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ABSTRACT

A digital computer model of a Costas loop has been
employed to study the effects of Gaussian noise and
continuous-wave interference on the detection of biphase
modulated signals. The dependence of bit-error proba-
bility, mean-square error between input and output,
phase—-error variance and threshold on signal-to-Gaussian-
noise power ratio, interference-to-Gaussian-noise power
ratio and frequency offset of the interference have been
investigated and compared with previously obtained
experimental results. The model has been verified for
its accuracy in the case of no noise and when Gaussian

noise is present at its input.
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I. INTRODUCTION

A numerical technique for conducting statistical
sampling experiments on a model of a system to obtain
a probabilistic approximation to the behavior of the
system is called Monte Carlo simulation. The model of
the system must be describable in a logical and/or
mathematical manner. In general, the simulation is
carried on a digital computer, not because of any
basic relationship, but because of the very large
amount of calculations required.

This thesis is concerned with the development of
a digital computer model of a Costas loop demodulator
and simulating the effects of Gaussian noise and
continuous-wave (cw) interference on the demodulation
of phase shift keyed (PSK) signals. Interference is
commonly encountered in many applications of Costas
loops, e.g., in telemetry systems where the interference
is due to extraneous sources. The simulation technique
consists of integrating the loop equations by using the
Runge—Kutta method of order IV [1].

Costas loops are similar to phase-lock loops (PLLs)
in that both can be used to demodulate signals which are
digitally phase modulated. The difference, however, is

that a PLL requires carrier component to lock onto, but a



Costas loop does not. A more complete description of
the operation of a Costas loop will be given later.
Because of the intractable mathematical nature of the
problem, computer modeling appears to be one of few
ways available for obtaining useful results.

Digital computer simulation of PLL's in Gaussian
noise has been carried out before [2,3]. Simulation of
PLL operation in multipath backgrounds has also been
done previously [4], and theoretical analyses of Costas
loops operating in Gaussian noise are also obtainable
in the literature [5]. However, few results are avail-
able on the effects of interference on such devices.

The performance of the Costas loop considered in
this thesis is characterized in terms of (1) bit-error
probability, (2) normalized mean-sguare error between
input and output, (3) threshold, and (4) phase-error
variance. Results are obtained for different values of
(i) signal-to-Gaussian-noise power ratio, (ii) inter-
ference-to-Gaussian—-noise power ratio, and (iii) fre-
guency offset of interference. Previously obtained
experimental results [6] will be used to compare with

and verify the accuracy of the simulation.



IT. DERIVATION OF THE COMPUTER MODEL

A. Eguations for Costas Loop Operation in Noise and
Interference

In this chapter the equations describing the
operation of the Costas loop are derived. These
egquations will then be used to develop the computer
model. Figure 1 shows a block diagram representation
of a Costas loop demodulator. The equations which
describe the operation of the loop with signal, Gaussian
noise, and cw interference at its input will now be
obtained. The digital computer model consists of a
numerical solution of these equations, as will be
described later.

Let y(t) be the input to the Costas loop. It con-
sists of the suppressed carrier signal, s(t), plus
Gaussian noise, ng(t), plus cw interference, ni(t). Thus,

vy (t) can be written as
y(t) = s(t) + ng(t) + ni(t) (2-1)

The signal s(t) is represented as

s(t) = VY2 A m(t) sin(wot+e), (2-2)

where
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Figure 1. Block Diagram of a Costas Loop Demodulator



A = constant amplitude factor,
m(t) = modulation or signal envelope,
wy = frequency of the carrier in radians/second,
and
8 = random phase angle of the carrier,

Assuming that the noise ng(t) is narrow-band, zero-

mean, and Gaussian, it can be represented as [7]

ng(t) = V2 nl(t)Cos(wot+G)+ V2 n2(t)Sin(wot+9) (2-3)

where nl(t) and nz(t) are statistically independent sample
functions of a jointly stationary Gaussian process. The
power spectral densities of nl(t) and n2(t) are N watts/
Hz, single-sided, over the passband 0 to W/2 Hz and zero
elsewhere, if that of ng(t) is NO watts/Hz, single-sided,
over the passband fo— W/2 to fo+ W/2Hz (fo=wo/2ﬂ) and zero

elsewhere. Thus,

2 _ 2 _ 2 = -
ng(t) = 2nl(t) = 2n2(t) = NOW (2-4)

The cow interference can be represented as

i +6+
ni(t) V2 bo Sln[(wo+Aw)t 6+34 ]
= /2 b, Sin (Awt+6)Cos (w_t+8)

+ V2 b, Cos(Awt+6)Sin(wot+9), (2-5)



where the randomly varying phase difference between the

signal and the interference is represented as 6.

Equation (2-5) can be written in the same form as
Egq. (2-3), so that

ni(t) = V2 nicCos(wot+e) + V2 niSSin(wot+e) (2-6)
where

n; . = bo Sin (Awt + ¢§) (2-7a)
and

n,, = b_ Cos(Awt + §) (2-7b)

The lowpass filters LPF 1 and LPF 2 are assumed to

have the following effects on the signal,

interference components at points (1) and

(1) The
are
(2) The
are
(3) All
(4)

as

low frequency components of
passed without distortion;
low frequency components of
passed without distortion;

double frequency components

completely rejected;

noise, and

(2) in Figure 1:

signal

the noise

are

The only effect on the cw interference is
attenuation and phase shift of its low
frequency components in accordance with the

filter transfer function, which is represented



H(w) = B(w) explje(w)], (2-8)
where
B(w) = amplitude response function of the lowpass
filters
and
8 (w) = phase shift function of the lowpass filters.

