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ABSTRACT 

The hydrodynamic stability of laminar flow of 

an electrically conducting fluid flowing in a parallel­

plate channel with an applied transverse magnetic field 

is investigated. The linear perturbation theory of 

hydrodynamic stability along with the assumption of low 

magnetic Reynolds number is applied to the governing 

equations to derive the governing rnagnetohydrodynarnic 

stability equation. A finite difference scheme is 

employed to numerically solve the magnetohydrodynamic 

stability equation. Neutral stability characteristics 

of the flow in the entrance region are obtained and 

presented. The neutral stability characteristics of 

the fully developed Hartmann flow are also re-examined 

and compared with those of a previous investigation which 

utilizes an analytical method of solution. A linearized 

velocity solution for developing flow is used in the 

stability calculations. 

The numerically determined neutral stability results 

for the fully developed Hartmann flow are in excellent agree-

ment with those of the analytical solution. The results 

presented here for Hartmann flow are believed to be more 

accurate owing to the more exact nature of the numerical 

solution. 
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It is found that the critical Reynolds number for 

the developing flow induced by the uniform inlet velocity 

profile decreases rapidly with axial distance in the 

entrance region and monotonically approaches the fully 

developed value at large axial distances. For Hartmann 

numbers of less than 2, the decrease is monotonic; how­

ever, for larger Hartmann numbers, the critical Reynolds 

number decreases rapidly and goes below that of the 

fully developed Hartmann flow somewhere in the entrance 

region of the channel and then approaches this fully 

developed value monotonically from below at large axial 

distances. 

The critical Reynolds number for the developing 

flow induced by a parabolic inlet velocity profile approaches 

the fully developed critical Reynolds number monotonically 

from a value of 3850 at the inlet for Hartmann numbers 

of less than 2. For larger Hartmann numbers, the critical 

Reynolds number over-shoots the fully developed value, 

approaching it monotonically from above at large axial 

distances. 
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I. INTRODUCTION 

A. General Background 

Within the twentieth century, the areas of magneto­

hydrodynamics and hydrodynamic stability have been born 

and rigorously investigated. Magnetohydrodynamics (MHD) 

is a rather complicated science which deals with the 

coupled problems of fluid mechanics and electromagnetics. 

MHD utilizes the fluid continuum model to approach this 

coupled problem while plasma dynamics employs the statisti­

cal model to deal with the coupled analysis. The coupling 

factor between fluid mechanics and electromagnetics is the 

electrical conduction property of the fluid. A conductor 

moving perpendicular to a magnetic field creates a 

current perpendicular to the direction of the fluid motion 

and to the direction of the magnetic field; furthermore, 

motion of the fluid perpendicular to the magnetic field 

is opposed by an induced electromotive force, the MHD 

body or field force. 

The linear theory of hydrodynamic stability predicts 

the response of laminar fluid flow to small disturbances. 

Basically, perturbations or small disturbances are super­

imposed onto the main flow in the governing equations. If 

the analysis of the perturbation equations shows that 

these disturbances grow with time, the flow is "theoreti­

cally unstable" to small disturbances. If the analysis 
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shows the disturbance to decay with time, the flow is 

"theoretically stable" to small disturbances. When the 

disturbances neither grow nor decay, the flow is said to 

be neutrally stable. In actual flow, the critical Reynolds 

number is the minimum Reynolds number at which the laminar 

flow becomes unstable. Once this Reynolds number is 

exceeded, the flow may change to another laminar flow 

pattern or begin its transition to turbulent flow. Further, 

the theoretically determined critical Reynolds number is 

lower or more conservative than the experimentally observed 

critical Reynolds number. More detailed introductory 

remarks on the stability of laminar flow can be found, for 

example, in a book by Schlichting (1). 

The presence of the MHD body force, which may be quite 

large relative to more common body forces such as gravity 

or acceleration, creates an interesting hydrodynamic 

stability problem. One would expect that the presence of 

a magnetic field force tends to increase the stability of 

laminar flows to small disturbances; for the reason that 

the field force will essentially "tense-up" the flow to 

changes of any nature. Utilizing the concept of distur­

bance energy, one might say that the field force greatly 

enhances the dissipation of any disturbance energy. This 

combined problem of hydrodynamic stability and magneto­

hydrodynamics will be referred to as magnetohydrodynamic 



stability by the author; although, hydromagnetic or 

magnetofluidmechanic stability might have been chosen. 

The latter would better represent the topic; however, 

the former is a conventional misnomer. 

3 

The linear perturbation theory of magnetohydrodynamic 

stability consists of perturbing (disturbing) all main 

quantities of the flow and magnetic fields, neglecting 

the products of small perturbation quantities (linearizing), 

and analyzing the equations due to perturbation terms. 

The perturbations for the flow and magnetic fields are then 

represented, respectively, as a spatially dependent ampli­

tude function multiplied by a time and space dependent 

exponential which constitutes the respective perturbation 

stream function. These perturbation stream functions, in 

turn, satisfy conservation of mass and of magnetic field, 

respectively. With the perturbations in this form, one 

may predict the growth or decay of the disturbances with 

time and thus the relative instability or stability of the 

laminar fluid motion under a magnetic field. Another 

obvious case of importance is the neutral stability of 

laminar flow; the condition at which the flow is neither 

stable nor unstable. Under this condition, laminar flow 

is on the threshold of the change to other flow patterns. 
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B. Previous Studies 

Several investigations on the MHD stability problems 

for the fully developed flow in a channel have appeared 

in the literature. Of these, the work of Stuart (2) and 

of Lock (3) will be mentioned briefly. Stuart (2) investi­

gated the MHD stability of a conducting fluid moving 

parallel to the magnetic field in a parallel-plate channel. 

With this scheme, no changes in the velocity profile due 

to the magnetic field are experienced. Stuart found that 

the magnetic field affects the perturbations such that the 

stability of flow is increased; an effect which is sub­

stantial only for very large Hartmann numbers. 

Lock (3) investigated the case where the conducting 

fluid moved perpendicular to the magnetic field for the 

parallel-plate duct geometry. Perhaps Lock's most signi­

ficant finding is that the main effect of the magnetic 

field on the stability problem is reflected in the changes 

in the velocity profiles due to the presence of the MHD 

body force. Indeed, in his stability calculations, Lock 

neglected all terms involving the magnetic field except 

the velocity profiles corresponding to the fully developed 

Hartmann flow. Lock found that the critical Reynolds 

number increases quite rapidly with increasing Hartmann 

number for the fully developed flow. The Hartmann number 

is dependent only on the strength of the applied magnetic 
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field and on the properties of the fluid. Both Stuart 

and Lock employed an analytical (i.e. , asymptotic) 

method of solution. Their results are, therefore, 

approximate in nature. To the best knowledge of the 

author, no numerical solution on the stability of the fully 

developed Hartmann profiles has been reported. 

Recently Chen and Sparrow {4,5) have studied the 

stability characteristics of developing laminar flow in 

the entrance region of a parallel-plate channel without 

the presence of a magnetic field. The stability character­

istics they studied correspond to developing profiles 

induced by a uniform and a linear velocity distribution 

at the channel inlet. They found that the critical 

Reynolds number decreases monotonically as the axial 

distance increases, attaining the limiting value for the 

fully developed, plane Poiseuille flow. They also found 

that as the velocity profile becomes more skewed, the 

flow becomes more stable. 

The stability of MHD flow in the entrance region of 

a parallel-plate channel seems not to have been investi­

gated. Because of the interaction between the changes in 

the velocity profiles and the induced electromotive force 

in the entrance region of a MHD channel, it is of interest 

to study the stability characteristics of such a flow. 
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C. The Present Investigation 

The purpose of this investigation is to examine the 

coupled problem of the stability of a magnetohydrodynarnic 

flow in the entrance region of a parallel-plate channel. 

In the present investigation, the linear magnetohydro­

dynamic stability of flow in the entrance region of a 

parallel-plate channel under a transverse magnetic field 

is analyzed. The stability characteristics to be studied 

here correspond, respectively, to the developing flows 

induced by a uniform velocity profile (slug flow} and a 

parabolic velocity profile (hydrodynamically fully devel­

oped) at the channel inlet. The stability characteristics 

of the fully developed Hartmann flow are also re-examined. 

In the analysis, small, two-dimensional perturbations are 

superimposed on the main flow. The linearized pertur­

bation equations are then expressed in terms of amplitude 

functions by introducing stream functions which satisfy 

the conservation equations. These equations are then 

reduced into a single magnetohydrodynarnic stability 

equation. The resulting eigenvalue problem is solved by 

a finite difference scheme similar to that of Chen (6). 

Neutral stability curves and critical Reynolds 

numbers for the Hartmann flow and for the developing flow 

at various axial locations in the entrance region are 

obtained. The effect of flow development and the applied 
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magnetic field on the stability characteristics of flow in 

the entrance region is studied. The stability results 

from the present investigation are compared with those 

reported by Chen and Sparrow (4,5) for the purely hydro­

dynamic case. In addition, the stability results of the 

Hartmann flow from the finite difference method of 

solution will be compared with those of Lock (3) obtained 

by the asymptotic method of solution. 



II. FORMULATION OF THE STABILITY PROBLEM 

It has now been well established that the present 

work deals with the study of the stability of laminar 

flow of an electrically conducting fluid in the 

entrance region of a parallel-plate channel under a 

transverse magnetic field. In the analysis of this 

problem, it is necessary to first present the governing 

MHD equations for the main magnetic and flow fields and 

reduce them to simpler forms by applying the various 

assumptions of the analysis. These equations are then 

perturbed with respect to the main fields. After 

eliminating the main field components, the resulting 

equations for the disturbances are then simplified to 

two equations, one for the flow field and the other 

for the magnetic field. Next, by assuming a small 

magnetic Reynolds number, these two equations are com­

bined into a single governing differential equation in 

terms of the amplitude function of the velocity distur­

bance stream function. This equation together with the 

appropriate boundary conditions is then converted into 

finite difference form and solved numerically with the 

aid of a digital computer. Because the governing sta­

bility equation contains terms associated with the 

velocity component of the main flow and its second 

8 
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derivative, a brief description of the flow development 

will be presented prior to the stability analysis. 

