
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1969

A design oriented digital design language A design oriented digital design language

David Michael Rouse

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Rouse, David Michael, "A design oriented digital design language" (1969). Masters Theses. 5300.
https://scholarsmine.mst.edu/masters_theses/5300

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5300?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5300&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A DESIGN ORIENTED DIGITAL DESIGN LANGUAGE

BY

DAVID MICHAEL ROUSE~

A

THESIS

submitted to the faculty of

THE UNIVERSITY OF MISSOURI-ROLLA

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Rolla, Missouri

1969

Approved by

}n./A-~,q--~(advisor) ~ L
~ {;~~

ii

ABSTRACT

A digital design language is presented here which is

more consistent with the design sequence of digital com

puters than existing languages. An ideal design sequence

is first investigated and the following desirable design

langauge characteristics obtained. A good design oriented

language must be: 1) multi-level, 2) capable of expressing

ideas easily, 3) easily understood, 4) machine acceptable,

5) modular and, 6) capable of showing timing and control.

It should also be: 1) independent of technology, 2) unre

stricted to any particular structural feature such as

serial processes, synchronous processes, etc., 3) concise,

4) precise, and 5) non-ambiguous.

With regard to these features, the language presented

here has a marked improvement over most of the other lan

guages in that it is 1) multi-leveled, 2) modular, 3) capa

ble of showing timing and control clearly, 4) unrestricted

to any particular structural features, and 5) is easily

understandable.

A flow chart based language is used to make the lan

guage more easily understood since it separates the control

and operation variables into more appropriate and distinct

categories. Multi-level specification is used not only to

make the de~ign more readily understood, but also as a means

iii

of making the design language more consistent with the de

sign procedure. This language is very versatile in repre

senting all types of designs from completely synchronous

to completely asynchronous in either serial or parallel

operation.

Since this language is closely related to, and enhances

flow table representation and can be used to express asyn

chronous operations, it is of significant value in bridging

the now existing gap between digital system design and asyn

chronous sequential switching theory.

The multi-level structuring of the language makes simu

lation and fault diagnosis easier on both the logic level

and the functional level. This is due to the partitioning

techniques of the language.

The initial phase of the design of a large digital com

puter is presented using this language to show how it makes

larger systems more easily understandable and to show its

consistency with the design procedure.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to

Dr. James H. Tracey for his careful guidance throughout

the entire project.

iv

The author also wishes to thank Dr. Steven A. Szygenda

and Richard L. Christensen for stimulating discussions.

TABLE OF CONTENTS

ABSTRACT .
.

.
ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES .
I.

II.

III.

IV.

v.

VI.

INTRODUCTION .
REVIEW OF EXISTING LANGUAGES

A. Computer Design Languages
B. Register Transfer Language
c. Digital Systems Design Languages
D. Iverson Notation .
COMPARISON OF EXISTING LANGUAGES

LANGUAGE DESCRIPTION .

A DESIGN PROCEDURE •. • • • •••••••••••••••••••••

SUMMARY .
BIBLIOGRAPHY .
VITA .

v

Page

ii

iv

vi

vii

1

6

6

10

14

20

24

26

47

60

62

64

Figure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

vi

LIST OF FIGURES

Page

Digital Design Procedure

An Example of Computer Design Language

An Example of Register Transfer Language

An Example of Digital System Design
Languages

An Example of Iverson Notation

2

7

13

18-19

23

A Universal Block 29

An Example of Design Oriented Language,
Part I 44

An Example of Design Oriented Language,
Part II 45

An Example of Design Oriented Language,
Part III 46

Instruction Field Specification 48

A Sequence Control Graph Showing the Multi-
Level Structure 51

Example Design's Sequence Control Graph 53-54

Instruction Register Interconnection 55

System's Intermodular Connection 58

Table

I

II

LIST OF TABLES

Linguistic Symbols

Explanation of Linguistic Symbols

vii

Page

35

40

1

I. INTRODUCTION

At present computer design is started by a mental

conception, transformed to a narrative type of description,

carried on in a pseudo-isolationist atmosphere by sets of

disjoint sequences and finished by experience, ingenuity,

trial and error and a lot of perseverance spread out over

an unnecessarily long period of time. The great fault and

burden of this sequence is not having a suitable means of

expressing and communicating design ideas regardless of

the phase of the design. It is for this reason that a more

design oriented language is desired.

The features of a design oriented language can be seen

9 in the ideal design sequence as is presented py Breuer •

Breuer divides the sequence of digital design into three

areas: preconstructional analysis, design and implementa-

tion, and software. These are subdivided pictorially as

indicated in Fig. 1. From this drawing it is inferred that

one phase is consistent and carried out from the preceding

phase. Thus, it is desirable to have a language which can

be used in the initial phase of the design and also be built

upon as the design progresses.

To have a design language which can be used in the

initial design phase and also as the design progresses means

.
r- ...
I
I
I
L ,....
I
I

L-

-I
I
L

Idea

•lr

Structural design including
hardware, software and fault-
diagnosis considerations

if

Functional design

lr

Functional simulation
hardware and software

~if

Logic design

Logic simulation

~ l 1W

2

Preconstructional
Analysis

Design and
Implementation

Documenta- Implemen-
tion tat ion

~~

Fault diag- Software
nos is tt:!st

Software

generation library

'
~ , •

Completed Design

Fig. 1 Digital Design Procedure

3

that the language must be capable of expressing the struc

tural phase of the design as well as the functional phase

without loss of clarity of structure. To do this a high

level language would be ideal for expressing the structural

phase and for functional design, a low-level description

which is compatible with the high-level description is

needed. These two descriptions along with the logic design

layout should be capable of giving a complete documentation

of how the system is to operate.

It is almost inevitable that the language will meet

with automated design procedures. For this reason the

language should either be acceptable as input to the computer

or easily converted to something that is acceptable. This

input could·either be graphical or character strings. Al

though it is quite desirable to have a design language which

can also be used as a programming language, there are other

requirements which have higher priority such as understan

ding on all levels.

A design must go through both functional and logical

simulation. Therefore one would expect the language to be

such that functional and logical simulation would be en

hanced by the language, if not a direct take-off from the

language. Due to the increasing size of digital systems,

logical simulation of complete systems is totally unrealis

tic under present logical simulation techniques. Therefore,

a language which would express more clearly the necessary

4

requirements for a functionally controlled logic simulation

would be of extreme importance in the design of large

systems.

A high-level language which easily depicts modular

structures would be useful in fault diagnosis since modular

diagnosis would effectively reduce the size of the unit

being diagnosed.

To make the design task easier,the design language

should be such that the conversion from functional design

to logical design is easily obtained. Yet the language

must not be so close to hardware that changing technology

would soon make the language obsolete.

In summary, a good design oriented language must be:

(1) multi-level, (2) capable of expressing idea.s easily,

(3) easily understood, (4) machine acceptable, (5) modular

and, (6) capable of showing timing and control. It should

also be~ (1) independent of technology, (2) unrestricted

to any particular structural features such as serial

processes, synchronous processes, etc., 3) concise, 4) pre

cise, and 5) non-ambiguous.

A review of the existing languages will now be pre-

sented. It is not the intention to present the existing

languages so that the reader will be proficient in their

use, but to summarize the desirable and undesirable features

of the language with respect to the characteristics listed

in the previous paragraph.