Let the output of the VCO (point (7) in Figure 1) be

v, (t) = Y2 Cos (w ot + 5) (2-9)

where wO/ZW is the free-running frequency of the VCO in Hz,
and 8 is the Costas loop's estimate of the unknown phase 6.
The output V3(t) of LPF 1 is the same as the low fre-
quency components of the output Vl(t) of the upper phase
detector except that the low frequency components of inter-

ference will be attenuated and phase shifted according to

the transfer function H(w) as defined by Egq. (2-8). Thus,

V3(t) = Am(t)Cos@ - nl(t)sinﬁ + n2(t)CosQ

- boB(Aw)Sin[Awt + 6§ + 6(Aw)1S8Sing@
+ bOB(Aw)Cos[Awt + § + 8 (Aw) ]Cos@ (2-10)

where

~

is the phase-error.



Similarly, the output of LPF 2 can be written as

V4(t) = A m(t)Sin@g + nl(t)Cosﬂ + n2(t)Sin¢
+ boB(Aw) Sinf[Awt+8+86 (Aw) 1 Cos@

+ bOB(Aw) Cos [Awt+8+8 (Aw) 1Sing (2-12)

The differential equation describing the loop is

dae (t) _
ac = Kv F(p) V5(t) (2-13)
where
p = d/dt is the differential operator,
KV = multiplying constant for the VCO,
F(p) = transfer function of the loop filter LPF 3,
and

V5(t)= voltage at point (5) in Figure 1.

From Figure 1,

where Km is the multiplier constant.

In practice, the characteristics of a second order
loop are conveniently specified in terms of its damping
factor z and the natural frequency of oscillation wor OF

the equivalent noise bandwidth, WL’ of the linearized loop.



These parameters can be defined in terms of wvarious loop
and signal constants. From Egs. (2-10) and (2-14), the
differential equation for the linearized loop with only

signal present at the input is

de _ 2 _a _
ag = Kva A F(p) (9 9) (2 15)
where the approximation Sin2@ =~ 2@ has been used. The

closed loop transfer function Ho(s) can be defined as
the ratio of the Laplace transform of 6(t) to that of

8(t), and from Eg. (2-15), is

Y (s)

1+Y (s), (2-16)

HO(S) =

where

Y(s) = KVKmAzF(s)/s (2-17)

is referred to as the open loop transfer function.

Equation (2-17) is written under the assumption that

m(t)=+ 1, i.e., m(t) is a binary digital segquence.
Assuming F(s) to be the filter transfer function

of a perfect second-order active loop, i.e.,

F(s) = 1 + g.) (2-18)

it can be easily shown that
2
+
H (s) = 25%,5 * ¥y (2-19)

(@]
2 2
s +2 cwns+wn
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where
a = w /2¢, (2-20)

and

2Cwn = A Kva. (2-21)

A commonly used value for the damping factor in PLL
work is ¢ = 0.707 ([8]. This value for r will be used
here. The natural frequency W is conveniently
specified in terms of ¢ and the equivalent noise band-
width WL of the loop, by

4CWL
(L)n = m (2—22)

The parameter WL is defined by

[e¢]

| Y (f)

2
iiYTf)l af (2-23)

-—C

where Y (f) is given by Eg. (2-17) with s = j2nf.

Even for the nonlinear case, it is usually most
convenient to describe the second-order loop in terms of
z and W (ox WL) which are parameters that have been
defined for the linearized loop. When Eg. (2-13) is

expressed in terms of r and W . for a loop filter with

transfer function given by Eg. (2-18), it becomes
A\
27 Vv 5
d~e d 5 2
= 2Cw_ =+ (7)) + w_ " (5 (2-24)
dtz n dt Km n Km
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This last equation along with Equations (2-10),
(2-12), (2-14) and (2-22) completely describes the loop

action in terms of the desired parameters W. and ¢ in

L
response to the signal, noise and interference.

For the purpose of numerical integration, Eqg.
(2-24) can be represented as two simultaneous differential
equations of first order [1l]. If 5 =y, and z is intro-

duced as a dummy variable, Eg. (2-24) is equivalent to

v

dy _ _5 _
It z + 2¢ wn(K ) (2-25)
m
and
v
dz _ 2 5
a';E' = wn (E"n:) (2—26)

These are the equations which are numerically integrated
in the digital computer model of the loop. This model

will be described in the next section.

B. Implementation of the Loop Equations as a Computer
Model

The equations derived in the previous section that
describe the Costas loop operation are first represented
as a flow diagram to facilitate the development of the
computer program for the model. Two such flow diagrams
are shown in Appendices A and C. The first one is for

the noiseless case and is a much simplified version of
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the second one, which includes Gaussian noise and cw
interference. The flow diagrams are presented in the
logical form and show the major steps implemented in
the computer program (Appendices B and D) written for
the model.

From the flow diagram for the model with inter-
ference it will be noted that a limiter is included in
the in-phase channel of the loop. This was done mainly
to simulate the actual loop used to obtain the experi-
mental results which included a limiter. It stabilizes
the loop response at high noise and interference levels.

The results presented in the next section were
obtained only for a few specific cases, because (i)
only a limited number of experimental results [6] were
available for comparison and verification of the model
and (ii) availability of computer time was limited.
However, the flow diagram presented in Appendix C is
quite general and is flexible enough to allow a selection
of loop characteristics such as amplitude response
function B(w) of the in-phase and guadrature-phase channel
filters (LPF1l and LPF2) to the low frequency components
of interference, the loop bandwidth WL' and the damping
factor . Two types of modulating signals can be
selected, namely, a random binary sequence or periodic

binary sequences such as a pseudo-random maximal-length
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sequence [9]. In practice, purely random sequences with
known properties are difficult to generate and use.
Therefore, periodic pseudo-random sequences of finite
length are often employed to simulate digital data.

A normal random number generator (available in the
Scientific Subroutine Package (SSP) memory of the computer)
was employed to generate noise samples for the two Gaussian
processes nl(t) and n2(t) (refer to Figure 7). The standard
deviation for these Gaussian samples was calculated as
follows.

