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ABSTRACT 

Distributed generation (DG) is becoming an increasingly attractive power 

generation paradigm in the field of power engineering as economic and environmental 

factors drive new technologies to be more efficient and less polluting than their earlier 

counterparts.  Although the concept of DG is not new, little research has been done on the 

topic and even fewer field tests have been performed.  This lack of research, along with 

other factors, has somewhat slowed the acceptance of DG into markets, other than 

industrial or commercial co-generation for heat and power.  This thesis attempts to 

examine and compare three types of DG:  diesel generators, microturbines, and small 

wind turbines within the structure of a distribution system.  The DG types are compared 

in both steady-state and transient operation to determine which type is suitable for a 

particular application.  Steady-state operation is examined under heavy loading 

conditions and each DG type is compared on the basis of the voltage profile improvement 

and power loss reduction.  Transient operation is examined during islanding conditions, 

as well as lesser and more common system events like a single-phase fault, relay 

operation, and a short-term load increases.  The results indicate improvement in the 

steady-state conditions of a system from DG, but also indicate some significant problems 

during relatively minor transient events. 
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1. INTRODUCTION 

 

1.1 DEFINITION 

Distributed generation (DG) is generally regarded as small generators, both in 

terms of power output and physical size, connected to the existing power distribution 

grid.  The difference between distributed generation and power plants operating in the 

modern transmission system is at least partly semantic.  Although both types of 

generators operate in an interconnected system, power plants on transmission systems are 

generally located far from the loads they serve and are operated by utilities, whereas 

distributed generators are typically located on-site close to the loads they serve and could 

be operated independently by a customer or independent power producer instead of a 

utility company.  Customers are, however, limited in the amount of control they can exert 

on their own generators.  However, the technology offers several benefits to both 

consumers and producers of electrical power and has resulted in increased research and 

usage of DG technologies.   

 

1.2 BACKGROUND 

The origins of distributed generation arguably go back as far as Thomas Edison’s 

invention of the electric light bulb, which helped to create a widespread need for 

electrical power.  The original light bulb was powered by direct current (DC), which 

became Edison’s preferred method of transmitting power.  Until recently, power 

transmitted by direct current had to be sent to a load at the load voltage, resulting in high 

currents and high losses due to line resistance, which created drops in voltage.  Therefore, 
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in order to keep voltage high enough for a load to operate; DC generators had to be 

located near every load, thus making all power produced  

 This need soon evaporated after Nikola Tesla’s discovery of alternating current 

(AC) for transmitting power and William Stanley’s invention of the first practical AC 

transformer in 1886 [1].  Alternating current became the preferred method of power 

transmission due in large part to the transformer.  This is because transformers can reduce 

the amount of current sent over power lines (and the line losses that result) by “stepping 

up” voltages with very few losses in the process.  This allowed for much greater distances 

between the generally large, noisy, and polluting power plants of the time and utility 

customers.  Thus, the modern power grid model of a few large power plants sending 

power long distances at high voltages to lower voltage distribution systems was created, 

while independent power production was only utilized when the grid could not easily be 

accessed. 

Distributed generation technology is now being rediscovered due to several recent 

trends.  The most widely cited are [2]: 

• Advancements in the technologies associated with DG 

• Concerns of environmental pollution and emission of greenhouse gases resulting 

from the burning of fossil fuels along with an interest in more environmentally 

friendly technologies 

• An increase in the cost of fossil fuels 

• A greater demand for power quality, especially from industry 

• The deregulation of the power industry 
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• The laws, codes, and popular sentiment against building new transmission lines 

along with the desire of utility companies to reduce costs by building transmission 

lines. 

The technology and concept is also being revisited because of the benefits it can 

provide.  The use of DG can improve power quality for utilities in several ways, although 

each depends on the location and type of DG used.  The use of DG can strengthen the 

system voltage profile [3] and can reduce both real and reactive power system losses 

when located near loads at the end of lossy lines.  The units that can operate in stand-

alone mode can provide power quality benefits to customers by supplying sections of the 

power system grid when there are outages on other sections of the distribution system [4].  

Some have even speculated that both permanent and temporary outages could be virtually 

eliminated if the technology were developed further and used independently of the power 

grid. 

Distributed generation has many benefits for both consumers and producers of 

power, but it also has many drawbacks.  One of the biggest drawbacks to DG use is 

economics.  Most alternatives to coal and fossil fuels, such as sunlight and wind, require 

the purchase of technology that is still high in initial cost despite recent advancements.  

Also, while many states in the U.S. have allowed for net metering, which allows utility 

customers to be paid the retail price for excess power produced by DG, nine states still 

have no such laws in place, creating little economic incentive for independent power 

producers to invest in the technology.  Easy access to reliable power from the grid in 

most industrialized nations also reduces the demand for small scale generators, which 

further decreases the incentive to invest.  Another drawback to DG usage is that many 
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methods of converting alternative fuels into electric power are simply inefficient when 

used solely for power.  As an example, wind turbines do not exceed 40% mechanical 

efficiency at most wind speeds [6] and microturbines achieve electrical efficiencies of 

only 30% when used solely for power [7].  Along with the economic and efficiency 

problems posed by DG technology, power quality and the coordination of protective 

devices can become significant problems as even minor system events can lead to false 

tripping and outages.  

 

1.3 OBJECTIVES 

Whereas the limitations of technology were what drove the need for distributed 

generation after the discovery of electricity, the newfound capabilities of technology is 

what drives a return to the concept.  Advances in power electronics have allowed many 

sources of energy like wind, the sun, and several others to become viable options.  As 

with many developing technologies, there is a lack of knowledge about the applicability 

and impact of DG, which is one of the larger factors in its slowness to develop.  The 

objective of this thesis is to examine the pros and cons about three types of distributed 

generation technology:  diesel generators, microturbines, and wind turbines through the 

simulation of the underlying technologies on a realistic distribution system in realistic 

steady-state and transient events all modeled using DIgSILENT [12].  

 

1.4 SOFTWARE USED 

 There are currently a wide variety of software applications that can model DG 

systems, including PSCAD [8], SKM PowerTools [9], Matlab/Simulink [10], ETAP [11], 
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and DIgSILENT [12].  DIgSILENT was chosen as the software application to be used for 

the simulation of doubly-fed induction generators (DFIGs) and synchronous generators.  

