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ABSTRACT

A computational procedure is presented for determining
optimal solutions to the linear and quadratic programming
problem when there is more than one objective function
subject to linear constraints. In general a unique solution
does not exist and a set of "best" or "efficient" points
is determined and presented in graphical or tabular form.

To solve the mathematical programming problems the simplex
method is used for linear objective functicns and Wolfe's

method is used for quadratic objective functions.
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CHAPTER I

INTRODUCTION

When attempting to optimize a process or system there
is frequently more than a single property that should be
maximized or minimized. If the various properties can
readily be expressed in the same units, then the problem
can be reduced to that of optimizing one composite property.
However, it is often impractical or undesirable to express
the various properties in common units, even though all
are functions of the same independent conditions or
quantities. For example: A manufacturer of electrical
wire would like the wire to have maximum strength, minimum
weight and maximum conductivity. All of these properties
are functions of the raw materials used and the manufact-
uring conditions. Possibly all three properties can be
gxpressed in terms of dollars, but it would be convenient
to measure each in terms of its own units. A chemist would
like a process to have maximum yield and maximum purity,
both of which may be functions of the operating temperature,
pressure, and other controllable variables.

To further complicate the problem there are usually
practical limitations on some or all of the various factors
which influence these properties. The chemist is not
allowed to operate at unlimited temperatures or negative
pressures. |

It is unlikely that each of these properties will be



optimum for the same set of operating conditions and a
compromise must be selected. Some compromises will be
better than others and the purpose of this thesis is to
provide a computational procedure for selecting a group or
set of optimum or best compromises. A "manufacturer"

could then select one of these compromises and be assured
that no other compromise would improve all of the properties
under consideration.

Techniques developed in the area of mathematical
programming will be used to examine cases where the restric-
tions may be expressed as linear relationships and the
properties to be optimized are expressed as either linear

or quadratic functions of the various independent variables.



CHAPTER IT

THE GENERAL PROBLEM

The general mathematical programming problem can be
stated as one of determining a set of values for n inde-
pendent variables that will optimize a single given function
of these variables while satisfying certain restrictions.
This thesis is concerned with a similar problem involving
r functions to be optimized. The functions to be optimized
are referred to as the objective functions and correspond
to the properties which are to be maximized or minimized.
The "physical" limitations or restrictions are called
constraints and we shall consider only those problems where
the constraints can be expressed as linear equations or
linear inequalities.

If the objective function is also linear the problem
is a linear programming problem. Likewise a gquadratic
objective function with linear constraints represents a
quadratic programming problem. The quadratic programming
problem is a special case of the more general problem of
non-linear mathematical programming. Only linear and
quadratic objective functions will be considered in this
thesis and the term "objective function" will imply one
of these two types unless stated otherwise.

In a geometric sense the objective function can be
considered as a surface in n+l space where the n dimensions

correspond to the n independent variables. In n space,



contours for various values of the objective function can
be represented as lines or curves. The linear constraints
are represented as closed half-spaces in n dimensions and
their intersection will form a closed convex set called
the set of feasible points. The optimum solution is that
point in the feasible set which optimizes the objective
function.

Let x represent a vector with n components xi, Xg,*--
Xn and z(x) be a linear or guadratic function of the n
components of x. The problem of minimizing z(x) can be
solved by maximizing the function -z (x). Thus, if the
maximum value of -z(x) is z0 and occurs when x = x? then
the minimum value of z(x) is -z9 and also occurs when
x = x0. Consequently, in the remainder of this thesis
problems will be formulated in terms of maximization only
without loss of generality.

In order to use the simplex method for maximizing the
objective functions it will be necessary to impose nonneg-
ative restrictions on the components of x. Most practical
problems will f£it this situation and problems where some
of the variables are actually unrestricted in sign may be
easily reduced to this case. For an example of the treatment
of unrestricted variables see page 168 of Hadley[1l].

Definition: A point x is a feasible point if

it satisfies the constraint equations (inequalities)

and the nonnegative restrictions.



In the absence of constraints all nonnegative points
would be feasible points.

If there are m constraints in addition to the nonneg-
ative restrictions the programming problem may be stated:

Maxinmize: z(x)

Il

Subject to: {< = >}bj, Jj 1,2+---m

n

X 2 0, 1 =1,2++*n ,
where the a's and b's are known constants, and only one of
the symbols {< = >} applies for each value of j.

The theory and techniques cof the simplex method for
linear programming are well developed [1l] and will be used
when z(x) is a linear function. The method developed by
Wolfe[2], [3] can be applied to certain forms of quadratic
objective functions. A survey of other methods available
to solve non-linear programming problems is presented by
Wolfe([3].

In either the linear or quadratic case a solution is
usually a unique point where the objective function is
optimum. When there is more than one objective function
the concept of what constitutes a solution must be changed.
It is unlikely, but possible, that a single point will
simultaneously optimize all of the objective functions
under consideration. The solution will usually consist of

a set of points which are called "efficient points."



Definition: A point x* is an efficient point
for the r objective functions z;(x), zZ,(x)-*-
zr(x) (to be maximized) if there exist no
feasible x such that:

zi(x) > zi(x*) for all i

and zk(x) > zk(x*) for at least one k.

The r objective function problem is considered to be solved
when all efficient points for the given objective functions
have been determined [4]. When attempting to solve a
practical r objective function problem it is advisable to
consider the reason the problem is to be solved and how
the results will be used. In many cases it may not be
necessary to determine all of the efficient points in
order to obtain the desired information and/or results.

The manner in which the results are to be presented
or displayed is another important practical consideration.
When there are only two objective functions zj;(x) and
z; (x) they may be evaluated at the efficient points and
the results displayed as a graph of z;(x) versus z, (x).

For an example see Figure 1 on page 14. A person may

then choose the point at which he wishes to operate.

This thesis will be mainly concerned with the two objective
function problem. In most cases the techniques can be
easily extended to r objective functions with the major
difficulty being that of presenting and interpreting the

results. When there are more than two objective functions



it seems that the results can best be presented in the form
of a table. As the number of objective functions increases
it becomes increasingly difficult to choose one efficient
point over another. Still, it is useful to know the
efficient points as there are no other points where the
values of the objective functions are better.

The methods which will be used in the remainder of
this thesis to determine efficient points for r linear or
quadratic objective functions are based on the following

theorems.

Theorem 1: If a convex combination of r
objective functions,

o.z.(x) where
i%i

= 1, is a

12

’_l.
o~ o~
'..J
}_J.

.

a. > 0 for all i and

’—l.

maximum at x = x*, then x* is an efficient
point for the r objective functions z;(x),

(x) .

zz(x)---zr

r
Proof: a.) let z(x) = ) 0,z (x), oy > 0,

b.) given any x, z(x¥*) > z(x) since
z(xX) is a maximum at x%*.

c.) assume x* is not an efficient
point, then there exists at least

one x = x! such that



zi(xl) > zi(x*) for all i and
zk(xl) > z, (x*) for at least one k.
d.) since 4y > 0 for all 1
uizi(xl) > aizi(x*) for all i and
ukzk(xl) > ukzk(x*) for at least
one k.
e.) summing respective sides of the
inegualities,

. 1 >
alzi(x )

a.Z.(x*) or
. i7i
1 i

Il o~16
I o~18

i 1
z(x1) > z(x*)
f.) this contradicts the fact that
z(x*) is a maximum. Therefore, x*
is an efficient point for the
functions z;(x), zz(x)'~°zr(x).
Theorem 1 allows us to use techniques for maximizing
a single objective function and thereby determine an effi-
cient point for the r objective function problem. The
following theorem will assure us that for a certain class
of objective functions all of the efficient points may be
found by applying Theorem 1.
Theorem 2: If x* is an efficient point for r
concave objective functions zj (x), zz(x)---zr(x)

then there exists some set of r constants aj,

RN with the properties a; 2 0 and



r
E a. = 1, such that the function

r
z(x) = ) oa,2z,(x) is a maximum at x = x*.
Lo %54y

For the proof of this theorem see Lemma 7.4.1, page 217,
of Karlin[4].

In the following two chapters the ideas presented in
these two theorems will be used to solve programming prob-

lems with r objective functions subject to linear constraints.



10

CHAPTER TIIT

LINEAR OBJECTIVE FUNCTIONS

A. GENERAL DISCUSSION

Many practical problems may be formulated by express-
ing or approximating functions to be optimized as linear
functions of independent variables. If there are n inde-

pendent variables the r objective functions each have the
n
form zk(x) = Cp + j£1 ck.xj, where the c¢'s are known con-
stants. Applying Theorem 1, an efficient point may be
ha n
determined by maximizing zZ(x) = ) )
i=1l j=1
also a linear function and the simplex method or other

0.C..X.. This is
i7ij7;

technigques may be used to determine the point at which the
maximum occurs. The constant term does not appear since it
affects only the value of the objective function and not
where the maximum occurs. A suggested procedure when there
are r linear objective functions is to first choose a set of

r
alphas with ) o; =1 and o; > 0. The function Z(x) =
r i=1
) o;z.(x) is then maximized subject to the constraints.
i=1
Another set of alphas may yield a different efficient

point. It should be noted that by choosing the alphas
r

such that ) o, = 0 and o
i#k

will be optimized. A systematic method for incrementing

= 1 the kth objective function

the alphas should be established. It is suggested that
first large increments of alpha be used to obtain an over-
all picture of the efficient points. Areas of particular

interest may then be studied in detail by sub-dividing
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the original increments. As previously stated, for more
than two objective functions the interpretation of results
becomes difficult.

A Fortran II computer program was written to deter-
mine efficient points for r linear objective functions
with n independent variébles. The simplex method is used
to maximize linear combinations of the r objective func-
tions. The program inputs are the r objective functions
and the constraints in the form of the initial tableau
required by the simplex method. Values of alpha are
specified and the corresponding efficient points and values
of the objective functions are computed. If uniform incre-
ments of alpha are specified the program computes efficient
points for all of the implied alphas. The program is

presented in detail in Appendix 1.

B. TWO OBJECTIVE FUNCTIONS.

When there are only two objective functions the tech-
niques of parametric linear programming may be used to
advantage. The function of Theorem 1 which is to be
maximized now has the form, Z(x) = a;z;(x) + arz,(x) where
ay + oy, =1 and oy, ap, > 0. By letting a; = o, then o, =

1l - o and Z(x) may be written in the form

Z (x) 0zy (x) + (1 = a)z,(x)
= z,(x) + aflz)(x) - zo(x)].

Let z;(x) = C;x and z,(x) = Cy,x where x is an n component
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column vector and C; and C, are n component row vectors.
Now Z(x) may be written
Z(x) = Cox + a[Cy - Corlx
= Cox + ofFx
where F = C; - C,. The function Z(x) is now in standard
form for the application of parametric linear programming
with o as the parameter. First the maximum value of Z(x)
is found for o = 0, which maximizes z,(x) only. The range
of alpha for which this solution is optimum is then
determined. The maximum alpha for which the above solution
is valid is called a critical alpha. An optimum solution
is then computed for the next value of‘alpha greater than
the critical alpha. The process is repeated until an
alpha equal to or greater than one is reached. When o =1
the single objective function z;(x) is optimized.
The graph of z; (x) versus z,(x) will be composed of
connected straight line segments. The corners represent
a range of alpha between the critical alphas represented
by the line segments. Values of the n independent variables
are known at the critical alphas and linear interpolation
will give the values at any particular point between crit-
ical alphas. The problem is now solved as all efficient
points have been determined. An example will serve to
further illustrate the above ideas. If so instructed the
computer program previously mentioned will also determine

critical alphas and the associated information when there
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are only two objective functions.