Assume a sample is taken every

T

TI —E seconds, (2-27)
SPB

where

Tb = period of a data bit,
and

SPB = number of samples per bit

. , 2

Also, let the variance of each noise sample be o~ . We

want 02 in terms of the signal-to-Gaussian-noise ratio
(SNR) and SPB. Let the noise bandwidth be B Hz and the
noise power spectral density be No watts/Hz, as shown in

Figure 2.
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No/2 watts

\

//B

Figure 2: Power Spectral Density of the Gaussian
Sampling Processes

Hz

Thus,

oo = NOB (2-28)

and, for the samples to be independent, we must sample
at the Nygquist rate [10], or

1
TI = 5§ (2-29)

Substituting for B in Equation (2-28) from Eguation (2-29)

we obtain

62 = 0 (2-30)

as A2T

N
O

where the noise power is measured in a bit-rate bandwidth
fb = 1/Tb. From Equations (2-27), (2-30) and (2-31) we

obtain

2 _ SPB

= 5> x SNR (2-32a)
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where A = 1 for convenience (i.e., all power levels
are normalized to the power in the signal). Thus, the
standard deviation o of each noise sample is

( SPB 1/2

2 x SNR) . (2-32Db)

The filters LPF 1 and LPF 2 were assumed to be a
cascade of two one-pole lowpass stages, having an ampli-

tude response function

B(f) = 1 (2-33)

1+ (£/ )2

where o is the cut-off frequency of the filter.
From Equation (2-5), the interference power is boz.
However, the signal power has been assumed to be unity

(for convenience), so the amplitude bo of the cw inter-

ference can be calculated for the model as

b02 = Interference Power
Interference Power _ INR
Signal Power SNR (2-34a)
or
b — INR 1/2 (2—34b)

0 SNR .
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The relations derived in this section were employed
to calculate different parameters for the computer model
from the given values of the standard parameters ¢, WL’
INR, SNR, Af, fb’ etc. for the Costas loop.
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ITIT. VERIFICATION OF THE MODEL AND RESULTS

Once the computer model was obtained, its validity
and accuracy were tested by comparing simulation results
with known theoretical results for loop operation under
various conditions but without cw interference. The
effects of cw interference on Costas loop operation were
then studied for a few specific cases by using the

model.

A. Verification of Model

The major steps taken in verifying the accuracy of
the digital computer model of a Costas loop operating in

interference were the following:

1. Selection of a proper method for solving the
differential equation of the Costas loop

Before adopting the Runge-Kutta method of order
IV for the differential equation of the loop, the RKGS
and HPCG subroutines available in the.SSP memory of the
computer were first used. Neither of these methods were
suitable,as in trying to satisfy a specified error, they
have the inherent tendency to reduce the step size. This
in turn, made it impossible to calculate the standard

deviation of the Gaussian-noise samples used to simulate
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nl(t) and nz(t) from the known signal-to-Gaussian-noise
ratio, because of the resulting unknown number of samples
used per bit. The Runge—-Kutta method of order IV for
solving two simultaneous differential equations of first
order [1l] with a fixed size integration (i.e. sampling)
interval, h, was then used and found acceptable.

2. Testing the model for transient response under
noiseless conditions

Testing of the model for transient response was
accomplished for two inputs, namely, signal with initial
frequency offset from the VCO frequency, and an input

signal with increasing frequency offset.

Case 1l: Constant Frequency Offset

For the constant frequency offset case, the input
signal is
s (t) =v/2 Am(t)Cos (wot + 6) (3-1)

where
86 = Qt u(t) (3-2)

That is, the initial fregquency offset of the signal is
2 radians/second from the initial frequency of the VCO.
With small phase error and for no noise and inter-

ference, Egs.(2-10), (2-12) and (2-14) simplify to

= = Sin 28 = @ , (3-3)
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when A = 1 (assumed for convenience).
Substituting into Egq. (2-24) and solving for the phase

error @ we get, for z = 0.707,

w w
g (£) = vZ -2 exp-28)Sin(-2 t)u(t). (3-4)
“n V2 V2

Linear operation of the loop imposes the condition that

|9

this requires

maxl<<l radian. It can be shown that in terms of §

Q<<3.2WL (3-5)

for the damping factor used.

A plot of phase error, @, versus time, as obtained
from Eg. (3-4), is shown in Figure 3. The phase error
obtained from the computer model is also shown. For
=10 and WL=100, the condition of linearity is satisfied
and the two plots coincide exactly. This indicates that
the basic computer model is accurate for noiseless inputs.
Alsoc shown in Figure 3 is the response of the model for
=200, which shows the deviation from linearity when a

value of 2 is used that does not satisfy the inequality

in Eg. (3-5).

Case 2. Linearly increasing frequency

The phase of the carrier for a linearly increasing

frequency is
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1.2
8 = EDt u(t). (3-6)

The solution of the linearized differential eguation of

the loop for this input phase is

D 5 Wyt “n Ll
g(t) = — [1- V2 exp (~——)Cos (— t -~ —)] (3-7)
- =~ 4
W V2 V2
and the condition of linearity, [ﬂmaxl<<l, leads to
2
D<< 8/9 W (3-8)
for z = 0.707.

A comparison of @(t) calculated frém the linearized dif-
ferential equation with @ (t) obtained from the computer
model is given in Fig. 4 for two values of D. For D=10,
the condition for linearity, Eg. (3-8), is satisfied,
while for D=10000, the model is operating in the non-
linear region. Again, as in the previous case, the plot
obtained from the linearized solution coincides exactly
with the response of the model as long as condition for
linearity is satisfied. This further verifies the
accuracy of the model under noiseless conditions.

