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ABSTRACT 

As the asynchronous sequential circuit has become 

more and more important to digital systems in recent years 

high reliability and simple maintenance of the circuit is 

stressed. This paper presents a fault-detection algorithm 

which will be applicable to most of the practical asynchro

nous sequential circuits. The asynchronous sequential cir

cuit is treated from the combinatoric point of view. First 

the minimal set of states, both stable states and unstable 

states, sufficient to detect all possible faults of the 

circuit is found from the fault table. Then a test sequence 

is generated to go through these states. It is assumed that 

testing outputs can be added. Simple and systematic tech-

niques are also presented for the construction of fault 

table and the generation of test sequence. The usefulness 

of this algorithm increases as the density of the stable 

states associated with the circuit increases. 
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I. INTRODUCTION 

A. The Testing Problem 

As the range of problems to which digital computing 

systems have been applied has widened, the task of 

ensuring that a computing system is operating correctly 

has become steadily more important. Incorrect computer 

operation in some applications such as the control of 

chemical process units and nuclear reactors, and military 

command and control, can be potentially disastrous. In 

many practical situations the synchronizing clock pulses 

are not available and asynchronous circuits must be 

designed. Moreover, within large synchronous systems it 

is often desirable to allow certain subsystems to operate 

asynchronously, thereby increasing the overall speed of 

operation. In this paper the methods to diagnose the 

asynchronous circuits are investigated. 

The testing problem for sequential circuits may be 

stated as follows: given a circuit$ find a testing pro

cedure which determines whether the circuit is performing 

correctly by applying signals to and measuring signals 

on the terminals of the circuit. There are two kinds of 

experiments: 1) simple experiments, which are performed 

on a single copy of the machine, and 2) multiple experiments 1 

which are performed on two or more identical copies of the 
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machine. In practice, most machines are available in just 

a single copy, and therefore simple experiments are pre

ferable to multiple ones. 

B. Circuit Models and Definitions 

There are two basically different kinds of sequential 

circuits: synchronous sequential circuits and asynchronous 

sequential circuits. A generalized model for the synchro-

nous circuit and its state tables are shown in Figure 1. 

Each of the combinations of the values of the present state 

variables (y 1 ,y2 , ... ,yp) on the feedback lines is called a 

"state" and corresponds to a row in the table. Each of 

the columns in the table corresponds to a combination of 

the values of the primary input variables Cx1 ,x2 , ... ,xn). 

In table (b) , the first entry of each cell is called the 

"next state" and the second entry is the "output state". 

The Mealy circuit is characterized by the property that 

the output is a function of both the state and the input. 

But the Moore circuit specifies the output as a function 

of the internal state only. 

The block diagram shown in Figure 2 is the basic model 

for fundamental-mode asynchronous sequential circuits. 

The delay elements represent a "lumping" of the distributed 

delays in the combinational elements into single delay 

elements, one for each feedback variable. 
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In table (b) of Figure 2, the rows are defined by the 

signals at the output of the delay elements and the 

columns are defined by the combinations of the values of 

the primary input variables. A state of the circuit is a 

combination of the values of the variables (x1 ,x2 , •.• ,xn, 

y 1 ,y2 , .•. ,yp) and denotes a cell of the table. A row state 

consists of the values of the variables (y1 ,y2 , ... ,yp) only. 

If the next row state is the same as the present row state 

for a given input combination, then the entry is circled and 

is said to be stable. If the next row state is different 

from the present one, then the entry is not circled and is 

said to be unstable. The table (c) is same as table (b) 

except that the cells in this table represent the primary 

outputs of the circuit. 

Before proceeding to discuss the literature a number 

of definitions are presented first. 

A failure (fault) In a logic circuit, any transformation 

of hardware that changes the logical 

character of the function realized by 

the hardware. 

A primary input In a logical circuit, a line that is 

not fed by any other line in that 

circuit. 
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A primary output In a logical circuit 1 a line whose 

signal is accessible to the exterior 

of the circuit. 

A test (for a failure) A pattern of signals on primary 

Experiment 

inputs such that the value of the 

signal on some primary output will 

differ according to the presence or 

absence of that failure. 

The application of input sequences to the 

input terminals of a sequential 

machine and the observation of the 

corresponding output sequences in 

order to conclude something about 

the machine. 

Distinguishing sequence An input sequence which when 

Homing sequence 

applied to a sequential machine 

allows the initial state of the 

machine to be determined by observa

tion of the corresponding output 

sequence. 

An input sequence which allows the 

final state of the given machine to 

be determined by observation of the 

corresponding output sequence. 



