a system of linear simultaneous equa-

tions which can be solved by matrix inversion and matrix 

multiplication. 

Let's consider the inhomogeneous equation written in 

symbolic notations 

L(I) v (A-1) 

where L is a linear operator, V is known, and I is to be 

determined. Let I be expanded in a series of functions 

. IN in the domain L, as 

N 
I I c I n n 

(A-2) 
n 

where the C are unknown constants, and we shall call the 
n 

31 

I 's expansion functions or basis functions. 
n 

For approximate 

solutions, (A-2) is usually a finite summation. 

Substituting (A-2) into (A-1) and using linearity of L, 

N 
I c L(I ) 

n n 
v. (A-3) 

n 
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It is assumed that a suitable inner product <I,V> has been 

determined for the problem. Now define a set of test func-

tions or weighting functions w
1

, w2 , w3 , 

range of L, and the inner product of (A-3) 

This results in 

N 
I C <w ,LI > = <w ,V> n m n m 
n 

• , wN in the 

Hith W • 
T:"'. 

(A-4) 

for m = l, 2, 3, • , N. This set of equations can be 

written in matrix form as 

[ 1 ] 
mn 

[ c ] 
n 

[V ] 
m 

(A-5) 

where 

(A-6) [1 ] mn = 

[ c ] 
n 

= (A-7) 

[V ] 
m = r 

< 'f..rJl 1 V> 

<vl
2

, V> 

(A-8) 

l <I.·JN 'V > 



If matrix [1 ] rnn 
is nonsingular, its inverse 

exists. The [C ] are then given by 
n 

[C ] 
n 

[l ]-l [V ] . 
rnn m 

[1 ]-1 
rnn 

(A-9) 

The solution for I is obtained by inserting C 's into 
n 

the equation (A-2) . 

33 

This solution by the method of moments may be exact or 

approximate depending on the choice of expansion functions 

I and the test functions w . n m If I 's are subdomain func­
n 

tions, the method is called the method of subsections. 

The particular choice w = 6 , Dirac delta functions, is m m 

known as the point matching or the method of collocation. 
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APPENDIX B 

WEDDLE'S RULE OF INTEGRATION 

Weddle's rule is a numerical integration method which 

uses a 6th-order Newton forward-form interpolating poly-

nomial. 

Let us consider the evaluation of the following definite 

integral 

ydx, y = f(x) (B-1) 

from a set of numerical values of the integrand, (x. 'Y. ) 
l l 

for i = 0, 1, 2, ., n, where the functional form of y 

is unknown. We first determine an n-th degree polynomial 

of the form 

P (x) 
n 

. + C ( x-x ) ( x-x
1

) n o (x-x 
1

) 
n-

which approximates y = f(x) over the interval 

(B- 2) 

(x ,x ) and o n 

which coincides with the function at the n+l evenly spaced 

match points x., i.e., the polynomial P (x) satisfies the 
1 n 

contraints equations 

P (x.) = y. (i = 0,1,2, n 1 l 
. , n) • (B-3) 



Substituting equation (B-3) and h = (x.-x.)/(j-i) 
J l 
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into equation (B-2), we obtain the coefficients Ck of the n-th 

degree Newton's forward-form interpolating polynomial. Thus 

P (x) 
n 

/\ /\ 2 
uyo u Yo 

= y
0 

+ ll (x-x
0

) + ~ (x-x
0

) (x-x1 ) + .•.. 

. + 
~n 

Yo 
'hn (x-xo) (x-xl) . . . 

n. 
(x-x 

1
). 

n-
(B-4) 

Let u (x-x )/h and du = dx/h. Then, inserting equation 
0 

(B-4) into (B-1), we find 

J
x

0
+nh 

y dx = 
X J

m u(u-1) "2 
h (y +ut:.y + 2 u y

0 
+ · · 

0 0 ! 
0 

0 

u(u-1) (u-2). 
. + 5! 

which is after integration 

Jx

x
0 

+nh 

y dx = 
0 

• . + 
7 

(~ 7 + . . . ) 

(u-5) "6 
u Yo + . 

2 
2 n y 
~) 0 
2 2! 