3. Selection of proper seeds for the random Gaussian
number generators

Seed for a random number generator is a number to

be specified and used as a starting point in generating

the random number sequence. Proper selection of seeds
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for the random number generators had a significant
influence on the number of replications of the simu-
lation model required to reach steady state conditions.
Good seeds were selected by trial and error. The
sample mean and standard deviation of the output of the
Gaussian random number generator used to generate the
noise samples were plotted against the number of
iterations. The two seeds selected for generating
nl(t) and n2(t) were the ones that generated processes
for which the mean and the standard deviation settled
down to their nominal values in minimum number of
iterations. Example of the effect of seed selection

is given in Fig. 5.

4. Selecting the number of initial bits which could
be considered as the transient response of the
model

The initjal bits that constitute the transient
response of the model are omitted from the calculation
of bit—error probability, mean-squére error, cycle-skips,
etc. to allow the transient response of the model to die
out. The number of bits omitted was selected in con-

junction with step 3 above, and for the parameters and

bit-rates chosen was about 200 bits, as can be seen from

Fig. 5.
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5. Testing the model when Gaussian noise is present

The model was run for signal-to-noise power ratios
(noise referred to a bit-rate bandwidth) of 0,1,2,3 and
4 decibels (SNRDB=0,1,2,3 and 4). The bit-error proba-

bility P_, obtained from the model was compared with the

E
theoretical values obtained by Didday and Lindsey [5]
for a first-order Costas loop (i.e., where LPF3, shown
in Figure 1 is absent). This comparison is shown in
Table 1.

The phase-error variance is one more yardstick to
test the model. The wvariance Oé of the phase-error was
obtained from the model and compared with the theoreti-
cal results calculated from a linearized analysis of

the loop. It has been shown [5] that for high signal-

to-noise power ratios the following approximate relation

holds:
W
2 L 1 1
= — - —— _
g w [sNEBrR * 2 (SNrBER) 2] (3-9)

where SNRBR is the signal-to-Gaussian-noise power ratio
. 2

in a bit-rate bandwidth. A comparison between cg

obtained from the computer model and the corresponding

values for a linearized model given by Eg. (3-9) is

presented in Table 2. This was done for SNRDB=7,8, and

9dB.



Table 1: Bit-Error Probability vs SNRDB*
PE

SNRDB Theoretical Model +
(with limiter)

0 0.078 0.099

1 0.055 0.076

2 0.035 0.041

3 0.022 0.024

4 0.010 0.012

* Signal-to-Gaussian—-noise power ratio measured in a

bit-rate bandwidth and expressed in decibels.
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+ A step-limiter was introduced in the in-phase channel
of the Costas 1loop

Table 2: Phase—~Error Variance wvs SNRDB
2
o]
g2
SNRDB Theoretical Model
with without
limiter | limiter
7 0.00219 0.00295 | 0.00236
8 0.00171 0.00161 | 0.00167
9 0.00134 0.00118 | 0.00120
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The mean of the phase-error is expected to be
zero because of a zero mean assumed for the Gaussian
noise. The values obtained from the computer model
were very small, but not guite equal to zero. The
reason for this is discussed in the next chapter.

Threshold can be defined as the signal-to-noise
ratio at which a loop looses lock which is more or
less arbitrarily defined.

An arbitrary method of determining the occurrence
of loss of lock in the computer model is used. Each
time the absolute value of the phase-error @ exceeds
the threshold wvalue, 7/4 radian, a cycle-skip results
and is noted. A count is also kept of the number of
cycle-skips in every ten consecutive input bits, and
a loss of lock is said to occur when this count
exceeds the value five. The value of the SNR for which
this occurs is defined as the threshold value for the
model. Also note that after a cycle-skip has been
registered, the conditions in the loop (model) are
initialized to those at time t=0 second.

It has been suggested [5] that threshold occurs in
a Costas loop at Gg2:l/8. With W/WL=100 in Eg. (3-9),
the value used in the model, a threshold of -9.2 dB

results (measured in a bit-rate bandwidth).



Model
SPB* (without limjter) Theoretical Experimental
10 ~10ae"’
-9.2dB -7dB
20 -9dB

* SPB - Noise samples taken per bit

+ Signal-to-Gaussian-noise power ratio (measured in a bit-rate
bandwidth) expressed in decibels.

Table 3: Threshold Results for Costas Loop

8¢
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Threshold obtained from the model is compared
with this wvalue and the previously obtained experimen-
tal value, in Table 3.

Results were also obtained for phase-error
variance for the case when a limiter was inserted in
the in-phase channel of the loop. These results are
included in Table 2 and conclusions drawn in the next
chapter. The limiting process has an interesting
effect on the threshold. This is discussed in the
next chaptere.

The effect on the threshold of varying the number
of samples per input bit was also investigated. The
results are included in Table 3 and the comments follow

in the next chapter.

B. Results for interference backgrounds

The final step was to obtain results for cw inter-
ference once the model was tested and verified (steps 1
through 5).

Bit-error probability and normalized mean-square
error between input and output were computed for dif-
ferent signal-to-Gaussian-noise power ratios, interference-
to—-Gaussian noise power ratios and fregquency offsets of the
interference. These are compared with previously obtained

experimental results in Tables 4 and 5.