Preset experiment 

Adaptive experiment 
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An experiment such that the input 

sequence to be applied is comple

tely determined in advance. 

An experiment such that the input 

sequence consists of subsequences 

which are selected by observing 

the response to previously applied 

subsequences. 

C. Discussion of Past Work 

For a combinational network a test is just an input 

combination. A test detects a fault if the network output 

differs from the correct output when the test is applied 

and the fault is present. The simplest way of constructing 

the fault-detection tests is the use of fault tables. A 

fault table is a table in which there is a row for every 

possible test (i.e. 1 input combination) and a column for 

each possible fault. A 1 is entered at the intersection 

of a row and column if the corresponding test detects the 

corresponding fault; otherwise a 0 is entered. The problem 

of finding a minimal set of tests then reduces to the 

problem of finding a minimal set of rows in the table such 

that they include at least one 1 in every column. In order 

to handle networks with larger number of variables a more 

systematic method of deriving the minimal test set is 

developed by Kautz (1) . 
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For large networks the previously described procedure 

becomes prohibitive because of the size of the fault 

table. Armstrong (2) then provides a short-cut procedure 

based on the 11 path-sensitizing" technique. By sensitizing 

all the paths of the network under test, all faults in 

the entire network will be detected. This procedure also 

appears to ensure finding a sufficient set of tests to 

detect all detectable faults. But it may become cumbersome 

when the number of paths through out the network is large. 

Another well-known procedure of fault detection is the 

D-algorithm (3) . If a test exists for a given failure the 

algorithm will find such a test. The method is to find 

the D-cube chains, which extends from the primary inputs to 

the outputsJ necessarily to detect all possible faults. 

The fault detection of sequential networks is more 

difficult than that of combinational networks. Bennie 

introduced the transition checking approach by use of the 

distinguishing sequences. Rennie's approach yields good 

results for machines that possess distinguishing sequences, 

and when the actual circuit has no more states than the 

correctly operating circuit. For machines which do not 

have a distinguishing sequence, Rennie's approach yields 

very long experiments .1 which are impractical. Further 

development of this approach was done by Kime (4) . When 

the machine has no distinguishing sequence, Kime makes two 

modifications: the addition of testing points and the 
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addition of logic. Nevertheless, the length of experiments 

is still very long and the experiments are extremely hard 

to apply in any practical situation. Kohavi and Lavallee 

(5) then present a method for designing sequential circuits 

in such a way that they will be made to possess dis

tinguishing sequences with repeated symbols by use of the 

additional output logic if the circuits do not have such a 

distinguishing sequence. The circuits thus modified have 

shorter fault-detection experiments than those of the 

original circuits. 

The distinguishing sequences just discussed are the 

preset fixed-length distinguishing sequences (FLDS). A 

variable-length distinguishing sequence (VLDS) is a preset 

distinguishing sequence X such that, if the machine is 
0 

started is an unknown state, the output response of the 

machine to some prefix of X (i.e., some subsequence of 
0 

X ) will identify the initial state. The length of the 
0 

required prefix is a function of the initial state. 

I. Kohavi and z. Kohavi (6) apply VLDS to the construction 

of fault-detection experiments. Consequently, the machine 

will have shorter and more efficient experiments when VLDS 

is used, provided the average length of the VLDS of the 

machine is shorter than that of the FLDS, and provided that 

a larger number of states possess the shorter prefixes of 

X . 
0 
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The above fault-detection approaches for sequential 

circuits generally lead to long testing sequence. One 

reason these sequences are so long is that these approaches 

are actually doing machine identification rather than 

simply fault detection. Based on Armstrong's theory, 

Kohavi (7) finds the minimal fault-detection tests set 

of the combinational networks from their Karnaugh maps. 

Kohavi then applies his approach to the generation of 

testing sequence for the sequential networks. 

Let the experiment for sequential networks be divided 

into two parts: the first part identifies that the given 

n-state machine has n states and the second part disting

uishes between the given n-state machine and those n-state 

machines which the given machine can be transformed into 

as a result of some fault. Kohavi's method generates a 

much shorter test sequence for the second part of the 

experiment than previously discussed methods. The class 

of n-state machines that the given machine can be trans

formed into as a result of some malfunction form a subset 

of all n-state machines. In order to distinguish between 

the given machine and the above subset of machines, shorter 

experiments are required than in the case of distinguishing 

between the given machine and the entire set of n-state 

machines. In other words, one need not identify the n 

distinct states of the machine and check all the transitions 

according to the given state table. 



Based on the above idea and Hughes' method (8), a 

fault-detection algorithm for asynchronous sequential 

circuits is presented in the following chapter. 