5

An example problem of a design of a small digital

computer will be used to help depict the language and to

h f "t h t . . 13 s ow some o ~ s c arac er~st~cs • The example problem

as presented in its original form will be slightly modified

to make it easily expressible with the language being used.

6

II. REVIEW OF EXISTING LANGUAGES

A. Computer Design Language (C.D.L.)

Computer Design Language is an ALGOL-like language

developed by Y. Chu for computer design and documentation7 •

Fig. 2 gives the specification of the example computer in

Computer Design Language. Computer Design Language uses

ALGOL-like statements to declare registers, control signals,

memories, etc. Then it specifies all data transfers as

well as the signals used to control these data transfers.

One can see from Fig. 2 that the control variables are

easily noticed since they are separated from the transfer.

Because of this the timing is easily expressed if it is

of a synchronous nature. Since there is no restriction that

the control variables be mutually exclusive, parallel opera~

tions can be expressed. But this is often hard to follow

since one must check every statement condition to see which

is true. Since the reader has no hint as to the order or

sequence in which they become true, following through a

design often becomes a very tedious and time consuming task

for large machines. Because there is no explicit indica

tions of the timing or control sequence, it is not immedia

tely obvious to the reader.

7

REGISTER, R(0-10), F(0-3), A(0-10), C(0-5), G(O), D(0-5)

SUBREGISTER, R(OP) = R(0-2), R(ADDR) = R(3-10}, F(I) = F(1-3)

MEMORY, M(C) = M(0-77, 0-10)
DECODER, K(0-17) = F

SWITCH, POWER (ON,OFF), START (ON,OFF)

CLOCK, P

START*P
p

K(17)*P

K(06)*P

K(l2)*P

K(OO)*P

K(lO)*P

K(Ol)*P

K(ll)*P

K(04)*P

K(02)*P

K(03)*P

K(05)*P

if POWER= ON then F+17, G+O

if START = ON then G+l

if G=O then (C+O, D+O)

if G=l then (F+6)

R+M(C), D+D count +1

if G=O then (F+l7)

if G=1 then (F+l2)

F(I)+R(OP), C+R(ADDR), F(O)+O

R+M(C), F+lO

A+A add R, F+l3

R+M(C), F+ll

A+A sub R, F+l3

D+R (ADDR), F+l3

if A(O)=O then (F+l3
if A(O)=l then (D+R(ADDR), F+l3)

M(C)+A, F+l3

if (C(3)=1) then (F+l7, G+O)

if (C(2)=1) then (F+l6)

if (C(l)=l) then (F+l5)

if (C(O)=l) then (F+l4)

K(l3)*P C+D, F+6

K(l4)*P A+l shr A, F+l3

K(l5)*P A+l cirl A, F+l3

K(l6)*P A+O, F+l3

Fig. 2 An Example of Computer Design Language

The language is fairly concise, precise and non

ambiguous on the statement level.

8

Computer Design Language also has the ability to ex

press high-level actions like hardware subroutines with the

use of the "do" statement. This is the way that system

structure is expressed.

A desirable feature of Computer Design Language is

that it is about the right distance from hardware. It is

independent of technology to a great extent but yet is close

enough to hardware so that there is an easy conversion from

Computer Design Language to logic design. Chu is experi

menting with a translator that will accept as inputs a

machine description in Computer Design Language and will

translate this description into a set of Boolean Equations.

In comparing Computer Design Language with the desir

able features of a design oriented language, it can be seen

that Computer Design Language has many of these features

such as preciseness, conciseness and non-ambignity on the

statement level. It also can be used to express high level

actions, show timing and control, and is capable of expres

sing parallelism. For these reasons Computer Design Language

is a good language at the statement level. But Computer

Design Language lacks the ability to easily express the

sequence of high-level actions. Also, it is hard for one

to express his ideas in a high-level form and then take

this into a low-level form.

9

It is also hard to understand the timing and control

because there is no sequence indication of actions on either

the high-level or the low-level. This seems to be one of

the major drawbacks in trying to communicate a large system

in this language. The timing is also fairly restricted to

the use of synchronous actions.

10

B. Register Transfer Language

The Register Transfer Language is specified by T.C.

Bartees and I.S. Reed which can be used for symbolic

computer design6 A modified version of this language is

10 11 presented by H. Schorr ' . The example problem using

the Register Transfer Language by Schorr is presented in

Fig. 3. Although the form is quite different from the

Computer Design Language, since the Computer Design Lan-

guageuses ALGOL-like statements, similar control expressions

and register expressions exist in both. Like C.D.L., R.T.L.

is capable of showing timing and control on a statement

level but it does not show it explicitly or such that it

is not obscured by the action specification. Thus, it does

not show explicitly the timing or control sequence. For

instance, in the example of Fig. 3, if t 5 and k 3 were both

true, and t 7 became true, one would have to search through

each control expression until he found the expression that

was true. In this light, it is easy to imagine someone who

was unfamiliar with a large design trying to figure out

what was happening. It would be a long and tedious, if not

impossible, task.

This also points to the fact that Register Transfer

Language is essentially a one-level and not a structured

modular language with the only hierarchy structure being

11

in the mind of the user as he arranges his statement.

Similarly a lack of clear and easy expression of other than

serial synchronous control exists. This might become more

of a handicap as systems become larger and more complex.

At the loss of a little conciseness and preciseness,

such as is enjoyed by Iverson notation, this language is

more readily understood on the statement level. This seems

to be a desirable feature in that when one is first intro

duced to a system, he looks for basic operations that are

taking place and is not as concerned with the more detailed

features for the moment.

It can be seen that the preciseness of the over-all

language has not suffered. Schorr shows the feasibility

of an automated translator for both analysis and synthesis

between a Register Transfer Language specification and

Boolean equations for the system. This fact indicates that

Register Transfer Language is relatively close to hardware

even though the language is not dependent upon technology

to any great extent. Thus, it would not be easily expanda

ble as larger and more complex functions are developed.

As can be seen from Fig. 3, Register Transfer Language has

a few unique symbols for some of the more common functional

operations. For example, Register Transfer Language would

express a right shift as R(A)~L(A); o~A(O). Whereas

Computer Design Language would use A+l shr A. This also

indicates a little confusion that might exist at first

glance as to whether R(A) is a right shift of A or a

variable register element of register R.

12

Because of the form and the simplicity of symbols,

Register Transfer Language is desirable in that it would

also be easily acceptable as an input language to an auto

mated design sequence.

13

REGISTERS, R[0-10], F[0-3], A[0-10], C[0-5], G[O], D[0-5]

SUBREGISTERS OP[R] = R[0-2], ADDR[R] = R[3-10], I[F] = F[l-3]

lt1 *POI . 1-+-t . 2

ltl*PUI . 1-+-t . 1

lt2 *GI C+O; D+O l-+t2

lt2 *GI . 1-+-t . 3

lt31
. M<C> -+- R; D+l-+D 1-+-t . 4

lt4*GI . 1-+-t . 2

lt4*GI . OP(R)-+I(F); 0-+-HALT l-+t5 .
lts*<ko+kl) I M<C> -+- R 1-+-t

6

lt5*k2*A(O) I ADDR-+D 1-+-t
7

lt5*k2*A(O) 1 . 1-+-t . 7

lts*k31
. M<C> -+A 1-+-t . 7

lts*k41
. ADDR-+D l-+t7 .

lt5*k5*c<o> 1 . R(A) -+- L(A), 0-+-A(O) 1-+-t . 7

lt5*k5 (c(I) 1 . I.(A)-+A l-+t7 .
lt5*k5*c(2) 1 . 0-+-A 1-+-t . 7

lt5*k5*c(3) I : 0-+-G; 1-+-HALT 1-+-t
7

lt6*kol
. A+R-+A 1-+-t . 7

lt6*kll
. A-R-+A 1-+-t . 7

lt71
. D-+C 1-+-t . 8

lt8*HALTI . l-+t2 .
jt8*HALTI . l-+t3 .