C. A TWO OBJECTIVE FUNCTION EXAMPLE.
A two dimensional example is presented so the problem
may be represented graphically. The process is identical

for an n dimensional problem. The problem is:

i

Maximize: 2z (x) 30 - 2x; + X
z,(x) = 2x; + %,
Subject to the constraints:
(a) 3x%; - %, 20
(b) =-x; + x; < 4
(c) x; + 5x, < 50
(d) x; + x, < 18

(e) x;] - X, < 10
This example may be solved graphically as shown in Figure
1. The boundaries of the constraints are shown, enclosing
the set of all feasible points. The efficient points for
z1(x) and z,(x) are any points on the heavy shaded lines
connecting the points labeled A, B, C, D. The line segments
labeled with values of alpha represent the maximum of the
Z(x) corresponding to that value of alpha. The values of
the objective functions are not shown but may be found by
direct evaluation. Figure 1 illustrates that at the corners
of the constraint set there is a range of alpha for which
the same point is optimum. For example, point C is opti-

1 9

mum for all alphas in the interval 7 < o < 35.

line segments joining two corners a single critical alpha

Along the
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corresponds to all of the efficient points.

Figure 2 is a graph of z;(x) versus z,(x) with alpha
as a parameter. From this graph a desired operating point
would be selected. Assume point P is selected as the desired
operating point. Point P is located between the points A

and B and the following properties are known:

Point X1 X, z1(x) Zy (X)
A 2 6 32 2
B 5 9 29 11
p ? ? 31 5

24 4
(0<a<l/4) a=1/4
20 C(l/4<0<9/20)
16 4 a=9/20
Zy (x)
12 A
B(9/20<a<3/4)
8 p
a=3/4
P
4 J
0 . . . . . \ A(3/4<0<l)
4 8 12 16 20 24 28 32

z1 (%)

FIGURE 2. Values of Objective Functions at Efficient
Points.



The values of x; and x, at the desired point P may be
determined by using the following linear interxrpolation
equation. At the point P

Z2;(P) — =z, (A)
z1(B) - z5(A)

e = Fyl
If so desired, the values of z,(x) could be used instead
of the 2z;(x) values. For our example the coordinates at P

are:

3 31 - 32,0 _ _ _ 31 - 32, _ _
X] =2+ 55555 -2) =3, % =6+355—35(9 -6 =17

If the values of z,(x) are used the same coordinates are
found as follows:

X1 = 2+ 7o—2(5-2) =3, % =6+ 2(9 - 6) =7

With the exception of Figure 1 an n dimensional
problem would be solved in the same manner. This example
as solved using the computer program is presented in

Appendix 1.

16
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CHAPTER IV

QUADRATIC OBJECTIVE FUNCTIONS

A. GENERAL DISCUSSION

Quadratic functions of independent variables often
occur when developing a mathematical model to describe or
approximate an actual process or operation. The simultan-
eous optimization of r quadratic functions subject to linear
constraints will now be considered. Quadratic functions
may be written in the form
Xy

(1) zk(x)'= c, + x'Qkx + P

k k

where x is an n component column vector, x' is the transpose

of x, Qk is an nxn symmetric matrix, P, is an n component

k
row vector, and ck is a constant.

We shall restrict our considerations to guadratic
functions in which the Qe matrix of equation (1) is negative
definite or~negative semidefinite for all k. The concavity
required by Theorem 2 is then assured. According to
Theorem 1 efficient points may be determined by maximizing

r

Z(x) = ) o, (x'Q X + P, x)
KLy ok % K

r
£ akPk)x

X
x'( Z a, Q. )x + (
k=1 K K 1

k
(2) = x'QOx + Px ,

subject to the linear constraints.
One approach to solving the r objective function

problem is suggested by Antle[5]. A set of points which
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would be efficient points in the absence of constraints is
determined. Points determined in this way will be called
unconstrained efficient points. After a set of uncon-
strained efficient points is determined an operating point
is selected from this set and checked for feasibility in
the presence of constraints. If the selected point is
feasible the problem is solved. When the selected point is
not feasible, a set of feasible efficient points should be
determined and an operating point chosen from this new set.

A second approach to the overall problem of locating
an operating point would be to first determine a set of
feasible efficient points and then select a desired operating
point. The disadvantage of this approach is that it is a
longer and therefore more expensive process to determine
efficient points in the presence of constraints than in the
absence of constraints.

The procedure of first determining a set of uncon-
strained efficient points is suggested by the author. If
the selected point is feasible the constraints are of little
concern. In the event that the selected point is not
feasible the information obtained may still be of value by
providing management with information about the effect of
the constraints.

Whether determining constrained or unconstrained
efficient points, the methods used are based on Theorems 1

and 2. However, the technigques used to actually locate
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the efficient points differ and will now be considered.
It should be noted that the concept of unconstrained
efficient points has no meaning when the cbjective functions

are linear.

B. UNCONSTRAINED EFFICIENT POINTS

A metﬂod of determining unconstrained efficient points
is presented by Antle[5] and will be stated here, without
proof, in a slightly modified form.

Unconstrained efficient points for r objective functions
of the form, zk(x) = Cp + x'Qkx + Qkx, with Qk being nega-

tive definite or negative semidefinite, are given by
] ]
x* = 5] 0,0, 171 a, P, ]
k=1 k*k k=1 k™k

r
<1land .) o = 1.

where 0 <
. k=1 X

%k
Unconstrained efficient points are then obtained by using
different sets of alphas. When there are only two object-
ive functions the above equation may be reduced to

(3) x* = .5[aQ; + (1 - a)Qp]1 1 [aP; + (1 - @)Py];

0 < a < 1.

The above method will be referred to as Method A. The
points wherewa = 0 and o = 1 must be given special atten-
tion and are discussed by Antle[5].

A special computer program was written to determine
unconstrained efficient points of two objective functions

using Method A and is presented in Appendix 2.
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A different method, not based on Theorems 1 and 2, for
determining unconstrained efficient points for two object-
ive functions is presented by Umland and Smith([6]. Their
approach is to treat one of the objective functions as a
restricting relationship and use LaGrange multipliers to
determine extermal values of the other function. The
resulting LaGrange multiplier problem is then solved using
different values of the restricting function. Each diff-
erent value results in an unconstrained efficient point.
This method will in general involve the solution of n+l
simultaneous non-—linear equations for a problem with n
independent variables. The above method of determining
unconstrained efficient points will be referred to as Method
B.

An example from the field of chemical research and
originally presented by Umland and Smith[6] will now be
given. One of the objective functions represents the
yield from a chemical process and the other_represents
purity. The two independent variables could represent
control factors such as temperature and pressure. Their
objective functions were:

Predicted purity,

zy(x) = 85.72 - 9.20x?

- 5.18x5 + 21.85x; + 8.59%, - 6.26%1X,
Predicted yield,

z,(x) = 55.84 - 3.03x% - 6.96x5 + 7.31x; + 26.65%, + 2.69%1X,
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Purity is treated as the restricting function and the
results obtained by Umland and Smith[6] for three selected
values of purity are given in Table I, and plotted in

Figure 3.

Table I
z (%) Z 2 (x) X1 X2
94.87 83.66 . 965 1.088
92.47 86.73 1.005 1.316
89.995 88.68 1.075 1.479

The same problem was solved using the computer program
written for Method A and the results are also plotted in
Figure 3. These points are also listed in Appendix 2 as an
example.

Figure 3 demonstrates the agreement of the two methods
and by subdivi@ing intervals of alpha, Method A yielded
exactly those points (see.Appendix 2) determined by Umland
and Smith[6].

Although no comparable times are available the author
believes that Method A, which involves only a summation and
the inverse of a matrix, will be considerably faster than
Method B, which requires the solution of systems of non-
linea; equations. Some sgmple computer times for Method A

are included with the examples in Appendix 2.

C. FEASIBLE EFFICIENT POINTS.

When there are restrictions on the independent variables



22

the methods of the previous section can no ;onger be used
to maximize the function of Theorem 1 to determine effic-
ient points. A technique was developed by Wolfe[2] to
maximize quadratic functions of the form Z2(x) = x'Qx + Px
subject to linear constraints. This method is becoming
well known and 1is discussed in a recent book on non-linear
programming by Hadley[7], and a book on operations research
by Saaty[8]. A necessary restriction is that the matrix Q
be negative definite or negative semidefinite. This agrees

with our previous restrictions imposed by Theorem 2 and also

100 4+
(a=.9) o
(o]
90+ ©
¢
zp (x) 0 Method A
(Yield) eEho +
801+ 4+ Method B °
o
Q
704
(a=0) ©
60 4 3 ‘s >
60 70 80 90 100

z1 (x) (Purity)

FIGURE 3. Values of objective functions at unconstrained
efficient points.
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assures us that any local maximum located will also be a
global maximum{7].

Wolfe's method is used to maximize the composite
objective function of equation (2), subject to the linear
constraints, and thereby determine efficient points for the
r objective functions z; (x), 2p(x)e*-*- zr(x). Various values
of alpha are chosen and the resulting efficient points are
presented as in the linear case. A Fortran II computer
program was written to determine efficient points uging
Wolfe's method to perform the maximization. This program

and examples are presented in Appendix 3.

D. AN EXAMPLE.

Consider the problem:

Maximize:
z1(x) = 370.0 - 5.3x% - 4.075%5 + 19x; + 20x, - 4.2%1X,
z,(x) = -176.0 — 9.0x; - 4.0x%5 + 144x; + 40x,
Subject to: 4x; + 5x, < 36
Xy < 2.25
X1 - Xp 21

A two dimensional example was again chosen so that the
methods and techniques may be more easily visualized.
Figure 4 shows several contours for each of the objective
functions and the set of feasible points bounded by the
constraints.

Efficient points and unconstrained efficient points

were both determined to illustrate the effect of the
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example of section D for further explanation.

and efficient points.

See
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constraints. At the points labeled A and B in Figure 4,

" the maximum values of the.objective functions z; (x) and

zo> (X) , respectively, occur. In the presence of constraints
the corresponﬁing maximums occur at the points A' and B'.
The feasible efficient points which are not unconstrained
efficient points are on the boundary of the set of feasible
points. The values of the objective functions at the
efficient points are plotted in Figure 5. The four points
labeled A, A', B, B' correspond to those with the same
labels in Figure 4.

To determine the efficient points for a particular
value of one of the objective functions a method of sub-
dividing intervals of alpha is suggested. One such method
is to repeatedly halve an interval of alpha, which is
known to bracket the desired value, until the desired
value is located within a predetermined limit. This tech-
nique is included in the computer program in Appendix 2.
The approach used to solve this example would also be used
to solve a two objective function problem with more than
two independent variables. The results of such an egample
are presented in Appendix 3 as well as a problem with

more than two objective functions.
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CHAPTER V

CONCLUSIONS

A solution to the problem of simultaneously optimizing
two objective functions which are subject to linear con-
straints may be obtained by using the computational methods
presented. These methods are limited to either linear
functions or concave quadratic functions. 1In general the
solution consists of a set of efficient points with an
associated parameter alpha. The number of independent var-
iables and constraints is restricted only by the capabilities
of the computer available. The results may be presented
in a usable form and should provide management with a
valuable tool.

If the number of objective functions is greater than
two the usefulness of the results is decreased due to the
difficulties of presentation and interpretation. Techniques
of two parameter programming may provide a means of solving
the three objective function problem.

The computational efficiency of the methods used could
possibly be_improved by using other variations of the
simplex algorithm. If the idea of using a known efficient
peint as a starting place for finding another efficient
point could be applied to quadratic objective functions,
as it was to linear, a saving in computer time should be

realized. The method presently used requires the solution
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of an entire quadratic programming problem for each effi-
cient point.