11 
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II. THE ALGORITHM 

A. Assumptions 

The asynchronous sequentia~ circuit presents a some

what more difficult testing problem. In general, an 

asynchronous circuit is not as well behaved as the corres

ponding synchronous circuit. Before going into the details, 

it is necessary to make some assumptions. 

1) The circuits considered here are fundamental

mode asynchronous sequential circuits. The 

inputs are levels, and are never changed unless 

the circuit is internally stable. It is 

required that only one input is changed at a 

time. 

2) The machines are strongly connected. This 

provides the capability of always establishing 

the feedback variables to be zero before begin

ning the test. 

3) The circuitry must be irredundant. A circuit is 

irredundant if its Boolean expressions are in 

minimal forms. The redundant circuit consists 

of redundant literals,where by literal we mean 

an appearance of a variable or its complement. 

Without this restriction, the function realized 



with a fault in the redundant circuitry is 

equal to the function realized without the fault. 

4) The flow table is free from critical races and 

oscillations. 

5) Only single faults are considered. 

6) The faults are permanent faults due to component 

failures and manifest themselves as stuck-at-one 

(s-a-l) or stuck-at-zero (s-a-o). 

l3 

In treating the single fault case one implies that 

fault-detection test will be run frequently enough so that, 

in generalr multiple faults will not occur. From a prac-

tical point of view this is not a severe limitation, since 

most circuits are reliable enough so that the probability 

of occurrence of multiple faults is very small. Other 

assumptions will be given as the discussion progresses. 

B. Algorithm 

The asynchronous sequential circuit shown in Figure 

3, with x
1

x 2 as primary inputs and z1 z2 as primary outputs, 

will be used to illustrate the algorithm. For convenience, 

the output portion (without feedbacks) of the circuit will 

be considered as the output network although it is regarded 

as part of the single block of the combinational logic as 

shown in Figure 2. Thusr the lower part of the circuit in 

Figure 3 will be called the output network. 
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xlx2 

2 00 01 11 10 

00 @ 01 01 01 

c 01 00 @ 11 11 

11 00 01 10 @ 
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yly2 

e Transition table 

yl = xly2 + xlyl = a + b 

- -
y2 = xlx2 + xlyl + xlx2 = c + d + e 

x2 f 
yl 

yly2 

xlx2 

00 01 11 10 

00 00 00 00 00 

yl g 
i z2 01 00 00 10 11 

xl 11 00 01 11 11 

10 00 01 11 11 
xl h 
x2 
y2 

zl = xly2 + xlyl 

z2 = x2yl + xlyl + xlx2y2 = f + g + h 

Figure 3. Circuit for illustrating algorithm 



In the remainder of this paper when input and output are 

spoken of, they will mean primary input and primary 

output respectively unless otherwise specified. Since 

the delay is not a physical element, they are not shown 
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in the circuit and will not be shown on subsequent figures. 

Figure 4 is the frult table of Figure 3 under stable 

state conditions. 

is as follows: 

The meaning of each column in the table 

S all stable state conditions; and, under 

stable state conditions; 

(N. S • ) c 

(N.S.)f 

the correct values of next state variables; 

the values of next state variables for 

the s-a-1 and s-a-o faults designated by 

the subscript; 

the correct outputs; 

the values of the outputs under s-a-1 and 

s-a-o faults of those lines related to 

the outputs. 

In constructing the fault table, all possible faults of 

the lines that are related to the next state variables should 

be included in column (N.S.)f. Only those faults associated 

with the output network and not included in column (N.S.)f 

are contained in column zf. The values of the next state 

variables under (N.S.)f are circled whenever they are dif

ferent from the correct values under (N.S.)c of the same row. 