Fig. 3 An Example of Register Transfer Language

14

C. Digital System Design Language

J.R. Duley and D.L. Dietmeyer describe a language

called the Digital Design Language (DDL) 5 which would be

placed somewhere between Computer Design Language and

Iverson Notation with respect to conciseness and precise-

ness. But Digital Design Language has some other desirable

features that neither Computer Design Language nor Iverson

Notation has. The example problem expressed in Digital

Design Language in Fig. 4 shows that one such desirable

feature is the multi-level notation as indicated by the

formating of each statement with respect to one another.

The timing and control indication is very similar to that

of Register Transfer Language. But because of the multi-

level structure, it is a little more complicated than in

Register Transfer Language. The different form of expres-

sing decoders makes a little difference in the actual

control expression of Digital Design Language and Register

Transfer Language.

A typical transfer of control expression in Digital

Design Language would be ~ JMP (+J2, => P3) • This indicates

that the next segment <SEG> would be JMP and that J2 is

the first state to be executed in that segment. P3 would

specify the next statement to be executed in the segment

transferred from after JMP has finished.

15

A very strict point of this language is the specifica

tion of modular structures and their interconnection. This

is a very desirable feature for some types of design.

Although Digital Design Language emphasizes what varia

bles correspond to what type of element or operation in

hardware, the language seems to be as indepe~dent of techno

logy as any of the other languages.

Digital Design Language is capable of expressing paral

lel and asynchronous operations.

Although Digital Design Language does express the

timing and control variables, it is hard to understand the

sequence of timing and control on either a high level or a

low level. The reason is that one must search through the

variables to see when the next state is set and then find

where the next state actions are specified. Although the

notation in Digital Design Language has been simplified by

the use of a multi-level structure over that of Computer

Design Language, it still handicaps the language with res

pect to ease of understanding and the ease of formulating

one's ideas with the use of a language.

It was found that in order to express a design in

Digital Design Language, the designer had to have most of

the system's details worked out in his mind before he could

use Digital Design Language in a progressive manner.

Just as in Iverson Notation, the complex functional

notation of Digital Design Language makes it hard for a de-

16

signer who is unfamiliar with the language to express his

design effectively. For this same reason, Digital Design

Language would not be as desirable for documentational

purposes as some of the more universal languages.

In Fig. 4 one can see the different levels of structure

by noting that mnemonics in < > are different distances from

the left margin of the page. The farther it is from the

left the lower the level of the language. For example,

<AU> CPU and MEM indicates the CPU module and the memory

module respectively. <TI> and <RE> indicate the timing

and registers relating these two modules respectively. The

<RE> <TE> and <OP> which are inset under <AU> CPU refer to

the registers, terminals and operations in the CPU and re

lating the lower level submodules in the CPU. The <SEG>

heading indicates the submodules contained in the <AU> module.

For example, <SEG> ADD SUB would be a routine that one would

transfer control to if an add or subtract instruction were

being executed. Each statement within a <SEG> is identi

fied by a control variable such as Al which is the first

statement in <SEG> ADD SUB. Transfer from one statement to

another is accomplished by an arrow pointing to the label

variable of the next statement. For example, statement A3

of <SEG> ADD SUB, ~A4 indicates that the next statement to

be executed is A4. A double arrow (~) indicate a transfer

to a different <SEG> and a triple arrow (~) indicates trans

fer to a different <AU>. Thus, the <SEG> DECODE would be

17

a subroute which is an instruction fetch and interpretation

cycle. Statement P4 decodes the instruction register and

transfers control to the appropriate <SEG> which executes

the instruction and returns control back to <SEG> DECODE.

r F[l:3] l.l => JMP(-+J2:::>P3) would indicate that bits 1,

2, and 3 of F are decoded and if the result is a two, then

the transfer to statement J2 of <SEG> JMP and when JMP is

finished executing control is then transferred back to

statement P3 of <SEG> DECODE. A <SEG> is finished execu

ting when it reaches a statement that contains a double

arrow that does not point to any statement. Such as in J3

of <SEG> JMP.

<SY> Example:

<Tl> P(lOOE-9)

<RE> ST, POW, RP, Rl, Al, Cl

<AU> CPU :P:

<RE> c [6) I D [6] I F [4] I A[ll], G, HALT

<TE> ADD

< 0 P > ADD 1 (Y , Z) [0 : 1 0]

<TE> YQO:lO] I Z[O:lO] I C[O:lO]

<BO> ADDl = Y <±) Z <±) (C[l:lO] o C[O]) • ADD

C = Y : Z V (YV Z) • C [1 : 1 0] o 0

<SEG> DECODE

<ST> PO:POW: c ~ 0, D ~ 0, ~Pl, ISTI G + 1

p 1 : I G I ~ PO; I RQ I ~ MEM (RD= 1)

<SEG>

~P2; ~Pl, ¢ D •

P2: RP: R + Rl ~ P4

P4: IGI ~PO; F[l:3] + R[0:2],

fF[l:3] lo:l :::;>ADDSUB (:>P3)

l1_:>JMP (~J2 ,:>P3) ll_ ~STA (::;>P3)

l_!:> JMP (::;>P3) l_5 ~ MICR (~Ml ,:;> P3)

P3: c ~ D, IHALTI ~ PO; ~Pl.

ADD SUB

A2: IF [3] I R + R, ~A3; +A4

A3: ~ R ~A4

A4: A ~ ADDl (A, R) I ::::> •

<ST> Al: RP: $- MEM (RD=l) , ~All

All: RP: R + Rl, ~A2

<SEG> JMP

<ST> Jl: IA(O) I ~ J2; ~J3.

J2: D + R[3:10] ~J3.

J3: ~.

Fig. 4 An Example of Digital System Design Language

18

19

<SEG> STA

<ST> Sl: RP: :::7 MEM (WR=l) , =>.