A. The Governing Equations 

Magnetohydrodynamic flows are governed by Maxwell's 

equations of electromagnetism, Ohm's law of electrical 

conduction, and, for the present study, the equations of 

Newtonian fluid motion. For constant fluid properties, 

these equations in vector form are 

Maxwell's Equations 

+ li \1 X = 
+ 
J (Ampere's Law) (1) 

+ + 
\1 . B = 0 (Magnetic Induction) (2) 

+ 
+ + aB 
\1 X E = - at* (Faraday's Law) (3) 

+ + (4) \1 • J = 0 

Ohm's Law (without Hall effect) 

+ + + + 
J = cr(E + V X B) (5) 

Continuity Equation 

+ + 
\1 • v = 0 (6) 

Equation of Motion (Navier-Stokes Equation) 

av + ~ + 1 c+ +> 1 vp + vv 2 v C7> at* + (V • v) V = p J X B - p 

where all symbols have been defined in the nomenclature. 
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These governing equations have been established 

with the application of assumptions commonly employed 

in the analysis of magnetohydrodynamics. The more 

significant among these are (a) the electric field 

force, peE, is negligible in comparison with the magnetic 

force, j X ~, and (b) all velocities are taken to be much 

less than the speed of light so that no relativistic 

effects occur. In the present work, the magnetic per-

meability, l1 , and the electrical conductivity, cr, of 
m 

the working fluid are taken as invariant scalar quantities. 

One may eliminate the electric field from Equations 

(5) and (3) and utilize Equation (1) along with the 

relation B = l1 a to obtain the magnetic transport m 

equation: 

-+ 
ClH = 
at* (8) 

By making use of a vector identity and Equations (2) and 

(6), the magnetic transport equation, Equation (8}, can be 

written as 

-+ -+ -+ 
ClH + (V • V') H 
a'E* 

(9) 

an equation which proves convenient later in the analysis. 

In addition to the assumptions mentioned in writing 

down the MHD equations, other assumptions of the analysis 
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will now be discussed. The MHD duct to be considered 

here is of a parallel-plate channel geometry with the 

plate width very large in extent in the z* direction. 

The top and bottom plates are electrically non-conducting. 

The axial and transverse coordinates, x* andy*, are 

measured, respectively, from the inlet and centerline 

of the channel. The height of the channel is 2L so that 

-L < y* < L. Since L << z*, the velocity field does not 

vary in the z* direction. A constant magnetic field of 

intensity H is applied in the y* direction normal to 
0 

the channel walls. Also, magnetic end effects and MHO 

end losses are neglected. 

The effects of the induced magnetic field, H , in 
X 

the axial direction on the flow field are neglected. In 

addition, H is considered small in comparison with the 
X 

applied magnetic field, H0 • This implies that the mag-

netic Reynolds number, Rm' is assumed to be small. The 

magnetic field in the y* direction, Hy' is assumed con­

stant and equal to H0 • The induced magnetic field, Hx' 

is considered invariant with respect to x* and z* 

coordinates. Thus H is a function of y* only. 
X 

The 

condition that H << H = H can be verified from an order 
X y 0 

of magnitude analysis as applied to Equation (9) for a 

steady, two-dimensional magnetic field. The gravitational 

field force can be neglected in comparison with the 



magnetic field force. In addition, Hall currents are 

assumed absent. 
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The flow in the entrance region of the channel is 

assumed to be steady, laminar, and two-dimensional, and 

the fluid properties are assumed constant. Finally, the 

Prandtl boundary layer assumptions are assumed valid. 

The assumptions that the Prandtl boundary layer 

assumptions are applicable and that the flow is parallel, 

i.e., u = u(y*), in the entrance region are quite 

critical to the analysis. Significant uncertainly may 

be generated at this point because one of the boundary 

layer assumptions is that in the entrance region the 

velocity component in the y* direction, v, is very small 

compared with the velocity component in the axial direction, 

u. Doubts can be raised in neglecting the transverse 

velocity component, v, because the fully developed flow 

(Hartmann profile) occurs in relatively short entrance 

lengths due to the presence of the relatively large 

magnetic body force. However, it can be shown from an 

order of magnitude analysis together with the assumption 

of small magnetic Reynolds number that the fluid velocity 

and magnetic field in the axial direction can be con­

sidered as functions of y* only, with good accuracy. In 

his unpublished work, Chen (7) has shown that the parallel 

flow assumption is quite applicable to the stability 



analysis for flows in the entrance region of a parallel 

channel, providing no mass transfer occurs through the 

channel walls, either by suction or injection. This 

conclusion may safely be extended to the stability 
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analysis of MHD channel flows for small Hartmann numbers 

of, say, less than 10. 

B. The Basic Flow 

Before proceeding to the execution of the stability 

analysis, a knowledge of the main flow velocity field in 

the entrance region of the MHD channel is necessary. The 

electrically conducting fluid enters the MHD channel with 

a specified velocity profile, W (y*). The magnetic and 
0 

viscous forces act on the flow in the channel entrance 

region until a fully developed, Hartmann profile is 

established. This Hartmann profile, once established, 

remains unchanged for the remaining channel length. 

The flow development in the entrance region of a 

MHD channel has been analyzed by many investigators 

using various approximate methods of solution. Among 

them are the Karman-Pohlhausen integral method employed 

by Maciulaitis and Loeffler (8} , the patching of the 

upstream and downstream velocity field technique utilized 

by Reidt and Cess (9}, the finite difference method of 

solution employed by Hwang, et al. (10,11), and the 
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application of the linearization method of Sparrow, 

et. al. (12) by Snyder (13). Very recently Chen (14) 

employed the linearization technique to obtain solutions 

for the flow development and pressure drop in the entrance 

region of a MHD channel for any type of velocity distri­

butions at the channel inlet. These solutions were then 

specialized for parabolic and linear inlet velocity 

profiles. The equation Chen solved was a linear form of 

Equation (7) with the boundary layer assumptions applied. 

In the present study, the velocity solutions obtained 

by Chen (14) will be used in the stability analysis. This 

work is used because the velocity solutions are expressed 

as a continuous function of the axial and transverse 

coordinates all the way from the channel entrance to the 

fully developed region, so that the velocity and its 

derivatives can be evaluated with great accuracy. It is 

well known from the stability analysis that the velocity 

and its derivatives play an important role in the accuracy 

of the final results of the stability calculations. 

For convenience, highlights of Chen's work (14) will 

be described briefly. In order to perform his analysis, 

Chen made the following assumptions: (a) no Hall currents 

are present, (b) the Prandtl boundary layer equations 

hold, (c) the pressure is uniform across the channel, (d) 

the fluid properties are constant, (e) the magnetic 
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permeability and electrical conductivity are scalar 

constants, (f) the magnetic end effects and MHD end 

losses are neglected, and (g) the electric field 

measured across the channel walls is zero. Therefore, the 

assumptions made in writing down the governing MHD 

equations for the problem under consideration are quite 

compatable with those of Chen. 

The linearization technique used by Chen is an 

extension of the technique developed by Sparrow, et al. 

(12) for analyzing purely hydrodynamic duct flow problems. 

His method is to linearize the nonlinear inertia terms in 

the axial momentum equation by introducing a stretched 

axial coordinate, x or X, and a function which contains 

the pressure gradient and the residue of the inertia terms. 

It is possible to seek a solution of this linearized 

equation as a linear combination of a fully developed 

velocity, wfd' and a difference velocity, W*, which goes 

to zero as X approaches infinity (large axial distances) . 

The details of the solution can be found in the work of 

Chen (14). 

For the case of parabolic inlet velocity profiles, 

w0 (y} = 1.5(1- y 2 ), the velocity solution is given by 

W(X,y} = M(CoshM-CoshMy)+ .! 2 ( M2 ) 
MCoshM-SinhM ~=1 :2 2 2 a. a.+M 

~ ~ 

Cosaiy 2 2 _ 
• (1 -Cos ail exp[-(ai + M }XI (10} 



and for the uniform velocity profile at the channel 

inlet, W = 1, it is given by 
0 

W(X,y} 00 

L: = M(CoshM-CoshMy} + 
MCoshM-SinhM 

i=l 

where the ai are the roots of ai = tan a .. 
~ 
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( 11) 

The stretched axial coordinate, x (or X} appearing in 

Equations (10} and (11) is related to the actual axial 

coordinate, x* (or X), by the relation 

or (12) 

where 
1 

aw 3 2 
<ax> <2w - - w } dy 2 

0 
e: (M,X) = ( 13} 

1 

r(w2-l)dy (~} + <aw> 2d +M2 
ay y=l ay Y 

0 

The foregoing equations fully specify the magneto-

hydrodynamic velocity development expressed as W(=u/U} 

as a function of X and y for parametric values of Hartmann 

number, M. The relationship between the actual physical 

coordinate, X, and the stretched axial coordinate, X, is 
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listed in Table B-1, Appendix B. As X (or X) approaches 

infinity, both expressions for W, Equations (10) and (ll), 

reduce to Wfd' the fully developed Hartmann profile, given 

by the first term on the right-hand side of the equations. 

For the stability analysis, the second derivatives of 

the velocity solutions, Equations (lO) and (11), with 

respect to y are needed. For completeness, they are pre-

sented here: 

For W 
0 

2 = 1. 5 (1 - Y ) I 

= -M3CoshMy ~ 2M2 
MCoshM-S~nhM + igl a~+M2 

~ 

2 2 -• exp[-(a.+M )X] 
~ 

For W0 = l, 

2 2 -• exp[-(a..+M )X] 
~ 

c. The Stability Equation 

2 2a. 
~ 

( 14) 

(lS) 

It is assumed that the main flow, u, depends on y* 

only; that is, the flow is parallel. Parallel flow is not 

exactly the situation encountered in the actual flow under 

study here. However, in situations in which the flow is 

nearly unidirectional, it ia a standard procedure to 
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employ the parallel flow model for the purpose of the 

stability analysis. The flow in the entrance region of 

a magnetohydrodynamic channel is nearly parallel. 