These two models were important as DFIGs are becoming the standard generator type in 

wind turbines and synchronous generators are the standard in both diesel generators and 

microturbines. 

 DIgSILENT was chosen because of economic limitations and because of its ease 

of use, as it contains blocks to model most common power system components along 

with the capability of simulating the components in a steady-state and during transient 

events. 

 

1.5 OVERVIEW 

  This thesis is focused on the three types of technology typically used in 

commercially available DG and the benefits and drawbacks that each offers to a typical 

distribution system under steady-state and transient conditions.  It is divided into five 

sections.  Section 2 will focus on the impact of DG on the power system and a review of 

the studies performed on DG’s impact.  Section 3 will discuss microturbines and diesel 

generators, two technologies that utilize synchronous generators for power production.  

Section 3 will also examine wind turbines and, more specifically, doubly-fed induction 

generators.  Section 4 will discuss the procedure, results, and analysis of the DIgSILENT 

studies performed.  Section 5 will discuss the conclusions that can be drawn as well as 

future work to be done in the field. 
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2. IMPACT OF DG ON SYSTEM BEHAVIOR 

 

2.1 OVERVIEW 

 This section of the thesis will examine the impact of distributed generation on the 

voltage profile, system losses, and system reliability.  Then the technical issues, including 

islanding, transients, and coordination of protective devices associated with DG will be 

examined.  These investigations of each benefit and drawback examined will also include 

a review of the literature available. 

  

2.2 VOLTAGE PROFILE 

The popular saying “the customer is always right,” still carries a lot of truth, 

especially in the utility industry.  As industry has advanced from manufacturing largely 

by hand to producing precision parts and equipment with machines, the importance of 

having high-quality and consistent power has grown along with it, which makes power 

quality an issue for both the utility customer and the utility itself.  Since voltage quality is 

directly associated with power quality and all distribution systems contain at least some 

voltage drop somewhere in the system, voltage profile and measures to improve it are 

both important.  The generally accepted steady-state range for bus voltages on any power 

system is 0.95-1.05 per unit (p.u.), meaning that the voltage at the bus is between 95-

105% of the nominal voltage of the bus. 

 Distributed generators are used less frequently to address voltage profile 

deficiencies than voltage regulators and capacitors, but there have been several recent 

studies on DG’s possibilities of improving the profile.  Distributed generation generally 
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offers the best voltage regulation and voltage profile improvement when operated as a 

voltage-controlled generator, but most forms of DG are operated as a power factor- 

controlled generator to maximize the power output as most generators operate are most 

efficient at peak power outputs.  However, this maximization of output and efficiency can 

come at the cost of creating overvoltages at the point of common coupling (PCC) and 

surrounding buses. 

 One case study [3] examines the use of a probabilistic approach and a non-

probabilistic approach to maximize the voltage profile of a system with wind turbines as 

acting as distributed generators.  The study used both approaches to optimize the 

location, size, and power factor for the wind turbines.  The probabilistic approach was 

slightly more accurate but significantly more complicated although both methods showed 

that the voltage profile improved as the generator size was increased and as it was moved 

closer to the load.  The study showed load voltage improved by 0.005 p.u. when the 

distance from the load was adjusted from 80% to 0%.  The study also showed that the 

load voltage improved by 0.01 p.u. when the wind turbine’s power output was increased 

from 0.08 p.u. to 0.32 p.u.. 

 A comparative analysis similar to the one performed in this thesis compared the 

voltage profile of a system using a synchronous generator acting as a DG against the 

same system with an induction generator as a DG [13].  The system was tested under 

several loading conditions and with varied control conditions for the synchronous 

generator.  This study found that a constant voltage synchronous generator provided the 

best voltage regulation for the system under both minimum and maximum load demand, 
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but also required six generators to do so and had the greatest variation in voltage when a 

generator was disconnected from the system. 

The studies relating DG and voltage profile use different methods, but do indicate 

several common relationships between the two: 

• Voltage profile was improved in each case by locating the distributed generator 

close to the load 

• Voltage profile is improved by increasing the size of the distributed generator, but 

the sizing needs to be limited through careful study of the system or through the 

generator regulating itself as overvoltages can occur for oversized generators. 

The relationships described above are often considerations followed when placing and 

sizing capacitors on distribution systems and many who have studied distributed 

generation recommend following the same practices when placing distributed generators 

as when placing capacitors for an improved voltage profile. 

 

2.3 SYSTEM LOSSES 

 Although system losses are not directly a power quality issue, the losses in a 

system are usually related to the voltage profile of the system.  One study found that 

active power losses are reduced under heavy loading conditions, but losses are actually 

increased under light loading conditions [14].  This was possible because the distributed 

generator removed congestion on lines during heavy loading periods, but during lighter 

loading conditions the DG reversed power flow rather than reduce line loading.  An 

increase in system losses is especially noticeable with voltage-controlled synchronous 

generators as this type of generator will begin to “motor” and absorb reactive power 
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produced on the system to regulate voltage [14].  Another study found that the location of 

the distributed generation is important in reducing system losses and that increasing the 

sizing of distributed generation generally results in fewer losses, but the gains slowly 

diminish [15].  An additional study confirmed the results of the sizing study and also 

found that increasing penetration and power output of DG can result in increased system 

losses [16]. 

 

2.4 RELIABILITY AND ISLANDING 

Distributed generation has the ability to reduce both temporary and permanent 

outages on distribution systems, but this generally requires what is called intentional 

islanding, although it is possible to switch a section with distributed generation onto a 

separate feeder without creating an island.   

Islanding usually occurs when a section of the distribution system supported by 

DG is disconnected from the main substation during a transient.  Islands are not 

inherently harmful to distribution systems, although most utilities utilize some form of 

anti-islanding protection due to problems associated with islanding.   

One of the major problems with islanding is that it is often caused by faults that 

occur between the DG and the substation, which often results in relays opening at 

different times to remove fault current and results in a loss of phase and voltage 

synchronization.  The loss of synchronization can result in large transients when a 

recloser operates to reconnect the island and can then result in false tripping.   

A further problem with islanding is that, even if synchronization is not lost during 

the relay operation, synchronism can be lost after the island is created because the 
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generator may not be capable of supporting the island and this may result in damage to 

the generator as it speeds up to attempt to meet the load demand. 