As other computational techniques of non-linear
program@ing become available they may be used together with
the theorems presented to determine efficient points for the

problem having more than one non-linear objective function.
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APPENDIX 1
PROGRAM FOR DETERMINING EFFICIENT POINTS
FOR LINEAR OBJECTIVE FUNCTIONS

I. PURPOSE.

The purpose of this program is to determine efficient
points for r linear objective functions which are subject
to linear constraints. If there are only two objective
functions critical alphas are determined using the tech-

niques of linear programming.

ITI. INPUT.

The input data consists of the constraints in the form
of a simplex initial tableau, the variables in the initial
basic solution, the objective function coefficients and
control information. The six types of necessary data cards
will now be discussed in detail.

TYPE 1. An identification card. Any information
punched in columns 2 - 80 will be printed as the
first line of output. Typical information would be
problem identification, users name, date, etc. If
no identification is desired a blank card should
be used. FORMAT(79H)

TYPE 2. Control information. Punched as fixed point
numbers, right justified, in the columns indicated.

columns
1 -3 Number of independent variables, includ-

ing slack, surplus, and artificial
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variables.
4 - 6 Number of constraint equations.
7 -9 Number of objective functions.

10 - 12 The subscript (number) of the first
artificial (NOT slack or surplus)
variable. If there are no artificial
variables leave blank. FORMAT(2413)

TYPE 3. Initial tableau. The coefficients of the
constraint equations with slack, surplus, and arti-
ficial variables added. Punched as floating point
numbers (with decimal point) in columns of 10 with
up to 7 pieces of data per card. The constant term
should be in columns 1 - 10 with the coefficients
of x in the order x;, X,++-. Each constraint equa-
tion must start a new card. FORMAT(7E10.2)

TYPE 4. Variables in basis. The subscript or column
number of the variables in the original simplex
tableau. Punched as fixed point numbers right just-
ified in columns of three with up to 24 per card.
The order should correspond to the rows, i.e., the
subscript of the variable from the first row should
be in columns 1 - 3, the subscript of the variable
from the second row should be in columns 4 - 6, etc.
(see example) FORMAT(241I3)

TYPE 5. Objective function coefficients. Punched as

floating point numbers in columns of 10 with up to
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7 pieces of data per card. The order of terms is

constant, x Xy o0t Xy including slack, surplus,

1r 2

and artificial variables. FORMAT(7E1l0.2)
TYPE 6. Alpha information. Punched as floating

point numbers as indicated below. FORMAT(7E10.2)

columns
1 - 10 Leave this space blank to determine
critical alphas. Punch any non-zero
number to prohibit the finding of crit-
ical alphas.
11 - 20 Any number (non-zero) will result in

the printing of the entire simplex
tableau. If blank only efficient point
information will be printed.
The following information is required only if critical
alphas are NOT to be determined and there are only 2

objective functions.

21 - 30 starting alpha
31 - 40 stopping alpha
41 - 50  alpha increment

The following information must be furnished whenever
there are more than 2 objective functions.

21 - 30 alpha (1)

31 - 40 alpha (2)

61 - 70 alpha (5)



TYPE 7. Control card. To read new alpha information
(a TYPE 4 card) this card should be left blank. To
begin a new problem punch any positive number in
columns 1 - 10. To terminate the program punch any

negative number in columns 1 - 10. FORMAT(7E10.2)

ITTI. OUTPUT.
The output consists of:
1. TIdentification from the TYPE 1 card.
2. objective function and constraint coefficients

in the same order of the input.
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3. efficient point information: alphas (or critical

alphas), values of objective functions, and
values of x.

4. the entire simplex tableau, if requested on the
TYPE 4 input card. In the case of critical
alphas this tableau will be the one correspond-

ing to a = 0, where z,(x) is optimum.

Iv. EXAMPLE 1.
The example of Chapter III, section C, will now be
given as solved on the computer.

A. The prcblem.

i

Maximize: zj(x) 30 - 2x;] + X5

i

Zz(X) -8 + 2}(1 + X5
Subject to: 3x; - x5, > 0

'—X1+ X2<4
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X7 + 5%, < 18

X) - Xy < 10
To illustrate the program use and options this
problem will be solved 3 different times.
Determine efficient points:
1. at critical alphas.
2. at critical alphas and print final tableau.
3. for alpha from 0.0 to 0.8 in increments of 0.2.
After adding the necessary slack, surplus, and

artificial variables the coefficient tableau is:

const X; Xy X3 X, X5 Xg X7 Xg

0 3 -1 -1 0 0 0 0 1
4 -1 1 0 1 0 0 0 0
50 1 5 0 0 1 0 0 0
18 1 1 0 0 0 1 0 0
10 1 -1 0 0 0 0 1 0

Program input data carxds.

The data cards for the three desired outputs are
the same except for the TYPE 5 control card and
will be shown only once, but with the three differ-

ent TYPE 5 cards indicated.



The input data cards for this example are as follows:

TYPE

(1]
[2]
[3]
(3]
(3]
[3]
[3]
(3]
[3]
[3]
[3]
[3]
(4]
[5]
[5]
[5]
(5]
(6]
[7]
(6]
[7]
[6]
[7]

EXAMPLE OF CHAPTER Ill, SECTION Cy FOR APPENDIX 1,

8 5
O

Qe
4,

O
500
0.
18.
Qe
10.
le

8 4
30.
Q.
«“8e
0.

(*%*BLANK
(#%BLANK

2

8

3.

l,.

“le

O

1,

O

l.

O

1.

O.

6 7
-2
“10000
2
-1000.
CARD#*)
CARD*#%)
l.

(#%BLANK CARD#%*#*)

33,33
-99499

=1l
1.
5
1.

-1,

le

lo

060

=~le
0.
Oe
Oe

Oe

O
Oe

o8

Oe
1.
Oe
0.

Oe

Oe

O

0.2

Os

O

O
Oe
Oe
1,

O

Oe

ve



C.

Program output.

The first page of output is as follows:

EXAMPLE OF CHAPTER IIIs SECTION Cy FOR APPENDIX 1,
CONSTRAINTS

0¢0000E=~99 3,0000E+00 =1+40000E+00 ~140000E+00 0+0000E~99 0s0000E~99

0+0000E~99 0.0000E~99 1.0000E+00

4+0000E+00 ~1+0000E+00 140000E+00 0s40000E=99 1.0000E+00 0s0000E~99

0+0000E~99 0.0000E~99 0.0000E=-99

5¢0000E+01 1+0000E+00 5+0000E+00 060000E=99 0.0000E~99 1.0000E+00

0+0000E~99 0,0000E~99 0.0000E~99

1+8000E+01 1.0000E+00 140000E+00 0s0000E=99 0+40000E~99 0¢0000E=99

1¢0000E+00 0+0000E~99 0,0000E-99

140000E+01 140000E+00 =~140000E+00 0e0000E=99 0e¢0000E=99 0¢0000E=99

00000E~99 1.0000E+00 0e0000E=~99

Zl= 3+0000E+01 =~240000E+00 1+0000E+00 0+0000E=~99 0¢0000E=99 0.0000E=99
0.0000E~99 0.0000E~99 =1.0000E+03
22= =84 0000E+00 2.0000E+00 140000E+00 040000E=99 0+0000E=~99 0.0000E~99
0+0000E=99 0+0000E=99 -1+.0000E+03
ALPHA RANGE Z1(X) Z22(X) X(1)

060000 #2499 6400000E+00 2439999E+01 1e3999E+01 44.0000E+00 3.7999E+01
1e3999E+01l 145999E+01 0+0000E-99
0+0000E~99 040000E-99

02499 +4500 1479999E+01 1499999E+01 1.0000E+01 7.9999E+00 242000E+01
6+0000E+00 0+40000E~99 0s+0000E=~99
7e¢9999E+00 040000E~99

4500 +7500 24B89999E+01 1409999E+01 5¢0000E+00 B849999E+00 6.0000E+00
0¢0000E~99 040000E-99 4.,0000E+00
13999E+01 040000E~99

#7500 140000 3420000E+01 1499999E+00 1e¢9999E+00 549999E+00 0+0000E-99
0«0000E-99 1+,8000E+01 140000E+01
1.3999E+01 0+0000E~99

S€



The second page of output is as follows:

FINAL TABLEAUy NO. 12

viB XB

1 13.99999E+00 10.00000E~01

00.00000E~99

2 40.00004E~01 00,00000E~99

00.00000E~99

37¢99999E+00 00,00000E-99

00400000E-99

4 13499999E+00 00,00000E-99

00.00000E~99

w3

(8]

0

15499998E+00

32+00000E+00

00.00000E~99

A VECTORS
00+ 00000E~99 00+.00000E-99
49499999E-02 49.99999E~02
104 00000E=~01 00+00000E=-99
49499998E-02-49499997E~-02
00+00000E~-99 10.00000E~-01
104 00000E=01 19499999E=01
000 Q0000E-99 00.00000E=~10
104 00000E~08 99¢99999E~02
00+00000E~99 00+400000E~-99

10400000E~01-29,99999E~01 19499999E-01
00+400000E~99 004 00000E=99 00+00000E=99
00400000E~99 14499999E~01 50400001E=02

00400000E~99
00400000E~99
00+00000E~-99
00+00000E=99
00.00000E-99

00+00000E~99

ALPHA RANGE 21(X) Z2(X) X(I)

040000 42500 6400000E+00 2440000E+01 1+3999E+01 440000E+00 3.7999E+01
143999E+01 145999E+01 0.0000E=99
0+0000E-99 0¢0000E-99

¢28500 +4500 1+479999E+01 2,00000E+01 1.0000E+01 749999E+00 2.2000E+01
6+ 0000E+00 0+.0000E=~99 0s0000E~99
Te9999E+00 040000E-99

«4500 #7500 2489999E+01 1409999E+01 540000E+00 849999E+00 640000E+00
0+0000E~99 0e0000E~99 440000E+00
1e43999E+01 040000E~99

«7500 1.0000 3.20000E4+01 1499999E+00 1.9999E+00 549999E+00 0+0000E=99
0+0000E~99 1,8000E+01 1+40000E+01
143999E+01 040000E~-99

9€



The third page of output is as follows:

ALPHA(T) 21
00000 6.0000083E+00
10000 2.4000000E+01

X(1)
143999E+01 4.,0000E+00
0e O000E=99 0+0000E=~99

ALPHA(TI) AR S

¢ 2000 6+0000083E+00
«8000 2.4000000E+01
X(1
1¢3999E+01 4.0000E+00
0.0000E=~99 0.00005-99
ALPHA(I) ARS
«4000 147999997E+01
«6000 2.0000001E+01
X(1)
1¢0000E+01 749999E+00
T¢9999E+00 0.0000E=99
ALPHAC(T) 2(1)
«6000 2¢8999999E+01
« 4000 1.0999999E+01
X(1)
50000E+00 8¢9999E+00
1¢3999E+01 040000E=~99

ALPHA(I) Z(I1)
« 8000 3.1999996E+01
«2000 2. 0000009E+00
X(1)

2¢0000E+00 5¢9999E+00
163999E401 0+.0000E~99

3¢7999E+01

3e¢7999E+01

242000E+01

6+0000E+00

0«0000E-99

1¢3999E+01

1e¢3999E+01

6¢0000E+00

0000005“99

0¢0000E=~99

145999E+01

1e45999E+01

0.0000E~99

000000E“99

1.8000E+01

0s0000E~99

0+0000E~99

0.0000E-99

4+ 0000E+00

1+0000E+01

LE



TYPE

[1]
[2]
[3]
[3]
[3]
(3]
[3]
[3]
[4]
[5]
[5]
[5]
(6]

EXAMPLE 2.