By employing the parallel flow model and an order of 

magnitude comparison together with the approximation of 

small magnetic Reynolds number, the various vector quanti-

ties representing the basic flow and magnetic fields 

associated with the MHD equations for a steady, two-

dimensional channel problem are 

-+ (u, 0) v = 
-+ 

(Hx,Hy) i H = H y = H o' a constant 

aH aHx ,.. 
-+ v -+ <ax* J = X H = ay*>k 

(16) 

(17) 

( 18) 

The continuity equation, the Navier-Stokes equation of 

Newtonian fluid motion, and the magnetic transport 

equation, given in vector form in Equations (6), (7), and 

(9), respectively, may be written in component form for a 

two-dimensional problem as 

au + av = 0 
ax* ay* 

(19) 

au llm aH aH 
au au X 

axf> + u ax* + v ay* = H < ay* -at* p y 

2 2 
- .!.~ + \) (~ + ~) pax* ax*2 ay*2 

(20) 



3v 3v 3v 
3t* + u 3x* + v 3y* 

3H 3H _y _y 
3t* + u 3x* + v 

3H _y 
()y* 

= 
a2H 

(--1 + 
Clx* 2 
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11mHx ~ 
= p ( 3x* 

3H 
X 

3y*> 

( 21) 

( 22) 

_ H 3v Clv 
X Clx* - Hy ()y* 

( 2 3) 

It has been shown by Stuart (2) , Lock (3), and others 

that Squire's theorem (15) applies as well in deriving 

the stability equation for MHD channel flow, provided that 

the magnetic Reynolds number is small. This is quite 

significant because this means that, for flow in a channel, 

the main flow is less stable to two-dimensional disturbances 

than to the three-dimensional disturbances. It, therefore, 

suffices to consider only the two-dimensional disturbances 

in the present stability analysis. 

The derivation of the stability equation is detailed 

in Appendix A. It suffices to show only the highlights of 

the derivation here. 
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Following Lock (3) , the two-dimensional system, 

Equations (19) through (23) , is perturbed with respect 

to two-dimensional disturbances and linearized. The 

resultant quantities are composed of a main flow expression 

plus a perturbation expression, see Equation (A-3) . Stream 

function solutions of the velocity and magnetic field com-

ponents, Equation (A-9}, are then substituted into the 

perturbation equation of motion, Equations (A-4) and 

(A-5) . Cross-differentiation of the perturbation equations 

of motion eliminates the pressure gradient terms. After 

rearranging terms and introducing dimensionless variables, 

Equation (A-ll) , one arrives at 

- W"fl = 1 
iaR 

M2 2 i 2 + [h(9"- a 8)-eh" + (a. e• - 9"')] 
RRm a 

(24) 

Applying the assumption of small magnetic Reynolds number 

to the x-component of the magnetic transport equation, one 

finds, after taking the derivative with respect to Y of 

the reduced x-magnetic transport equation, 

(9'''- a 2 e•)!:::! -R fl" m 
(25) 

Applying the assumption of small magnetic Reynolds number 

(h is very small) and incorporating Equation {25) into 

Equation (24), one obtains 
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where Wand c (=c +c.} are, respectively, the main flow r ~ 

velocity and the complex wave velocity normalized by the 

average velocity, U; a is the wave number based on L; 

R(=LU/v) is the Reynolds number; M(=~ H L(cr/u ) 11 2> is m o f 

the Hartmann number. The primes denote derivatives with 

respect to y. 

The disturbance amplitude function for the velocity 

field, ~, is related to the fluid stream function, ~, by 

the expression 

~(x,y,t) = ~(y) exp[ia(x-ct)] (2 7) 

If c. is negative, the disturbances decay and the flow is 
~ 

stable. On the other hand, if c. is positive, the distur­
~ 

bances are amplified and the flow is unstable. The con-

dition of neutral stability is characterized by ci = 0. 

The stream function, ~, is satisfied by the continuity 

equation. It is to be noted that Equation (26) reduces 

to the conventional Orr-Sommerfeld equation when M = 0. 

Equation (26) is the governing equation for the magneto­

hydrodynamic stability problem under consideration, 

expressed in terms of the disturbance amplitude function 

of the velocity field. 
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D. The Boundary Conditions 

Equation (26) is a fourth order differential equation 

in ~ and may be solved subject to four boundary conditions. 

The boundary conditions for ~ which arise from zero dis­

turbance velocity at the channel walls, namely u*=v*=O at 

y = + L are 

~(1) = ~ 1 (1) = 0 

~(-1) = s;1 1 (-1) = 0 

(2 Ba) 

(2 Bb) 

In the present investigation, only velocity profiles which 

are symmetric with respect to the centerline of the channel 

are considered. To expediate computations, it is there­

fore advantageous to consider only half of the channel in 

the stability analysis. Since the basic flow is an even 

function of y, the solution for ~(y) can be decomposed into 

even and odd modes. Of primary importance, however, is 

the case of even s;1; because, the work of Grohne (16) has 

strongly suggested that, for plane Poiseuille flow, only 

this mode is likely to lead to instability of the flow. 

Thus, the boundary conditions corresponding to the bottom 

wall, Equation (28b), can be replaced by those at the 

center of the channel. For ~ even, they are 

s;11 ( 0 ) = ~ I I I (0 ) ::= 0 c 2 8 C) 

The mathematical system consisting of Equations (26), 

(2 Ba) , and ( 2 Bb) (or (2 Be)) constitutes an eigenvalue 
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problem. In the present analysis, this system was solved 

by a finite difference scheme which is described in the 

following section. 
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III. THE FINITE DIFFERENCE METHOD OF SOLUTION 

A. Formulation of the Finite Difference Equations 

The formulation of the finite difference equations 

presented here follows closely the work of Chen (6) in 

his analysis of the hydrodynamic stability of flow in the 

entrance region of a parallel-plate channel. Equation (26) 

can be expressed as a linear algebraic equation of the form 

where ;;;::: and '""l. are linear operators defined as 

and 

2 2 '7Jt = (D - a. ) 

In these equations, Dn represents dn/dyn. 

The well known transformation matrix in finite 

difference form for a function g and its derivatives 

accurate to the order of the mesh size squared, 2 . r , 1.s 

g 1 0 0 0 0 g 0 

rDg 0 1 0 0 0 ]lOg 0 (r 3 ) 
r2D2g 0 0 1 0 0 o2g 

+ 0 (r 4 } = 
r3D3g 0 0 0 1 0 ]l03g o (r5 ) 
r4D4g 0 0 0 0 1 o4g 0 (r6 ) 

( 29) 

( 31) 

(32) 



25 

where 

g 0 0 1 0 0 g(y-2r) 

lJOg 0 -1/2 0 1/2 0 g (y-r) 

o2g 
= 0 1 -2 1 0 g(y) ( 33) 

ll0 3g -1/2 1 0 -1 1/2 g (y+r) 

o4g 1 -4 6 -4 1 g(y+2r) 

In Equations (32) and (33), o and 11 are, respectively, the 

central difference operator, and the averaging operator. 

The column vector of error magnitudes has been added to the 

transformed matrix, Equation (32), to show the truncation 

error. It can be seen that g and its derivatives at a point 

y are now represented in finite difference form by five 

equally spaced, discrete points a distance r apart. To 

reduce the truncation error, Thomas (17) introduced the 

transformation 

(34) 

With this transformation of the variable fl (y) , it can be 

shown from finite differences that 

fl 1 0 1/6 0 1/360 g 0 (r8 ) 

rDfl 0 1 0 0 0 lJag O(r5 ) 

r 2D2fl = 0 0 1 0 1/12 o2g + 0 (r8 ) (35) 

r3D3fl 1 0 3 o (r5 ) 0 0 0 lJO g 

r 4o4fl 0 0 0 0 1 a4g 0 (r8 ) 
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Substituting Equation (33) into Equation (35) one arrives 

at 

f1 1/360 7/45 41/60 7/45 1/360 g (y-2r) O(r8 ) 

rDfl 0 -1/2 0 1/2 0 g (y-r) O(r5 ) 

r2D2f1 = 1/12 2/3 -3/2 2/3 1/12 g(y) + 0 (r8 ) 

r3D3f1 -1/2 1 0 -1 1/2 g (y+r) o (r5 ) 

r4D4f1 1 -4 6 -4 1 g (y+2r) 0 (r8 ) 

(36) 

Thus, a fourth order differential equation of f1 may 

be approximated by a finite difference equation in g which 

is accurate to the order r 4 , providing that no third 

derivatives appear. It is clear that f1 and its derivatives 

at a point are now related to g at five equally spaced, 

discrete points. This work obviously permits the MHD 

stability equation to be expressed as a finite difference 

4 equation accurate to r • For r equal to, say, 0.01, the 

finite difference approximation of the differential equation 

introduces a discretization error of 10-8 . 

In the numerical calculations, the channel half-

height (0 2 y 2 1) was subdivided into N equal intervals 

or steps and the finite difference equations applied to 

(N+l) points in the finite difference mesh, thereby 

generating (N+l} simultaneous, homogeneous, algebraic 

equations. 
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To formulate the system of algebraic equations, 

Equation (29) is expressed in matrix form as 

[A] [ g] = c [ B] [ g] (37) 

where 

[B] ~ "'fT\. = (D2 - a 2 ) and 

[A] ~ ;;£ = W (D2 - a 2 ) - W" + a~ [D 4- (M2+2c/) +a 4 ] 

show the finite difference approximations to the differen-

tial operators. [A] and [B] are (N+l) X (N+l) coefficient 

matrices, [g] is the vector representing the discrete 

functional values after the transformation, Equation (34) , 

and c is the complex valued velocity of wave propagation. 