. )du (B-5) 

+ 

(B-6) 



Putting n = 6 and neglecting all higher order terms 

beyond sixth, we get 

h[6y +186y + 276
2

y + 246
3

y o o -o o 

(B-7) 

Substituting the relation [9] 

(k) (k) k = Yk- l Yk-1 + 2 Yk-2 - · · · +(-1 ) Yo 

into (B-7), we have 

+ 216 y 5 + 41 y 6 J/140. (B-8) 

For the next set of six intervals from x 6 to x 12 , where 

n is now a multiple of six, we similarly obtain 

36 
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J

x
0

+12h 

y dx 
X +6h 

h[41 y 6 + 216 yn + 27 y 8 + 272 y
9 

+ 27 y
10 

0 

+ 216 yll + 41 yl2]/l40. (B-9) 

Adding all such expressions as equation (B-8) and (B-9) 

over the interval (x ,x ) , where n is now a multiple of 
o n 

six, we get 

J
x

0
+nh 

y dx 
X 

0 

h 
140 

[41 y
0 

+ 216 y
1 

+ • 

+ 216 y7 + . • + 272 yn-J + 27 yn_ 2 + 216 yn-l 

+ 41 y ] 
n 

where k = 41, 216 , 2 7 , 2 7 2, 2 7 , 216 , 8 4 , 216 , 2 7 , 
n 

etc. Weddle's rule described above is essentially Newton-

Cotes 6th order quadrature formula [9]. 
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APPENDIX C 

DERIVATION OF AN EXPRESSION FOR THE KERNEL FUNCTION n(s,s') 

In this section we will derive the specific expressions 

for the Kernel function n as defined in equation [191. 

Defining the distances between observation points and 

source points s' as shown in Figure 12, we have 

l 

2 2 2 
= (a +(s'+~) ) 

l 
2 

= ((H+~) 2+(s'-H) 2+2(H+~) (s'-H)cos 8+a 2 ) 

= ((2(H+(~-H)cos 8)) 2+(s'-~) 2+4(H+( ~ -H)cos 8 ) (s'- ~ ) 

l 
2 

8+a 2 ) cos 

We have the corresponding Green's function for each case, 
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R 

CASE I CASE II 

I 

s ' 

s' 

CASE III CASE IV 

Figure 12. Geometry o f Dipole and Relevant Symbols 



Differentiating the above Green's function with respect to 

s' and l; gives 

8G12/8E;, = 

8G13/8s' = 

8G13/8E;, = 

8G14/8s' 

8G14/8E;, = 

-8G /8s' 11 

-8G12/8s' 

G13 ( -1-j kR
13

) [ ( s '-H)+ (H- E,: ) cos 

G13 (-l-jkR13 ) [ ( t;, -H) + (H-s ')cos 

2 
8]/Rl3 

2 
8 ]/Rl3 

-Gl4(-l-jkR14) 
2 [(s'-H)+(H+ E,: )cos8]/R14 

Gl4 ( -l-jkR14) [ ( l;+H) + ( s I -H) cos 
2 

8]/Rl4 
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2 aG
31

;as '=-G
31 

(-l-jkR
31

) [ (H-s') + (s-H)cos 8]/R31 

2 aG
32

;as'=-G
32 

(-l-jkR
32

) [s'+H)+(s-H)cos 8]R32 

The above equations are now substituted into equation 

41 

(19) and the scalar products contained in equation (19) are 

replaced by their appropriate forms for each case defined in 

Figure 12. The resulting Kernel functions n(s,s') are given 

by 

CASE I 

'IT ( s ' s ' ) =G 11 ( s I s I ) +G 12 ( s ' s ' ) 

CASE II 

n(s,s')=(G (s,s')+G14 (s,s'))cos 8 -J
5

(( dG13 / d s'+ 3G14 / ds')+ 
13 0 



CASE III 

n(s,s')=G11 (s,s')+G34 (s,s')cos2 8- JH( dG
13

; a s'+ dG
14

; as')+ 
0 

CASE IV 

42 
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APPENDIX D 

COMPUTER PROGRAM 

The following are computer programs that were used for 

the calculation of current distribution of bent thin wire 

antennas. The function subprograms CABL, CABU, CKCD, 

CFG and CKAE for obtaining matrix elements P are included. mn 

Subroutine subprogram CWEDF is for the integration by using 

Weddle's rule and subroutine subprogram CHINl is for the 

complex matrix inversion by using the Gauss-Jordan elimination 

method, which are not included. All programs are written 1n 

single precision IBM360/50 digital computer FORTRAN IV 

language. Typical execution time for each run is less than 

five minutes for M+N=20 and NX=7, and core requested is 

about 120k. 