Af=10KHz Af=5KHz Af=0
SNRDB| INRDB| Experimental | Model | Experimental | Model | Experimental | Model
MSE MSE MSE MSE MSE MSE
0 0.140 0.166 0.160 0.168 0.220 0.187
7 3 0.140 0.167 0.190 0.171 0.340 0.187
Lock
6 0.155 0.170 0.230 0.175 Lost 0.215
0 0.120 0.136 0.130 0.137 0.160 0.150
8 3 0.120 0.136 0.150 0.141 0.220 0.162
Lock
6 0.125 0.137 0.170 0.170 Lost 0.179
0 0.100 0.108 0.105 0.110Q 0.140 0.116
9 3 0.100 0.108 0.13Q 0.111 0.175 0.124
6 0.105 0.109 0.150 0.123 0.330 0.153
Notes: INRDB = cw interference-to-Gaussian-noise power ratio (in decibels)
Af = frequency-offset of interference from the carrier frequency fon
MSE = normalized mean-square error between input and output
Table 4: Summary of Results for MSE in Presence of cw Interference

(013



Af=10KHz Af=5KHZ Af=0
SNRDB| INRDB | Experimental | Model |Experimental| Model | Experimental | Model
PE Pg °E PE Py PE
0 0.002 0.001 0.002 ' 0.001 0.010 0.021
7 3 0.002 0.001 Q.0025 0.001 0.037 0.032
Lock
6 0.002 0.001 0.003 0.002 Lost 0.070
0 0.0005 0.001 0.0006 0.001 0.005 0.004
8 3 0.Q0005 0.0 0.0009 0.001 0.015 0.009
6 0.0005 0.0 0.001 0.002 Lock 0.042
Lost
0 0.001 0.0 0.0002 0.0 0.002 0.0
9 3 0.001 0.0 0.Q003 Q.Q 0.0Q7 0.005
6 0.0001 0.0 0.0004 0.0 0.030 0.032
Table 5: Summary of Results for P_ in Presence of cw Interference

E

€
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IV. DISCUSSION OF RESULTS AND CONCLUSIONS

From the results presented in the previous chapter,

the following comments can be made and conclusions drawn:

A. For the ideal noiseless case, the transient response
(Figs. 3 and 4) of the model coincided closely with
the analytically calculated response of the linearized
(Sin2@=20) loop, when the conditions of linearity
were satisfied. This verified the accuracy of the

computer model for noiseless conditions.

B. Selection of seeds for the random number generators
(subroutine GAUSS in the computer program shown in
Appendix D) had a significant influence on the
length of the initial transient response of the
model and on the wvalues for PE and ng calculated
from the model. A bad seed had the effect of
increasing the PE and Gg2 beyond the wvalues expected

theoretically, while a good seed tended to produce

more acceptable values for these quantities.

C. For the Gaussian noise case, the PE calculated from
the model was always higher than the theoretically

calculated values (Table 1). This can be attributed
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to (i) the theoretical values used for comparison
are for a first-order Costas loop (i.e. when LPF 3
shown in Figure 1 is absent) while the model is for
the second-order Costas loop, and (ii) for the
number of noise samples used in the model, the
noise may not have been perfectly Gaussian in
character. Also, the two noise processes nl(t) and
n2(t) were not truly independent statistically, as

they should be.

For high signal-to-Gaussian-noise ratios (SNRDB=
7,8, and 9), the introduction of a limiter in the
in-phase channel of the loop (model) did not have

2 (Table 2).

any noticeable effect on the values of 9
With or without a limiter, the values of o¢2 cal-
culated from the model, compared favorably with

the theoretical values calculated from Eg. (3-9) which

holds for high signal-to-noise ratios.

Without a limiter in the in-phase channel, the
value obtained for the threshold was close to the
theoretically predicted value in the presence of
Gaussian noise alone. Increasing the number of
noise samples per bit had the interesting effect

of raising the threshold. However, the most
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interesting result found was that the limiter in
the in-phase channel of the loop had the effect

of stabilizing the loop near threshold and as a

result, the loop did not go out of lock even at

-11dB (SNRDB) and had only 4 cycle-skips in 800 bits.

The results obtained for the cw interference were
compared only with previously obtained experimental
results. No theoretical results are available in

the literature for the performance of Costas loops
operating in cw interference. From the majority of the
results obtained for the MSE (Table 4) it can be con-
cluded that the effects of interference as obtained

with the model were much less severe than shown by the

corresponding experimental results. Possible ex-
planations for this are: (i) measurement error in
obtaining the experimental results; (ii) inadegquate

representation of the cw interference in the model.
However, no such conclusion could be made from the
results for the PE' For the very low values of PE
corresponding to high SNRDB's, the model did not employ

a sufficient number of bits for good accuracy. Only

1000 bits were used due to limited availability of

computer time.
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APPENDIX A

FLOW DIAGRAM

NOISELESS CASE
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Define Egs. (2-25)
and (2-26) to be
solved for y and 2z

!

Input: ¢, WL’ fb

SPB, Bits

|

Calculate W - Tb'

H

1

IJ = SPB*Bits

1

39

Generate anotherf
random binary
digital input
m(t) for the next
bit (+1)

H

3
CONTINUE

D = 10
m(t) = 1
DO 3
I=1, 1IJ
Y
_ 1 2
8 = Z*D;
g(t)=6-y
1

Solve for y and z
using Runge-Kutta
method of order IV
with integration
intexrval H

Calculate ¢(t) for
linearized loop from

- Eg. (3-7) -

Figure 6: Flow Diagram

for Computer
Model -
Noiseless Case 2



APPENDIX B

COMPUTER PROGRAM

~ NOISELESS CASE
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FORTRAN TV G (EVEL 18 T MAIN PDATE = 70132 22/46/36