Using the transformation matrix, Equation (36), it 

may be readily shown that 

where 

Similarly, 

[B] Ig] = a • 
1 

g(y-2r) + a 2 • g(y-r) + a 3 • g(y) 

(38) 
+ a 2 • g (y+r) + a 1 • g (y+2r) 

1 1 1 2 2) 
al = 2 (12 - 360 r a 

r 

1 (~ 7 2 2 (39) a2 = 2 45 r a ) 3 r 

1 (- 3 41 2 2) 
a3 = 2 2 - 60 r a 

r 



In Equation 

al 

a2 

a3 

+ (a3+ib 3 ) •g(y)+(a2+ib 2 ) •g(y+r) 

+ (a1+ib1 ) •g(y+2r) 

( 40) , the a's are given by 

(Wa -
wn 

= 360) 1 

= (Wa - -:Jwn) 
2 45 

= (Wa - U:wn) 
3 60 

and the b's are given by 
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( 40) 

( 41) 

b2 
1 [- 4 ~(M2+2a.2) 7 2 4] = -2- 2- + 45 r a. 3 (42) 

r a.R r 

b3 
1 [~ + ~(M2 + 2a.2) + 41 2 4] = 60 r a 

r 2a.R 2 2 r 

The independent variable, y, takes on the discrete values 

O,r,2r, •.. , (N-1) •r, Nr = 1 for the symmetric profiles 

considered in this investigation. 

In order to evaluate the quantities on the right-hand 

sides of Equations (38) and (40) at the boundaries y=O 

(channel centerline) and y=l (upper wall}, one needs to 
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know the values of g at two points which are outside of 

each of the boundaries. These values are obtained by 

applying the boundary conditions in conjunction with 

Equation (36}. Application of Equation (28a) gives 

g ( (N+l) ·r} = g( (N-1) •r) ( 4 3) 

g((N+2) •r) = -g((N-2) •r)-112g((N-l)•r)-246g(N•r} 

The boundary conditions at the center of the channel 

are given by Equation (28c) • These result in 

g(-r) = g(r} 
(44) 

g (-2r) = g (2r) 

Equations (38), (40), (43), and (44) provide complete 

information for writing (N+l) simultaneous, complex, 

algebraic equations given by the relation 

[A] [g] - c[B] [g] = 0 

or 

[D(a.,c,R,M)] [g] = 0 

(45a) 

(45b) 

Since these equations are linear and homogeneous, it is 

necessary that the determinant of the coefficient matrix 

must be zero in order that a solution exists, that is, 

Detl [D(a.,c,R,M)] I = 0 (46) 



30 

When the elements of the coefficient matrix [D] are 

written out, it can be seen that there are five non-zero 

elements clustered in the vicinity of the main diagonal; 

that is, the matrix [D] is of a stripe nature. 

B. The Eigenvalue Problem 

In the preceding section, the eigenvalue problem 

consisting of Equations (26), (28a), and (28c) was con­

verted into a secular equation given by Equation (46). 

The eigenvalue problem consists of finding the values of 

c which satisfy Equation (46) for given values of a, 

M, and R. The c value is found by employing an iterative 

root-finder technique first devised by Muller (18). 

The root-finder technique involves the evaluation 

of the determinant of the coefficient matrix [D] at three 

points in the complex c-plane. A complex parabola is fitted 

through these three points and then extrapolated to zero; 

this process being repeated iteratively using the three 

previous points until the criteria for convergence of c 

are satisfied. The iteration was terminated when both the 

deviation of the real and imaginary parts of c from two 

successive iterations became smaller than a preassigned 

tolerance of 1 X 10-5 • To initiate the iteration, one 

needs three values of c. With one value of c assigned, 

the others were chosen to be l.04c and 0.96c. 
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It must be pointed out that the number of eigenvalues 

satisfying Equation (45b) for given M,a, and R are equal 

to the size of the matrix; thus, there are (N+l) eigenvalues 

when the region of interest is subdivided into N intervals 

with (N+l) mesh points. Of primary interest in the sta­

bility analysis is the eigenvalue which gives the least 

stable mode of the flow to the small disturbances; that is, 

the eigenvalue, c, with the largest value in its imaginary 

part. The determination of the least stable eigenvalue 

corresponding to a set of (a,R,M} is very important. In 

the present study, the least stable eigenvalues for the 

fully developed Hartmann flow for different Hartmann num­

bers were determined by using the known value of c for a 

given a,R, and M from plane Poiseuille flow (M = 0} as 

the initial guess or assigned value, M being increased from 

0 to 1,2,3,4, and so on, while a, R were kept unchanged. 

Once the least stable eigenvalues for the fully developed 

Hartmann flow were available, they were used as the initial 

guess values to find the eigenvalues in the entrance by 

decreasing X, the stretched axial coordinate. One thus 

may proceed anywhere in the (a,R,M,X) space by utilizing 

a known least stable eigenvalue, c, and varying one of 

the four parameters in such a manner that the iterative 

root-finding technique will again converge to the least 

stable eigenvalue for the new set of (a,R,M,X}. 
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C. The Effect of Step Size on Eigenvalues 

In the numerical solution of the MHD stability problem, 

the accuracy of the results are strongly dependent on the 

finite difference mesh or step spacing, r=l/N; this 

phenomenon is inherent to all finite difference solutions. 

This section describes and illustrates how the step size 

is determined for use in obtaining the results such that 

a high degree of accuracy in the results is assured. 

For the finite difference scheme of this investiga­

tion, as the finite difference step size decreases, the 

finite difference solution approaches the exact solution. 

Further, because the discretization error of the present 
4 finite difference solution is of the order of r , the 

exact solution is approached quite rapidly as r is 

decreased (i.e., N is increased}. Since in this work the 

stability results are centered around neutral stability 

(ci = O}, the response of ci to changes in step size is 

the criterion used to determine the proper step size. How-

ever, it is to be noted that computational time necessarily 

increases rapidly with the accuracy of the solution. Thus, 

in the selection of step size, there are two diametrically 

opposed factors - economics versus accuracy. 

The velocity profile dictates the step size necessary 

for the desired accuracy. For fully developed or Hartmann 

flow, only the Kartmann number influences the velocity 
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profile and thus the step size. For developing flow 1 n 

the duct entrance region, three parameters influence the 

step size selection: 

(a) W0 , the entering velocity profile- particularly 

dominating near the entrance, 

(b) M, the Hartmann number - particularly dominating 

at large axial distances, and 

(c) X or X, the channel position - an indicator of 

which of (a) and (b) is more significant. 

In the fully developed region it is sufficient to fix 

a, R, and M and vary N until the exact solution is 

approached, i.e., until c. becomes relatively unchanged 
l 

with increase in N. In this manner, one may determine a 

proper step size for large axial distances for a given 

Hartmann number. Table 1 gives the step size determination 

technique for M = 10 and M = 6. For M = 10 it is found 

that 300 steps are necessary for sufficient accuracy while 

250 are sufficient forM= 6. Table 2 illustrates the 

effect of step size on the critical Reynolds number for 

the fully developed flow for Hartmann numbers of 3,4,6, 

and 10. Results from an insufficient value of N are pre-

sented to compare with those of the selected value of N. 

Note that there is a pronounced effect of the step size on 
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Table l 

The Effect of Step Size on Eigenvalues for the Fully Devel­

oped Hartmann Flow, M = lO and 6 

M = lO M = 6 

N c. N c. 
~ ~ 

lOO -O.l535D-06* l75 0.8537D-06 

l25 -0.3064D-02 200 O.l290D-03 

l50 -0.2688D-02 225. 0 .l98lD-03 

l75 -0.2238D-03 250 0.2379D-03 

200 O.l4l7D-02 275 0.26l9D-03 

225 0.2225D-02 

250 0.2766D-02 

275 0.3l30D-02 

300 0.3379D-02 

375 0.3760D-02 

* D-xx = lO-xx 



M 

3 

4 

6 

10 

Table 2 

The Effect of Step Size on Critical Reynolds Numbers 

for the Fully Developed Hartmann Flow 

N R crit N* R "t crJ.. 

100 49755 150 48630 

100 95960 150 89000 

175 191600 250 184600 

100 1117000 300 415200 

*Step size assuring accurate results 
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the critical Reynolds number for the case of M = 10. For 

M less than 3, it can be seen that N = 100 is sufficient 

to give accurate numerical results. 

In the entrance region of the MHO channel, the entering 

flow, W0 , dictates the necessary step size for a given M 

and X (X is now a parameter in the velocity profile). The 

necessary step size approaches that of the fully developed 

flow as X increases. It is known from the work of Chen and 

Sparrow (4,5) that 100 steps are sufficient to obtain 

accurate results for the plane Poiseuille flow profiler 

while a very large number of steps (or very small step 

sizes) are necessary for flow in the region very near the 

entrance of the channel (due to the thin boundary layer) for 

the case of uniform inlet profile. To assure accuracy of 

results, it is necessary that the step size be decreased 

(or the number of steps increased) in the axial direction 

for the case of parabolic inlet velocity profile. For the 

case of uniform inlet velocity profile, the step size may 

be increased in the axial direction as the flow approaches 

the fully developed Hartmann profile. Table 3 illustrates 

the effect of step size on the eigenvalues at various 

axial locations for the case of linear inlet velocity pro­

file when M = 4. Note that the value of N = 200 can be 

used from near the fully developed region (X= 0.1} up to 

a location of X= 0.03 in the entrance region with 

sufficient numerical accuracy. 



X 

0.100 

0. 0 80 

0.060 

0.050 

0.040 

0. 0 30 

0.020 

0.010 

0.005 

Table 3 

The Effect of Step Size on Eigenvalues for M = 4, 

Uniform Inlet Velocity Profile 

N = 100 N = 150 N = 200 N = 250 

c. c. c. c. 
~ ~ ~ ~ 

-0.40910-03 0.84350-04 0.17020-03 0.19370-03 

-0.32000-03 0.17570-03 0.26200-03 0.28560-03 

-0.13410-03 0. 36690-03 0. 45410-03 0.47800-03 

0.23250-04 0.52900-03 0.61710-03 0.64120-03 

0.24120-03 0.75500-03 0.84000-03 0. 86900-0 3 

0.50370-03 0.10320-02 0.11240-02 0.11490-02 

0.57090-03 0.11270-02 0.12510-02 

-0.18650-02 0.12350-02 -0 .10 9 0;_02 

-0.87300-02 -0.786 0-02 
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For the case of parabolic inlet velocity profile, 

N = 100 was found to be sufficient for the entire flow 
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region when M is less than 3, while forM= 4 and 6, the 

number of steps, N, had to be increased from 100 at the 

inlet to, respectively, 150 and 250 as the flow became 

fully developed. Table 4 gives the number of steps, N, 

used in the final stability calculations for parabolic 

and uniform inlet velocity profiles for all Hartmann num-

bers and channel positions considered. 