<SEG>

<ST>

MICR

Ml : I c [0] I ~ A, I c [1] I A + A [1 : 1 0] 0 A [0]

I c [2] I A + 0 ' I c [3] I G + 0 , HALT + 1 , .::::> •

<AU> MEM:P:

<EL> MEMORY (MC[ll]), RS, WS, AM[l2], CM[6]

<R> A[6], C[ll], R[ll]

<DE> DL1(.7E-6), DL2(.6E-6)

<BO> A:AM, RD = RS, WR = WS

C = CM, RP = RPM, R = RM

<ST> RPM: RSVWS: jWSI MC + 0, ~MEl., DELl= 1

MEl: DELl: IRSI RM + MC ~ME2

Fig. 4

. ME2: IRS 1 Me + RM., lws I MC + AM., -+ME3, DEL2=1

ME3: DEL2: RPM +1

An Example of Digital System Design Language
(continued)

20

D. Iverson Notation

The programming language developed by K.E. Iverson

can be used as a design language as well as a programming

language1 ' 2 • Iverson Notation uses a very complex set of

symbols to be able to express operations in a very concise

and precise manner. Although it has no multi-level expres-

sion as such, it does express its architecture by the use

of "system programs" and "defined operations". System

programs describe such operations as CPU interrupts, input/

output channels, etc. which are more or less independent

from and executed in parallel with the main program. De-

fined operations are similar to subroutines which are

executed only when needed by the main program. Defined

operations are used to describe such operations as memory

access and instruction execution.

As indicated in the example problem in Fig. 5, this

language is expressed as a series of statements which are

executed sequentially unless a conditional statement trans-

fers control to another statement. This can either be done

in a semi-graphical manner by using arrows to lead to the

next statement or numbering the statements and then listing

the number of the next statement with the condition. Since

only one statement is executed at a time parallel operation

is difficult to express, it can also be seen that it is

hard for the designer to specify the type or types of timing

21

control used since Iverson Notation does not explicitly show

timing control.

A modular structuring effect can be obtained by state

ment arrangement on the part of the user.

There exists no multi-level expression as such and a

large amount of detail must be included at the statement

level, if one is to use the language as intended. Therefore

it would be hard for a designer to easily express his ideas

and to build on them as he follows through with the design.

The language would also be hard to understand for the novice

if it were to be used as a documentation language.

Iverson Notation has been used in a complete and formal

description of IBM's System /360 3 • The acceptability of

Iverson Notation as a computer input language is shown by

the existance of a compiler called Alert4 which will accept

as inputs, a description of the desired computers architec

ture in Modified Iverson Notation. Then it will produce a

set of Boolean equations to implement the desired architec-

ture. The procedure used in doing this can be outlined as

follows:

1. Express the desired architecture (including

instructions format and repertorie, word

length or marking convention memory size, and

registers that are available to the programmer)

formally in Iverson Notation.

2. Alert then a) determines the general layout,

data paths, etc., b) provides selection logic

to replace variable subscripts, c) replaces

high order operations such as "add" and "sub

tract" with combinational logic, d) groups

statements into minimum of groups and pro

vides timing and control signals, e) elimin

ates duplicate gates, f) assigns flip-flops

to variables that must retain their state and

provide set-reset commands, g) simplifies

vector and matrix interconnections, h) itemizes

all interconnections.

22

1 c +

2

3

PO- 4

5

6

7

d + 0

g + st

g:O
r + ~1 .I£

d + 2 1 o 1 Cl+ d)

g:O

8 w 3 /f + a 3 /r

r-- 9 - halt + 0

ADD - 1 -+ r + M.&.
1

M.lf) SUB - 2 -+ r + (a:!

=

-1

M
r
c

.d
f
a
z
w
po
st

2'
11
6
6
4
11
11
10

X 11

Power On
Start

Dimension

3 z-+ (1 - 2a) (.L a /a) + (l-2r > (La1 /r) r 0 0
4 X + a2

5 L a-1/a + 21ol <lzl>

6 a + a v ((x :! a) 1\ (a = d))
2 0 0

r7- a + (z < 0) v (a 1\ (z = 0))
1 o o -

CJM T 8- w + (a 1 /a /\a 3 /r) v (d,l\a1 /a)

JM - 9 - w + a 3 /r

~10-d + w
SHR -11 - rn + a 1 /a

112 n + w1/0
CIRL -13-+ rn + a 1 /a

114 n + a1 /a

~15- a+ n <.=!)m
HALT -16-+ halt + 1 -

~17-g + 0

STA -18 -+ M ~ + a

Ll9--. c ... d

Fig. 5 Example of Iverson Notation

. 23

24

III. Comparison of Existing Languages

In the preceding review it was seen that each language

had its own characteristic and desirable features. For

example, Iverson Notation is a very precise and concise

language with a highly symbolic functional representation

which is also acceptable as computer input. Computer Design

Language and Register Transfer Language are fairly low-level

notation languages, but yet they are easily understood or

grasped. Digital Design Language contains most of the de

sirable features of the others plus an ability in the

language to represent multi-level or modular structures with

the use of distinguishing format representations.

The one thing that all the languages seem to lack is a

type of notation which can be used to express the initial

design phase planning and also used as the design progresses

by building upon that part of the system which has already

been specified with the language. This means having a

language which can be used throughout the design sequence

without having to start all over again on each level of the

design. This could be done by having a language which has

a multi-level structure such that the designer can associate

the levels of the design with the levels of the language.

As a result this type of structure would also make the

design more easily understood since it would put the design

on different levels. It would also be desirable if the

25

language could be used to document the system when the

designing is through. The documentation should not be so

complicated, so large or symbolic, that it cannot be

easily understood.

Also, many of the languages can express control or

multi-level structure, but none of these seem to deal ade

quately with the problem of showing the control sequence

and high-level control in a concise and understandable

manner. In all instances one must "dig out" the high

level and control sequence from the other statement level

actions.

For these reasons a language is presented here with

the intention of satisfying as many as possible of the

above mentioned characteristics and in doing so form a more

design-oriented language.

26

IV. LANGUAGE DESCRIPTION

The actions in a digital system can be broken down

into two basic components. First, there are the sequence

control actions which guide the system through a particular

sequence of actions depending upon the input conditions of

the system. Second are the actions that this sequence con

trols. Fig. 8 is included in an attempt to give an overall

picture of what our final goal will be before looking at

the sequence control specification. From this a universal

block can be found as shown in Fig. 6 which can be divided

into 5 sub-parts as follows: union point, entrance condi

tions, action block, conditional branch point and branch

condition, and parallel branch point.

A union point is an indication that control sequences

of several blocks are converging into one control sequence

in a particular _block.

An entrance condition is a variable which stops the

sequence flow until that variable becomes true. If one

thinks of each block as a state, then the entrance condi

tion is a variable which allows the machine to pass from the

previous state to the next state according to the flow lines

of the sequence control graph. The entrance condition varia

ble can be any expression which can be reduced by evaluation

to a logic 1 (true) or logic 0 (false). These variables

27

could be a result of operations in previous states or

operations in states acting in parallel with this state.

This condition could also be a sequence path from some

other block. If this were the case, then the one sequence

would have to finish before the other could begin. This

would eliminate any possible inter-modular race conditions.

For example, it would be desirable to make sure that the

operand had been obtained and was in the proper registers

before the instruction is executed if these two modules are

not operating in series.

The action block is the actual specification of lower

level actions that are being controlled relative to other

lower-level actions. These are sometimes referred to as

modules, leaving the connotation that they are functional

entities in themselves. As to whether these modules are

actually self-contained or modular in the actual design is

dependent upon the design requirements used in transferring

from the design language to the design and not a direct re

sult of the language.