A.

Determine efficient points and critical alphas which will

maximize z;(x) = 2x; + X, + 4x3 + 5x, and

minimize z,(X) = x; + 2x; + 3x3 + 4x,
Subject to: x; + 3x, + 2xX3 + 5x, < 20
2x, + 16x, + X3 + X, > 4

Input data cards.

EXAMPLE 2. FOR APPENDIX 1.

9 3 2 8
20 l. 3e
0. Oe O
44 24 164
Oe l, Qo
100 “3 4 10
“'lo 00 10
5 8 9
0. 2 1.
O =1000. ~1000s
0.0 -1 -2
0. -1000, -1000.

(*%BLANK CARD#*%)

24
1.

5e

4o

DETERMINE CRITICAL ALPHAS

50 10 ob
le Os -1s
=10 Os 0.
54 Oe Os
-4,

8¢



C. Computer output.

EXAMPLE 2+ FOR APPENDIX 1. DETERMINE CRITICAL ALPHAS
CONSTRAINTS

2040000E+01 140000E+00 340000E+00 240000E+00 5.0000E+00 1e0000E+00

04 0000E=99 0.0000E-99 0e40000E=99 0s40000E=99

4+0000E+00 2,0000E+00 146000E+01 140000E+00 140000E+00 0s0000E~99

=1+0000E+00 0+0000E=99 1¢0000E+00 0+0000E=99

1.0000E+01 =3,0000E+00 1+0000E+00 5+0000E+00 =~1,0000E+01 0+0000E=99

0.0000E~99 =~1.0000E+00 0s0000E-99 1.0000E+00

Zl= 0+0000E~99 2+0000E+00 1+40000E+00 4+0000E+00 Bs0000E+00 0+0000E~99
0.0000E~%99 0.0000E=~99 ~1.0000E+03 ~1.0000F+03
2= 0+0000E«99 =1,0000E+00 =240000E+00 ~3.0000E+00 =440000E+00 0.0000E=99
0+0000E=99 0.0000E~99 —-140000E+03 =1,0000E+03
ALPHA RANGE Z1(X) 22(X) X(1)

040000 +3704 B8402531E+00 =6417721E+00 0«0000E~99 142658E~01 149746E+00
0+0000E~99 145670E+01 040000E-99
1.3999E4+01 0+0000E~99 0.0000E~99

3704 43888 1e413846E+01 =~8415384E+00 Te6923E~01 040000E=99 244615E+00
0+0000E~-99 144307TE+01 0+0000E=~99
143999E401 040000E~99 0.0000E-99

+3888 140000 4+400000E+01 ~2463636E+01 Te2727E+00 040000E-99 643636E+00
0+0000E<~99 O040000E=-99 1.,6909E+01
1.3999E401 0+0000E-99 0,0000E=99

6€



PROGRAM LISTING

*FANDKOB0OS
C PROGRAM WJLLL

1

7000

7001

302
304

500
505

510

51%
520
525
530
308

309
310
1004

DIMENSION Y(20340)sIV(40)»Cl40)sIB(20)9COB(5440),

IALESY sR{B)sF (40} s X(40)
1X(40)

READ 999

PRINT 970

PRINT 3999

READ 900 sNVsMCsNOBJsJA
M=MC+1

Nz RV+1

1TAB=1

M5 =M*5

ALS=0.0

PRINT 9018

DO 7000 1I=1eMC

READ 901s{Y(Isd)sJd=1lsN)
PRINT 9023y (Y{(IsJ)sJ=1sN)
DOT001 J=1sNV

Iv{J)=0

READ Q005 ({IB(I)s1I=1sMO)

DO 3 I=1sMC

K=IB(I)

IVIKY=]

DO 304 NO=13NOBJ

READ 901, (COBINDsJ) 2 J=2sN)
PRINT 9004s NOs {COB(NOsJ)sJ=1sN)
IF(NOBJU=2)5059515+510

READ 901y CRITsPRIT

KRIT=0

AL(1)=1.0

G0 TO 308

KRIT=0

READ 901+CRITIPRITS(AL(I)oI=14NOBJ}
@0 TO 308

READ 9014CRITHPRITHAL{1)sALSsALD
IF(CRITY 5204+525,520
KRIT=0

G0 TO 530

KRIT=5

AL{1)=0.0

AL{2)=140~AL(1)

DO 310 J=2sN

CtJ)I=0.0

DO 309 NO=1sNOBJ
ClII=C{Jr+AL(NOY*COB(NOsJ)
CONTINUE

IB(M)=0

NTIM =0

Ct1)=04,0

40



10
11

13
20
22
23
24

25

26

28
30

32
35
36
37
29

38
40

41
43

44

400
401

CALC Z20=Cd

D011 J=1l4N

242040

DO 10 I=14MC

K=1B{I) +1

2J=Z2Jd+ CLKIRY (] 4J)
Y{Med)=2J=ClJ}
IF(KRITY 13520420
KRIT =1

SELECT IN VECTOR AND TEST FOR OPTIMUM
ZCM=040

JM=0

DO 25 J=24N
IF(Y{(MyJ))23+25425
[IF(Z2CM-Y (M3 J))25,25,24
2CM=Y (Mg J)

JM=

CONTINUE

IF(2CM) 26450450
SELECT OUT VECTOR AND TEST FOR UNBOUN
YM=1eE+45

NTIM =0

DO 35 1I=1,MC
IF(Y{IsJM))35,35,28
IF{Y(I141)336+365320

Xy 2Y{141)Y/Y(1sIM)
IF{YM=XY 135438,32
YM=XY

IM=1

CONTINUE
IF(YM~1eE+44)37455,55
IM=1

ROW OPERATIONS WITH JM REPLACING IM,
PIV= Y({IM,yJM}
IF(M5-TITAB} 58,458,329
ITAB=1TAB+1

DO 38 J=1,4N
Y{IMs 2 =Y (IMsJ}/PLV
DO 44 I=14M
IF{TI«IMIG1 4864441
A=zy{IsIM)

DO 43 UJ=1,N
Y(IsJ)=Y(IaJd)=Y{IMyJ}*A
CONTINUE

CONTINUE

K=IB(IM)

IVIK)Y=0

IVIUM=1)=1IM

IB{IMI=JM -1

IF{KRIT)Y 904401401
IFLJUA=1)120945+45

41

DEDy JM GOING IN

PIVOT Y{IMsJM}



45

46

50
51

52
53

55

58
60

62
&3

90

535

540

542
548
550
555
560
570

330
93
94
95

575
580

96
ko

1001

TEST BASIS FOR ARTIFICIAL VARIABLES
DO 46 1=1,MC

IF(IB(1)~JAY46420+20

CONTINUE

N=JA

JA=0

GO TO S

OPTIMAL FEASIBLE SOLUTION

IF(NTIM =1)51+52952
NTIM =1

GO 70 5
IF(JA«1190+60+60
PRINT 960,1TAB

GO TO 93

JUB=JM=1

PRINT 961,JUBsITAB
GO TO 93

PRINT 962

GO TO 93

DO 63 I=14MC
IF(IB{TI)~JA)63+62+62
IF(Y(I911)53563953
CONTINUE

OUTPUT

CONTINUE

DO 535 K=1,NV

X{KY=0.0

DO 540 K=1sNV

KK=IB(K)

X(KK)=Y{Ksl}

DO 545 NO=1,NOBJ
R{NOI=COB(NCGs1)

DO 542 K=24N
RINOI=R{NO}+COB (NOyK I %X (K=~1]
GONTINUE

IF(KRIT140845604+555
IF(PRITI40G44044330
IF(PRITIZZN 5704330
PRINTOO01s(AL(TI)YsR(I}s» I=14NOBJ}
PRINT 9002y (X{I)sI=1sN)

GO TO 575

CONTINUE

PRINT 952,1TAB

DOSS K=1lsM

PRINT 983,IB(K)s({Y(KsJisJ=1lgN])
IF(KRIT) 40835705404
IF(AL{1)~ALS)580:96,96
AL(1)=AL(1)+ALD

GO TO 530

CONTINUE

READ 901,CODE

IF(CODE) 100155001

CALL EXIT

42



43

DETERMINE CRITICAL VALUES OF ALPHA
COMPUTE F VECTOR
404 KRIT =1
PRINT 9000
D0 405 JU=24N
405 F(J)= COB{1+sJ)~COB(24J)
SELECT IN VECTOR AND TEST FOR INFINITE ALPHA
408 AC = l1.E+45
410 DO 440 J=2sN
FY=0.0
IFLIVIU=1)14604341T74440
417 IF(Y(MyJ)YY 44044204420
420 DO 422 I=1+MC
K=IB(I) +1
422 FY = F{KI*Y{l+J) + FY
42% FYF = FY ~ F{J)
IF(FYF) 429,440,440
429 AJ = =-Y{Me¢J)/ FYF
IF(AC ~AJ) 440444049430
430 M=/
AC=AJ
440 CONTINUE
IF(AC~1E+44) 441944545445
441 IF(AC~¢99995)4424445,445
442 PRINT 4900 » AL(Y1)Y dACIR(IISR{2) s (X{T)yI=1eNV)
AL(l})= AC
GO TO 26
445 AC=1l.
PRINT 4900 s ALI(1)3ACIR(LISR{2J9(X(I)al=1sNV)
GO TO 97
900 FORMAT(2013)
901 FORMAT(TEl10.2)
952 FORMAT(21HO FINAL TABLEAU, NO«I33/5H VIBysEXs2HXB25X
19HA VECTORS )
953 FORMAT(1XsI495E134545/{18Xs4E1365))
960 FORMAT(23H1 NO FEASIBLE SOLUTION s15Xs11HTABLEAU NOes13)
961 FORMAT(30H UNBOUNDED OBJECTIVEs VECTOR AsI2510Xy
111HTABLEAU NOWs13)
962 FORMAT(18H1 POSSIBLE CYCLING )
970 FORMAT (1H1)
999 FORMAT (1H1479H
1 )
4900 FORMAT(1X92FTe&492(1XsEL1245)s1X93(1XsE11le4)/(43XsE1Lletiy
11XsE1leéslXsELLle4))
9000 FORMAT(2Xs12H ALPHA RANGE s 7Xs5HZ1(X)s10Xs5H22(X) s
118X e4HX(I))
9001 FORMAT(20H ALPHA(I) 2(1) 7(F8e493%XsEL1L,7) )
9002 FORMAT(1SXs4HX{IYs/6(LXsELllsts))
9004 FORMAT(1IXe1IHZ »I1s1H=g2Xsb601XsELllad) s/ {TXsE1ladslX,
1E110491XsF1YabslXsELledsIXeELlYlaby1XsELLaq))
9018 FORMAT( 12H CONSTRAINTS )
9023 FORMAT(6(1XsELlLle4))
END
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APPENDIX 2
PROGRAM FOR DETERMINING UNCONSTRAINED
EFFICIENT POINTS
I. PURPOSE.

The purpose of this program is to determine efficient
points for two quadratic objective functions, each of the
form z(x) = Cy; - x'0x + Bx. The method presented by Antle
[5] is used and is restricted ?9 problems where the Q

matrix is positive definite or positive semi-definite.

IX. INPUT.

Five different types of input cards are required and a

detailed description of each follows.

TYPE 1. An identification card. Any information
punched in columns 2 - 80 will be printed as the
first line of output on each page. Typical informa-
tion would be problem identification, date, users
name, etc. If no identification is needed the card
may be left blank. FORMAT (79H)

TYPE 2. The number of independent variables. Punched
as a fixed point number, right justified in columns
1 - 3. FORMAT(I3)

TYPE 3. The coefficients of the objective functions.
Punched as floating point numbers (with decimal
point) in columns of 10, with up to 7 pieces of data
per card. Each objective function begins a new card.