D. Method of Generating the Neutral Stability Curves 

In the study of hydrodynamic and magnetohydrodynamic 

stability of flows, the primary interest is to find the 

neutral stability curve (i.e., the curve c. = 0 which 
1 

separates the region of stability from that of instability 

in the wave number versus Reynolds number plane) and the 

critical Reynolds number (i.e., the minimum Reynolds number 

possible for the onset of theoretical instability). To 

generate the neutral stability curves for flow in the 

fully developed region and developing flow in the entrance 

region of the MHD channel, the following computational pro­

cedure was employed. Depending on the behavior of the 

neutral stability curve, either a was fixed and R varied 

or R was fixed and a varied and the corresponding eigen-

values found from Equation (46). With three or more R, 



Table 4 

Selected Step Sizes Used in the Stability Calculations 

Parabolic Inlet Velocity Profile Uniform Inlet Velocity Profile 

X M = 1 2 3 4 6 M = 1 2 3 5 

00 I 100 100 150 150 250 100 100 150 150 

0.100 100 100 125 125 - 100 - 125 200 
0.080 - - 125 125 - 100 100 125 
0.060 100 100 125 125 175 100 - - 200 
0.050 - - - - - 100 100 125 
0.040 100 - 125 125 175 125 - - 200 
0.030 - 100 - - - 125 125 125 
0.020 100 - 125 125 175 125 125 150 250 
0.010 100 100 100 100 - 125 125 160 250 
0.007 - - - - - - 125 - 250 
0.005 100 100 100 100 - 150 225 225 250 
0.003 - - - 100 - 200 250 - 275 
0.002 100 100 100 100 - - - 275 300 
0.001 - - - 100 - - - - 300 

w 
\0 
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c. (or a, c.) pairs available, Aitken's method of inter-
~ ~ 

polation was used to determine the a(or R) value corres-

pending to c. = 0. This approach facilitated the mapping 
~ 

of the neutral stability curve (locus of a versus R for c. = 
~ 

0) • 

Neutral stability curves, critical Reynolds numbers, 

and other stability characteristics for the two types of 

developing flows, namely, those induced by parabolic and 

uniform inlet velocity profiles, were obtained for various 

Hartmann numbers. All computations were performed with 

double precision (sixteen decimal) arithernatic on an IBM 

360/50 digital computer. The stability characteristics 

of the flow will be presented in the next chapter. 



IV. THE NEUTRAL STABILITY RESULTS 

In this chapter, representative neutral stability 

results are presented for the fully developed Hartmann 
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flow and the developing flows. These include neutral sta-

bility curves and axial variation of the critical Reynolds 

number for several Hartmann numbers. The various tables 

corresponding to the results discussed in this section 

are given in Appendix B. 

A. Fully Developed Hartmann Flow 

In Figure 1 are given neutral stability curves for 

fully developed Hartmann flow for Hartmann numbers of 0, 1, 

2, 3, and 4. The wave number, a, is based on the half-

height of the channel, L, and the Reynolds number on the 

average velocity U. These results are tabulated in 

Table B-2, Appendix B. Also included in the table is the 

dimensionless velocity of wave propagation, cr. The curve 

for M = 0 represents the hydrodynamically fully developed 

flow (i.e., plane Poiseuille flow), W = 1.5(1-y2 ), and is 

taken from Chen (7). The broken lines are the results of 

Lock (3) and are presented for comparison. It should be 

noted that Lock solved analytically the following reduced 

form of Equation (26) in his investigation: 
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Figure 1: Neutral Stability Curves for Fully Developed Hartmann Flow 
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(W-e) ($1" - a. 2~) - W"$1 = -i "iv 
a.R "' ( 4 7) 

It is seen for Figure 1 that the analytical (asymptotic) 

solution gives neutral stability curves which lie slightly 

to the right of those obtained from the finite difference 

method of solution; that is, it predicts critical Reynolds 

numbers which are higher for all Hartmann numbers examined. 

Nevertheless, the numerically determined stability results 

are very nearly the same as those from the analytical 

solution. The neutral stability results for the critical 

condition from the present work and the work of Lock are 

compared in Table B-3 for Hartmann numbers of 0,1,2,3,4,6, 

and 10. 

An inspection of Table B-3 reveals that the critical 

Reynolds number increases rapidly with increase in the 

Hartmann number. This conclusion, first established by 

Lock (3), is due to the effect of the magnetic field on 

the fully developed velocity profile in a parallel-plate 

channel. 

It is known from early investigations in hydrodynamic 

stability that the shape of the velocity profile has a 

pronounced effect on the stability results. Specifically, 

the flatter the velocity profile away from the wall and the 

steeper the velocity gradient near the wall (i.e., aw;ay at 

y = + 1) , the more stable is the flow (see also Schlichting 
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( 1) ) • ~o illustrate this, one can note the following 

two extreme cases. A laminar flow with uniform velocity 

profile is known to be absolutely stable, i.e., R 't = oo. 
cr1. 

This velocity profile is perfectly flat, and the velocity 

derivative with respect to y, W~ at the upper wall is -oo. 

On the other hand, for the fully developed hydrodynamic 

flow in a parallel-plate channel (i.e., plane Poiseuille 

flow), the velocity profile is not flat and the derivative 

of the velocity with respect toy is -3.0 at the upper 

wall. It is known that this flow has a critical Reynolds 

number of 3850 (based on average velocity) • 

For the fully developed Hartmann profiles, increase 

in the Hartmann number enhances the flattening of the 

velocity profile around the center of the channel and 

increases the magnitude of the velocity gradient at the 

walls. This behavior of the velocity profile with respect 

to changes in Hartmann number qualitatively explains the 

increase in the stability of MHD flows with increase in 

the Hartmann number. 

B. Developing Flow - Parabolic Inlet Velocity Profile 

In the previous section, it was mentioned that the 

plane Poiseuille flow has a known critical Reynolds num-

ber of 3850. The critical Reynolds numbers for the fully 

developed Hartmann flow are also known and have a much 



45 

higher value, depending on the Hartmann number. How the 

overall stability characteristics vary as the flow develops 

from the plane Poiseuille profile at the channel entrance 

to the Hartmann profile is one of the primary objectives 

of this investigation. 

Figure 2 has been prepared to show the effect of 

channel position and Hartmann number (magnetic field 

strength) on the neutral stability curves for the developing 

flow with parabolic inlet velocity profile. Because of 

the rather lengthy computations, only the curves for 

M = 1, 3 and X= 0.005, 0.020, and oo are given. The 

stability characteristics corresponding to Figure 2 are 

listed in Table B-4. Figure 3 shows the variation of the 

critical Reynolds number with channel position. The data 

for the curves in Figure 3 are tabulated in Table B-5, 

Appendix B. 

ForM= 0, the critical Reynolds number remains con-

stant since the inlet velocity profile is the fully 

developed profile and thus does not change with axial 

position. For small Hartmann numbers, say, less than 2, 

-the critical Reynolds numbers for the fully developed 

Hartmann flow are approached very smoothly with a very 

small or no "over-shoot" which decays monotonically with 

increasing axial position. For larger Hartmann numbers 

(M > 2}, the flow stability tends to increase very rapidly 
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in the near inlet region and greatly over-shoots the 

fully developed, critical Reynolds number and approaches 

this value monotonically from above as the axial distance 

increases further. As is expected, near the entrance, the 

critical Reynolds number approaches 3850 as X approaches 

zero. The behavior of the critical wave number, a . ' cr1t 
as the flow developes under the influence of the parabolic 

inlet velocity profile is the opposite of that of the 

critical Reynolds number; that is a "t first decreases cr1 

from 1.021 at X = 0.0 and then monotonically approaches 

the value for the fully developed Hartmann flow for the 

respective Hartmann numbers {see Table B-5) . 

A segment of the curve for M = 6 is shown in Figure 3 

to indicate the rapid increase of the critical Reynolds 

number near the channel inlet for large Hartmann numbers. 

It is obvious from the behavior of the curves for lower 

Hartmann numbers that the M = 6 curve is expected to have 

a very high peak. The calculations for this curve were 

discontinued due to the lengthy computations arising from 

the numerical solution of the algebraic eigenvalue problem. 

The physical reasoning behind the behavior of the 

axial variation of the critical Reynolds number for large 

Hartmann numbers is explained in section IV-D. 



c. Developing Flow - Uniform Inlet Velocity Profile 

For the uniform inlet velocity profile, the flow is 

theoretically absolutely stable to small disturbances, 
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i.e., Rcrit = oo at X= 0.0. Figure 4 shows the effect of 

channel position and Hartmann number on the neutral sta­

bility results for the developing flow induced by uniform 

inlet velocity profile (see Table B-6). Here again, the 

entrance region effects on the MHD stability characteris­

tics are completely established with the examination of 

Figure 5 (see also Table B-7) . The approach of the critical 

Reynolds number from infinity at the channel inlet to that 

of the fully developed Hartmann flow is again well behaved 

for small Hartmann numbers, say, one or less. For these 

small Hartmann numbers, the critical Reynolds number 

decreases monotonically as the axial distance increases 

and finally approaches the fully developed value. The 

curve for M = 0 in Figure 5 is taken from Chen and Sparrow 

( 4) • For larger M values, the effect is much more pro-

nounced with the critical Reynolds number under-shooting 

the fully developed Rcrit and approaching this fully 

developed value monotonically from below as the flow con-

tinues to develop. Obviously, the least stable flow occurs 

during the flow development in the entrance region. The 

critical wave numbers decrease very rapidly for small X 

and monotonically approach those of the respective fully 

developed Hartmann flow at large axial distances. 
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The curves in Figure 5 are not complete because the 

numerical solution utilized requires a very large number 

of steps (N) or a very small step size (r) across the 

channel half-height in order to insure numerical accuracy. 