At this point, since one level of action is being re

presented by the intersequencing of lower-level actions, the

multi-level effect becomes apparent. This is a very impor

tant effect in conveying the structure of the system in that

first an overall specification can be stated in terms of

large structures or modules which can, in turn, be specified

28

by smaller structures, etc. This permits a conveyance of

ideas at the level most pertinent to the aspect being

studied. Therefore, what is specified inside a block can

vary from a macro-description of a particular module to a

micro-description in the form of register transfers of very

simple actions. The actual details of this micro-descrip-

tion will be discussed in a later section.

The conditional branch point is a point in the control

sequence indicated by the diamond-shaped figure in which the

control sequence can continue in different directions de-

pending upon whether a particular expression is true or not.

The expression is called the branch condition. For example,

in Fig. 6 A,B,C, and D are the branch conditions. If the

conditional branch point is a serial branch point, A,B,C and

D must be mutually exclusive. Otherwise it is a conditional

parallel branch point. More conditional branch paths can be

obtained by including more diamond-shaped figures.

For simplicity, an unconditional parallel branch is in-

dicated in Fig. 6 as two control sequences diverging from

one point.

An entry point or starting point of a sequence control

graph is indicated by a horizontal bar on top of a sequence

control line as indicated below.

B+C·D=l

1

X + y

lower-level

specification

A

D B

c

29

union point

entrance condition

action block

timing block

branch point and
branch conditions

parallel branch point

Fig. 6 A Universal Block

30

A relationship is listed above the horizontal bar.

This relationship is the condition which must be true be

fore a control sequence can start at this point. All entry

points must be listed at the top of the page.

A sequence control line which does not point to any

specific block as indicated below,

,, Exit Point

will be used to terminate a control sequence and generally

indicates a completion of the particular sequence control

graph which would return control back to a higher-level se

quence control graph if one exists.

It can be seen that a sequence control graph specifies

one or more sequences starting at an entry point, proceed

ing as indicated by the sequence control lines and stopping

at a terminating point.

A circle with an identifying number placed in the cen-

ter will be used to connect the same sequence control line

of a sequence control graph on different pages. Fig. 12

shows how this can be used to allow the designer to continue

a sequence control graph on another page.

Each block represents a period of time. This period of

time will be referred to as a state and is the time interval

in which the actions specified by the block occurs. Thus,

if a block were named LOS then state LOS would refer to the

31

period of time represented by the block LDS. ~o specify a

state time one must specify when it starts and when it ends

or when it starts and how long it exists. For one to speci

fy the state of the block precisely then he must specify the

state of the block in one of these two ways. In the imple

mentation phase of design one can see three different and

distinct ways used to specify the state time. In synchro

nous timing a clock is used to generate the state by pro

ducing signals which indicate the beginning and end of the

state. Delay elements and condition variables are used to form

states by using the condition variable to indicate when the

state is to start and the delay element to time how long

the state is to exist. In a similar manner asynchronous

states start when certain conditions become true and are

timed by delay of the circuitry involved in the state. An

asynchronous state is a state which is not of fixed length

but one that can vary depending upon the circuit element

delay of the state or on the particular operations being

executed during the state. Since by specifying the begin

ning and the end of the state or the beginning and the length

of the state one can specify the above mentioned types of

timing then these two means will be used to specify the

timing in this language.

To enable the language to specify these types of timing

more clearly, a timing block will be attached to the lower

right side of the block to identify which type of timing

32

will be used in that particular block. A "C" will be

placed in the block to indicate that the state is a clocked

state. Here it is assumed that there exists a periodic

clocking signal with an effective clocking width of zero

with respect to the rest of the circuitry. In actuality, the

clocking signal may be of finite width but very short com

pared to the propagation time of the signals being clocked

or it may correspond to the point of transition from one

level to another. This clocking signal will be used as part

of the entry condition signal and thus specifies the start

of the state. The next clocking signal would then specify

the end of the state. If a different clocking signal is to

be used to determine the end of the state then this clocking

signals mnemonic will also be indicated in the timing block

as follows:"Variable:C" where the C indicates a clocked state.

If two successive states have the same clocking signal to

indicate the end of the first state and the beginning of the

state, then the same pulse that ends the first state begins

the next state. In other words one state immediately follows

the next.

To indicate a state which is specified by a starting

point and the length of time one of two types of timing

blocks will be used, an A will be used to denote an asynchro

nous state in which the state time is determined by the

operation speed of the circuit. A number in the timing block

33

will indicate the length of a state of fixed length. This

will be referred to as a fixed time interval state. The

fixed time interval state differs from an asynchronous state

in that the length of a fixed time interval state is fixed

regardless of the circuitry involved whereas the time of an

asynchronous state would depend upon the.particular circuitry

used or the particular operations being executed during the

state. The condition which indicates the beginning of the

state is the entry condition of the block for both the asyn

chronous state and the fixed time interval state.

The transfers indicated in a clocked block are executed

at the occurrence of the clock pulse which terminates the

state. The transfers indicated in an asynchronous block are

executed continuously during the state. The transfers of the

fixed time interval block will be divided into two groups.

These two groups will be separated by a horizontal line drawn

through the block. Those transfers which occur continuously

during the state will be listed above the horizontal line and

transfers which occur at the end of the state will be listed

below the horizontal line.

It is felt that this type of timing arrangement gives

the designer a complete range of timing specification capa

bility without tying the language down to any aspects of

implementation. The designer can vary from a completely

clocked system to a completely asynchronous system or any de

gree in between with ease and consistency of notation.

34

The language which will specify the actions being con

trolled by the control sequence will be discussed now.

Table 1 gives a list of the symbols that will be permissible.

The functional operators as listed in Table 1 is not a fixerl

or complete set but it is intended that these operators will

be specified by the designer so that they are consistent

with the functions that the designer wishes to use.

The numbers will be in hexadecimal when used as a con-

stant in a register. This is to make the language more

closely related to the actual implementation of the machine.

The only exception would possibly be in variable names

where a certain sequence of similar variables might be iden

tified with consecutive decimal integers. For example,

register A might contain three subregisters which would be

identified as registers Al, A2, and A3.

Identifiers which are alpha-numeric character strings

beginning with an alphabetic character are names given to

the basic circuits such as registers, memory, adders, ter

minals, etc. The alphabetic character 0 will be distin

guished fromilie numeric 0 by putting a slash through the al-

phabetic character ~. Identifiers are also used for repre-

senting the output of these circuits. Thus, the identifiers

ACD12 would be used to denote the numeric.value of the reg

ister ACD12. Since ACD12 actually represents a set of l's

and O's,(a series of outputs) then instead of actually naming

an identifier to each output line or register cell, one

35

Classification Symbols

1. digits 0 1 2 3 4 5 6 7 8 9

2. letters A B c . . . z a b c . . . z

3. values true false

4. operators

logical - . +0®

functional add sub shl etc.

5. relations = "I < > < > - -
6. transfer +

7. separators , ; : () [] { }

8. declarators register subregister memory

terminal constant operation

Table I Linguistics Symbols

36

identifier can represent the group of cells by first stating

how many cells are in the particular register being repre

sented by the identifier. For example, if ACD12 is a 16

bit register ACD12{16} would indicate this.

Subregisters (using register here to represent any of

the above circuit elements) can be defined by stating which

cells are used to form the subregisters. For example, if it

were desirable to name the last five bits of register C as

OP, then this would be expressed as OP = C{7-ll} where OP has

been defined as a five bit register (OP {5}). A variable

element length can also be defined as follows: A = C{LEN}.