C
‘ . ¢ ~COMPUTER PRUGRAM FUR DIGITAL SIMULATION OF COSTAS LOOP OPERATION
: C
C CASE OF LINEARLY INCREASING FREQUENCY AT THE INPUT
| C P1 STAESES THE VALUE OF PHI AT THE END DF EACH BIT, TPHI STORFS THE
C THFORATICALLY CALCULATED VALUE OF PHI AT THE FND 0OF EACH RIT
4 0001 . DIMENSION PL(200), TAHI(200)
¢ DEFINE THE TWN SIMULTANECUS DIFFERENTIAL EQUATIONS OF THF COSTAS LOOP
o C T - TIME IN SFCONNS, Y =8 , Z — DUMMY VARIARLE INTRODUCED
0002 FLUTYy2) =742, ¥IFTARWNRYS '
20003 o GIUTa Y, 7Y =WNERNRVS I
: C
: C ZIFTA - DAMPING FACTCR, WL - FQUIVALENT NOISF BANDWIOTH
: C WN - NATURAL FRFQUENCY, WI — INPUT STGNAL BANDWIDTH
C CFR — BIT-2ATE BANDWINTH, TB — PERIOD OF AN INPUT BIT
c SPR - GAUSS]AN=NNTSF SAMPLES TAKEN PER BIT, BITS -
C INTAL NUMBER OF BITS CONSIDERED, H - INTEGRATION AND
C SAMDLING [NTFRVAL, SAMPLE - TNTAL NUMBER OF SAMPLES
< F - MODULATING DIGITAL SIGNAL e _
0004 JETA=0.707
0005 P1=3,1416
0006 WL=200, .
0007 WN=4 % 7F TARWL/ (1, 44,4 7ET A2 )
0008 WI=10000.
0609 FR=Wl/2,
VD010 e IB=10/F — e
0011 SPR=20),
0n12 NSPR=SPR
0013 BITS=200,
0014 NMAX=RTTS
0015 H=TR/SPR
L0014 SAMPLE=SPR&RITS
0017 [J=SAMPL ™ ,
_0018.__ CALL PENPLSLI2HMIHTA -AJAY M,12,1) -

184



C
C D - RATE OF INCREASE IN THE TINPUT FRECQUENCY (HZ/SEC)
0019 N=10.
R C.. e ,
C nnLOne FOR TWO VALUES OF D (D = 10, CONDITION OF L INEARITY
C SATISFIED § AND D = 1000GC, NUNLINFAR CASF)
00290 c N 85 K=1,2
D021 1=0,
0022 Y=0,
| 0023 7=0.
_0024 ) _F=1. B e R
Q025 TPHI{1)=0C,
00?26 c P1(1)=0.
C MAIN DD LDDP PERFNRMING ITERATICNS
0021 c DO 3 I=1,1J
! 0028 THETA=D*T%T7/?2,
8 o PHI=THETA-Y e
_ 30 V3=F*COAS(PHT)
3A00?1”mﬁ e YA=FARSIN(PHI) _
0032 c VH=V3%Vya -
{ ; EMPLOYING RUNGF-KUTTA METHOD CF CQRDER IV TU SOLVE THE LOCP EQUAT IONS
\ 0033 Al=H%F1(T4Y,7)
i 0034 Ble*Gl(T,Y,Z)
, 0035 A2=hXxF1(T+H/ 2,y Y+A1/2.47#B1/2.)
0036 R2=HXG1(T+H/ 2, 4 Y+AL/2,,2%R1/2,) I -
0037 Ad=HXF 1{T+H/ 2, Y+A2/2,,7+B2/2.)
| 0038 B3=txG1{T+H/ 2., Y+A2/2.,74R2/2.)
i 003Q A4=H*F1(T+H,Y+A3,Z+R3)
0040 Ba=HEXG1({T+H,Y+A3,7+B3)
0041 Y=Y+([Al+7, *A2+2.*A3+A4)/6.
- 0042 L=7+{B1+2,%B2+2.%R3+84) /6,
© 00473 c T=T+H

(4 4



c
MODUTGNSPB) 13,4473

CHECK FOR THE END (OF A BIT
IF(
CONTINUF

- 0044
0045
» 0046
0047
| 0048

4

NH(Lo=1s 414*EXP(~WNET50, 707 ) %COS (WN¥T*0 . TOT-P 1/ 4. ) ) /WN/WN

PHI
J)=

MCDULATING SIGNAL

GENERATING A RANDOM DIGITAL

77

==1.
1.
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APPENDIX

FLOW DIAGRAM - GAUSSIAN NOISE AND

CW INTERFERENCE PRESENT

Nomenclature for notations used in Appendix C
(but not defined earlier)

Bits ~ Total number of bits considered

OMIT - Number of initial bits omitted as
transient response of the computer

model

IJ - Total number of noise samples
considered

NI - Number of initial samples omitted

as transient response

NUSKIP-Count of the number of cycle-skips
per every 10 consecutive bits

NSKIP- Number of cycle-skips

44



<START >

\

Define Egs. (2-25)
and (2-26) to be
solved for y and z

!

Define the low-
frequency amplitude
response function of

the filters LPF1l and
LPF2

Input: z} WL’ f. ,SPB,
Bits, SNRDB, INRDB,
OMIT

|

Calculate W s T
SNR, INR, bn

J
I

I
N

Af

It

10000

L Do 7 I1=1,3 ]

|

INITIALIZE t,y.,z
$,86,n,,npy =0

| INITIAL m(t) = -1

INITIALIZE ALL SUM-
MATIONS

|  po 3 1=1.1I

|

45

YES

<tg!IH|'>NO
YES
NO

NUSKIP=NUSKIP+1

] No

Write "the
loop is out
of lock™

]

STOP

| NSKIP=NSKIP+1 |

RESET y,z,n

1'"2

Figure 7:

Flow Diagram for
Computer Model -
Gaussian Noise

Plus cw Interference
Present
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Generate another pair

Calculate Var Vyu ° X
of Gaussian-noise

samples n; and n,
V3 .
mout (t) =1
Yes No
}[ mout (t)=-1 ]
No

1
<~H

Calculate e,
ZQ ZV3 ‘
|[ERROR=0
Calculate ‘
Z(mz(t)—V3)2 Ho
Z m-(t) L (Error)=Z (Error)+1 |

— o 1
l RESET ZIV.,=0

Solve for y and z
using Runge-Kutta 1
method of ordexr IV RESET NUSKIP=0 after

with integration every 10 Bits
interval H

Figure 7 (contd.): Flow Diagram for Computer Model -
Gaussian Noise Plus cw Inter-
ference Present
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Select m(t) for the next
bit from the stored maxi-
mal length pseudo-random
sequence

Generate random phase
§(0,2m) for the next bit

o—

3
CONTINUE

!