The order of the coefficients must be: constant,
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square terms, linear terms, cross product terms;
. 2 2 2
l.e. Co, Xl, XZ, e Xn' x1, Xz' A Xle, X1X3] e
xlxn, XoX3, XogXyu, *°° X2Xn, e xn_lxn.
If any terms are missing either a zero should be
punched or a blank left in the proper position.
FORMAT (7E10.2)

TYPE 4. Values and increments of alpha. Punched as

floating point numbers in columns of 10 as follows:

columns

1 - 10 starting alpha
11 - 20 stopping alpha
21 - 30 alpha increment

The starting alpha must be less than or equal to the
stopping alpha and the increment must be positive.
If only one value of alpha is to be used (instead of
a sequence) that value should be punched as the
starting alpha and the remainder of the card left
blank. As many of this type card may be used as
desired. FORMAT(7E10.2)

TYPE 5. Cbntrol card. To begin an entirely new prob-
lem punch any negative number in columns 1 - 10.
The next data card should then be a TYPE 1 card.
To terminate the program punch any negative number
in columns 1 - 10 and any number in columns 31 - 40.

FORMAT (7E10.2)
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ITI. OUTPUT.
The normal output consists of:
1. TIdentification from the TYPE 1 card.
2. Coefficients of the objective functions in the same
order as entered on the TYPE 2 cards.
3. Efficient point information: alpha, values of

objective functions, and values of x.

IV. PROGRAM VARIATIONS.
A. The following output variations are possible:

1. The identification may be suppressed by punch-
ing any number in columns 41 - 50 of the TYPE
4 card. (The TYPE 1 card must still be
included as an input card.)

2. The coefficients of the objective functions
may be suppressed by punching any number in
columns 51 - 60 of the TYPE 4 card.

3. A new page of output may be started by punch-
ing any number in columns 61 - 70 of the TYPE
4 card.

In all of the above "any number" is meant
to imply any number except zero.
B. To locate the efficient point with a particular
value of one of the objective functions the fol-

lowing card should be entered as a TYPE 4 card.
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columns

1 - 10 Either a #1.0 or *2.0, denoting which
objective function is being used. The
(+) value should be used if the object-
ive function is an increasing function
of alpha and the (~) wvalue if the
objective function is a decreasing func-
tion of alpha.

11 - 20 The value of the objective function.

21 - 30 A value of alpha which is known to be
lower than the alpha of the desired
peint. If not known, leave blank.

31 - 40 A value of alpha which is known to be
highex than the alpha of the desired
point. If not known, leave blank.

71 - 80 The allowable error in the value of the

objective function. This space MAY NOT

be zero or blank.

Columns 41 - 70 are used to offer the same out-
put variations as discussed in the previous section.
There is no limit on the number of these cards
which may be used. If the specified value is not
located after 20 steps of halving the interval of
‘alpha the process is terminated, a message is
printed and the next card is read. If an incorrect
interval of alpha is specified the desired point

will not be located.
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VI. EXAMPLE 1.

A.

The problem.

For the functions used in Chapter IV, section B,

z1(x) = 85.72 - 9.20x°> - 5.18x> + 21.85x; + 8.59x,

6.26xX1%,

z,(x) = 55.84 - 3.03x] — 6.96x. + 7.31x, + 26.65%,
+ 2.69x%x1%x,,
Determine efficient points:

(1) for alpha from 0 to 1 in increments of 0.1

(2) where, z;(x) = 94.87 = .001

(3) where, z,(x) 86.73 £ .0005
z,(x) = 88.68 * .0001
and print the answers on a new page without

the objective function coefficients.

(4) where, z;(x) = 30.00 = .5



«001
«0005
«001
Os5

8e5900E+00 -642600E+00

B. Input data.
TYPE
[1] EXAMPLE FROM TECHNOMETRICS PROGRAM WJLQ3 6/18/65
[2] 2
[3] 85472 -9,20 ~5418 21485 859 -6e26
[3] 55484 -3,03 -6+96 7.31 26465 2469
[4] 0.0 1.0 Ol
[4] 1.0 94487
(4] -240 8673 8 8
[4] 2.0 88.68 03 Ot
[4] 1.0 3060
[5] ~99,99 ~99.99
C. Program output.
EXAMPLE FROM TECHNOMETRICS PROGRAM WJLQ3 6/18/65
1= 8e¢5720E+01 =9.2000E+00 =%,1800E+00 241850E+01
22= 5e5840E+01 =3,0300FE+00 =649600E+00 7T«3100E+00 246650E+01
ALPHA Z21 72 X(1)
0.0000 4 e6846617E+01 945362406E+01 242490E+00 243491E+400
«1000 6+9946571E+01 9.4308053E+01 1.7079E+00 2.0576E+00
« 2000 8e0556254E+01 942503227E+01 1e3922E+00 1+8391E+00
«3000 8+6364882E+01 9.0600444E+01 1.1965E+00 1.6525E+00
« 4000 9.0016782E+01 848651685E+01 1e0740E+00 1e4780E+00
+ 5000 942590480E+01 846554190E+01 10018E+00 143040E+00
« 6000 9..4570040E+01 844135175E+01 9.6755E=01 141219E+00
« 7000 9.61716TO0E+01 841151356E+01 946511E~01 942384E=01
«8000 QeT462130E+01 Te7252533E+01 949210E=~01 7,0152E=01
«9000 9.8391780E+01 T¢1908468E+01 1e0491E+00 444489E~01
140000 9.8774657E+01 6e4272838E+01 1¢1397E+00 144048E=01
6173 9.4870890E+01 8e3667250E+01 9.6496FE~01 1.0890E+00
[New Page]
EXAMPLE FROM TECHNOMETRICS PROGRAM WJLQ3 6/18/65
ALPHA z1 22 X(1I)
4920 9.2412160E+01 8e6729699E+01 1.0060E+00 143180E+00
«3986 849975680E+01 8e8679007E+01 1e0753E+00 1e4804E+00
CAN NOT LOCATE 21= 3.0000000E+01

2.6900E+00

67



VII.

TYPE
(1]
[2]
(3]
[3]
(4]
(5]

EXAMPLE 2.

A. The problem.
Determine unconstrained efficient points for alpha from 0 to 1 in increments
of 0.1 for
z)(x) = 370 - 5.3xf - 4.075x, + 19x, + 20x, - 4.2X,X,
z,(x) = ~176 - 9.0xi - 4.0x§ + 144x, + 40x,
B. Input cards.

2
270 ~543 ~44075 1940 ~be2
"176. -9, ~4, 1‘“‘0
0.0 1.0 0,1
-99.,99 -99,99

C. Program output.
UNCONSTRATINED EFFICIENT POINTS FOR THE EXAMPLE OF CHAPTe IV3sSEC,

UNCONSTRAINED EFFICIENT POINTS FCGR THE EXAMPLE OF CHAPT. IV,SEC,

Zl= 3+7000E+02 -543000E+00 ~4.,0750E+00 1+9000E+01 2.,0000E+01 "4020OOE+00
2= ~1+7600E4+02 -9.,0000E+00 ~4,0000E+00 1«4400E+02 4,0000E+01 0.0000E-99
ALPHA A 22 X(!)
0.0000 1,2925060E+01 5.0000004E+02 7.9999E+00 5.0000E+00
» 1000 8.6338690E+01 449616188E+02 Te5129E4+00 443474E+00
. 2000 1.4985705E+02 %4.8487378BE+02 T:0127E+00 3.7496E+00
« 3000 2.0463179E+02 4.6672894E+02 6+4927E+00 3.,2093E+00
«4000 2.5167539E+02 4.4139822E+02 5.9449E+00 2.7310E+400
+5000 2.9185447E402 4,0850162E+02 5¢3583E400 243216E+00
6200 3+2585835E+402 3.66072542+402 4,7184E+00 1.9912E+400
70600 3.5411G03E+02 314220785402 L,00KB6E+00 1.7852E+00
PRLARAR) 3. TH62T9LEF0? D 2462309 7E4+02 2.,1B70E+00 146368E+00
IRERAAAN 1452513755402 1.5506204E+02 2.2202E+00 146T727E+(GO
HERAMEIN TOGARYIVAITEH02 2.4956370E+013 103055400 1e9222E+00
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PROGRAM LISTING

CPROGRAM WJLQ3

15

20

DIMENSION A1(20s20)5A2(20520)5sB1(20)3B2(20)+sC1(200),
1C2(200)5A{20520)sB(20)+X(20)

1A(20,20)+B(20)+X(20)

PRINT 9000

READ 9001

AL1=2.0

AL2=240

ALS=0e0

ALD=0e0

FIND
LINE

0.0
50

nu

READ 9002s NHLIST

NN= (N¥(N+3)}/2

NNC=NN+1

N1=N+1

READ 9003s CL(NNC)(CL(J)sJ=1yNN)
READ 9003s C2(NNC)s(C2(J)sJ=1sNN)
NM1=N-1

L=2%N

C SET UP Al,A2,B1,B2 MATRIX

40

45

50

55

60
65

Bl(N)=Cl(L)

B2 (N)y=C2(L)

DO 65 I=1,NM1
Al(I,1)==C1(1I)
A2(I,I)=-C2(1)
K=N+1I

B1(I)=Cl(K)
B2(I1)=C2(K)

J2=T1+1

DO 60 Jl=J2sN
L=L+1
AL(T9J1)=—0e5%C1(L)
A21T,4J1)==e5%C2 (L)
AL(J1,1)=A1(1sJ1)
A2(J1,T)1=A2(1+J1)
CONTINUE
AL(NsN)==-C1l(N)

A2 (NsN)=-C2 (N)

C TEST ALPHAS

100
105

IF(AL1-ALS)120+105,10C5
READ 9008sAL1sALS4ALDsSTOPsCOMTH»COEFSPAGESERR

C ALTERNATELY=NOBsVOBsALOWsALHI ,COMTsCOEF »PAGE,ERR

106
107
108
109
110
115
120
125

KONT=0
IF(PAGE}Y107,108,+107
LINE= 50

IF{ERR )300+109,300
IF(AL1)110,125,4125
[F{STOP)115s15115
CALL EXIT
ALL=AL1+ALD
AL2=1+0~-AL1
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C SET UP A AND B MATRICES
130 DO 140 I=1,N
A(TSNI)=ALI*¥BL(T)+AL2¥B2(1)
135 DO 138 J=14N
138 A(TsJ)=ALI*ALI (T 4J)+AL2*¥A2(TsJ)
140 CONTINUE
C GAUJOR IS A ROUTINE TO SOLVE N LINEAR FEQUATIONS
CALL GAUJOR(ASNIN1+,20520)
DO 190 1I=1,N
190 X(I) = 0e5%A{I,4N1)
C EVALUATE RESPONSE FUNCTIONS
200 L=2%*N '
Y1=CL(NNC)+X(N)*(CL(L)+CIT (NI *X(N))
Y2=C2 ANNC)I+X (NI *(C2(L)I+C2 (NI®X(N))
205 DO 225 I=1,NM1
K=N+1I
Yi=Y1+X(I)* (CL(KI+CL(T)%X(1))
210 Y2=Y2+X(I)*(C2(K)+C2( 11X (1))
215 DO 220 J=1sNM1
L=L+1
Y1=Y1+X(I)%®X(J+1)%C1(L)
220 Y2=Y2+X (I ®#X(J+1)%#C2(L)
225 CONTINUE
C OUTPUT
227 IF( ERR 13255230325
230 IF(LINE - 40) 280+280,240
240 PRINT 9000
LINE = O
IF(COMT) 250+245,250
24% PRINT 9001
LINE = LINE + 1
250 IF(COEF) 260525545260
255 K=1
LINE = LINE + 2% {(NNC+61/7)
PRINT 9004,KsCI(NNC)» (C1(J)syJ=1sNN)
K=2
PRINT 9004,KsC2(NNC)s(C2(J)sJ=1sNN)
260 PRINT 9005
280 PRINT 9006sALYsY1aY2s(X(I)sI=1yN)
LINE = LINE +(N +3)/4
GO TO 100
C FIND A PATICULAR VALUE OF O0BJ.
300 NOB=ABSF(AL1l)
VOB = ALS
ALS=040
FIND = AL1
ALOW=ALD
ALHI=STOP
IF(  ALHI 132043204310
310 AL1=ALOW
ALIC = (ALHI -ALOW)
Go TO 125
320 ALl=a5
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ALIC=45