The Standards Coordinating Committee of the IEEE devised a set of 

recommendations for utilities to follow for interconnection between distribution systems 

and DG and these became the IEEE 1547-2003 Standard.  The standard recommends 

anti-islanding protection operate within two seconds of detecting an islanding condition 

[17], while also putting forth recommendations for disconnecting during 

under/overvoltages and under/overfrequency events, although these types of events are 

often an indication that islanding has already occurred. 

Studies have been conducted examining both improvements in reliability from 

DG and methods for preventing islanding, with mixed results.  One study of a simple 

distribution system with DG on a lateral found that the hours of power unavailability for 

customers could be reduced by 100 for each additional section of the feeder that could be 

supported by DG, although the study found that the number of interruptions per year 

increased slightly [18].  Another study of automatic sectionalizing switching devices 

(ASSDs) used in intentional islanding schemes could reduce system interruptions by up 

to 90% and the duration of interruptions by up to 82% for one test system [19].  An 

additional study found distributed generators had very little effect on the number of 

outages per year, but could have a significant effect on the duration [20].  The use of anti-

islanding devices has only recently started.  Most types, including rate-of-change-of-

frequency (ROCOF) relays, which detect islanding conditions through sudden changes in 

frequency, and vector surge relays, which detect islanding conditions through phase 
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differences in a generator’s internal voltage and the terminal voltage, are found to be 

difficult to coordinate with existing protection measures or trip incorrectly [21]. 

 

2.5 TRANSIENTS AND FAULT PROTECTION COORDINATION 

 Transients are a two-sided issue for users of distributed generation as the 

protective devices used in systems with distributed generators must be capable of picking 

up transients in the system without operating incorrectly and should also avoid creating 

system transients.  This is made more difficult by the fact that faults on systems with DG 

require protective devices to remove multiple sources of fault current rather than only 

one.  Distributed generation also creates a problem for protective device coordination by 

reducing not only steady-state current from the main substation, but also fault current 

[22].  This requires protective devices at the substation to have more sensitive settings to 

pick up fault conditions [23].  Temporary faults can also create problems for systems 

with DG, as sections that may be experiencing a temporary fault are acted upon by a 

relay to extinguish the arcing current, the protective devices acting for a distributed 

generator may not see the fault and thus allow the fault current to continue flowing while 

turning a temporary fault into a permanent one [24]. 

 Several studies of the effect of DG on transient stability have been performed 

with mixed results, depending on the system and cause of the transient.  One such study 

found that asynchronous generators had very little effect on transient stability while 

synchronous generators stabilize the frequency of large scale generators, but caused the 

duration of transients to increase [25].  Another study showed that DG can reduce the 
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magnitude of voltage dips through series compensation and through the temporary 

creation of an island using static transfer switches [26].   

In general, research indicates that the best coordination schemes will only be 

possible through extensive examination of protection coordination and communication 

between protective devices.  Some studies have shown that DG can improve transient 

stability in distribution systems through careful selection of technology and location [27]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  13 

3. DISTRIBUTED GENERATION TECHNOLOGY 

 

a. OVERVIEW 

This section of the thesis will examine the operation of diesel generators, 

microturbines, and wind turbines, three technologies commonly used or being developed 

for usage in DG applications.  Diesel generators and microturbines commonly use 

synchronous generators for producing power, while wind turbines commonly utilize 

DFIGs for power production, although there are a few exceptions. 

 

3.2 DIESEL GENERATOR   

Diesel generators are commonly used by residential consumers, businesses, and 

important services like the police and hospitals as they are both a cheap and reliable 

source of power.  Many diesel generators available to consumers are rated for 10,000 

hours of operation or more and generators with power ratings of up to 2.5 MVA.  Diesel 

generators also offer high power density and an installation cost below $500/kW, which, 

combined with its other benefits, has made it the most commonly used generator type for 

backup power. 

Diesel generators have several drawbacks to their use as a distributed generator.  

Diesel generators rely on a fossil fuel that has seen its retail price increase over 200% in 

the last five years [28].  Diesel generators are generally noisier and emit more pollutants 

than technologies relying on renewable resources, although both of these negative 

characteristics have improved-since 1980, diesel engines have reduced emissions of NOx 

and particulate matter by 90 % [29].  Diesel generators also need to be operated 
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approximately once per month if used as stand-by power, although in the context of 

distributed generation discussed in this thesis, this is not a large concern.  Fuel stocks for 

diesel generators also require heating in colder environments as diesel fuel will become a 

gel at sufficiently low temperatures. 

Diesel generators consist of two basic parts:  a diesel engine and a synchronous 

generator.  Figure 3.1 [30] shows a block diagram design of a diesel generator. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Block diagram of a diesel generator set [30] 

 

 

3.2.1 Diesel Engine.  The diesel engine operates similarly to most internal 

combustion engines in that it produces energy from a combustible fuel igniting within its 

cylinders and has both air intake and fuel intake valves and a fuel injector, with a 
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crankshaft to transfer energy.  However, the major difference between gasoline and diesel 

engines is the thermodynamic process known as the Diesel cycle, named for its inventor, 

Rudolph Diesel, which is shown in Figure 3.2 [31]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Pressure-volume plot of Diesel cycle [31] 

 

 

The input work necessary to operate a diesel engine, which occurs during the first 

stroke of a four-stroke diesel engine, is the area under curve 1-2 in Figure 3.2.  The work 

obtained from a diesel engine, which occurs during the third stroke of a four-stroke diesel 

engine is shown as the area under curve 3-4 in Figure 3.2.  As the area under curve 3-4 is 

greater than the area under curve 1-2, the net work obtained from a diesel engine is 

positive. 
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The diesel cycle is possible because of the way diesel fuel is ignited within the 

cylinder of the engine.  Diesel engines rely on compression ratios of between 14:1 and 

20:1 [30] to produce high enough temperatures within the piston cylinder to cause 

ignition when diesel fuel is injected.  The compression rate is defined in Equation 1 [30]. 

 

a e

c

e

v v

v
!