Thus, A would be a subregister of C of length LEN beginning

from the most significant side of C. Note that register

lengths are specified in decimal. For example, if LEN = 101,

then A = C{0-4} or the first five cells of C.

It is sometimes desirable to form one register from two

or more registers. This is called concatenation. For exam

ple, to use the first five bits of A as the first five bits

of X and the first seven bits of B as the last seven bits of

X where x is defined as X {12}. This would be denoted as

follows: X= {A{0-4}, B{0-6}}.

It is often useful in design to refer to one register

in a group of registers or to address one register in a

group of registers. For example a scratch pad memory called

SP might contain 16 registers and to refer to the fourth,one

would write SP[3], or if the register being referred to was

37 .

dependent upon the numerical value of another register, say

c, then one would write SP [C). Note that braces have been

used to refer to actual elements of a register and brackets

are used to denote one particular register in a set of regis

ters. Thus a memory array (MEM), say 4,096 words, 16 bits

long, would be specified as follows:

Memory: MEM[4096], MEM {16}

Another basic circuit element specifications is that of

the decoder. The following notation will be used to specify

full decoders:

DECODE: K[l6] = F

Thus, the array K,one bit long and sixteen words wide,

is the output of the full decoder of F. The numerical

value of the code of F + 1 is equal to the number of the

word of K, which is true. Thus, if F = 1010 then the output

of word K[ll] would be true and all others would be false.

In general, any combinational network can be declared

by using the identifier

COMNET:

with the Boolean equation representation to the right of the

identifier. For example, the ''exclusive or" function would

be specified as follows:

COMNET: FXQR = A•B + A•B

38

These identifiers will be used as part of the language

to specify the basic circuit elements used in the language.

Values are used to verbally express that a condition or

relation is a logical "1" for true and a logical "0" for

false. For example, if the statement A+B=l is satisfied

then the statement is said to be true, or if A+B is to be

true it is implied that A+B=l. In the first example, A+B=l,

the equal sign can be replaced by any of the relation sym

bols. Another example would be, if the condition A add B<l

is satisfied then the statement is said to be true.

From Table I it can be seen that the operation symbols

have been broken up into three catagories, logical, func

tional and relational. Of the three catagories, relational

has been discussed in the previous paragraph. The distinc

tion between logical and functional is that logical opera-

tions represent operations which have a first-level associa

ted representation in hardware, whereas functional operations

are those which are formed by a series or group of low-level

operations in hardware. The functional operations will be

represented by a lower-case name which will be the name of

the sub-system which executes this operation. For example,

c + A add B would indicate the addition of register A to

register B mod 2n where C is of length n and the results

placed in c by a particular set of gates called add. It is

intended that as higher level functions become of common use

then appropriate functional operator names will be given to

39

them by the designer and thus build up the repertoire of

high-level functional operators. Since this is totally de-

pendent upon the system being designed, no attempt has been

made to define all possible functional operators but it is

left to the user to define the functional operators which

would be suitable in his design. These functional operators

would be specified as is done in Table II.

To specify the use of the operators, listed in Table

I Table II lists examples of the use of these operators and
I

then gives an explanation of the operation.

By combining the use of the relational operators and

the logical or functional operators, a conditional operation

can be obtained. The relation condition will be understood

to be on the left of the colon which separates the two and

the functional or logical operation will be on the right.

Thus, the expression A=B: C+D+E would indicate that the re-

sult of the logical "or" of D and E would be placed in C if

and only if A were equal to B. So if the relation on the

left is true, then the operation on the right is executed.

For simplicity, relations of the form A+B=l will be shortened

to A+B:, where the =1 is implied. The colonwas selected as

the separator for its ease of reproduction, both manual and

mechanical, and also for its lack of ambiguity. If no con

dition is required then the colon will be dropped and if the

condition is the same as the preceding one, then the colon

will be written but not the condition. For example:

Expression

I Unary

A) Logical
+A
•A

®A
0A

-A or A

B) Functional
shl A -
cirl A
etc.

II Binary

A)

B)

C)

Logical
A+B

AEE}B

A0B

Relational
A=B
A;4B

A<B

A>B

A<B -
A>B -
Functional
A add B -
A sub B --
X shl A -
etc.

Explanation

logical "or" of all bits of A
logical "and" of all bits of A
logical ''exclusive" or of all bits of A
logical "coincidence" of all bits of A
complement of each bit of A

shift A one bit to the left and insert
a 0 at the right end
circulate A one bit toward left

logical "or" of corresponding bits of A
and B
logical "and" of corresponding bits of
A and B
logical "exclusive or" of corresponding
bits of A and B
logical "coincidence" of corresponding
bits of A and B

40

contents of A equals the contents of B
contents of A does not equal the contents
of B
contents of A is algebraically less than
that of B
contents of A is algebraically larger than
that of B
contents of A is algebraically less than
or equal to the contents of B
contents of A is algebraically larger than
or equal to the contents of B

add the contents of A to the contents of B
using two's complement arithmetic
subtract the contents of B from the con
tents of A using two's complement arithmetic
shift A by X bits to the left replacing
"0" on the right
the designer is free to specify any func
tional operator such that it meets his de
sired needs

Table II Explanation of Linguistic Symbols

41

A + B: c +- D

A + B: B +- A

would be the same as

A + B: c +- D

B +- A

If the complement of one condition is the condition of

the next statement, then -: would be used to represent this.

For example:

A + B = 1: C +- D

A+ B = 0: C +- B

would be the same as

A + B: C +- D

-: C +- B

This is the form of an if-then-else statement in some

of the programming languages.

To show how these two concepts of control sequence

specifications and controlled action specifications can be

used together,consider Figures 7,8 and 9 as a complete

specification of the example problem that was presented ear

lier in the language comparison section. Fig. 7 gives a des

cription of the elements used in the design. Fig. 8 is the

high-level sequence control graph of the machine. Since P is

defined to be a clocked signal, then it is known that each

state that has P as an entry condition is a clocked state.

42

Blocks SO, Sl, 52 and 53 are all low-level blocks. Block

54 is a high-level block since it gives the name of another

sequence control graph which specifies what is to happen

when this state becomes true. Block 54 is the execute se

quence block and its sequence control graph is Fig. 9.

One can determine the operation of this machine by fol

lowing the control indicated in Fig. 8. If the machine is

off and then turned on, it transfers a zero into G at the

first clock pulse P. Now state Sl becomes true and upon

the occurance of a clock pulse P, a zero is clocked into C

and D and if ST is true a one is clocked to G. Control is

still transferred back to state 51 until 5T becomes true.

If 5T is true, then G is set to one and on the next clock

pulse state 52 becomes active. At the occurence of the next

clock pulse the contents of memory location C is transferred

to register R and register D is incremented by one. If G

is zero, then control goes back to state 51, but if G is one

then control would go to state 53. At the occurance of the

next clock pulse the contents of 0P would be transferred into

I and zero into HALT. The next clock pulse would execute the

appropriate state of the execute sequence of Fig. 9.

When the execute sequence has completed,the control

would go to state Sl if G were a one or it would go to

state 52 if G were a zero. Thus, the machine would con

tinue to cycle through the different states of its sequence

control graph.