s (N. S.) c 

xl x2 Y1 y2 yl y2 

0 0 0 0 0 0 

0 1 0 1 0 1 

1 0 1 1 1 1 

1 1 1 0 1 0 

(a) 1 (a}o (b) 1 (b)o 

00 (]o 00 G)o 

01 Q)l 01 (Dl 

11 11 11 11 

10 10 o.s. 10 

(N.S.)f 

Cxl)l Cxl)o (x2)1 cx2)o Cyl)l(yl)O Cxl)l (xl)o Cx2)1 Cx2)o 

@ 00 00 00 00 00 00 00 ~ 00 

@ 01 01 01 01 01 01 ~ 01 ~ 

11 @ 11 1(Q) 11 11 11 11 1@ 11 

10 @ 1(D 10 JC) 10 JQ) 10 10 llD 

(N. S. ) f 

(c)l (c)o (d)l (d)o (e) 1 (e)o (Y 1 )1 (Y 1)0 (Y 2 )1 (Y 2) 0 

00 o(D 00 o(D 00 oQ) Q)o 00 o(D 00 

01 01 01 01 o@ 01 (Dl 01 01 o@ 

1@ 11 11 11 ll 11 11 01 11 1@ 

10 1(D 10 l(D 10 1@ 10 0 1© 10 

Figure 4. Fault table for Figure 3 

I 

I-' 
0'1 
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z zf c 

z2 (f) 1 (f) 
0 

(g) 1 (g)o (h) 1 (h) 
0 

(i) 1 (i) 
0 

0 0 CD 0 CD 0 CD CD 0 

0 0 CD 0 CD 0 CD CD 0 

1 1 1 1 1 1 1 1 @ 

1 1 1 1 1 1 1 1 @ 

Figure 4. Fault table for Figure 3 (cont.) 

The same is true for zf. It should be emphasized that the 

values in the table are all in steady states, except the 

entry "O.S." under column (b) 1 . The symbol "O.S." indi

cates that the circuit will oscillate if one tries to put 

it in stable state x
1

x
2

y 1y 2 = 1110 under s-a-1 fault on b. 

A suggested short-cut technique for deriving the entries 

under (N.S.)f consists of writing the state equation as a 

function of the inputs and internal state variables for 

the fault specified, then forming the transition table. 

By comparing this faulty transition table with the original 

table, one can determine the proper entry. For example, 

the column (x
1

)
1 

(x
1 

s-a-1) is found from the equations: 

yl = ly2 + lyl = y2 + yl 

y2 = lx2 + lyl + Ox2 = x2 + yl. 
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The transition table becomes 

xlx2 

2 00 01 ll 10 

00 01 01 01 01 

01 ll ll ll ll 

ll @ 10 10 @ 
10 ll @ @ ll 

Figure 5. The transition table for x
1 

s-a-l 

Therefore, the stable state x 1 x 2y 1y 2 = 0000 is changed to 

the faulty stable state 0011 and state 0101 to 0110 owing 

In other words, in trying to get to 

stable state 0000 and 0101 the next state variables Y1 Y2 

become ll and 10 respectively instead of 00 and 01 in the 

presence of this fault. Thus, these two entries are circled, 

while the other states remain unchanged. 

It is seen that the s-a-l and s-a-o faults of Y1 and 

Y
2 

are not considered. The reason is that the feedback is 

a direct connection. The signals labeled y 1 (or y 2 ) and Y1 

(or Y
2

) in Figure 3 will really be the same signal. There-

fore, if one is stuck, it is assumed that the other is stuck 

at the same value. 

It is apparent from the fault table that stable states 

x
1

x
2

y
1

y
2 

= 0101, lOll, and 1110 are sufficient to detect 
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all faults except (y1 )
0

, (a) 1 , (d) 1 , (f) 1 , (g}
1

, and (h}
1

• 

If the fault table is much larger, Kautz's method (1) 

should be applied to simplify the fault table for obtaining 

the minimal set of test states. 

When a circuit has a fault some of the following con-

ditions may occur. 

1) Some stable states become unstable. 

2) Some unstable states become stable. 

3) The circuit is oscillating after some 

input sequence is applied. 

Now, in order to detect the faults undetectable by stable 

states, it is necessary to make use of the second property 

to see if some unstable state becomes stable owing to these 

Take 

Cy
1

)
0 

for instance; the transition table is changed to that 

shown in Figure 6. The previously unstable state 1100 

becomes stable. Similarly unstable states 1100, 1101, and 

1001 are stable in the presence of (a) 1 fault, while (d) 1 

produces the same result as (y 1 )
0 

• However (f) 1 , (g) 1 , 

and (h) 
1 

do not cause any unstable state to become stable. 

This is because lines f, g, and h are not related to the 

next state variables. They belong to the combinational 

output network. 



Figure 6. 

Attention is 

f = x2 + 

g = xl + 
h = xl + 

xlx2 

00 01 11 10 

00 @ 01 @ 01 

01 00 @ lQ 11 

11 OQ 01 10 @ 
10 oo· 01 @ 11 

Yl = xly2 + xlyl 

Y2 = xlx2 + xlx2 

The transition table for y
1 

s-a-o 

now given to the equations: 

yl 

yl 

x2 + y2. 
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Under stable state conditions f, g, and h assume values 

of 0 and 1 as shown in Figure 7. To illustrate how one can 

detect these faults, the variable f will be examined. When 

f is s-a-1 and the stable state 1110 is reached, the value 

on f differs according to the presence or absence of the 

fault. If f is made a testing output, the undetectable 

fault (f}
1 

can now be detected. The same is true for (g) 1 

and (h)
1 

faults. As a result, the two stable states 1011 



and 1110 should be used to detect these three faults: 