01 
02 

03 
04 
05 

06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

c 
c 
c 

c 

c 
c 

BENTED DIPOLE PROBLEM 
SLICE GENERATOR EXCITATION & PIECE WISE SINUSOIDAL EXPANSION 
DIMENSION STATEMENT 
IMPLICIT REAL*4(A-B,E-H) ,COMPLEX*8(C,O-Z) 
COMPLEX*8 S(30,30) ,DQM(30) ,DMF{30) ,CN(30) ,CMPLX,ZINPUT,CANS,DETERM 

*,P(30,181) ,X(30) 
REAL*4 BS(l81) ,BSM(30) ,ACN(30) ,SIN,COS,SQRT 
COMMON FK,ASQ,FFI,A~~T,AS,ALPHA,H,BNL,BNU 
EXTERNAL CABU,CKCD,CKAE,CKFG,CABL 
INITIAL CONSTANTS 
MMAX=14 
NMAX=6 
H=(2.*MMAX-l.)/(8.*(MMAX+NMAX-l.)) 
ALPHA=1.5708 
A=l./250. 
MPl=HMAX+1 
MP2=MMAX+2 
MN=MMAX+NMAX 
MNNl=MN-1 
KMP 1 = ~1P 1 * 6- 5 
KMNP=MN*6+1 
KMNN=MNN1*6-5 
KMN=MN*6-5 
HDEL=2.*H/(2.*MMAX-1.) 
HDELH=HDEL/2. 
BDEL=HDEL/6. 
ASQ=A*A 
FI=31416 
ETA=l20.*FI 
FK=2. *FI 
FCQ=(4.*FI)/ETA 
EMF=l.O 
FCV=(FCQ*EMF)/2. 

COMPUTATION OF BSN 

;4::::.. 

~ 



29 DO 11 K=1, I01NP 
30 KM1=K-1 
31 BS(K)=KH1*BDEL 
32 11 CONTINUE 

c COMPUTATION OF DQM,DMFM 
33 DO 13 M=l,MN 
34 BSM(M)=M*HDEL-HDEL 
35 13 CONTINUE 
36 DO 14 M=1,MN 
37 FQ=FCQ*COS(FK*BSM(M)) 
38 DQM(M)=CMPLX(O.O,FQ) 
39 FV=-FCV*SIN(FK*SBM(M)) 
40 DMF(M)=CMPLX(O.O,FV) 
41 14 CONTINUE 

c COMPUTATION OF SMN ANDPMK 
42 DO 15 M=1,MMAX 
43 AMAT==BSM(M) 
44 DO 15 N==1 ,rt.~X 
45 BNL=(N-l)*HDEL 
46 BNU=N*HDEL 
47 CALL CWEDF(CABU,BNL,BNU, 7,CANS) 
48 S(M,N)=CANS/SIN(FK*HDEL) 
49 ANP=N-2 
50 IF(ANP) 15,50,50 
51 so BNU=BSM(N) 
52 BNL=BS~1 (N-1) 
53 CALL CWEDF(CABL,BNL,BNU,7,CANS) 
54 S(M,N)=S(M,N)+CANS/SIN(FK*HDEL) 
55 15 CONTINUE 
56 DO 16 M=l,MMAX 
57 AMAT=BSM(M) 
58 DO 16 N==HPl,MNNl 

.t:;:. 