43

This example shows the multi-level capability of the

language as is depicted by state 54. It also shows how the

timing and control sequence can be shown explicitly by the

use of the state blocks and arrows to show the control se

quence between blocks.

44

REGISTERS: R{ll}, F{4}, A{ll}, C{6}, G{l}, D{6}

SUBREGISTERS: ~p = R{0-2}, ADDR = R{3-10}, I = F{l-3}

MEMORY: M[32], M{ll}

DECODER: K[16] = F

CLOCK P

SWITCHES: ST

Fig. 7 An Example of Design Oriented Language,
Part I

P$2SWER 0N

c .. + o
D + 0

ST: G+l

R + M[C]
D + D add 1

I + SZSP
C+ADDR ·

p

"Execute

Sequence"

G

Sl

S2

S3

S4

Fig. 8 An Example of Design Oriented Language
Part II

45

K[O]+K(l] K[2]+K[4] K[S]

,, ES3

K(2] •A{O}+K[4] :D+ADDR

ESl

R -+- M[C]

ES2

K[O] :A-+-A add R

K[l]:A+A ~ RCl

ES4

C{O}: A+l shr A

C{l}: A+l cirl A

C{2}: A+O

C{ 3}: G+O

'~ !
~p

'it

C -+- D

ESS

K[3]

\I ESS

M[C]-+-A

Fig. 9 An Example of Design Oriented Language
Part III

46

V. A DESIGN PROCEDURE

In an attempt to indicate the use of the design

language being presented in this paper, one can consider

the design sequence of a digital computer when the main

* design specifications are as follows: The word length

will be 32 bits long with instructions of lengths 16, 32,

and 48. The 16 bit instruction will indicate the use of

scratch pad memory at the first level of the operand fetch

cycle. The 32 bit instruction will obtain one of its oper-

ands from magnetic core storage and the other from scratch

pad memory. The extra half word of the 48 bit instruction

47

will be used to extend the number of executable instructions.

Thus, the instruction formats would be as indicated in Fig.

10.

*These design specifications are part of the design speci

fications used in the design of the 7501C-4 arithmetic, logic

and control unit being built by Collins Radio.

0 1 5 9 15 H Rll R21 OPCOPE I
1. 16 bit instruction

0 1 5 9 15 16

2. 32 bit instruction

0 1 5 9 16

I X R2 OPCODE

3. 48 bit instruction

OPERAND
ADDRESS

OPERAND
ADDRESS

31

48

I

3233 37 41 47

~
~

R3 R4 EXTENDEI
OPCODE

Fig. 10 Instruction Field Specification

49

The R fields specify registers in the scratch pad memory.

The R2 field is a direct memory reference. The Rl field

along with the I bit specifies direct or indirect modes of

addressing. In the 32 bit or 48 bit instructions the oper-

and address field indicates the address in magnetic core

storage of the operand. The I bit indicates indirect access

and the X field indicates the register in the scratch pad

that is used for indexing. The size of the scratch pad mem-

ory is 16 words and will be referred to as location 0-3F16 •
21

The size of the magnetic core storage memory is 2 words or

IFFFFF16 words. Instruction look-ahead will be used to make

use of parallel processing.

Considering the fact that it is possible to obtain two

instructions in one memory cycle and that one word is going

to have to be obtained in parallel with the one being exe-

cuted, it can be seen that an acceptable register configura-

tion for the first sequence control chart level would be as

follows:

IBA {32};

IBB {16};

Buffers the instruction word from
memory

Buffers an instruction when a full
word instruction is not aligned with
a full-word boundary.

AR {16}; Holds either a half-word instruction
or the operand address field of an
instruction.

FB {16}; Contains the operation field of the
next instruction to be executed.

F {16}; Contains the instruction currently
being executed.

HWS

BR

BRC

REMTJ

EXMTJ

MFMTB

WALM

ESHW

BRI

Y'PR

¢PNR

Indicates a half word boundary

A branch instruction is being
executed

There is a pending branch instruc
tion

Indicates a 16-bit instruction is
being executed.

Indicates a 48-bit instruction is
being executed.

Buffer that indicates a 32-bit
instruction.

Wait on Arithmetic Logic Module

A sum of variables which will be
defined later.

Branch Instruction detect

OPerand Required for present in
struction.

OPerand Not Required for present
instruction.

50

The formation of a high-level sequence control chart is

a relatively simple task even though only the macro-features

of the machine have been specified. For example, the se-

quence control chart of this machine can be roughly out

lined for the moment as is indicated in Fig. 11. After ini-

tializing is done in state IRl, a parallel branch is indica-

ted to allow the next instruction to be accessed by the NIAM

module while the execution of the present instruction is

Initialization
Module

..

HWS: {FB,AR} + IBA IRl
HWS • BR: {AR, IBB} + IBA
HWS•BR: FB+IBA{l6-31} iAl

Next
INSTRUCTION IAM

RFMTJ • EX!'-1TJ: HFM B+ 1
-:MFM B+O IR2

ACCESS :--;,A
M¢dule n I

0PERAND
ACCESS
M~dule

BR + 0 30 J

¢PNR

J. .u-----'

. . IRU
Instruct~on Reg~ster

Update . rxl
~If A --__,;L--- L

ARITHMETIC M
L¢GIC r:-,
M0DULE IAI

51

ESHNA
ESHWV Fig. 11 A Sequence Control Graph

Showing Multi-level Structure

52

occuring. The execution sequence starts in state IR2. In

the execute sequence the operands are first obtained by the

OAM module. Then if the last instruction has finished exe

cution, the ALM is initiated to execute the present instruc

tion in parallel with the IRU. The IRU is the instruction

register update sequence. Since the interlocks and branch

point conditions such as WALM, BRC, 0PR, 0PNR, and BR are

dependent upon the instruction repertoire, and their exact

specifications would not enhance the discussion of the de

sign sequence, they will not be further specified.

The ability to indicate both high-level states and low

level states lets the designer put the modular actions in the

proper perspective with the more important low-level opera

tions. For example, block NIAM obtains the next instruction

word to be placed in IBA, the block OAM obtains the operand

of the instruction contained in FB and AR which will be exe

cuted next by the ALM. The NIAM, OAM, ALM, and IRU are all

high-level blocks, whereas IRl and IR2 are all low-level

blocks. IRl, IR2, and IRU insure that the instruction regis

ters are loaded at the proper time and with the proper values.

Looking at the more detailed sequence control graph of

Fig. 14 one can see the loading sequence of IBB, AR, FB, and

F for the different types of instructions. One also can note

how they are arranged so that the proper values are in the

proper registers when the execution modules are enabled.

Fig. 13 gives the inter-register connection paths for IBB,

Initialization
Module

HWS:. {FB,AR} + IBA IRl
HWS•BR: {AR,IBB}+IBA
HWS•BR: FB+IBA{l6-32}

NIAM

NEXT
INSTRUCTION

ACCESS
Me1DULE

RFMTJ•EXHTB: MFMTB+1

¢PR

~PERAND

ACCESS
M¢DULE

BR + 0

BR

0PNR

IR2

30

(RFMTJ+MFHTJ) WALM ALM

HWS:FB + IBB IRJ

EXFMTB + 1 30

ARITHMETIC
L¢GIC
M¢DULE

Fig. 12 Example Design's Sequence Control Graph

53

RFMTJ

BRI:BRC+l IR4

MFMTB: HWS+HWS30

IRS
F+FB

BR+HWS

BR•HWS

MFMTB:FB+IBB
-:FB+AR

MFMTB + 0 IR7

. RFMTJ

Fig. 12 Example Design's Sequence Control Graph
(con' t)

54

55

IBA

IBB AR

~,

FB

'
F

Fig. 13 Instruction Register Interconnection

56

AR, FB, F, and IBA to help indicate the loading sequence.