The necessity of increasing the number of steps coupled 

with the rather extreme behavior of the critical Reynolds 

number (and critical wave number) versus axial distance 

curve near the entrance made it very difficult to continue 

approaching the entrance. Nevertheless, the trends of the 

stability results in the entrance region are well estab-

lished and all curves in Figure 5 are known to go to 

infinity very rapidly in a very short distance near the 

inlet where the numerical solution could hardly be con-

tinued. 

At this point it is appropriate to direct attention 

to the validity of the boundary layer assumptions in the 

region very near the channel inlet. Numerical calcula­

tions showed that the boundary layer assumptions were 

still quite applicable in this region in which the sta­

bility characteristics were investigated. For example, in 

one case where X = 0.001 and M = 4, the a 2u;ax* 2 term in 

the x-rnornenturn equation was found to be less than one­

thousandth the value of the a 2u;ay* 2 term. 

The behavior of the axial variation of the critical 

Reynolds number is explained in the following section. 
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D. The Effect of Velocity Profile on the Stability Results 

Both classes of inlet velocity profiles considered in 

the present study undergo extensive modifications or 

development in the entrance region of the MHD channel. 

The behavior of the stability results for the fully developed 

Hartmann flow can be easily explained qualitatively using 

the basic considerations from the theory of hydrodynamic 

stability. However, the behavior of the axial variation 

of the critical Reynolds number during flow development 

(Figure 3 and 5) is rather surprising at first and needs 

further clarifications. For small Hartmann numbers (M 

equal to, say, one or less), the transition of the critical 

Reynolds number results during flow development is smooth. 

For larger Hartmann numbers, over-shooting and under­

shooting from the fully developed critical Reynolds number 

for the parabolic and uniform inlet velocity profiles, 

respectively, become increasingly pronounced with 

increasing Hartmann number; an effect which is difficult 

to explain and which was unexpected at the onset of this 

investigation. 

To the best knowledge of the author, neit~er the 

solution of Equation (26) by the finite difference method 

nor the effects of developing MHD flows on the stability 

characteristics have been studied previously. Therefore, 

the phenomenon observed in the stability results in the 
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entrance region which has never before been observed can 

be attributed to either the M2/iaR term in the MHD sta­

bility equation (Equation (26)), to the effect of the 

volumetric MHD body force in the flow development, or 

possibly to a combination of these two effects. 

In Figure 5, the broken line immediately under the 

solid line for M = 3 represents the solution of the MHD 

stability equation with the M2/iaR term set equal to zero. 

Since this curve closely follows the curve from the 

solution of the complete equation, the presence of this 

term in the MHD stability equation is not responsible for 

the phenomenon observed in the entrance region stability 

results. Effort shall now be concentrated on examining 

the behavior of the velocity profiles in order to explain 

this magnetohydrodynamic stability phenomenon. 

The Hartmann number squared, M2 , is the ratio of the 

magnetic body force to the viscous force. Thus, the 

magnetic force is much larger than the viscous forces for 

Hartmann number larger than, say, 2. Also, the magnetic 

or MHD field force exists only when the fluid is in motion. 

The actual MHD field force at any channel position can be 

found to be proportional to uM2 (or WM2). 

Considering the case of uniform inlet velocity pro­

file, the boundary layer is developing in the entrance 

region. Because the boundary layer must develop (non-slip 



condition at the wall) , x-momentum is transferred away 

from the walls and the velocity away from the walls 

increases during flow development. The transfer of x-

momentum enhances the MHD body force present within 

the boundary layer, this body force increasing with 

velocity inside the boundary layer. For large Hartmann 

numbers, say M > 2, the effect is pronounced because 

the MHO field force is proportional to M2 . Thus in 

magnetohydrodynamics one might expect a rather unusual 

velocity profile compared with the case of pure hydro­

dynamics during development while the boundary layer is 

being created by the viscous effects in the channel. 
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Figure 6 shows the velocity and its first and second 

derivatives with respect to y for M = l and 4 and 

X= 0.002 for the uniform inlet velocity profile. The 

behavior of the first derivative of velocity with respect 

toy, W', at channel positions y = l.O and 0.9 forM= 

l and 4 are shown in the inset of the figure. Figure 6 

establishes the effect of the magnetic field on the 

velocity in the developing flow region. For Hartmann num­

bers greater than, say, l, the magnetic field force present 

in the outer areas of the developing flow boundary layer 

causes the velocity profile to behave in such a manner as 

to enhance the instability of the flow during the flow 

development. The velocity gradient at the wall, W', 
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monotonically becomes less negative as X increases, whereas 

W' away from the wall (but not too near the center) 

decreases in value from zero at X = 0.0 to a minimum some­

where in the entrance region and then increases again to 

that of the fully developed flow for that y position. This 

phenomenon occurs only during flow development because the 

magnetic field force in the outer boundary layer region 

increases during the transfer of fluid momentum away from 

the wall as the boundary layer develops. The difference 

in the behavior of W' at various positions in the boundary 

layer is believed to be responsible for the under-shooting 

of the critical Reynolds number from that of the fully 

developed Hartmann flow for the reason that these deriva-

tives, W', near and at the wall are indicators of the 

shape of the velocity profiles. With the information pre-

sented here and the previous qualitative discussions on 

hydrodynamic stability, it is obvious that the velocity 

profiles behave in a manner such that the stability 

characteristics of the developing flow induced by the uni­

form inlet velocity profile exhibit the unusual axial 

variation, as shown in Figure 5. 

For the parabolic inlet velocity profile, the dimen­

sionless centerline velocity, W, is 1.5. Thus, the core 

of the velocity profile where the velocity is larger than 

that of the fully developed Hartmann profile experiences a 

. 2 h" h large retarding force, proport1onal to WM , w 1c 
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encourages a rapid decrease of the velocity near the 

center of the channel. Thus, x-momentum of the fluid is 

being transferred toward the walls, and the velocity 

profile near the center is being rapidly flattened; 

because the MHD forces are largest where the velocities 

are largest. As x-momentum is transferred toward the 

walls, the MHD force in this vacinity increases because 

the velocity increases. However, the magnitude of the 

velocity gradient monotonically approaches a more negative 

value, and the presence of the MHD force in the outer 

boundary layer regions influences the flow profile so as 

to increase flow stability by making the velocity 

gradient decrease slowly in the outer boundary layer 

regions. Figure 7 gives the plot of velocity and its 

first and second derivatives with respect to y as a 

function of y forM= 1 and 4 at X= 0.002 for the case 

of parabolic inlet velocity profile. The curves in the 

inset of the figure show the axial variation of W' at 

the upper wall and at a position 10 percent of the half­

channel height below the upper wall. Again, with the 

background previously presented, the information in 

Figure 7 is sufficient to establish the way the magnetic 

field influences the flow development which, in turn, 

influences the critical stability results as shown in 

Figure 3. 
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As the momentum transfer is completed (i.e., when 

the flow is fully developed) , the developing MHD forces 

in the outer boundary layer are reduced and the stability 

results monotonically approach those of the fully 

developed Hartmann flow from above, since the velocity 

profile takes on a more rounded appearance near the wall. 
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V. CONCLUSION 

This investigation has examined the magnetohydro­

dynamic stability of laminar flow in the entrance region 

of a parallel-plate channel. By using the linear pertur­

bation theory of hydrodynamic stability and the assumption 

of small magnetic Reynolds number, the governing equation 

of magnetohydrodynamic stability was derived~ This 

equation was then converted into finite difference form, 

and a numerical solution method was employed to study the 

neutral stability characteristics for the fully developed 

Hartmann flow and the developing flows with an applied 

transverse magnetic field. A continuous velocity profile 

solution derived using linearization techniques was utilized 

in the stability analysis. 

It is found that the numerically determined neutral 

stability characteristics for the fully developed Hartmann 

flow are in excellent agreement with the previous work of 

Lock (3) which used an asymptotic method of solution. The 

present results are believed to be more accurate than those 

from the analytical solution due to the more exact nature 

of the present investigation. 
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Owing to the interaction of the magnetic field 

with the developing flow, it is found that the magnetohydro­

dynamic stability characteristics in the entrance region 

of the channel behave in an unusual manner. For the 

case of uniform inlet velocity profile, the critical 

stability results resemble those of pure hydrodynamics 

forM< l (4) (i.e., th~ critical Reynolds number 

monotonically decreases and approaches the fully developed 

value at large axial distances). For M > 1, the critical 

Reynolds number tends to under-shoot the fully developed 

value and approach it monotonically from below at large 

axial distances. 

For the case of parabolic inlet velocity profile, 

for M < 1 the critical Reynolds number tends to 

monotonically approach the fully developed critical 

Reynolds number at large axial distances from 3850 at the 

inlet. For M > 1, the critical Reynolds number over-

shoots the fully developed value and approaches it 

monotonically from above at large axial distances. 

In both cases of parabolic and uniform inlet velocity 

profile, the respective over-shooting and under-shooting 

become increasingly pronounced with increase in Hartmann 

number, M. The parabolic inlet flow induces a flow which 

is most stable during its development for M > 2 and which 

is most stable at the fully developed condition for M < 2. 
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The uniform inlet flow, on the other hand, induces a flow 

which is least stable during development for M > 1 and 

is least stable at the fully developed condition for 

M < 1. 
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VII. APPENDICES 

Appendix A 

Derivation of the Magnetohydrodynamic stability 
Equation, Equation (26) 

67 

From the text, it has been established that for two­

dimensional flow, the Navier-Stokes equations of fluid 

motion in the ~and y*directions are, respectively, 

au au au llmHy aH aH 
+ u + v X 

ax¥> at* ax* ay* = <ay* p 

_ 1 ap a2u 2 
+ v <ax*2 + ~) p ax* ay*2 

(A-1) 

av av av llmHx aH aH 
+ u + v (-Y- X 

at* ax* ay* = -- ay*> p ax* 
{A-2) 

- 1 ~ 
2 2 

+ v (~ + ~) p ay* ax* 2 ay*2 

The variables in these functions are next assumed to 

be composed of a main component and a superimposed, small, 

two-dimensional, time-dependent disturbance. The main flow 

is assumed to be parallel and the applied magnetic field 

H = H a constant. Thus, the resultant flow and magnetic 
Y o' 

fields are given by 



u = u(y*) + u+(x*,y*,t*) 

+ v = v (x*, y*, t 'i? 