+
=                  (1) 

Where: 

a
v  - total volume of the piston cylinder 

e
v  - volume of the compression chamber 

 

This high compression ratio differs from gasoline engines, which use a lower 

compression ratio of between 4:1 and 10:1, and a spark plug for ignition within the 

piston.  The greater compression ratio within diesel engine pistons allows diesel engines 

to obtain more energy per unit volume of fuel than other internal combustion engines.  

Most modern diesel engines utilize a turbocharger to further compress incoming air by 

acting as a large fan to force more air into the piston cylinder.   

Most diesel engines operate using a four-stroke process in the piston.  A typical 

diesel engine piston and cylinder is shown in Figure 3.3 [29].  The initial stroke is 

considered the intake stroke, which is the initial downstroke.  This downstroke reduces 

the air pressure in the cylinder, allowing air to be drawn in.  The second stroke is 

compression, which occurs when the crankshaft forces the piston upward to increase the 
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air pressure while decreasing the volume.  This increases the temperature within the 

cylinder as demonstrated by the ideal gas law shown in Equation 2. 

The third stroke is fuel injection, where the diesel fuel is injected into the 

compressed, hot air and ignites, which increases the volume of the gas in the cylinder 

while counteracting the pressure placed on the gas by the piston to drive the piston 

downward to rotate the crankshaft and pass the rotational energy to the synchronous 

generator.  The amount of fuel injected during the third stroke is controlled by a 

governor, which keeps the motor from overspeeding through a mechanical system of 

weights or an electrical system with controllers, depending on the motor.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Diagram of diesel engine piston and cylinder [29] 
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pV=nRT                 (2) 

 

Where: 

p – pressure 

V - volume 

n – molar amount 

R – gas constant 

T – temperature 

 

The fourth and final stroke is an upstroke, which forces the exhaust to exit 

through the exhaust valve and starts the process over.   

3.2.2 Synchronous Generator.  The synchronous generator is made of two main 

components:  the rotor and stator.  The rotor contains the field windings, which act as a 

magnet.  When the rotor rotates within the stator, the magnetic flux created by the 

armature windings interacts with the field windings of the rotor, to induce a current at the 

system frequency that is then sent to the load.  The equivalent circuit diagram of the field 

and armature windings of a single phase can be seen in Figure 3.4 [39]. 

The output power of a synchronous generator in terms of the voltage and current 

of the armature windings is given in Equation 3 [39]. 

 

3 cos( )
a a

P V I !=                 (3)  
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The synchronous generator of a diesel generator is typically unable to produce 

reactive power as the field current of a generator, which controls reactive power output, is 

maintained at a constant level by the exciter such that generator voltage, represented by 

Eaf in Figure 3.4, is always equal to the terminal voltage, represented by Va.   

 

 

 

 

 
 
 
 
 
 

Figure 3.4 Circuit diagram of field and  
armature windings for a synchronous generator [39] 

 

       

This means constant power output also allows diesel generators to operate as 

power factor-controlled synchronous machines.  Power factor control is demonstrated by 

Equation 5. 

 

1cos(tan ( ))
Q

pf
P

!
=                 (5)  

    

3.3 MICROTURBINE   

Microturbines are a very recent development in the field of distributed generation 

as most manufacturers of microturbines have only been producing the technology for 10-
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15 years.  The technology offers several important benefits over other sources of 

distributed generation, perhaps the most important of which is that microturbines can 

operate using most combustible fuels, including liquid fuels like diesel and gasoline, and 

gaseous fuels like digester gas from landfills and natural gas.  However, there are limits 

to this, as many types of microturbines are not rated for the use of multiple fuel types. 

Figure 3.5 shows a set of microturbines operating in parallel. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Three Capstone microturbines in operation [40] 

 

 

Microturbines also offer high power densities, generally from 3-4 kW/sq. ft.  

Installation costs of microturbines are significantly higher than those of diesel generators 

and are generally $1000-$1500/kW installed [32].  Microturbines are generally inefficient 
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when used solely for power, as the peak electrical efficiency of a microturbine is 

approximately 30% [33] and this occurs when running at maximum output.  

Microturbines are frequently used for combined heating and power (CHP), which can 

increase the electrical efficiency up to 70% and the total efficiency to 75%, making them 

a viable option for both office buildings and industry.  Most microturbines currently 

produced are capable of only about 300 kW, although multiple microturbines can be 

placed in parallel to produce a greater combined output.  Some microturbines are capable 

of only grid-parallel operation, although most manufacturers produce models capable of 

both stand-alone and grid-parallel operation.  Microturbines are generally used for peak-

shaving and base load operation due to their high cost and efficiency limitations. 

A microturbine is composed of two parts:  a high-speed gas turbine and a 

permanent magnet synchronous generator [34].  A block diagram of a typical 

microturbine is shown in Figure 3.6 [30]. 

The gas turbine is generally made up of a compressor, a combustion chamber, a 

turbine and a recuperator.  Although a recuperator is not required for operation, it can 

improve the efficiency of the microturbine by 5-10% and allows for CHP applications 

[35].  A gas turbine model can be seen in Figure 3.7 [41].   The gas turbine operates 

produces power through the use of the Brayton cycle, shown in Figure 3.8 [42]. 

The initial step of the Brayton cycle is when air is allowed to enter the compressor 

and this can be seen as curve A-B in Figure 3.7.  The compressor then increases the air 

pressure while simultaneously decreasing the volume of the air within the compressor.  

This can be seen as curve B-C in Figure 3.7.   
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Figure 3.6 Block diagram of a single-shaft microturbine [30] 

 

 

 

 

 

  

 

 

 

 
Figure 3.7 Cross-section of gas turbine [41] 
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Figure 3.8 Pressure-volume diagram of Brayton cycle [42] 

 

 

The compressed air then enters the combustion chamber or combustor, where it is 

mixed with fuel and ignites and drastically increases in volume while simultaneously 

dropping in pressure, as shown in Figure 3.7 as curve C-D.  The air expelled from the 

combustion of the gas turbine then flows over aerodynamic blades to rotate the turbine 

shaft.  This rotation allows the turbine to operate at approximately 100,000 RPM [30].  

This rotation is then fed to either a high-speed permanent magnet synchronous generator 

or a gear reducer, depending on whether the microturbine is single-shaft or split-shaft 

design, respectively [30].   