After IBA has been unloaded in state IRl, state NIAM, operat

ing in parallel with the instruction execution, obtains the

next word and places it in IBA. The interlock requires that

NIAM be through before the next cycle can begin. In the

execution path the operand for the word in FB and its corre

spondingaddress field are obtained while the ALU is executing

the instruction in F. When the OAM is finished, if the ALU

is through, executing its instruction, the operand is trans

ferred to the ALU and FB is transferred to F and the cycle

starts over again. All three major units can be processing

at the same time.

At this point, it can be seen that a description of this

level can be very helpful in the design sequence. It is

easy for a designer, who is working on one particular module,

to grasp his job and the way it interfaces with the rest

of the system without having to understand the details of the

other modules. This level of description also helps make

it clearer where the design boundaries fall.

The design sequence would be furthered,at this point,by

taking each of the modules specified in the high-level se

quence control graph and producing sirniliar sequence control

graphs for the actions of these modules. This would be re

peated until the lowest-level of specification was reached.

Since the purpose of this example is to show the design se-

57

quence, the detail specification of the modules indicated

in the high-level description will not be given here.

To use this language as a documentation of the machine,

all that must be done is include the sequence control graphs

of the completed system starting with the highest level and

the element specification with each sequence control graph.

This would form an easily understandable but yet precise

description of the machine. The logic diagrams would be

used to correlate what is being done and how it is being

done in the hardware.

A desirable characteristic feature of each high-level

state (or module) is that each is an entity in itself. It

is set up very similar to a sequential machine in that it ac

cepts as its inputs a relatively small number of stimuli and

goes through a sequence of actions to produce the desired

output. For example, the OAM accepts as its inputs the in

struction field and the address field and produces as its

output the desirable operands which are used as the inputs

to the ALU. Thus, we have also reduced the interconnections

between modules and thereby simplified the physical layout.

Fig. 14 shows the simplicity of the physical layout

created by the natural partitioning of the language. The

great simplicity is evident since in each module the physical

layout has a corresponding module in the sequence control

graph. Although this similarity does exist it is not a man

ditory result of the language but is totally in implementa-

sa

Instruction
"' ' Access
' "'

Memory

Module

If\
I \ J ~

AR

~ Operand
?" , Access '
--;;~"

Module
FB

~~
I f\ z

Control

5 Lines
(.

' II B2
'l!

Arithmetic ,
_..., Logic ,

' Module
"'

F

Fig. 14 System's Interrnodular Connection

59

tion consideration. The language only provides a natural

and easy mode of expressing such organization.

The modular multi-level structure of the language also

simplifies the process of similation and fault diagnosis.

Due to the modular structure, simulation could more easily

be done in the initial stages of design on a functional level.

Because of the lack of interdependency, the functional simu

lator could be used in the later stages of design as a

controller for logic simulation on a modular basis. Fault

diagnosis could also be applied on a modular level, thus

reducing the size of the circuit being diagnosed.

60

VI. SUMMARY

The goal of this project was to define a design

language based upon an ideal design sequence so that

future designs would be a more formal and continuous

process from start to finish. It was found that with the

use of the multi-leveled aspect of this language the design

sequence progresses fluently as the design is being formu

lated. A language of this form makes design communication

easier between system architecture and logic design, and

at the same time provides definite design boundaries

between logic design groups.

Due to the ability of this language to express all

types of control philosophies from serial to parallel and

from asynchronous to synchronous, the designer is able to

structure his system quite easily whether it be a large

sophisticated machine or a small processer.

The modular, multi-level structure of the language per

mits the designer to use simulation in a more effective

manner. This is done by using simulation concurrently with

design. This simulation would be initially performed at

the functional level. Then, as the logic design is being

completed the functional simulator would be used as a

61

logic simulation controller. With this approach one need

not have all the logic design completed before starting

design verification through simulation.

Just as important, is the ability to express only a

part of the total system at the gate level, since for large

systems.gate level simulation of the total system becomes

impractical.

System documentation becomes an easier task because

this language can be used as an organizer of the logic des-

cription. This would lead to a closer relationship between

the more easily understood functional description and the

more detailed logic description.

It is felt, that this language is a more design oriented

language than existing languages. Hence, it can be used as

an effective design tool to shorten and make.more consistent

the design cycle of digital systems.

BIBLIOGRAPHY

1. Iverson, K.E., (1962) "A Programming Language",

New York, John Wiley & Sons.

2. Hellerman, H., (1967) "Digital Computer System

Principals", New York, McGraw-Hill, p. 424.

3. Iverson, K.E., Falkoff, A.D., and Sussenguth, E.H.,

(1964) "A Formal Description of System /360",

IBM Systems Journal, Vol. 3, p. 198-262.

4. Friedman, T.D., (1967) "Alert: A Program to Compile

Logic Designs of New Computers", Digest of the

First Annual IEEE Computer Conference, Chicago,

p. 128-130.

5. Duley, J.R., and Dietmeyer, D.L., (September 1968)

"A Digital System Design Language", IEEE Trans

actions on Computers, Vol. C-17, No. 9, p. 850-

861.

6 . Bartee, T. C • , Lebow, I • L. , and Reed, I . S • , (19 6 2)

"Theory and Design of Digital Machines", New

York, McGraw-Hill, p. 324.

7. Chu, Y., (1965) "An ALGOL-Like Computer Design Lang

uage", Communications of the A.C.M., Vol. 8,

No. 10, p. 607-615.

62

63

8. McCurdy, B., and Chu, Y., (1967) "Boolean Translator

of a Macro Logic Design", Digest of the First

Annual IEEE Computer Conference, Chicago, p. 124-

127.

9. Breuer, M.A., (December 1966} "General Survey of

Design Automation of Digital Computers" Procee

dings of the IEEE, Vol. 54, No. 12, p. 1708-1721.

10. H. Schorr, (December 1964) "Computer-Aided Digital

System Design and Analysis Using a Register Trans

fer Language", IEEE Transactions on Electronic

Computers, Vol. EC-13, p. 730-737.

11. H. Schorr, (December 1962) "Towards the Automatic Anal-

ysis and Synthesis of Digital Syst_ems", Ph.D.

Dissertation, Department of Electrical Engineering,

Princeton, University, New Jersey.

12. McCurdy, Bruce D., and Chu, Yaohan, (September 6-8,

1967) "Boolean Translation of a Macro Logic

Design", Digest of the First Annual IEEE Computer

Conference, p. 127.

VITA

David Michael Rouse was born on September 16, 1945

in Joplin, Missouri. He received a Bachelor of Science

degree in Electrical Engineering from the University of

Missouri at Rolla in June 1967. He has been enrolled in

graduate school at the University of Missouri at Rolla

since September, 1967. He has been on the staff of the

Electrical Engineering Department since September, 1967.

64

	A design oriented digital design language
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071