GO TO 125
325 IF(NOB-1)3304+330,340
330 ZD = Y1- VOB

GO TO 360
340 ZD = Y2—- VOB
360 IF( ABSF(ZD)— ERR) 230,230,365
365 ALIC= Q.5%ALIC

2D = FIND* ZD
367 IF( ZD 1370+370+375
370 ALl= ALl + ALIC

GO TO 380
375 ALl1= ALL ~ ALIC

380 ZDP=zD

KONT = KONT +1

IF(KONT -~ 20)125,1254390
390 PRINT 9007 s NOB,VOB

GO TO 105

9000 FORMAT(1IH1)
9001 FORMAT(1Xs79H
1 }
9002 FORMAT(2413)
3003 FORMAT(T7E10.2)
9004 FORMATI(1IXs1IHZ s Il s lH=s2X s 7(1IXsE1Lled4) s/ {TXsEL1Llaés1lXy
1E11le4o1XoFEllebslXsElLletsIXaELllebdslXsE1labslXyElled))
9005 FORMAT(4X +S5HALPHA s TXs2HZ1 ¢ 14X s2HZ2520X+s4HX{I))
006 FORMAT(2X sF T 643 2({2XsE14e7)s1Xoa{1XoEL1le&)/(43XsE1llaés
1IXeElledslXsEllabyelXsEllab))
007 FORMAT(21H CAN NOT LOCATE Z4s11slH=¢2XsE14e7
9008 FORMAT(8E10.2)
END
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APPENDIX 3
PROGRAM TO DETERMINE EFFICIENT POINTS
FOR QUADRATIC OBJECTIVE FUNCTIONS
SUBJECT TO LINEAR CONSTRAINTS
I. PURPOSE.

The purpose of this program is to utilize Wolfe's
method for quadratic programming to determine efficient
points for guadratic objective functions, zk(x) =
x'Qkx + ka, k=1 -+ r, subject to linear constraints
of the forms A;;x < b; and Ajz3x > by, with bi, by > 0.

A modification of the form of Wolfe's method presented

on page 397 of [2] is used. The program sets up the aug-
mented coefficient tableau shown below, where the variables
indicated correspond to those used by Wolfe.i

x>0 ¥31>0 y2>0 wv>0 u; >0 uy,>0 2z>0 w>0

i 1 i

A1y I ) o b1
mxn mx1
A21 oy -I I b2

2 xn Lxp
Q a!, | -a2 ' p

o ~I 11 2L =T %
nxn nxm nxL nxl

This tableau differs from that of Wolfe in that -A;, 1is
used, instead of +Aj;, for the coefficient of u,. This
correction is necessary to handle constraints of the form

A,1x > b, and is indicated by the Kuhn-Tucker theory as
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presented in Chapter 6 of Hadley[7]. The Q and P matrices
are from the composite objective function and vary as the

values of alpha change.

II. INPUT.

The input data consists of control information, the
objective function coefficients and the constraint coeffi-
cients. A detailed description of each of the necessary
input data cards follows.

TYPE 1. An identification card. Any information
punched in columns 2 - 80 will be printed as the
first line of output on each page. Typical informa-
tion would be problem identification, date, users
name, etc. If no identification is needed the card
may be left blank. FORMAT(79H)

TYPE 2. Control information. Punched as fixed point

numbers, right justified, in the columns indicated.

columns
1 -3 Number of independent variables
4 - 6 Number of constraints of the form
Ax < Db
7 -9 Number of constraints of the form
Ax > b
10 - 12 Number of objective functions
13 - 15 NPWR. The value 5x10 NPWR-20) 44

subtracted from the zj - cj row to
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avoid premature termination with w
or z vectors in the basis. Normally
these columns are blank.

FORMAT (2413)

TYPE 3. The coefficients of the objective functions.
Punched as floating point numbers (with decimal
point) in columns of 10, with up to 7 pieces of data
per card. Each objective function begins a new card.
The order of the coefficients must be: constant,

square terms, linear terms, cross product terms;

1 2 2 - o 2 - e . 0 e
i.e. c,r %%, X2, X2, X, X, X Xyr XX,

« & » - & @ -
X X0, X, Xy szq’ sz R X _, X

If any terms are missing either a zero should be
punched or a blank left in the proper position.
FORMAT(7E10.2)

TYPE 4. Coefficients of the constraints. Punched as
floating point numbers (with decimal point) in
columns of 10, with up to 7 pieces of data per card.
All constraints of the form Ax < b must be first,
followed by those of the form Ax > b. The order of
the coefficients must be x;, X, *-- X b and each
constraint equation begins a new card. If there
are no constraints omit this type card. FORMAT(7E10.2)

TYPE 5. Alpha and control information. Punched as

floating point numbers with the form depending on
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the number of objective functions. For one or two

objective functions the form is:

columns

1- 10 starting alpha
11 - 20 stopping alpha
21 - 30 alpha increment

The starting alpha must be less than or equal to the
stopping alpha and the increment must be positive.
If only one value of alpha is to be used (instead
of a sequence) that value should be punched as the
starting alpha and columns 11 - 30 left blank. The
remainder of this card is used for the control of
output variations and is discussed later.

When there are more than two objective func-

tions the form for this card is as follows:

columns
1 -10 alpha (1)
11 - 20 alpha (2)
21 - 30 alpha (3)
31 - 40 alpha (4) FORMAT(5E10.2,6E5.0)

TYPE 6. Control information. To begin an entirely
new problem punch any negative number in columns 1 -
10. The next data card should then be a TYPE 1l card.
To terminate the program punch any negative number
in columns 1 - 10 and any number in columns 31 - 40.

FORMAT (7E10.2)
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OUTPUT.

AI

The normal output consists of:

1. Identification from the TYPE 1 card.

2. Coefficients of the constraints and objective
functions in the same order as entered on
input cards.

3. Efficient point information: alpha, values
of the objective functions, and values of x.

The following output variations are possible:

1. The identification may be surpressed by
punching any number in columns 51 - 55 of the
TYPE 5 card.

2. The coefficients of the constraints and ob-
jective functions may be surpressed by
punching any number in columns 56 - 60 of the
TYPE 5 card.

3. A new page of output may be started by punch-
ing any number in columns 61 - 65 of the
TYPE 5 card.

4, To print the entire final tableau after each
efficient point, punch any number in columns
66 - 70.

In each of the above "any number" is meant to

imply a non-zero number.



IV. ©PROGRAM VARIATION.

In addition to locating efficient points for a speci-
fied value of alpha, or a sequence of values of alpha, the
program will locate the efficient point with a specified
value of one of the objective functions. This can only be
done when there are two objective functions as the tech-
nique of halving the interval of alpha is used. If the
desired value is not located after 20 steps of halving the
interval the search is terminated and a message printed.
To initiate a search of this type the following input card

should be used as a TYPE 5 card.

columns

1 - 10 Either a #*1. or *2., denoting which objective
function is being used. The (+) value should
be used if the objective function is an
increasing function of alpha and the (-)
the objective function is a decreasing func-
tion of alpha.

11 - 20 The value of the objective function to be
located.

21 - 30 A value of alpha which is known to be lower
than the alpha of the desired point.

31 - 40 A value of alpha which is known to be

higher than the alpha of the desired points.

Note: if either of the above values of alpha is not

known, leave both values blank.
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51 - 70

V. EXAMPLE 1.

A.

60

The allowable error in the value of the
objective function to be located. This

space may not be zero or blank.

Output variations as discussed in previ-

ous section.

For the example of Chapter IV, section D,
Maximize:
z,(x) = 370 - 5.3x5 - 4.075x2 + 19%; + 20x, - 4.2%,%,
zp(x) = =176 — 9x%2 - 4.000x3 + 144x; + 40x,
Subject to: 4x; + 5x, < 36
X, < 2.25

X1 - X9 > 1

Determine:

1. efficient points for alpha from 0 to 1 in

increments of 0.1.

2. the efficient point for alpha = 0.1234 and

print the answers on a new page.

3. the efficient point for alpha = 0.432

4. efficient points for alpha from 0.75 to 0.85

in increments of 0.05.

5. the efficient point where z;(x) = 375

i+
.
o
|

6. the efficient point where z,(x) = 450 * .10

7. the efficient point where z,(x) = 200 * 1.0,

which is known to be between o = .8 and a = .9.
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8. the efficient point where z;(x) = 261.6 * .01
and print the answer on a new page with the
final tableau. Do not print coefficients.
9. efficient points for alpha from .002 to .003
in increments of 0.00025 and print the results
on a new page without the indentification.
10. unconstrained efficient points for alpha from

0 to 1 in increments of 0.1.
Items 1 - 9 above may be worked as one problem with
9 different TYPE 5 cards. Item 10 is actually a new

problem as the constraints are to be ignored.



B.
TYPE

(1]
(2]
[3]
[3]
[4]
[4]
[4]
[4]
[5]
[5]
(5]
(5]
[5]
[5]
[5]
(5]
(6]
(1]
(2]
[3]
(3]
(5]
[6]

Input data cards.

EXAMPLE 1.» CHAPTER IVs SECTION D
2 2 1 2

3700 “503 -40075 19.

“1760 -9 “40000 1440
4o 5e 36
1. 2425

1. ‘1. le
Oe 1. ol

01234

e432

75 e85 05
+1le 375
~2e 450
“2e 2000 o8 9
~2e 261-6

«002 +003 « 00025
“55455

EXAMPLE 1., CHAPTER IV, SECTION D
2 0 0 2

3700 “’5.3 "‘4.075 190
~176 «“Q ~44000 144,
0.0 1.0 0ol

=09 ,99

~99499

20,
40,

01
ol
1l
01

20.
40.