For a single-shaft design, unidirectional power electronic devices are typically 

connected to the synchronous generator, as these are cheaper to construct and 

significantly less complex than bidirectional power electronics, although both can be 
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used.  The unidirectional power electronics consist of a rectifier to convert incoming, 

high-speed AC power into DC, and an inverter to change the DC power into a 60 Hz 

output.  The split-shaft design uses a gear reducer connected to an additional shaft to 

reduce the rotational speed seen by the generator and thus the electrical frequency being 

produced by the generator [30]. 

The synchronous generator of a microturbine can act to control power factor or 

voltage, although for the purposes of this thesis, voltage-controlled operation will be 

examined.  Voltage control is accomplished essentially by comparing the generated 

voltage of a generator or line to the terminal voltage that the generator or line is 

connected to.  Equation 6 [43] describes this relationship. 

 

sin
g t

out

s

E V
P

X
!=                 (6) 

Where: 

out
P - Real power output 

g
E - generator voltage 

t
V - terminal voltage 

s
X - stator reactance 

! - generator power angle 

 

Equation 6 demonstrates that as the terminal voltage decreases, the generator 

voltage increases along with the real power output of the generator.  The generator power 

angle, which is the phase difference between the generator voltage and terminal voltage 
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can also be increased to control voltage, although there is a limit to this as generators also 

have limits on field and armature currents.  These limits to the power angle can be seen in 

the capability curves of synchronous generators.  A typical capability curve of a 

synchronous generator can be seen in Figure 3.9 [44].  The field limit on the amount of 

power output can be seen as the green curve in the figure while the armature limit on 

power output is represented by the blue curve. 

 

 

 

 

 

 

 

 

 
Figure 3.9 Capability curve for a synchronous generator [44] 

 

 

3.4 WIND TURBINE 

The use of wind to perform work has been around for well over a thousand years, 

but it has only been in the last seventy years that it has become commonly used for 

electricity production and the last thirty years that the wind has been used for large scale 

production.  The large scale use of wind power in the U.S. originated because of oil 

shortages in the early 1970s and an increase in oil prices in the last decade has driven a 
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return to the technology in the U.S.  Denmark has used wind turbines for more than 20% 

of their power production for almost two decades. 

Wind turbines have several advantages over other generator types.  The fuel 

source is free, limitless, and does not require storage or transportation.  Also, wind 

turbines do not produce emissions like fossil fuel-consuming generators.  Recent 

advancements in power electronics and controls have allowed technologies like DFIGs, 

active stall controllers, and variable slip controllers have increased the efficiency of wind 

turbines.  These advancements have also greatly extended the range of wind speeds and 

locations that wind turbines can be used at.  Several types of turbine design also allow for 

stand-alone operation, which allows for operation independent of the power grid. 

While wind power offers many advantages over more conventional sources of 

energy, wind turbines also have several important drawbacks.  Perhaps the largest 

drawback to wind turbines is that, just as the wind is inconsistent in its speed, wind 

turbines cannot produce a constant power output.  Another significant drawback to wind 

turbine usage is that the technology offers low power density and requires large areas of 

land to produce a significant power output.  The location of wind turbines is also an 

important factor despite the advances in power electronics and controls described earlier.  

Also, many load centers, like cities and industrial parks are often not ideal locations for 

wind turbines due to the limited availability and cost of land along with relatively low 

wind speeds.  This lack of optimal locations near load centers can mean that power lines 

are necessary for access to the power, thus eliminating one typical advantage of 

distributed generation.  The map of U.S. wind speeds shown in Figure 3.10 [45] shows 

that rural areas, like the mountain and plains states have the highest average wind speeds. 
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Figure 3.10 Map of average U.S. wind speeds [45] 

 

 

The amount of energy that can be obtained from the wind is limited by several 

factors.  Equation 7 [36] shows the maximum amount of kinetic energy, 
WIND
P , that flows 

incident over the rotor blades of a wind turbine. Obviously, a wind turbine will be 

incapable of converting all kinetic energy incident upon its rotor blades, as this would 

require zero wind speed on the downwind side of the rotor blades.   

 

2 31

2
WIND AIR WIND
P R V! "=                (7) 

 

 

Where: 

AIR
!  - air density 

R - rotor radius 
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WIND
V  - wind speed 

 

This kinetic energy must then be limited by another factor. energy, 
MECH
P  by the 

rotor blades, This limiting factor is Betz’s law shown in Equation 8 [36], which states 

that the amount of mechanical energy,  
MECH
P , is limited by a conversion factor, 

P
C .  

This conversion factor is limited to 59% or 16/27. 

 

MECH P WIND
P C P=                 (8) 

 

The values of 
P
C  can be maximized by designing the rotor tips to spin at roughly 

8 to 9 times the speed of the incoming wind [36].  As rotor blades are designed to have 

the greatest rotational speed for wind incident upon the top rotor blade, this means that 

the angle between the direction of the wind speed and the rotor tip,! , is quite large.  This 

angle of incidence,! , is calculated by Equation 9 [36]. 

 

arctan( )WIND

turb

V

R
!

"
=                 (9) 

Where: 

turb
! = turbine rotational speed 

 

These equations allow us an understanding of the mechanics of the rotor blades, 

but now the next step in power production will be examined.  As has been discussed, 

wind incident on the rotor blades produces rotation.  This rotation is transferred to a gear 
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box with a variable slip control, which allows the rotational speed sent from the turbine 

itself to the rotor shaft to maintain a relatively constant speed over a variety of wind 

speeds.  The rotor shaft from the gearbox is sent into a DFIG, which can be seen in 

Figure 3.11 [36]. 

 

 

 

 

 

 

 

 

 
Figure 3.11 Block diagram of wind turbine and DFIG [36] 

 

 

The DFIG utilizes an induction generator, which is quite similar to a synchronous 

generator except for two main differences: 

• The rotor of an induction generator can operate at greater than 

synchronous speed 

• The rotor of an induction generator is magnetized separately from the grid 

Although the DFIG utilizes an induction generator for power production, it also has some 

important differences from other induction generators.  The largest difference is that the 

rotor voltage of a DFIG is applied from a power converter, while the stator voltage is 
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!
ds
v

applied from the grid itself-this ‘feeding’ of two separate sources for rotor and stator 

voltages is how the DFIG became known as ‘doubly-fed’.  The other important difference 

between the DFIG and an induction generator is that a DFIG actually can be magnetized 

from the rotor circuit, as opposed to from the grid [36]. 