Consequently, the set of states 

xlx2yly2 = {0101, 1100, 1110, lOll} completely detects 

all faults when testing outputs are added. 

xl 

0 

0 

1 

1 

Figure 7. 

x2 yl y2 f g h i 

0 0 0 1 1 1 0 

1 0 1 1 1 1 0 

0 1 1 1 0 0 1 

1 1 0 0 0 1 1 

Stable state conditions for the output 
network of Figure 3 

After finding the minimal set of test states it is 

necessary to generate a test sequence to go through all 

these states. It should be emphasized that the unstable 

state is not treated as a stable state in the preparation 

of this experiment. Unstable states are used to detect 

some particular faults, but the unstable states become 

21 

stable only when particular faults are present. To provide 

a systematic method for deriving a short test sequence the 

tree approach (9) is used. The transition table of Figure 

3 is given again in Figure 8 for illustration. Every stable 

state and unstable state necessary to be tested are labeled 

with different numbers. And the states contained in the 
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test set are marked with "*". The state-transition tree 

is shown in Figure 9. The circuit is first reset to the 

yly2 11 10 
YC 

013 01 

11 11 

11 00 01 10 

10 00 01 

yly2 

Figure 8. The transition table for 
Figure 3 

If the circuit 

can not be reset to a starting state by a homing sequence, 

either preset sequence or adaptive sequence, we may conclude 

that there exists a fault and thus complete the experiment 

without any further test. The state at a particular level, 

say J, will be a terminal state whenever it appeared at the 

level less than J. Starting from state 1, the circuit goes 

to state 2 after inputs x 1 x 2 = 01 are applied. Then it goes 

to state 1 if next inputs are 00. Now this branch is ter-

minated since state 1 had appeared at level 1. In the same 

manner the whole tree will be generated. 
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1 level 1 

01 

I 
2* level 2 

11 I 00 

4* 1 level 3 

~ 
2 5* level 4 

00 I 11 

I 
1 4 level 5 

Figure 9. State-transition tree for Figure 8 

As shown in the tree every state has only two possible 

next states since there are two inputs associated with 

the circuit and one input change is allowed at a time. 

The unstable state, if any, will be put directly above its 

stable state and bracketed in order to distinguish it from 

stable state. By inspection, it is quite straightforward 

to generate a test sequence to go through the desired 

states. Unfortunately, state 3 cannot be reached because 

of the limitation that multiple input changes are not 

allowed. As stated before, state 3 is used to detect 

It is, therefore, necessary 



24 

to pick up unstable state 1101 for the detection of (a)
1

. 

Note that (y 1 )
0 

can be detected under stable state 0101 

(in the set of test states) if testing output is added. 

However, (d) 1 fault is undetectable in this particular 

example. The experiment is as follows: 

Input x 1 x 2 

Output Y2 z1 z2 

ylfgh 

00 

000 

xxxx 

01 

100 

lxxx 

11 10 

011 111 

xOxx xxOO 

where Y2 , y 1 , f, g, and h are used as testing outputs and 

the symbol "x" represents "don't care". 

Since the worst case is considered and only one input 

change at a time is allowed, the (d) 1 fault is undetectable 

by this algorithm. It is interesting to note that the 

above experiment might detect this fault. From Figure 6 

when the machine is in stable state 0101 and inputs 11 are 

applied it might go to stable state 1100 owing to the 

critical race. Thus, the (d) 1 fault could be detected if 

it exists. 

In general, the density of stable states in a practical 

circuit is much higher than the above example where only 

1/4 of the states are stable. Therefore, the probability 

of the existence of practical circuits with faults which 

are undetectable by this algorithm seems to be small. It 

should be pointed out here that the tree approach may become 

very tedious for large networks. In this way, one may choose 



the "trial and error" procedure to derive the test 

sequence. 

The testing procedure can be listed now as follows. 

It is assumed that a circuit and its transition table 

and output table are given, and that testing outputs can 

be added. 

1) Construct the fault table under stable state 

conditions, simulating s-a-o and s-a-1 faults 

on each line. 

2) Under column (N.S.)f of the fault table if not 

all faults are detected under stable state 

conditions, find the unstable states which will 

become stable in the presence of the undetectable 

faults. 

3) If not all faults in columns(N.S.)f and Zf are 

detected, find the stable states which will 

indicate the faults when testing outputs are 

added to those lines. 

4) Find the minimal set of test states sufficient 

to detect all faults. 

5) Generate the state-transition tree to derive a 

shortest test sequence to go through the states 

found in 4) . 