PE = T (Error)/ (Bits-oMIT)

MSE = z(m(t)—v3)2/(4*zm2(t) )

!

%} = L@/ (I-NI)

mean
2 2, a2
Og T@°/ (I-NI) g mean
Af = Af - 5000
7
CONTINUE
Figure 7 (contd.): Flow Diagram for Computer Model -

Gaussian Noise Plus cw Interference



APPENDIX D

COMPUTER PROGRAM - GAUSSIAN NOISE

AND CW INTERFERENCE PRESENT
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ORTRAN 1V G LEVEL 18 R MA TN NATE = 70132 22/66/00

C

% COMPYTER PROGRAM FOR DIGITAL SIMULATION OF COSTAS LOOP OPERATION
C

| % CASF OF SIGNAL CCRPUPTED RY GAUSSTAN NCISE AND CW INTFRFFRENCF

0001 REAL®4 [NR,TNRPB,N1,N?

01072 NIMENSION F2(31)

0003 c DIMENSINN TJKLM{3),JKLUN(3)
C NEFIND THE TWO STMULTANFCUS NIFFERENTIAL EQUATICNS OF FIRST-DRDER
C DESCR IR ING THE CNOSTAS LNNP
C T = TIME IN SECONDS, Y - §4 I - DUMMY VARTABLF INTRODUCED

0004 . FlUTaYsZ)=I42, ¥IFTA*NN®YS S

0005 ) GLUT,Y,7 )=WN¥WNRVS
(; NDEFINF AMPLITUNF RFSPUNSE FURNCTION OF THE FILTERS LPF 1 AND LPF 2

e C  FDR THE an-FuEQ)FNCY CTCMPCNENTS CF THE CW INTERFEPENCE

0006 RBINELTAF N, ALPHA)=1./(1 .4 (DELTAF/ALPHA) *%N)

0007 N=2

0003 c ALPHA=5,3F3
C T CNNSTANTS AND PARAMETERS NEFINFD

0009 P1=3,1416

0010 ; THRESH=P [/ 4,

o C JETA - DAMPING FACTOP, WL - EOQUIVALENT NOISF BANDWIDTH
C WN - NATURAL FRFNDUENCY, Wl = INPUT SIGNAL BANDWIDTH
C F3 - RIT-PATF RANDWIDTH, TR — PERIND NF AN INPUT BIT

C SPB -~ GAIJSSTAN-NUISE SAMPLES TAKEN PER_BIT, BITS -

~ ¢ TATAT NUMBER NF RITS CONSIDERED, H - INTEGRATION AND
C SAMPL ING INTFRVAL, SAMPLE - TOTAL NUMRER OF SAMPLES
C F - MODULATING DIGITAL SIGNAL, CMIT - NUMBER OF INITIAL

. A,E ___BITS OMITTED AS TRANSIENT RESPONSE OF THE MODEL

0011 TETA=0.707

0012 KL=100.

0013 WN=4, 5 7ETARAL /{1, +4%ZETA%%2) N .

0014 WI=10600.

10015 FR=WI/2.

l0016 TH=1,/FB

Q017 _ SP8=20e

6v



0018 NSP2R=5P4
0019 NM1T=200,
0020 NI=0OMIT%SPR
0921 H=T13/50R _ —
0072?2 RITS=700,
0023 SAMPLE=SPR*RI TS
0024 c [J=SAMPLE
P C DEFINE THE MAXIMAL- LENGTH PSEUNC-RANDOM DIGITAL MOCULAT ING
f o SFQUFNCE NF +11'S AND =-11'S
0025 : READIL1,201)(F2(L), L=1,31)
: C INDUT ¢ SIGNAL-TO-GAUSSIAN-NIZISE POWFR RATIO IN TECIBFLS
9026 READ{ 1,104 )SNRNB
0027 SNR=1C.%%{SNRDB/10.)
Tt ' ¢ CALCULATE THE STANDARD DFVIATION 0OF RANDOM GAUSSTAN SAMPLING
o r PROCFSSFS N1 AND N? B .
0028 , STONEVY=SQRT{SPR/SNR/ 2.}
C CALCULATE ESTIMATFD VALUE OF VARIANCE{PHI ), HOLDS GNCD AT HIGH SNR'S
0029 - VARPHT =Wl /WI%{1,/SNR+0,5/SNR%%2) L S )
C INPUT : INTERFERENCE-TN-GAUSSIAN-NNISE POWER RATIC [N DECIBELS
no30Q RFAD(1,1C04)INRDR
0031 . INR=10,%%(INRDR/10,)
¢ CALCULATE THF AMPLITUDE NF CW INTERFERENCE
0032 c B=SORT(INMR/SNR)
g DO TONP FIR TTFFERENT VALUES OF FREQUFNCY-TFFSET PETINTERFERENCE
0013 ’ DFLTAF=10000,
0034 nno7 I11=1,3
N035 WRITE(3,101)8N2NS,STODEV,, INRDB, N, ALPHA,DELTAF
0036 JKLMN(T1)=1723456789
N037 [JKLM{TT)=753214%87
0038 C=BAINFLTAF,N,ALPHA) e .
5036 ) NFLTAW=2. %Pl *DELTAF
% INITIALIZF THE CONDITION CF THE LPQOP