 The advantage that DFIGs have over other types of generators is that the slip of 

the generator, which is the difference between synchronous rotor speed and maximum 

rotor speed, is quite small.  This allows the DFIG to produce power over a wide variety 

of wind speeds.  The other important advantage DFIGs have is that the power converter 

can feed into or out of the rotor depending on the rotor speed.  This allows power to be 

fed into the rotor when the rotor is above synchronous speed and out of the rotor when 

the rotor speed is subsynchronous.  In either rotor speed situation, the stator feeds 

electricity into the system [36]. 

 The real and reactive power output of a DFIG can be shown as a function of the 

rotor and stator voltages and currents in the q-d reference frame as observed in  Equations 

10 and 11 [46]. 

 

            (10) 
            
           (11) 

Where: 

 

 d-axis stator voltage 

!
ds
i  d-axis stator current 

!
qs
v  q-axis stator voltage 
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!
qs
i  q-axis stator current 

!
dr
v  d-axis rotor voltage 

!
dr
i  d-axis rotor current 

!
qr
v  q-axis rotor voltage 

!
qr
i  q-axis rotor current 

 

These equations demonstrate that a DFIG can produce both real and reactive 

power and can operate to absorb reactive power from the system when necessary. 
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4.  SYSTEM STUDIES 

 

4.1 OVERVIEW 

 This section will examine the system used as well as outline the procedures and 

tests performed on the system.  This section will also present the results obtained and 

attempt to analyze and compare the results. 

 

4.2 SYSTEM 

 The IEEE 34-bus system shown in Appendix A.1 was created in DIgSILENT 

using specifications from IEEE [37] with line data shown in Appendix table B.1 and line 

model parameters in Appendix table B.2.  Equation 1 [38] is used to calculate the 

sequence impedances for the distribution lines.   

 

1

012[( ) ] [ ] *[( ) ]*[ ]s abc sR jX A R jX A!
+ = +              (1) 

Where: 

012[( ) ]R jX+ - sequence impedance matrix 
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The distributed loads shown in Appendix B.3 were modeled as split loads with 

half on each bus.  The system was then verified using an unbalanced loadflow study in 

DIgSILENT with reactive power limits and automatic tap adjustment to ensure the 

system was modeled correctly.  The loads throughout the system were then increased by 

50% to model heavy loading conditions. 

 

4.3 VOLTAGE PROFILE AND LOSS STUDY 

The microturbine and diesel generator were modeled as voltage- and power 

factor-controlled synchronous generators, respectively, while the small wind turbine was 

modeled as a DFIG.   These models were created to output 10% of the base case power 

output of the main generator on the system.  The base case had an average bus voltage 

was 0.915 p.u. and system losses totaling 1.179 MW.   Loadflow studies were performed 

to determine which locations provided the largest system-wide improvement in voltage 

profile and the greatest reduction in losses.  Figure 4.1 shows the average bus voltage in 

the system when the specific DG type was moved from bus to bus. Figure 4.2 shows a 

comparison of the line losses for each type of DG and each location. 

The small wind turbine and the microturbine provided approximately the same 

improvement in the voltage profile at locations close to the substation, although a 

significant and consistent difference appeared between the average voltages for both 

types at bus 832 and beyond.  This was likely due to the wind turbine producing at full 

power while the microturbine was limited in its VAR output due to voltage-controlled 

operation.  The diesel generator model did show an increase to the voltage profile of the 

system, although its impact was limited due to its inability to provide reactive power 



  34 

0.9

0.92

0.94

0.96

0.98

1

1.02

8
0

0
8

0
2

8
0

6
8

0
8

8
1

0
8

1
2

8
1

4
8

5
0

8
1

6
8

1
8

8
2

4
8

2
8

8
2

6
8

3
0

8
5

4
8

2
0

8
5

6
8

2
2

8
5

2
8

3
2

8
8

8
8

5
8

8
6

4
8

9
0

8
3

4
8

4
2

8
4

4
8

6
0

8
3

6
8

6
2

8
4

6
8

4
0

8
4

8
8

3
8

DG Location

A
v
e
ra

g
e
 B

u
s
 V

o
lt

a
g

e
 (

p
.u

.)

Microturbine

IC

Small Wind

Cap

support to the system.  Each DG type showed significant improvement to the voltage 

profile at bus 890 and maintains a relatively constant improvement to the voltage profile 

at locations further from the substation.  This is because power flow from the DG and 

main generator does not drastically change for these locations and there is no additional 

redundancy due to voltage regulators. 

 

 
 

 

 

 

 

 

 

 

 

Figure 4.1 Plot of average bus voltage as 
DG is moved farther from main generator 

 

 

The loss study indicates similar overall line loss improvement as the voltage 

profile study.  Bus 890 is the optimal location for DG and buses located at bus 832 and 

beyond all provide approximately the same reduction to system losses.  This is again an 

indirect result of the location of the DG in relation to the voltage regulators. 

 



  35 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

8
0
0

8
0
2

8
0
6

8
0
8

8
1
0

8
1
2

8
1
4

8
5
0

8
1
6

8
1
8

8
2
4

8
2
8

8
2
6

8
3
0

8
5
4

8
2
0

8
5
6

8
2
2

8
5
2

8
3
2

8
8
8

8
5
8

8
6
4

8
9
0

8
3
4

8
4
2

8
4
4

8
6
0

8
3
6

8
6
2

8
4
6

8
4
0

8
4
8

8
3
8

DG Location

L
o

s
s
e
s
 (

M
W

)

Microturbine

IC

Small Wind

Cap

 

 

 

 

 

 

 

 

 

 
Figure 4.2 Plot of line losses as 

DG is moved farther from main generator 
 

 

Three buses, 890, 862, and 848, were then identified as possible ideal locations 

for DG based on the voltage profile and loss studies, as these buses showed the greatest 

improvement on the average system voltage and the greatest reduction in line losses.  

Additional voltage profile studies were then performed at each bus location and each type 

of DG was increased in steps of 5% to observe the effect of location and sizing of DG on 

the voltage profile.  Figure 4.3 demonstrates the results of the voltage profile studies.   