25 

There exists a subset of the former class of asynchronous 

sequential circuits. They are the circuits with the outputs 
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identical to the next state variables. In this case, 

step 3) of the above procedure is unnecessary. An example 

in the next chapter is presented to illustrate this case. 

C. Evaluation of the Shortest Test Sequence 

In this section the minimization of test sequences is 

investigated. In a circuit which has some particular fault 

some stable states become unstable and some unstable states 

become stable. If all unstable states are included in the 

fault table and optimun use is made of the fault table, it 

is possible to find a shorter test sequence for some cir-

cuit. The algorithm discussed previously is used to con-

struct the fault table under stable state conditions onlyi 

if all stable states or some subset of them are sufficient 

to detect all faults, then the test sequence is generatedi 

otherwise the necessary unstable states are added to the 

test sequence to detect the faults undetectable by stable 

states~ or testing outputs are added. 

To illustrate the idea presented above consider the 

following example taken from Hughes (8). Each decimal 

number in the transition table identifies a state. 

The fault table is shown in Figure 11. The minimal 

set of test states for this circuit is 

011* 110* 
100 } 
001 

101 

The meaning of the above notation is that the states marked 

with "*" are essential and that one state out of lOOr 001, 



xl 

x2 

x2 
y 

y = 

Figure 10. 

xlx2 

Y=Z y 00 01 11 10 

0 @1 ®; 1 X ®7 5 

1 0 2 * <D4 <D6 0 8 

Y(=Z) 

a + b 

Circuit for evaluating the shortest 
test sequence 

and 101 can be selected. The state-transition tree is 

shown in Figure 12. From it the shortest test sequence 

x 1 x 2 = 00 01 11 01 00 is found. When the algorithm 

described in last section is applied, the state 100 

will be selected. Thus, the test sequence becomes 

Note that the length of this 

test sequence is longer than the former. However, it 

must be pointed out that not all circuits have this 

property (i.e., their test sequence can be further mini-

mized) and that the length can not be made much shorter 

by this method although it causes the fault table to be 

more cumbersome. For example, this method is not useful 

to the two examples in the next chapter. 

27 
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s z zf c 

xl x2 y z (xl)l (xl)O (x2)1 (x2)0 (a) 1 (a)o (b) 1 

0 0 0 0 0 0 0 0 0 (1) 0 

0 1 0 0 CD 0 0 0 0 (1) 0 

1 0 0 0 0 0 CD 0 0 Q) 0 

0 1 1 1 1 1 1 @ 1 1 @ 

1 1 1 1 1 1 1 @ 1 1 1 

1 1 0 1 1 @ 1 @ @ 1 1 

0 0 1 0 0 0 CD 0 0 Q) 0 

1 0 1 0 0 0 CD 0 0 CD 0 

' 

zf 

(b)o (Y) 1 (Y) 0 

(1) (1) 0 

(1) (1) 0 

(1) <D 0 

1 1 @ 

1 1 @ 

1 1 @ 

Q) <D 0 

Q) <D 0 

Figure 11. Fault table for Figure 10 
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1 
01 I 10 

3* 7 

00 11 00 11 

I 
* (s) 1 (5) 1 

I 
6 6 

01 I 10 

I 
4* (8) 

11 00 I 
1 ..... 7 

6 (2) 

I 
1 

Figure 12. State-transition tree for Figure 10 



30 

III. EXAMPLES 

In this chapter two examp~es are presented to illus

trate the a~gorithm in more detail. 

Example 1 

The circuit in Figure 14 (taken from Kime (4)) has 

the outputs identical to next state variables. Step 3) 

of the testing procedure is to be omitted. The fault 

table is shown in Figure 15. It is seen from the fault 

table that the (e) 1 fault can not be detected under stable 

state conditions. But when ~ine e is stuck at one the 

transition table becomes that shown in Figure 13. 

yly2 01 11 10 

01 01 

01 11 @) @ 
~1 @ 10 10 

10 10 @ @ 

yly2 (=ZlZ2) 

yl = xlx2y2 + x2y~ + x~yl 

y2 = x2y2 + x2yl 

Figure 13. The transition tab~e for e s-a-1 
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Figure 14. Circuit for example 1 



I 

s z c 

xl x2 yl y2 zl z2 

0 0 0 0 0 0 

0 0 1 1 1 1 

0 1 0 1 0 1 

0 1 1 0 1 0 

1 1 0 1 0 1 

1 1 1 0 1 0 

1 0 0 1 0 1 

1 0 1 1 1 1 

1 0 1 0 1 0 
I-- - ...... 