- + H = H (y*) + h (x*,y*,t*) X X X 

HY = H0 + hy+(x*,y*,t*) 

- + p = p(x*,y*,t*) + p (x*,y*,t*) 
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(A-3) 

where the plus (+) superscript indicates a perturbation 

quantity. It is postulated that the resultant flow and 

magnetic fields are governed by the Navier-Stokes equations 

as are the main flow and magnetic fields. Upon substi-

tuting Equation (A-3) into Equations (A-1) and (A-2), 

linearizing (neglecting the product of these small pertur­

bations), and keeping only terms arising from the pertur-

bations, one obtains the perturbation equations of motion: 

+ au + au lJm ah+ ah+ 
au + + 

(Ho 
X - H ___J_ 

at* + u "§X* v ay* = - ay* ax* p 0 

(A-4) 
aH 1 ap+ a2 + a2 + 

h+ X + \) ( u + _u_) + ay*) y - 'i5'" ax* ax* 2 ay*2 

+ + lJm ah+ ah+ 
h+ ClHX 

av av (H a# Hx 
X 

~) + u "§X* = - - ay*-at* p X X 
(A-5) 

2 + a2 + !. ~+ + \) <a -v + v ) - P ay* ax* 2 ay*2 

The equations of continuity for the perturbations are obtained 

in a similar manner, giving 



Perturbation mass conservation 

Perturbation magnetic field conservation 

ah + 
X 

ax* 
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(A-6) 

(A-7) 

From potential theory, a stream function solution of 

the continuity equations may be formulated as: 

Perturbation flow stream function 

~*(x*,y*,t*) = ~*(y*) exp[ia(x* -ct*)] (A-8) 

Perturbation magnetic stream function 

x*(x*,y*,t*) = 9*(y*) exp[ia(x* -ct*)] 

-where ~*(y*) and 9*(y*) are amplitude functions, a is 

the dimensional wave number, c is the dimensional, complex 

velocity of wave propagation. These stream functions may 

be utilized to determine expressions for the perturbation 

velocities and magnetic fields. It is straightforward 

that 

+ a'i'* 
~*' exp [ ia (x* -ct *) ] u = ay* = 

+ a~* =-fl*ia exp[ia(x*-ct*)] v = - ax* 
(A-9} 

~ = ~;: = .Q* l exl? [i..a (x*-ct*) ] 

h+ 
y = ~ -=-Q*ia 

ax* 
exp[ia(x*-ct*)] 



Also, one may note that the disturbance amplitude is 

exponentially damped with time if the imaginary com-

ponent of the wave velocity has a negative value. If, 

of the other hand, the imaginary component of the wave 

velocity is positive, the disturbances amplitudes grow 

exponentially with time. These two cases correspond to 

theoretically stable and unstable flow, respectively. 

Next, substituting Equation (A-9) into Equations 

(A-4) and (A-5) and eliminating the pressure terms by 
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cross-differentiation, one obtains after some rearrange-

ment 
2 

(fl*iv_2a 
2 

(u-c) (fl*"-ex fl*) fl*u" 
\) 

fl*" = -iex 

4 Jlm H 2 H" 

ex ~*) 
0 ( &* I I I -ex &* 1 -e*ia X (A-10) + + H piex 0 

By introducing the following dimensionless variables, 

W = u/U, c = c/U, X= (x*/L)/R, Y = y*/L, 

ex L, h = H /H , fl = fl*/LU, & = 9*/LU, 
X 0 

(A-ll) 
ex = 

and t = t*U/L 

Equation (A-10) becomes 

(W-e) (fl"-ex 2fl) - W"fl = i!R (fliv_2ex 2fl"+ex 4fl) 
(A-12) 
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From the approximation of small megnetic Reynolds 

number (defined as Rm = UL/A) and from order of magnitude 

comparisons, h = H /H is found to be quite small, of the 
X 0 

-6 order 10 or so, depending on the magnetic field strength 

and the properties of the working fluid. Thus, the small 

magnetic Reynolds number approximation permits the 

postulate that h and h" are much smaller than 9 1 and 9 1 1 1 

and can, therefore, be neglected. With this, Equation 

(A-12) becomes 

[ i ( e 1 1 I -a 2 e I ) ] 

a 
(A-13) 

If one now examines the magnetic transport equation, 

Equation (9), it is possible to eliminate the function 9 

and its derivatives from Equation (A-13). The magnetic 

transport equations for two-dimensional flow are, in 

component form, 

aH aH aH au au X X X -H -H 
at* + u ax* + v 3y* ax* 3y* X y 

a 2H a 2H 
A 

X + A 
X 

= 
ax* 2 ay*2 

(A-14) 

aH ::¥ + 
aH av av 

_;I_+ u v _y -H ax* -H Cly* at* ay* X y 

a 2H a 2H 
(A-15) = A ~ + A :i 

ax* 2 ay*2 



72 

Again, introducing the perturbation equations, Equation 

(A-3), using linear theory, and retaining terms from 

perturbations, the perturbation equations for the magnetic 

field become 

ah + 
X 

at* 

ah + 
y 

at* 

ah + ali + 
+ X + X au 

u ax* + v ay- H ax* -X 

a 2h + a 2h 
h + au A 

X X 

Cly* = + A 
y ax* 2 3y*2 

ah + av+ av+ 
tu__L_-H ---H = ax* X ax* 0 Cly* 

+ A 

+ au 
H Cly* 0 

+ (A-16) 

(A-1 7) 

Substituting the expression for the perturbation stream 

functions from Equation (A-9) into Equation (A-16), one 

obtains the dimensional x-component equation for the mag-

netic disturbance as 
d*' 

hfl* + L­
ia. 

= (u-c) 6 * _ A 
II ia.H 

0 0 

-(6*" - 0'. 

2 
6*) (A-18) 

In terms of the dimensionless expressions previously stated, 

this equation becomes 

if1' 1 hfl - = (W-c)e + a.R 
a. m 

(A-19) 
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If one works on the y-component equation for the magnetic 

disturbance, Equation (A-17), one will arrive at an 

equation exactly identical to Equation (A-19). 

Next, the order of magnitude of the individual terms 

in Equation (A-19} are compared. Since h is of the order 

of Rm' which is quite small, it follows that 

(W-c}9, hf1 << 
1 2 i~' (9"- a. 9), =z_ 

a.Rm a 

Thus, Equation (A-19) can be approximated as 

11' 
a. 

or, after differentiating with respect to y once, 

(A-20) 

(A-21) 

when the magnetic Reynolds number is assumed small. 

Finally, substitution of Equation (A-21) into Equation 

(A-13) gives 

which is Equation (26) in the text. 

Equation (A-22) is the governing equation of magneto-

hydrodynamic stability for low magnetic Reynolds number. 

The small R approximation implies that the MHD sta­
m 

bility equation may be of questionable validity as the 
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Reynolds number approaches the value of 1/R • Neverthe­m 

less, the validity of the solution of Equation (A-22) 

depends upon the properties of the working fluid and the 

applied magnetic field. For Mercury, R ~ 10-6 , and the m 

solution should be valid for Reynolds number as high as 

300,000.0, perhaps much higher. 

In closing it is noted that Equation (A-22) reduces 

to 

(A-23) 

when the Hartmann number, M, equals zero. This reduced 

equation is the famous Orr-Sommerfeld equation of hydro-

dynamic stability. 



APPENDIX B 

TABULATION OF NUMERICAL RESULTS 

Table B-1 

The Relationship Between X and X 

- 2 X, W0 = 1.5(1-y ) 

X M 

1 2 3 4 1 

0.002 0.00282 0.00285 0.00282 0.00278 0.00517 
0.005 0.00648 0.00649 0.00645 0.00645 0.01171 
0.007 0.00876 0.00876 0.00872 0.00871 0.01524 
0.010 0.01204 0.01204 0.01200 0.01199 0. 01980 
0.020 0.02240 0.02232 0.02242 0.02236 0.03356 
0.030 0.03210 0.03209 0.03230 0.03239 0.04567 
0.040 0.04151 0.04160 0.04200 0.04232 0.05682 
0.050 0.05074 0.05098 0.05160 0.05222 0.06735 
0.060 0.05986 0.06027 0.06116 0.06214 0.07746 
0.080 0.07790 0.07872 0.08025 0.08204 0.09687 
0.100 0.09581 0.09718 0.09934 0.10212 0.11564 

x, w0 = 1 

M 

2 3 

0.00540 0.00537 
0.01108 0.01104 
0.01449 0.01442 
0.01922 0.01911 
0.03345 0.03328 
0.04557 0.04545 
0.05678 0.05673 
0.06739 0.06748 
0.07761 0.07789 
0.09732 0.09805 
0.11646 0.11774 

4 

0.00487 
0.01060 
0.01397 
0.01865 
0.03240 
0.04466 
0.05609 
0.06704 
0.07769 
0.09845 
0.11882 

" U1 
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Table B-2 

Neutral Stability Characteristics for the Fully Developed 
Hartmann Flow 

Cl. R 
c c 

r Cl. R r 

M = 1 

0.500 77307 0 .15 84 0.980 6 80 4 0.3487 
0.550 47618 0.1828 1.000 6937 0.3505 
0.600 31387 0.2070 1.020 729 8 0.3500 
0.650 21939 0. 2 30 8 1.040 8352 0.3439 
0. 700 16137 0.2537 1.037 14000 0.3116 
0.750 12431 0.2756 1. 017 20000 0.2887 
0. 800 9997 0.2961 0.995 26000 0. 2 72 3 
0.820 9275 0. 30 38 0.976 32000 0.2598 
0.840 8664 0.3112 0.938 47000 0.2378 
0.860 8151 0.3182 0.878 82000 0.2088 
0.880 7726 0.3248 0.854 102000 0. 19 82 
0.900 7380 0. 330 9 0.835 122000 0.1899 
0.920 7111 0.3365 0.818 142000 0.1831 
0.940 6920 0.3414 0.804 162000 0.1774 
0.960 6812 0.3456 