6/30/65

~442

53 58

58
53

6/30/65

wl o2

63

63 70
63

UNCONSTRAINED POINTS

Z9



C. Program output.

EXAMPLE l.s CHAPTER IV, SECTION D

CONSTRAINTS
4¢0000E+00
0.0000E~99
1.0000E+00

Zl=

22=

ALPHA
0.0000
01000
«2000
+ 3000
04000
«5000
«6000
« 7000
+ 8000
+9000
1,0000

[New Page]
ALPHA
1234
4320
«7500
«8000
8500
«7917

CANNOT LOCATE 22= 4.5000000E+02AL(1)= 0000000

8546

540000E+00
1.0000E+00
=14 0000E+00

21
242485823E+02
203299672E+02
2.4183528E+02
2+45054963E+02
246094219E+02
2.9287126E+402
3.2585833E+02
3,5411901E+02
3.7T662791E+02
349069653E402
3.9448528E+02

Z1
2+38500004E402
2¢7126114E+02
3.6611907E+02
3.7662791E+02
3.8550764E+02
3+7500100E+02

3.8624892E+02

346000E+01
242500E+400
1. 0000E+00

3.7000E402 =5.3000E+00 =4,0750E+00

“1e¢7600E+02 =9,0000E+00 =4,0000E+00

22
444506575E+02
4.4462328E+02
4.4304308E+02
4+4018360E+02
443370211E+02
440744492E+02
3.6687253E+02
3.1422078E+02
2.4628099E+02
1.6846047E+02
946634T730E+01

22
44443T115E+402
44263478B0E+02
2.8254365E+02
2.4628099E+02
2.0430830E+02
2¢5262459E402

2400029128402

6/30/

1.9000E+01

1e4400E+02

6+8373E400
6.6417E+00
64190E+00
6¢1875E+00
5+9986E+00
53688E+00
447184E+00
440046E+00
341870E+00
2¢4196E400
1.8913E400

65922E+00
5¢8039E400
3e6112E400
3,1870E+«00
2.T260E400
3¢2594E+00
22=

246806E+00

65

2,0000E+01 =4.2000E+00

440000E+01

Xt1)
147301E400
1.8866E+00
2:064T7E400
2¢2500E+00
2+2500E+00
242500E+00
1.9912E+00
147552E+00
1e6368BE+00
144196E+00
8¢9134E~01

X(1)
149262E400
2+2500E+00
1e6T794E+00
146368E+00
146324E+00
1e6414E+00

4:45065T74E+02
1e6342E400

040000E~99

€9



Third page of computer output.

EXAMPLE les CHAPTER IVy SECTION D 6/30/65
ALPHA Z1l 22 X(1)
#7797 3.7255300E+02 246160275E+02 3¢3631E+00 146498E+400

FINAL TABLEAUs NO. 3
viB XB A VECTORS
3 1.4298E+01 0.0000E~99 0+0000E=99 1. 0000E+00 0+0000E=99
040000E~99 18175E~01 504266E~01 =~344403E+00
“504266E=~01 <«346091E~01 =~148175E~01 ~5,4266E~01
144298E+01
4 6.0015E~01 0.0000E=~99 0+0000E~99 0+ 0000E~99 1+0000E+00
0s0000E~99 ~=346984E~02 1.3812E~01 =544266E=01
~143812E~01 ~=147510E-01 346984E~02 ~143812E=01
6+0015E~01
1 3¢3631E+400 1.0000E+00 0+0000E=~99 0.0000E=-99 0+0000E~99
0+0000E~99 =941669E~02 346984E~02 1,8175E~01
~346984E-02 =~1,2865E~01 9¢1669E-02 ~3,6984E=~02
343631E+00
5 7¢1330E-01 0+0000E~99 0«0000E~99 0+ 0000E=99 0«0000E-99
1¢0000E+00 =-142865E-01 1¢7510E~01 ~346091E-01
=1e78510E~01 =340375E~01 142865E~01 =147510E-01
" T41330E=01
2 1.6498E400 0,0000€~99 14 0000E+00 0¢ 0000E~99 00000E-99
0+0000E~99 346984E«02 ~1.3812E=01 5¢4266E~01
143812E-~01 l¢7510E~01 =«3.6984E=02 1¢3812E=01
146498E+00
0 9+9999E=01 0+40000E~99 040000E~99 0+ 0000E~99 0+0000E~99
0. 0000E~99 1.0000E~07 =140000E~07  140000E~07
1.0000E~07 1 0000E~07 9¢9999E=01 1+0000E+00
949999E=~01 :
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Fourth and fifth pages of computer output.

CONSTRAINTS
4.0000E+00 5.0000E+00 3.6000E+01
0+0000E=99 1.0000E+00 242500E+00
1« 0000E+00 =«140000E+00 1.0000E+00
21= 3¢7000E+02 =543000E+00 ~4+0750E+00 1e9000E+01 240000E+01 ~442000E+00
22= ~147600E+02 ~9.,0000E+00 ~4+0000E+00 1¢4400E+02 440000E+01 0.0000E=~99
ALPHA Z1 22 Xt
«0020 242501453E+402 444506559E+02 6e8336E+00 1,7330E+00
«0022 22503409E+02 444506555E+02 68332E+00 147334E+00
« 0025 242505362E+02 444506550E+02 6¢8327E400 147337E400
«0027 2¢2507320E+02 4.4506546E+02 68323E400 1+7341E400
«0030 242509276E+4+02 4.4506538E402 6+8318E400 147345E+00
( * % NEW PAGE * # )
EXAMPLE le» CHAPTER 1IVs SECTION D 6/30/65 UNCONSTRAINED POINTS
Zl= 3¢ 7000E+02 ~543000E+00 ~440750E+00 149000E+01 2.0000E401 =4,2000E+00
2= «1e7600E+02 =940000E+00 =440000E+00 1+4400E+02 440000E+01 0.0000E~99
ALPHA z1 Z2 X{1)
0.0000 12925000E+01 5+0000000E+02 8.0000E4+00 5.0000E+00
«1000 8.6338660E401 4+3616190E+02 Te5129E+00 4434T4E+00
+2000 144985704E+02 448497380E+02 Te0127E+00 32T7496E+00
«3000 2+0463175E+02 4.6672893E+02 64927E+00 34,2093E400
« 4000 245167536E+02 444139832E+02 5¢9449E400 247310E+00
« 5000 2.9185446E402 44.0850159E+02 5.3583E400 243216E+00
«6000 342585833E+02 346687254E+02 4eT184E+00 149912E+00
«7000 345411901E+02 341422077E+02 4+0046E+00 147552E+00
+ 8000 347662791E+02 2.4628099E+02 3.1870E+00 1,6368E+00
«9000 3.9251327E+02 145506244E+02 242202E+00 146727E+00
1.0000 3.9901929E+02 2:4966370E+01 1.0305E400 149229E+400
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VI,

EXAMPLE 2.

A, For the objective functions: subject to:
z,(x) = 87 - x2 - x2 + 4x; + 6x, x *:%y < 10
z,(x) = 48 - x? - x5 + 8x; + 12x, X, < 3.4
z3(x) = 78 - x% - 2x§ + 4x; + 12x, X3 — Xg 20

Determine efficient points for the following sets of alpha [a;, ay, a3l

[1, 0, 0] [0; .5, 5] [.6; .2; .2]
[0, 1, 0] [.5; 0y .5] [.2; B =21
[0, 0, 1] T [y 25 6]

B. Computer input cards.

TYPE

[1]  EXAMPLE 2, APPENDIX 3, 3 OBJEGTIVE FUNCTIONS

[2] 2 2 1 3

[3] BT! “1. ‘10 4. 6'

[3] 48, -1l -1s 8. 12.

[3] ?Bt -1 "2! 4. 12- Ut

[4] 1. 1- 10.

[4] Oe l. 3ol

[4] 1.0 -1 O

[5] 140 0.0 00

[5] 0-0 1.0 040

[5] 0.0 0.0 1.0

[5] 0.0 o5 5

[5] b D0 5

[5] - 5 0.0

[5] 55 -2 tz

[5] o2 b o2

[5] o2 o2 b

[6] -989.99 =99.,99

99



C.

Computer output.

EXAMPLE 24 APPENDIX 3, 3 OBJECTIVE FUNCTIONS

CONSTRAINTS

1.0000E+00 1.0000E+00 140000E+01
0«0000E=99 1,0000E400 344000E+00
1¢0000E+00 ~140000E+00 O0+0000E=-99

Zl= 847000E+01 ~1,0000E+00 «1,0000E+00 4.0000E+00
22= 4¢8000E+01 ~140000E+00 ~1.0000E+00 8.0000E+00
23= 7¢8000E+01 ~140000E+00 -240000E+00 4.0000E+00

R ALPHA(R) Z(R)

1 1.0000 9¢9500000E+01

2 00000 8+5500000E+01

3 00000 9¢9250000E+01
X(1)

25000E+00 2.5000E+00

R ALPHA(R) Z(R)

1 00000 9.5840000E+01

2 1.0000 93240000E+01

3 0e 0000 9+45680000E+01
X{1)

4,0000E+00 3.4000E+00

R ALPHA(R) Z(R)

1 00,0000 949444445E+01

2 0,0000 8647111111E+01

3 1.,0000 949333334E+01
X(1)

2¢6666E+00 2.6666E4+00

R ALPHA(R) Z(R)

1 060000 9.78B0000E+01

2 «5000 9+2880000E+01

3 +5000 9¢7720000E+01
X(1I)

3.4000E+00 3.4000E+00

6+0000E+00 0+0000E=~99

142000E+01
142000E+01

0+0000E~99
0+0000E=99
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Computer output continued.

R ALPHA(R)
1 « 5000
-2 00000
3 «5000
X(I)
2¢6000E+00
R ALPHA(R)
1 05000
2 5000
3 0. 0000
Xt1)
3.4000E+00
R ALPHA(R)
1 «6000
2 02000
3 2000
X(1)
3.0000E+00
R ALPHA(R)
1 02000
2 06000
3 ¢ 2000
Xt
3+44000E+00
R ALPHA(R)
1 © 02000
2 ¢ 2000
3 «6000
X(1)
3.0000E+00

Z(R)
949480000E+01
B846480000E+01
9¢9320000E+01

246000E+00

2(R)
9.,7880000E+01
9.2880000E+01
947720000E+01

3+4000E+00

Z(R)
9+9000000E+01
9.0000000E+01
949000000E+01

30000E+00

Z(R)
9+7880000E+01
9+2880000E+01
947720000E+01

344000E400

Z(R)
9+9000000E+01
9+0000000E+01
9.9000000E+01

3.0000E400
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PROGRAM LISTING

C PROGRAM WJLQS

DIMENSION X{40)4COB(4166) sA{10:10)sY(21941)ALISG) sB(10)

1CAB(66)sIB(LOYsIVIGDYs2(4)Y4CLAL)Y
1 READ 9001
5 READ 9002 4NV sMLIMGyNOBJ sNPWR
10 NCB=(NV*®{NV+3))/2

NCBC=NCB+1

MC=ML+MG

JX=1

JXN=NV

JY=JXNR+1

JYN=JXN+MC

JV=2JYN+1

JYN=JYN+NV

JU=JVN +1

JUN=JVN+MC

JZ=JUN+1

JZN=JUN+NY

JW=JZN+1

JWN=JZN+MG

NX=JwWN+1

NM= JWN

MN=MC+NV

MZ=MN+1

IFl JZN = JWN 114412412
12 IPHZ=2

JB =42

JE=JZN

GO TO 15
14 IPHZ=1

JB=JUW

JE=JYN
15 N2V=2%NV

NVMl= NvV=-1

FLM=MN

YJV=JYN

YJV=YJV+e5

AL(1i=1.0

ALS=060

LINE = 50

PRT=000

PRRT = S.%(10.%%(NPWR-20))