zf 

(xl)l (xl)o (x2)1 (x2)o (yl)l (yl)o (x2)1 (x2)o (xl)l (xl)o 

oQ) <(D ' 

00 00 00 00 00 00 00 00 

11 @1 11 0 11 11 1@ 11 11 11 I 
01 01 <1)1 01 01 o@ (})1 

l 
01 01 01 I 

10 10 10 10 lG) 10 10 @o 10 10 

01 01 01 01 01 <@ 01 01 01 01 

10 10 10 10 lQ') 10 10 l(j) 10 10 

G)l 01 01 01 01 01 01 01 01 0)1 

11 11 11 1@ 11 11 1@ 11 11 11 

10 10 10 10 l(D 10 10 lQ) 10 @o 

Figure 15. Fault table for Figure 14 

w 
[\) 



zf 

(a)1 (a)o (b)1 (b)o (c)1 (c)o (d)1 (d)o (e)1 (e)o (f)1 (f)o (Y1)1 (Y1) 0 (Y2) 1 (Y2) 0 

00 Q)o 00 (Yo 00 Q)o 00 o(D 00 o(D 00 oQ) Q)o 00 @ 00 

@1 11 11 11 11 11 @ 11 11 11 11 11 11 @1 11 @ 

01 Q)1 01 Q)1 01 @1 01 01 01 01 o@ 01 @ 01 01 o@ 

10 10 @ 10 10 10 10 1@ 10 1Q) 10 1G) 10 @ 1Q) 10 

01 G)1 01 Q)1 01 @1 01 01 01 01 01 01 @ 01 01 o@ 

10 10 10 10 10 10 10 1Q) 10 1(]} 10 1(j) 10 @ 1Q) 10 

01 {1)1 01 (j)l 01 Q)l 01 01 01 01 01 01 Q)l 01 01 o@ 

11 11 11 11 @1 11 1@ 11 11 11 11 11 11 @1 11 1@ 

10 10 10 10 <§ 10 10 l(j) 10 lQ 10 lQ) 10 <§ lG) 10 
-- ·--

~-

Figure 15. Fault table for Figure 14 (cont.) 

I 

w 
w 
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Therefore, unstable state x 1 x 2y 1y 2 = 1000 is included in 

the set of test states x 1 x 2y 1 y 2 = {0000, 0011, 0101, 

0110, 1001, lOll, 1000}. Figure 16 shows the transition 

table with desired states marked and the state-transition 

tree. 

1* 
10 01 

I 
[7) * 3* 

I 00 

8* I 
11 

01 11 10 n 2* 

10 01 

5 

01 10 

'i< 

00 01 01 01 
2 5 

9* 
I 

4 3 

01 11 @ 
11 @ ~ 

1 6 
~ 
2 6 

10 00 

YlY2(=ZlZ2) 
f-U--lo 

4* 10 

~ 
1 6 

Figure 16. Transition table and state-transition tree for 
Figure 14 

The shortest test sequence is 

Input xlx2 00 10 11 01 00 10 11 01 

Output zlz2 00 01 01 01 11 11 10 10. 

In order to place the circuit in initial state x1X2Y1Y2 = 

0000 an adaptive homing sequence should be used. First, 

I 
8 
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apply 00. If the output is 00, we then start the test se-

quence; otherwise another input sequence, 01 00, must be 

applied before beginning the test. 

In his paper Kime obtained a experiment for this cir-

cuit. It required 31 input symbols in spite of the fact 

that numerous short cuts and tricks were used in its con-

struction. This is almost 4 times longer than the above 

result which requires 8 symbols. 

Example 2 

Since the circuit shown in Figure 17 is a conventional 

asynchronous sequential circuit, all steps of the proce-

dure should be applied. Figure 18 is its fault table. 

From it the set of test states x 1 x 2y 1y 2 = {0010, 0101, 

0110, 1100, 1111, 1001, 1010} is found. Note that all 

stable states except 0000 are included in this set. There-

fore it is unnecessary to construct the state-transition 

tree. The test sequence is the following: 