U1 



59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

80 
81 
82 
83 
84 
85 
86 

62 

63 
61 

16 

KL=6*N-ll 
KM=6*N-5 
KU=6*N+l 
BNL=BSM(N-1) 
BNU=BSM(N+1) 
DO 61 K=KL,KU 
AS=BS(K) 
ANL=O.O 
ANU=AHAT 
CALL CWEDF(CKCD,ANL,ANU, 7, CANS) 
HC=SQRT((AMAT-H)**2+{AS-H)**2+2.*(H-AMAT)*(AS-H)*COS(ALPHA)+ASQ) 
HD=SQRT((AMAT+H)**2+(AS-H)**2+2.*(H+AMAT)*(AS-H)*COS(ALPHA)+ASQ) 
CGC=CMPLX(COS(FK*HC) ,-SIN(FK*HC))/HC 
CGD=CMPLX(COS(FK*HD) ,-SIN(FK*HD))/HD 
P(M,K)=-CANS+(CGC+CGD)*COS(ALPHA) 
IF(K -KM) 62,63,63 
P(M,K)=P(M,K)*SIN(FK*(AS-BNL)) 
GO TO 61 
P(M,K)=P(M,K)*SIN(FK*(BNU-AS)) 
CONTINUE 
S(M,N)=(41.*P(M,6*N-11)+216.*P(M,6*N-10)+27.*P(M,6*N-9)+272.* 

2P(M,6*N-8)+27.*P(M,6*N-7)+216.*P(M,6*N-6)+82.*P(M,6*N-5)+216.* 
3P(M,6*N-4)+27.*P(M,6*N-3)+272.*P(M,6*N-2)+27.*P(M,6*N-1)+216.*P 
4(M,6*N)+4l.*P(M,6*N+l))*BDEL/(140.*SIN(FK*HDEL)) 

CONTINUE 
DO 17 M=MPl,MN 
AMAT=BSM(M) 
DO 17 N=l,MPl 
KU=6*N+l 
BNU=BSM (N+ l) 
IE(N.EQ.l) GO TO 53 

,t::.. 

0'1 



87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

111 
112 

113 
114 
115 

53 

54 

55 

57 
71 

58 

17 

BNL=BSM(N-1) 
KL=6*N-11 
KM=6*N-5 
GO TO 54 
KL=6*N-5 
KM=KL 
BNL=BSH(N) 
DO 71 K=KL,KU 
AS=BS(K) 
ANL=H 
ANU=AMAT 
CALL CWEDF(CKFG,ANL,ANU, 7,CANS) 
HF=SQRT((AMAT-H)**2+(H-AS)**2-2.*(H-A~ffiT)*(H-AS)*COS(ALPHA)+ASQ) 
HG=SQRT((A.MAT-H)**2+{H+AS)**2-2.*(H-AMAT)*(H+AS)*COS(ALPHA)+ASQ) 
CGF=CMPLX(COS(FK*HF) ,-SIN(FK*HF))/HF 
CGG=CMPLX(COS{FK*HG) ,-SIN(FK*HG))/HG 
P(M,K)= -CANS+(CGF+CGG)*COS(ALPHA) 
IF(K-KM) 55,57,57 
P(M,K)=P(M,K)*SIN(FK*{AS-BNL)) 
GO TO 71 
P(M,K)=P(M,K)*SIN(FK*(BNU-AS)) 
CONTINUE 
IF(N.EQ.1) GO TO 58 
S(M,N)=(41.*P(M,6*N-11)+216.*P(M,6*N-10)+27.*P(M,6*N-9)+272.* 

2P(M,6*N-8)+27.*P(M,6*N-7)+216.*P(M,6*N-6)+82.*P(M,6*N-5)+216.* 
3P(M,6*N-4)+27.*P(M,6*N-3)+272.*P(M,6*N-2)+27.*P(M,6*N-1)+216.*P 
4(M,6*N)+4l.*P(H,6*N+l))*BDEL/(140.*SIN(FK*HDEL)) 

GO TO 17 
S(M,N)=(41.*P(M,6*N-5)+216.*P(M,6*N-4)+27.*P(M,6*N-3)+272.*P(M. 

26*N-2)+27.*P(M,6*N-1)+216.*P(M,6*N)+41.*P(M,6*N+l))*BDEL/(140.* 
3SIN(FK*HDEL)) 

CONTINUE 
DO 19 M=MP1,MN 
AMAT=BSM{M) .t:::. 