Each set of three voltage profiles shown was for an isometric power output as the 

distance from the main generator was increased, while every third voltage profile shown 

was for an isometric location and varied output. The figure indicates that the system 

voltage profile is more strongly related to the sizing than the location of the DG, although 

a system can reach a point where the voltage profile is adequate and any additional DG 
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power output results in only minimal improvement in the best case and reverse power 

flow into the main generator in the worst case. 

 

 

 

  

 

 

 

 

 

  
Figure 4.3 3-D voltage profiles with varying diesel generator size and location 

 
 
 
 

 

 

 

 

 

 

 

 
Figure 4.4 3-D voltage profiles with varying microturbine size and location 
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The voltage profile study was then repeated in the same fashion for both the 

microturbine and small wind generator models, as seen in Figures 4.4-4.5.  Interestingly, 

both studies indicate that voltage profile improvement may be tied to a specific sizing or 

set range of sizing than to maximizing output or optimizing location.   It would appear 

that the optimal location is bus 890 with approximately 25% power output from a 

microturbine.  This location, power output and DG type would allow the minimum 

system voltage to be 0.978 p.u., which is easily above the minimum allowable bus 

voltage.  

The system losses for each of the three locations tested and each level of output 

can be seen in Figures 4.6-4.8.   

 
 
 
 

 

 

 

 

 

 

 

 
 
 

Figure 4.5 3-D voltage profiles with varying small wind turbine size and location 
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The system loss plots indicate that bus 890 is the ideal location for DG to reduce 

system losses as well as increase the voltage profile.  The plots also show a sharp 

decrease in system losses as output was increased for both the diesel generator and 

microturbine.  The wind turbine demonstrates a significantly different pattern as system 

losses decrease much more sharply as output power is increased to 20% from 15% than it 

does from 10% to 15%. 

 

4.4 ISLANDING STUDIES 

The diesel generator and microturbine models were tested under islanding 

conditions to observe their performance.  The small wind turbine was excluded from this 

study, as the model is incapable of operating separately from the grid. 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4.6 Plot of system losses with diesel generator at three locations 
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The microturbine and diesel generator models were placed at bus 890 and were 

first operated at a real and reactive power output equal to that of the load at bus 890.  This 

was done because the minimum DG power output that caused no undervoltages on the 

system would be unable to sustain an island and would not be designed for intentional 

islanding by a utility.  Three-phase faults were than programmed to occur at 1 second of 

simulation time at bus 890.  The frequency and line-line voltage plots can be seen in 

Figures 4.9-4.12. 

The graphs show that the diesel generator model experienced some significant 

speeding and voltage variations, but did stabilize upon being islanded.  The diesel 

generator was capable of reclosing onto the grid with only a small transient, but required 

a recloser delay of approximately one minute to allow the generator frequency to 

stabilize.  The microturbine model shows generator speeding, something typically 

associated with too much power generation.  The microturbine also demonstrates some 

ability to stabilize its voltage upon being islanded, but generator speeding observed after 

each relay operation kept the model from being reconnected.  The cause for the generator 

speeding was caused by a failure of the voltage-control system to recognize that the 

generator was not operating at the voltage set point.  The generator can also be observed 

to be slow to increase the bus voltage after it had reached a stable, but low condition. 

The reactive power output of the diesel generator model was then reduced to zero 

and the MVA power output was increased to 25% to determine whether the diesel 

generator or microturbine are capable of operating as a stable island when not specifically 

dispatched and limited to a power output equal to that of the islanded load.  The results 

can be observed in Figures 4.13-4.16.   
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These studies again indicate that neither the microturbine nor the diesel generator 

can stabilize during islanded operation and since both experience generator speeding, 

neither type is suitable for intentional islanding in this study. 

 
 
 
 

 
 

 

 

 

 

 

Figure 4.7 Plot of system losses with microturbine at three locations 
 

 
 
 

4.5 TRANSIENT STUDIES 

 The system was then tested under a variety of smaller transient events to observe 

how each DG type can handle typical system events.   

4.5.1 Single-Phase Fault Study.  The first study performed was for a 1-phase 

fault at bus 890 at 1.0 seconds of simulation time that was cleared at 1.25 seconds of 

simulation time.  The DG was set to 15% power output in each case.  The results can be 

observed in Figures 4.17-4.22. 

The plots show that the diesel generator and microturbine models experienced 

greater oscillation in voltage and frequency than the wind turbine.  This was likely due to 
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the wind turbine model requiring excitation from the grid.  The fault condition removed 

part of the wind turbine’s connection to the grid and thus partially removed a source of 

fault current.   

 

 
 

 

 

 

 

 

 

 
Figure 4.8 Plot of system losses with small wind turbine at three locations 

 

 
 
 

 

  

 

 

 
 
 
 
Figure 4.9 Bus voltages for islanding study Figure 4.10 Generator frequencies for  
islanding study with diesel DG islanding study with diesel DG 
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The microturbine was shown to be more stable during the fault than the diesel 

generator model, but this was likely due the lack of reactive power production from the 

diesel generator and the load at the DG bus.  As the diesel generator was producing only 

real power and the load required a large amount of reactive power, more current was 

required from the main generator to supply the load than with the microturbine, which 

was capable of reactive power production.  This additional current from the main 

generator caused the single-phase fault to have a more significant effect on the faulted 

bus’s voltage.  The study does indicate that the system approaches steady-state operation 

for each DG type, despite the transient event. 

 

 

 

 

 

 

 

 
Figure 4.11 Bus voltages for islanding  Figure 4.12 Generator frequencies for 
study with microturbine DG   islanding study with microturbine DG 

 

 
  

4.5.2 Load Shedding Study.  The next transient study performed was a 

temporary load shedding on the system.  The lateral containing buses 842, 844, 846, and 

848 was disconnected from the system at 1.0 seconds of simulation time and reconnected 
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at 3.25 seconds.  This was to simulate a false relay trip and reconnection.  The results can 

be observed in Figures 4.23-4.28. 

The load shedding study indicates that, although the wind turbine model 

maintains frequency stability much more than the diesel generator or microturbine 

models, it also causes a significant overvoltage.  The wind turbine study also indicates a 

subsynchronous frequency after the voltage has been restored to normal levels.  This was 

likely a response to the torque placed on the main generator due to a sudden load increase 

from re-connection. 