Input x 1 x 2 

Output Y1 Y2 z1 z2 

00 10 11 10 00 01 11 01 

0000 0110 1101 lOll 1010 1000 0011 0101 

where Y
1 

and Y
2 

are testing outputs. Again, an adaptive 

homing sequence (x1 x 2 = 00 or 00 01 11 01 00) is used to 

put the circuit in the starting state x 1x 2y 1 y 2 = 0000. 
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a 

c 

xl yl + + 
- b -

= xlyl x2yl xlx2y2 = a + + c 
e 

x2 ---1 

y 1 ----~------ y2 = xlx2y2 + xlx2yl + xlx2yl 

- d -
= c + + e 

p 

xlx2 

2 00 01 11 10 

00 00 01 11 10 

r 01 00 01 01 10 

11 10 00 01 11 

10 10 00 11 11 

-
x1x2 + x1y2 + x2yl = P + q + r 

z2 = x2yl + x1yl = s + t 

Figure 17. Circuit for example 2 



s (N.S.)c 

xl x2 yl y2 yl y2 

0 0 0 0 0 0 

0 0 1 0 1 0 

0 1 0 1 0 1 

0 1 1 0 1 0 

1 1 0 0 0 0 

1 1 1 1 1 1 

1 0 0 1 0 1 

1 0 1 0 1 0 

(N.S.)f 

<xl)l (xl)o (x2)1 <x2)o (xl)l <xl)o <x2)1 (x2)o (Yl)l (yl)O 

00 00 00 00 oQ) 00 oQ) 00 00 00 

10 10 10 10 10 10 10 10 10 10 

01 o@ 01 01 @1 01 01 o@ 01 o@ 

10 @o 10 10 @o 10 10 10 10) 10 

@ 00 @ 00 00 o(D 00 oQ) 00 00 

11 11 11 11 11 1@ 11 1@ 11 11 

01 01 01 o@ 01 o@ G)l 01 01 o@ 

10 10 10 @o 10 10 @o 10 1@ 10 

Figure 18. Fault table for Figure 17 

w 
-.J 



lN. S.) f 

(a)l (a)o (b)l (b)o (c)
1 

(c}
0 

(d)
1 

(d)
0 

le) 1 (elo (Yl)l (Yl}O (Y2)1 (Y2)C 

00 G)o 00 (Do 00 @ 00 oQ) 00 o0) Q)o 00 oG) 00 

10 10 10 10 10 lG) 10 l(D 10 lQ) 10 @o lG) 10 

01 G)l 01 Q)l 01 G)l o@ 01 01 01 @ 01 01 o@ 

@ 10 10 10 10 lG) 10 lG) 10 lG) 10 @ lQ) 10 I 

00 (Do 00 (Do 00 @ 00 o0) 00 oQ) (Do 00 @ 00 

11 11 11 11 @ 11 11 11 11 11 11 @1 11 @ 

01 G)l 01 (1)1 01 Q)l 01 01 o@ 01 @ 01 01 o@ 

10 10 @ 10 10 1(1) 10 1(1) 10 1@ 10 @ 1@ 10 

Figure 18. Fault table for Figure 17 (cont.) 

w 
(X) 



z 
c 

zl z2 

0 0 

1 0 

0 1 

0 0 

1 1 

0 1 

1 0 

1 1 

zf 

(y2)1 Cy2}o (P}l (P}o (q}l (q}o Cr}l Crlo (s}l Cslo (t}l (t)o (Zl}l ('1_}o Cz21 (Zjo 

00 00 00 KDo 00 Q)o 00 (Do 00 oG) 00 oQ) (Do 00 o(D oo 

10 10 10 10 10 10 @o 10 10 lQ) 10 1{1) 10 @o 1{1) 10 

01 01 01 (Dl 01 (Dl 01 Q)l o@ 01 01 01 Q)l 01 01 a@ 

00 00 00 1 0 00 (Do 00 (Do 00 o(D 00 oQ) Q)o 00 oQ) 00 

11 @1 11 11 @1 11 11 11 1@ 11 11 11 11 @1 11 1@ 

(1)1 01 01 Q)l 01 Q)l 01 (})1 01 01 o@ 01 (1)1 01 01 o@ 

10 10 @o 10 10 10 10 10 10 lQ;} 10 1(1) 10 @o 1(1) 10 

11 11 11 11 11 11 11 11 1 1 11 1@ 11 11 @1 11 1@ 

Figure 18. Fault table for Figure 17 (cont.) 

1 

w 
~ 
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IV. CONCLUSIONS 

The algorithm developed in this paper presents a 

method for detecting a single failure in an asynchronous 

sequential circuit which is treated from the combinatoric 

point of view. Since the states sufficient to detect all 

possible faults of the circuit form a subset of the total 

states, the experiments are to check only this subset of 

states rather than all the transitions of the states. In 

this way, a very short test sequence can be generated. 

The effectiveness of the algorithm depends on the density 

of stable states. Attempts at finding a practical cir

cuit with faults which are undetectable by this algorithm 

have been unsuccessful. The only disadvantage, and one 

which is common to most of the fault-detection methods, 

is that when the circuit has a large number of inputs and 

state variables the procedures of the algorithm may become 

quite lengthy. 
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