M = 2 

0.430 428795 0 .10 38 0.900 20576 0.2681 

0.490 206302 0.1285 0.950 20576 0.2737 

0.550 114240 0. 15 31 1.000 25553 0.2668 

0. 610 70311 0.1772 1.006 38000 0.2467 

0. 6 70 47280 0.2004 0.991 53000 0.2296 

0.730 34294 0.2220 0.974 68000 0.2172 

0.750 31313 0.2287 0.942 98000 0.1998 

0. 7 70 28815 0.2352 0.929 113000 0.1933 

0.790 26725 0.2414 0.916 128000 0.1878 

0.810 24984 0.2472 0.905 143000 0.1830 

0.830 23549 0.2527 0. 895 158000 0.1788 

0.850 22377 0.2578 
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Table B-2 (Continued) 

M = 3 

0.570 249570 0.1322 1.010 51751 0.2283 
0.580 229859 0.1355 1.053 81000 0. 210 5 
0.670 122274 0.164 3 1. 044 111000 0.1968 
0.770 72735 0.1935 1.029 141000 0.1866 
0.870 53918 0.2155 1.009 181000 0.1764 
0.940 48845 0.2259 0.990 221000 0. 16 86 
0.970 48751 0.2283 0.973 261000 0.1622 

M = 4 

0.600 474131 0.1182 1.139 126730 0 .1946 
0.700 240698 0.1451 1.142 156730 0.1862 
0.800 147454 0.1692 1.136 186700 0 .179 4 
0.880 112134 0.1853 1.127 216 700 0.1736 
0.960 94340 0.1976 1.117 246700 0.16 89 
0.990 90985 0. 2010 1.096 306000 0.1607 
1.020 89184 0.2036 1.077 366000 0.1543 
1.060 90066 0.2053 1.059 426000 0 . 1491 
1.100 96730 0.2042 1.043 486000 0.1447 



Table B-3 

Comparison of Critical Stability Characteristics for the 
Fully Developed Hartmann Flow 

Lock's Work (Ref. 3) Present Work 
Analytical Solution Numerical Solution 

M <X crit R crit Or crit <X crit R crit cr crit 

0 1.03 4000 0.393 1. 021* 3850* 0.3959* 

1 0.98 7080 0. 3510 0. 980 6804 0.3487 

2 0.93 21165 0.2844 0.923 20354 0.2718 

3 0.96 51199 0.2538 0.958 48630 0.2274 

4 1.04 92663 0.2370 1. 0 34 89000 0.2046 

6 1.27 194300 1.246 184600 0.1853 

10 1.75 417600 1.720 415000 0.1707 

*Numerical solution for M = 0 from Chen (6) 

78 
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Table B-4 

Neutral Stability Characteristics for Developing Flow, 
Parabolic Inlet Velocity Profile 

R cr a R c r 

M = 1, X = 0.005 

0.520 50702 0.1763 0.980 4835 0.3754 
0.580 29331 0.2076 1.020 4994 0.3799 
0.640 18504 0.2382 1.050 8600 0.3480 
0.700 12579 0. 26 80 1.060 8618 0.3490 
0.760 9124 0.2963 1.003 17200 0.2998 
0.820 7028 0.3226 0.965 25800 0.2734 
0.880 5748 0.3461 0.920 40000 0.2468 
0.940 5028 0.3657 0.877 60000 0.2242 

M = 1, X = 0.020 

0.360 444642 0.0946 1.028 12000 0.3219 
0.460 107312 0.1428 0.979 24000 0.2714 
0.560 38740 0.1928 0.947 34000 0.2555 
0.660 18218 0.2421 0.992 44000 0.2407 
0.760 10475 0.2881 0.901 54000 0.2294 
0.860 7181 0.3278 0.866 75000 0.2122 
0. 890 6649 0.3379 0.836 100000 0.1982 
0.920 6279 0.3467 0.812 125000 0.1878 
0.950 6076 0. 35 39 0. 793 150000 0 .179 7 

0.990 6161 0.3594 0.777 175000 0.1732 
1.030 7610 0.3513 

M = 3, X = 0.005 

0.560 127606 0.1549 0.764 170000 0.1657 

0.620 85788 0.1765 0.760 186687 0.1621 

0.680 65791 0.1944 0.754 210000 0 .15 77 

0.740 61827 0.2039 0.745 250000 0.1513 

0.776 90000 0.1912 0.740 275965 0.1478 

0.773 130000 0.1763 0.680 633551 0.1211 
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Table B-4 (Continued) 

M = 3, X = 0.020 

0.480 414334 0.1109 0.900 99733 0 .1950 
0.500 336639 0.1181 0.901 103500 0 .1909 
0.520 277586 0.1251 0.897 133500 0 .180 7 
0.560 196453 0 .1391 0. 89 3 153000 0.1753 
0.620 128363 0.15 89 0.887 173000 0 .170 5 
0. 680 92489 0.1769 0.881 193000 0 .166 3 
0.740 73248 0.1921 0.869 230000 0 .159 8 
0. 800 64669 0. 20 30 0.858 270000 0 .15 39 
0.820 63940 0.2050 0.847 310000 0.1491 
0.880 73589 0.2039 0.837 350000 0.1449 



Table B-5 

Variation of the Critical Wave and Reynolds Numbers with Axial Position, 
Parabolic Inlet Velocity Profile 

M = 1.0 M = 2.0 M = 3.0 M = 4.0 

a crit R crit a crit R crit a crit R crit a crit R crit 

0.000 1.021 3850 1.021 3850 1.021 3850 1.021 3850 
0.001 - - - - - - 0.652 31700 
0.002 1.005 4210 0.945 6415 0.807 17995 0.607 1799 00 
0.003 - - - - - - 0.635 203500 
0.005 0.976 4975 0.866 11935 0. 719 59920 0.670 206700 
0.007 - - - - - - 0.718 19 4000 
0.010 0. 9 74 5475 0.838 17415 0.753 69960 0.764 169000 
0.020 0.964 6045 0.855 20090 0.825 63700 0.867 137250 
0.030 - - 0. 868 20650 - - 0.9 31 1159 00 
0.040 0.964 6440 - - 0. 880 56040 0.953 106220 
0.060 0.9 68 6590 0. 895 20750 0.907 53450 0.99 8 96600 
0.080 - - - - 0.9 34 51100 - -
0.010 0.969 6701 0.908 20550 0.947 50600 1.030 90250 

00 0.960 6809 0.923 20354 0.958 48630 1.034 89000 

(X) 

t-' 
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Table B-6 

Neutral Stability Characteristics for Developing Flow, 
Uniform Inlet Velocity Profile 

a. R cr a. R c r 

M = 1, X = 0.005 

0.920 106827 0 .185 3 1.940 17438 0.3273 
1.070 60214 0.2188 2.040 17807 0. 3295 
1.170 44795 0.2387 2.213 25000 0. 3146 
1.270 35144 0.2567 2.142 45000 0.2819 
1.370 28835 0.2727 1.997 75000 0.2546 
1.470 24562 0.2869 1.889 105000 0.2377 
1.570 21640 0.2991 1. 807 135000 0.2256 
1.640 20164 0.3065 1.742 165000 0.2163 
1.740 18655 0.3155 1.688 195000 0.2088 
1. 840 17763 0.3225 

M = 1, X = 0.020 

0.530 282383 0.1222 1.360 11282 0.3348 
0.630 115400 0.1581 1.469 21300 0.3047 
0.730 58368 0.1923 1.426 32300 0.2802 
0.830 34499 0.2257 1.382 43300 0.2634 
0.930 23006 0.2555 1.304 68000 0.2390 
1.030 16935 0.2818 1.247 93000 0.2231 
1.129 13600 0.3038 1.196 123000 0.2096 

1.200 12192 0.3168 1.156 153000 0. 199 5 

1.260 ll490 0.3256 

M = 3, X = 0.005 

1.000 119431 0.1886 1.640 31032 0.2845 

1.075 91595 0.2038 1.740 28922 0.2924 

1.140 74996 0.2162 1.840 27871 0.2980 

1.240 57782 0.2336 1.940 27965 0.3011 

1.340 46715 0.2492 2.099 60000 0.2650 

1.440 39357 0.2629 2 .o 39 80000 0. 2501 

1.540 34370 0.2747 1. 9 82 100000 0.2389 
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Table B-6 (Continued} 

M = 3, X = 0.020 

0.650 237782 0.1401 1. 2 80 34279 0.2658 
0.700 168344 0.1552 1.320 36493 0.2647 
0.800 95675 0.1838 1.351 51000 0.2491 
0.900 62318 0.2098 1.343 66000 0. 2 36 4 
1.000 45481 0.2323 1.322 86000 0.2235 
1.080 38098 0.2471 1.283 120000 0.2078 
1.016 34120 0.2585 1.242 160000 0.19 49 
1.220 33096 0.2640 1.213 195000 0.1864 
1.240 32466 0.2663 1.184 235000 0.1787 



Table B-7 

Variation of the Critical Wave and Reynolds Numbers with Axial Position, 
Uniform Inlet Velocity Profile 

M = 1 2 3 4 
X 

(l 
crit R crit 

(l 
crit R crit (l 't cr~ 

R crit (l 
crit R crit 

0.001 - - - - - - 3.880 40730 
0.002 2.855 24770 - - 2.695 30670 2.771 37190 
0. 003 - - 2.260 23775 - - 2.298 37120 
0.004 - - - - 2.058 28030 - -
0.005 1.948 17410 1.950 21050 1.885 27700 1.851 39600 
0.006 - - - - 1. 763 27690 - -
0.007 - - 1. 738 19700 - - 1.630 42930 
0.010 1.586 13885 1.545 18600 1.485 28700 1.444 48140 
0.020 1.384 11125 1.276 17750 1.224 33090 1.216 62320 
0.030 1.221 10025 1.161 17610 1.124 37100 - -
0.040 1.153 9322 - - - - 1.096 77140 
0.050 1.115 8830 1.051 18370 1.039 42100 - -
0.060 1.079 8470 - - - - 1.060 82980 
0.080 1.025 8060 0.984 19280 0.985 46055 - -
0.010 1.018 7670 - - 0.977 47200 1.038 86600 

00 0.980 6804 0.980 20354 0.958 48630 1.034 89000 

00 
~ 
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