0s



r0040 1=n0,
0041 y=0,
0042 1=0.
00473 Fz-1,
0045 N N1=0. T
0045 N2 =0,
0046 RIGPHI=0,
|CoaT CBIGOPHZ=N
0043 RIGFRR =0,
NN49 RIGN=0.
0059 RIGF2=0,
0051 BIGFQ?2=0.
MO T T T NRLTAETD T A —
"0Ns53 THETA=0,
0054 NUSKIP=0
-008%5 i NSKIP=O
C MATN {0NP PERFORMING ITERATINNS
0056 ) M 3 I=1,14
T e e e T = DHASF O ERROR - e e e
0057 PHI=THF TA-Y
C
. C CHFCK FNR A CYCLE-SKIP
;0058 ) ' TF(ABSIPHI).GE ,THRESHIGO TO 11
nNN59 6N 10 12
0060 11 _CONTINUF
A0ATTTTTTTTT T UTIRLTLLLELRTTIGOTYN 20 e
00672 . NUSKIP=NUSKIP+1 | )
| C JF NUMRFER NF CYCLF-SKIPS PER EVFRY 10 CONSECUTIVE BITS 1S GREATEC
C THAN 5, NECLARF THE LOOP AS HEING QUT OF LOCK | ‘ -
0063 IFINUSKIP,GE,b)IG0 TO 66
N0AYL NSKIP=NSKIP+1
0065 20  CONTINUF
C .
- o € IN CASE OF CYCLE-SKIP, RESET THE CONDITION_OF _THFE LOCP AS AT TIME
| C T=0, THIS IS EQUIVALENT TO MANUALLY RESETTING IN AN EXPER IMENT
'0066 PHI=0,
0067 v=0,
0068 7=9,
L0070 c N2=0,
0071 . 0 10 12

TS



66 HWRITE(3,103)
S1Np
12 CONTINYF
o X=DELTAWRTHDELTA
V3= (F+N2+BRXCACNOSIX ) ) XCOSIPHT ) = (N1+RXCASTN
V4= {(F+N2+BXCRCOS{ X)) * N(PHI)*(N[+R*C*SIN
IN-

C__  _CASE OF OUTPUT THROUGH A LIMITER_IN THE_
1F(V3.6F,0.)V3=1,
JASR | 3ILTOCO)V3=—10

ODDCOOD
QOOODD,
NN~~~
~NTN PN

(X)) )% sxr( HT)
(X))*COS(PHT)

N-PHASE CHANNEL OF THE L0QP

-

DODOODSOODDO oD

1

FO%EQ
—(-F)) %%

m+

DOOD0ODODYD O
0P W VW DR
VDNFI P NN=O oo
OB PP MED XL i

D ot 7t ot K01 ] et e TN n
ZOTS NG -~

C
E RUNGE=-KUTTA METH(OD (F DRUEP IV USED FOR NUMERICAL INTEGRATIGN

AY=H%F1(T,Y,7) T S
BI=H:G1{ T,Y,7) S
A?= H*FI(T+H/?-'Y+A1/2097*B
O R2=HAGI(T+H/2, 4 Y4+A1 /2, ,1+8
R
R?

AZ=H*FT(T4H/ 2, ,Y+A2/2,.,7+
R’—H*Gl(T+H/7.,Y+A2/7.9?+
Ab=HxF1(T4+H,Y+A3,7483)
B4=H®GL(T+H,Y+A3,7433)
Y=Y+({A1+2,.,%A2+47, *A3+A4) /6., - T
; %+&Bl+2 «XB3242,¥B3484) / :

=T+

[ len]
i
|
t

ROTHE TWO RANDOM GAUSSIAN PROCESSFES N1 AND N2
)y STDDENV 0. ,N1).,
I, STDDEV,O.,N?L

ABIT

Zs



0105 J=FLOAT(I)/SPR
0104 TR UJLLE 200G TN 22
0107 TEIMODE ), 100,50, 0INUSKIP=0
0108 IF(BIGR LT DL IFWT=-1,
C COMPUTING THE NMRER DF FPRRORS
10110 [F{FNEL.FOUT)BIGFRR=RIGERR+],
om0 8160=0,
Q112 22 CONTINUYE
0113 JJ=MCD(J+1,31)
0114 . IF(JJ.ER.0)JJ=31
C GENFRATING A PSEUNN-RANDOM FINITF-LENGTH DIGITAL MODULATING SIGNAL
D115 c F=F2(JJ)
] C _ GENERATING A PANDUM PHASE, DELTA, FOR THE {W INTFRFERENCE
nils 17=RAND{D) i
0117 c DELTA=2,%PI%77
0118 Vr_;? CONTINUE o R e,
C PF — BIT-FRROR PRORBRARILITY, SQMFAN - MEAN-SQUARE
C ERRNR BETWFEN INPUT AND CUTPUT, PHIM - MEAN OF PHI
, B ,E ... PHIVAR - VARTANCE DF PHI
0119 PE=8[GERR/{B]TS-NOMIT)
0129 SOMEAN=RIGFQ2/RTIGE?
0121 N PHIM=BIGPHT /(R ITS-NMIT) . —
o127 PHTVAR=BTITGPHZ7IRTITS-OMI T)—PH] Mk %D
N123 WRITE(3, 100)PF ,SOMEAN,PHIM,PHIVAR,NSKIP
C1?24 WRITE(3, 1001PF ,SOMEAN,PHT N, VARDHI,NSKI
0125 NELTAF= WFLTAF 5000.
N1256 T CONTINUES
0127 190 FORMAT({/1X,'PE='F5,3,10X,"MFAN SQ, ERR,=',FF,4,10X,"MEAN PHI=',F3,
I5310Xy " VAR, PHI =t ,F12,5,10Xa'CYCLES SKIPPED=',13)
ni28 101 FORMAT('1','SNRDR = v, ,F5,1,10X,*'STND, DEVIATION =9 ,F7,4,]19X,"' NS
I w“““‘"“““7’£T’;"FFTT7T“)\?“"?‘1,Il,mx,'ALDHA = Y ,E16,7,10X," DELTAF ",Flﬁ 7
0129 103 FORMAT(//10X,'THE LOOP IS OUT CF LOCK'//)
0139 104 TORMAT(F7,2)
nN131 201  ENRMAT(F4,.1)
D137 SINnp
0133 END

€9
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