DO 20 JU=14J2ZN
20 C{(J1=0.0
24 DO 25 J=JBsJWN
25 C{J)I==1.0

CINX) =040
28 DO 30 NO=19sNOBJ
30 READ 9003 ,COB(NOJNCBC}) » (COB(NOsL)sL=1yNCB)
38 IF(MC)50,50+40
40 CONTINUE



C

70

DO 45 1I=1,MC
45 READ 9003, (A(TsJ)sJ=1sNV}IsB(1}Y
50 IF(NOBJU=2160455485
58 IF(AL{1)~-ALS)I00,4,60,460
60 READ 9015y AL(1)sALSsALDsSTOP,ERRYyCOMT sCOEF ,PAGE,PRIT
KONT=0
IF(PAGE1654,68,65
65 LINE=50
68 IFf( ERR 1Y800s704800
70 IF(AL(1)Y) 75495495
75 IF(STOP)I8O+1+80
80 CALL EXIT
85 READ 90154 (AL (I)sI=144)
STOP=AL (4)
IF(AL{1))75499499
90 AL{(1)¥=AL{(1)+ALD
9% AL(2)=1.0-AL(1)
99 IF{LINE~40)100,703,703
100 DO 102 J=1sNM
102 IV(J)=0
IPHZ2=1
NX=JWN+1
JB=JUW
IF({MC)14041404101
SET UP Ys I+ AND NULL MATRICIES
101 DO 130 1I=14sMC
DO 103  J=1,NV
103 Y(Iedd= A{lsd)
Y{IsNX)= B(I)
DO 104 J=JYsJUN
104 Y{I9J)=0.0
J1= JIXN+I
1F{( I - ML) 110,110+120
110 Y{(IsJ1l)=214.0
IB(1)=41
IviJl)=1
G0 7O 130
120 Y{1,J1)==1.0
J2=JZN+I-ML
Y(leJ2)=140
1IB({I)=J2
IviJgay=1
130 CONTINUE
CALCULATE OBJECTIVE FUNCTIONS FOR THIS LOOP
140 DO 145 L=14NCB
CAB(L)=0.0
DO 145 NO=1,»NOBJ
145 CAB(L)=CAB(LI+AL(NOI*COB(NOsL)



C SET UP QsUsZsy MATRICIES

200
210

220

225
235
240
250
265

266

280
282

285
288

300

310

311

313
318

320
330
335

K=N2V

ITAB = 0 ‘

DO 235 t=1sNVMi
11=I+MC

122141

DO 225 J=12sNV

K=2K+1
Y{IleJ)==~CAB(K)
J2=J+MC
Y(J2s1)==CAB (K}
Y(Ilel)==24,0%CAB(1)
Y{MNsNVI==2 4, 0%CAB (NV)
DO 300 I=1leNV
I1=1+MC

DO 265 J=JYsJVN
Y{IlsJ)=0.0

DO 266 J=JZ s JWN
Y(IleJ)=0DaO

K=zNy+1

J1=JYN+I

Y(I1sJ1l) = =160
J1=JUN+I

Y{Iledl) = 1.0

IF{ GAB(K)) 28042854285
DO 282 J=1sJUN
Y{IleJd)z=z~Y(11lsd)
Y{I1leNX}==CAB(K)

GO TO 288
Y{I1sNX)=CAB(K)
Kl=JUN+I

IB{Il)=K1

IViKl1)=1I1

IB{(MZ)=0
IF{MC)3204+3209310

DO 315 I=14MC
JI=2JVYN+I

DO 315 J=1sNV

Il1= MC+J

IF(I-ML) 311,311,313
Y(Iledl)i=A(1,J)

GO TO 1315
Y(I1leJ1l)==A({1l4d)
CONTINUE

ARE 2(S) IN BASIS

DO 335 JU=JZsJZN
IF(IV(J)Y)330+335,4330
K=IV(J)
IF(Y(KyNX)13389335,338
CONTINUE

GO TO 600
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338

340
345

8347

8348
8349

350

360
365

370
375
380
385
390

400
405

425

72

CALC 2U=CJ

DO 345 J=14NX

2J20.0

DO 340 I=1sMN

k=IB{1)

2J=22J+C{K)I*Y(1,4J)
Y{M2yJ)=2J-C(U)

IF(SENSE SWITCH 2 ) 8347,8349
PRINT 9017 s ITAB

DO 8348 I=1sMZ

PRINT 9020sIB(IVNs(YL{IsJ)sJ=1eNX)
CONTINUE

SELECT IN VECTOR

ZCM=040

JIN=0

DO 425 J=1,,JE

TEST = Y({MZy»J)=~ERR

IF ( TEST)Y360+425,425
IF(IVIJ)Y)365+3659425

TJd=J

TJ=TJI=YJIV
IF(ABSFITU)~FLMI370+,400+400
IF(TJ)3754375,5380

JT=J+MN

GO TO 385

JT=J=MN
IF(IVIJUTYII40004009425
K=IV(JT)
IF(Y(KsNX))42544004425
IF(ZCM-TEST Y425 44254405
2CM=TEST

JIN=J

CONTINUE
IF{JIN)S50,5504+430

SELECT OUT VECTOR

430

440
445

450
460

465

YM=14.E+45

PRT=040

DO 460 I=14MN

IFIYET s JIN)Y 460046044640
IFIY(TI4NX) V46094654445
XY=Y{I 4 NX)/Y (I s JIN)
IFIYM=XY)146094604+4650
YM=XY

I0UT=1

CONTINUE
IF(YM=1eE+44)500,8C0,800
10UT=1]

ROW OPERATIONS

500

505

PIV=Y(IOUTsJIN)
ITAB=ITAB+1

DO 505 J=1sNX
Y(IOUTsJ)=Y(IOUTsJ)/P1V



[ ]

DO 530 I=1,M2
IF(Y(I 4 JIN))5104530,510

‘510 IF(1-10UT)5154+5304515

515 H=Y(IsJIN)
520 DO 525 J=13NX
525 Y{(IsJ)=Y(1sJ)=Y(I0UTsJ)*H
530 CONTINUE
K=IB({IOUT)
IVIK)=0
IVIJINI=TIOUT
IB(IOUTI=JIN
IF(IPHZ =1 )531,531,320
531 DO 532 J=JWsJWN
IF(IV(J)Y) 338,532,338
532 CONTINUE
PHASE ONE ENDED
533 IPHZ=2
JB=JZ
JE=J2ZN
DO 535 1=14MN
B35 Y(I s JW)=Y (T JNX)
NX=JW
DO 537 J=J2sJ2N
537 C{J)==1.0
GO TO 320
OPTIMUM INDICATED WITH 2(S) IN BASIS
550 IF( PRT )558+555,558
555 PRT = PRRT
PRINT 90214PRT
GO TO 350
558 IF( IPHZ-1 )570+570+5%60
560 PRINT 9016s ITAB
GO TO 775
OPTIMUM INDICATED WITH W(S) IN BASIS
570 PRINT 9022 »1TAB
GO TO 775
OPTIMUM INDICATED
600 CONTINUE
604 DO 615 J=14NM
IF(IVIJ)Y)I6053605,610
605 X{(J)=0.0
GO TO 615
610 K=I1V(J)
X{Jr=Y{KsNX)
615 CONTINUE
EVALUATE OBJECTIVE FUNCTIONS
620 DO 650 NO=14NOBJ

Z(NO)=COB(NO;NCBC)+COB(NO;NV)*X(NV)*XlMV!+COB(M00NZV)*X(N

KlJ=N2V
630 DO 650 I=1,NVM1
KaNV+I
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G=Xt(1I)
ZI(NO)=Z (NOI+COB(NO I ) #GR*G+COB(NO,K) *G
640 DO 650 J=13NVM1
K1Jekd+1
Z(NO)=Z(NO)+COB(NOsKIJIRX(I) ®X{J+1}
650 CONTINUE
IF( ERR )825,750+825
OUTPUT
HEADINGS
703 PRINT 9019
LINE=0
IF(COMT)IT10+7055710
70% PRINT 9001
710 IF(COEF 172597144725
714 IF(MC)T7154719»715
715 PRINT 9018
DO 716 I=14MC
716 PRINT 90235 (AlIsJ)s J=14NV) » B(I}
719 DO 720 NO=1,NOBJ
720 PRINT 9004 sNOsGCOB(NOINCBC) 4 ({COBINOsI)s1=14NCBY
LINE=2+2%NCBC/7 +MC+LINE
725 IF(NOBJU=2)730+7405100
730 PRINT 9007
GO TO 100
740 PRINT 9005
GO TO 100
ANSWERS
750 IF(NOBJ-2)755+770,9760
755 PRINT 9008+Z2(1) s (X{I}sI=14NV}
LINE = LINE +2 + NV/4
GO TO 775
760 PRINT 9009
DO 765 NO=1,NOBJ
765 PRINT 9010sNOSsAL(NO) 22 (NO)
PRINT 90114(X{I)eI=1,NV)
LINE = LINE +NO + 1 + NV/6
GO TO 775
770 PRINT 9006+sAL(1)42(1)s2(2)s{(X{T1sI=1sNV)
LINE = LINE +2 + NV/&
775 IF(PRITI780+50,780
780 PRINT 9012,1TAB
DO 790 1=1,M2
790 PRINT 90134IB(I)sY(I yNX)o(Y(Isd)sd=1l,sNM}
GO TO 50
795 PRINT 9014
GO TO 775 o
LOCATE A PARTICULAR VALUE OF AN OBJECTIVE FUNCTION
800 NOB=ABSF(AL(1))
VOB=ALS
FIND=AL (1)
ALOW=ALD
ALHI=STOP
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ALS=040
IFt  ALHI 1820,8204810
810 AL(1)=ALOW
ALIC =ALHI~-ALOW
GO0 TO 95
820 AL(l)1=,5
ALIC305
GO TO ¢5
825 ZD=2 (NOB)~VOB
860 IF{ ABSF({ZD) - ERR 1770770863
863 KONT = KONT+1
IF(KONT=20) B8654865,864
864 PRINT 9027, NOBsVOBsAL(1)sNOBsZ{NOB)
GO TO 60
865 ALIC=4S5%ALIC
2D=FIND®*2D
IF{ ZD 187048709875
870 AL(1)= AL (1) + ALIC
GO TO 95
875 AL(1)= AL{l) ~ALIC
GO TO 95
9000 FORMATI(1HI1)
9001 FORMAT({1X379H
1 )
9002 FORMAT(2413)
9003 FORMAT(TE1C+2)
9004 FORMAT(1IXs1HZsI1slH=92Xsb{1XsE11e4) s/ {TXsELLlebs1XyEllels
1 IXeEllet91XsELlalslXsEllelslXsELlLel))
9005 FORMAT(4Xs5SHALPHA » TXs2HZ1 916X s2HZ2920Xs4HX(1))
9006 FORMAT(2X oFT o432 2X3E14eT) s 1X93(1XsEL1Lle4)/{43XsELLatky
11XsE1led9lXsElleék))
9007 FORMAT(8Xs1HZs20X s4HX(TI))
9008 FORMAT{2X9EI4e7o1Xs4{1XsE11e4)/(19XsE1LlebslX9ELlLleéy
11X3E11lebs1XsE1Llaé4))
9009 FORMAT(13HO R ALPHA(R)sTXs4HZ(RI))
9010 FORMAT (I3 4F9e493X9E1l4s7)
9011 FORMAT(5X44HX(1) o/6(1XsEl11lad})
9012 FORMAT(21HO FINAL TABLEAU, NOWI3s/5H VIBy6X»2HXB25X,
I19HA VECTORS )
9013 FORMAT(1XsI14s5(2XsE11e4) s/ (18XsEL11e492X9ELlet92XsE1Lle4,
12XsE11e4))
9014 FORMAT(10H UNBOUNDED )
9015 FORMAT(5E10e236E540)
9016 FORMAT( 25H OPT WITH Z IN BASISy TAB 413)
9017 FORMAT( 8H TABLEAU 413}
9018 FORMAT( 12H CONSTRAINTS
9019 FORMAT(6HIWJILQSE)
9020 FORMAT(IB3414FT7e2s/3Xs16FTe2s/3Xs14FT7429/3X014FTe2)
9021 FORMAT(5H ERR=s1XsEl4.7)
9022 FORMAT(25H OPT WITH W IN BASISs TAB I3 )
9023 FORMAT(6(1XsE11.4))
9027 FORMAT(16H CANNOT LOCATE ZsIlylH=, El&ésTe8H AL{l)=»
1F9e693H Z3+sI1lslH=s1lXsEl4eT7)
END
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