-....J 



116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

134 
135 
136 
137 
138 
139 
140 
141 
142 

143 
144 
145 

95 

97 
91 

19 

DO 19 N=MP1,MNN1 
KL=6*N-ll 
KH=6*N-5 
KU=6*N+l 
BNL=BSM(N-1) 
BNU=BSM(N+1) 
DO 91 K=KL,KU 
IF((N.EQ.MP1) .AND. (K.LE.KM)) GO TO 91 
AS=BS(K) 
ANL=O.O 
ANU=H 
CALL CWEDF(CKCD,ANL,ANU, 7,CANS 
P(M,K)=-CANS 
ANL=H 
ANU=AMAT 
CALL CWEDF(CKAE,ANL,ANU, ?,CANS) 
HA=SQRT(ASQ+{AS-AMAT)**2) 
HE=SQRT((2.*(H+(AS-H)*COS(ALPHA)))**2+(AS-AMAT)**2-2.*(2.*(H+(AS 

2-H)*COS(ALPHA)))*(AS-M1AT)*COS(ALPHA)+ASQ) 
CGA=CMPLX(COS(FK*HA) ,-SIN(FK*HA))/HA 
CGE=CMPLX(COS(FK*HE) ,-SIN(FK*HE))/HE 
P(M,K)=P(M,K)-CANS+CGA+CGE*COS(2.*ALPHA) 
IF(K-KM) 95,97,97 
P(M,K)=P(M,K)*SIN(FK*(AS-BNL)) 
GO TO 91 
P(M,K)=P(M,K)*SIN(FK*(BNU-AS)) 
CONTINUE 
S(M,N)=(41.*P(M,6*N-11)+216.*P(M,6*N-10)+27.*P(M,6*N-9)+272.* 

2P(M,6*N-8)+27.*P(M,6*N-7)+216.*P(M,6*N-6)+82.*P(M,6*N-5)+216.* 
3P(M,6*N-4)+27.*P(M,6*N-3)+272.*P(M,6*N-2)+27.*P(M,6*N-1)+216.*P 
4(M,6*N)+41.*P(M,6*N+1))*BDEL/(140.*SIN(FK*HDEL)) 

CONTINUE 
DO 21 H=l,MN 
S (M, MN) =DQr.·1 (~1) 

~ 
Q:) 



146 21 
147 
148 105 

149 
150 
151 
152 

c 

153 600 
154 
155 22 
156 151 
157 
158 
159 152 
160 
161 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 

CONTINUE 
~'JRITE(3,105) ( (H,N,S (M,N) ,N=l,MN) ,M=1,MN) 
FORMAT(SX,212,5X,2E15.7) 
SIMULTANEOUS EQUATIONS SOLUTION 
CALL CMIN1(MN,S,30,DETERM) 
DO 22 M=l,HN 
CN(M)=O.O 
DO 600 N=l,MN 
CN(M)=CN(M)+DMF(N)*S(M,N) 
ACN(M)=CABS(CN(M)) 
WRITE(3,151) M,ACN(M) ,CN(M) 
F 0 RMAT ( 2 X , 12 , 5 X , ' ACN = ' , E 16 . 7 , 5 X , ' C N = ' , 2 E 16 . 7 ) 
AINPUT=EMF/CN(l) 
WRITE(3,152) ZINPUT 
FORMAT(2X, 'ZINPUT=' ,2E16.7) 
STOP 
END 

COMPLEX FUNCTION CABL(BE) 
IMPLICIT COMPLEX*8(C) 
COMPLEX*8 CMPLX 
REAL*4 SQRT,COS,SIN 
COMMON FK,ASQ,FFI,AMAT,AS,ALPHA,H,BNL,BNU 
GP=SQRT(ASQ+(AJ1AT-BE)**2) 
GI=SQRT(ASQ+(AMAT+BE)**2) 
FKR=COS(FK*GP)/GP+COS(FK*GI)/GI 
FKI=-SIN(FK*GP)/GP-SIN(FK*GI)/GI 
CABL=CMPLX(FKR,FKI)*SIN(FK*(BE-BNL)) 
RETURN 
END 

.::::.. 
\.0 



01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

11 
12 

c 

COMPLEX FUNCTION CABU(BE) 
IMPLICIT COMPLEX*8(C) 
COMPLEX*8 CMPLX 
REAL*4 SQRT,COS,SIN 
COMMON FK,ASQ,FFI,AMAT,AS,ALPHA,H,BNL,BNU 
GP=SQRT(ASQ+(AMAT-BE)**2) 
GI=SQRT(ASQ+(AMAT+BE)**2) 
FKR=COS(FK*GP)/GP+COS(FK*GI)/GI 
FKI=-SIN(FK*GP)/GP-SIN(FK*GI)/GI 
CABU=CMPLX(EKR,FKI)*SIN(FK*(BNU-BE)) 
RETURN 
END 

FUNCTION SUBPROGRAM FOR CKCD 
COMPLEX FUNCTION CKCD(BE) 
IMPLICIT COMPLEX*B(C) 
COMPLEX*8 CMPLX 
REAL*4 SQRT,COS,SIN 
COMMON FK,ASQ,FFI,AMAT,AS,ALPHA,H,BNL,BNU 
HC=SQRT((BE-H)**2+(AS-H)**2+2.*(H-BE)*(AS-H)*COS(ALPHA)+ASQ) 
HD=SQRT((BE+H)**2+(AS-H)**2+2.*(H+BE)*(AS-H)*COS(ALPHA)+ASQ) 
CGC=CMPLX(COS(FK*HC) ,-SIN(FK*HC))/HC 
CGD=CMPLX(COS(FK*HD) ,-SIN(FK*HD))/HD 
CKCD=(CGC*CMPLX(-1./HC**2,-FK/HC)*(AS-H)+CGD*CMPLX(-1./HD**2,-FK/ 

2HD)*(H-AS))*SIN(ALPHA)**2*COS(FK*(AMAT-BE)) 
RETURN 
END 
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COMPLEX FUNCTION CKFG(BE) 
IMPLICIT COMPLEX*8(C) 
COMPLEX*8 CMPLX 
REAL*4 SQRT,COS,SIN 
COMMON FK,ASQ,FFI,A~~T,AS,ALPHA,H,BNL,BNU 
HF=SQRT((BE-H)**]+(H-AS)**2+2.*(BE-H)*(H-AS)*COS(ALPHA)+ASQ) 
HG=SQRT((BE-H)**]+(H+AS)**2+2.*(BE-H)*(H+AS)*COS(ALPHA)+ASQ) 
CGF=CMPLX{COS(FK*HF) ,-SIN(FK*HE))/HE 
CGG=CMPLX(COS(FK*HG) ,~SIN(FK*HG))/HG 
CKEG~(CGF*CMPLX(-l./HF**2,-FK/HE)*(AS-H)+CGG*CMPLX(-l./HG**2,-FK 
2/HG)*(-AS-H))*SIN(ALPHA}**2*COS(FK*(A~~T-BE)) 

RETURN 
END 

COHPLEX FUNCTION CKAE(BE) 
IMPLICIT COMPLEX*S(C) 
COMPLEX*8 CMPLX 
REAL*4 SQRT,COS,SIN 
COMMON FK,ASQ,FFI,AMAT,AS,ALPHA,H,BNL,BNU 
HA=SQRT(ASQ+(AS-BE)**2) 
HE=SQRT((2.*(H+(AS-H)*COS(ALPHA)))**2+(AS-BE)**2-2.*(2.*(H+(AS 

2-H)*COS(ALPHA)))*(AS-BE)*COS(ALPHA)+ASQ) 
CGA=CMPLX(COS(FK*HA) ,-SIN(FK*HA))/HA 
CGE=CMPLX(COS(FK*HE) ,-SIN(FK*HE))/HE 
CKAE=(CGE*CHPLX(-l./HE**2,-FK/HE)*((AS-BE)*(-l.-COS(2.* 

2ALPHA)+2.*COS(ALPHA)**2*COS{2.*ALPHA)))+2.*(H+(BE-H)*COS(ALPHA)) 
3*COS(ALPHA)*(-l.+COS(2.*ALPHA)))*COS(FK*(AMAT-BE)) 

RETURN 
END 

U1 
I-' 


	Numerical calculation of the currents in bent wire antennas
	Recommended Citation

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057