 
 
 

 
 

 

 

 

 

 

Figure 4.13 Bus voltages for islanding Figure 4.14 Generator frequencies for 
study with 25% diesel DG   islanding study with 25% diesel DG 
 
 
 
 

A large increase in both real and reactive power output of the main generator can 

be observed in Figure 4.29.  It can also be noted that the wind turbine draws reactive 

power from the grid for several tenths of a second after the load was shed.  The minimum 

point of reactive power absorption corresponds roughly to the reactive power setpoint of 
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–0.3 MVAR of the PWM converter used in the model.  This absorption may represent an 

attempt to stabilize the bus voltage.   

 

 

 

 

 

 

 

 
 
 
 
Figure 4.15 Bus voltages for islanding Figure 4.16 Generator frequencies for 
study with 25% microturbine DG  islanding study with 25% microturbine DG 
 
 
 
 
 
 

 

 

 

 

 
 
 
Figure 4.17 Bus voltages for 1-phase  Figure 4.18 Generator frequencies for 
fault study with diesel DG   1-phase fault study with diesel DG 
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The load shedding study demonstrates that the system returns to steady-state 

operation for each DG type used. 

4.5.3. Load Increase Study.  The final transient study was performed for a 

sudden load increase on the system.  This was simulated by increasing the load at bus 890 

by 25% at 1.0 seconds of simulation time and then decreasing the load to its previous 

value at 1.2 seconds of simulation time.  The results can be seen in Figures 4.30-4.35. 

The load increase study shows the wind turbine model experiences very fast 

frequency oscillations immediately after the load increases, but steadies very quickly to 

follow the main generator frequency.  The diesel generator and microturbine models 

show a greater oscillation in frequency and bus voltage, although it appears the voltage 

oscillation stabilizes before the wind turbine’s oscillations.  The system approaches 

steady-state operation after the load increase for each DG type, indicating that DG does 

not significantly affect system stability for this type of event. 

 
 
 
 

 

 

 

 

 

 
Figure 4.19 Bus voltages for 1-phase fault Figure 4.20 Generator frequencies for 
study with microturbine DG   1-phase fault study with microturbine DG 
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Figure 4.21 Bus voltages for 1-phase fault Figure 4.22 Generator frequencies for 
study with small wind turbine DG 1-phase fault study with small wind turbine 

DG 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
Figure 4.23 Bus voltages for load  Figure 4.24 Generator frequencies for 
shedding study with diesel DG  load shedding study with diesel DG 
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Figure 4.25 Bus voltages for load  Figure 4.26 Generator frequencies for load  
shedding study with microturbine DG shedding study with microturbine DG 

 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
Figure 4.27 Bus voltages for load  Figure 4.28 Generator frequencies for load 
Shedding study with small wind turbine shedding study with small wind turbine DG 
DG 
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Figure 4.29 Generator power outputs for load 
shedding study with small wind turbine DG 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.30 Bus voltages for load  Figure 4.31 Generator frequencies for load 
increase study with diesel DG  increase study with diesel DG 
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Figure 4.32 Bus voltages for load  Figure 4.33 Generator frequencies for load 
increase study with microturbine DG  increase study with microturbine DG 
 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.34 Bus voltages for load  Figure 4.35 Generator frequencies for load 
increase study with small wind turbine increase study with small wind turbine DG 
DG 
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5. CONCLUSION AND FUTURE WORK 

 

5.1 CONCLUSION 

This thesis has examined three types of DG:  diesel generators, microturbines, and 

wind turbines.  This thesis has also examined the technology behind these types of DG in 

a realistic system during steady-state and transient conditions to evaluate their strengths 

and weaknesses.  The voltage profile and loss studies confirmed that a small level of DG 

can provide a significant improvement to the voltage profile of the system.  The voltage 

profile and loss studies also demonstrated the importance of location and sizing, while 

demonstrating that increased DG power output does not necessarily correlate to an 

improved voltage profile.  The voltage profile and loss studies indicated the wind turbine 

model was slightly more effective than the microturbine model. 

The islanding studies performed demonstrated that the two most important factors 

in being able to support a load during an islanding condition are having the power output 

necessary to sustain the load and having the correct control settings.  This was 

demonstrated by the 15% power diesel generator and microturbine models which were 

unable to maintain a 1.00 p.u. voltage or a constant frequency, due to being 

underpowered.  The 25% power diesel generator and microturbine models demonstrated 

that, although each had a high enough MVA rating to sustain an island, neither was 

operating in the correct control setting to do so. 

The transient studies indicated that each type of DG studied produced significant 

oscillations for system transients and each experienced significant frequency instability.  

The wind turbine had the highest frequency oscillations in both the single-phase fault 
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study and load increase study and this may have been due to both transient events 

occurring at the bus that the DFIG model was connected to.  The transient studies 

involving the diesel generator and microturbine models showed largely the same 

characteristics, although this is likely because both were modeled as a synchronous 

generator.  The microturbine showed slightly better transient characteristics, although this 

may have been due to its reactive power support capacity. 

The load shedding studies demonstrated the largest frequency variations, although 

this was likely due to the system event lasting roughly nine times as long as other system 

events studied.  The removal of the load likely reduced the electrical torque observed by 

the generators and caused each DG type to temporarily speed up.  The recloser operation 

may have then drastically increased the torque seen by each type of DG, especially the 

small wind turbine, which caused some overcompensation.  It is likely that had such an 

event occurred on a real system, the DG would have been disconnected by a frequency or 

voltage relay. 

This thesis has compared three different types of DG and found that each has its 

own advantages and disadvantages.  The voltage profile and loss studies and several of 

the transient studies indicated the wind turbine has the most ideal characteristics for use 

in this system, but many other factors should be considered before using DG.  

Economics, reliability, relay coordination, and physical size were just a few of the factors 

not investigated in the simulations performed in this thesis that should be considered 

before any utility, independent power producer, or residential customer decides to put 

power back onto the distribution system. 
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5.2 FUTURE WORK 

 Future work should focus on creating a unified model using a larger distribution 

system model with models of anti-islanding protection, overcurrent protection, and other 

protective devices to study how these devices coordinate during faults and other 

transients.  The distributed generation technology should be studied dynamically to 

determine which types are best suited to support an islanded section without losing 

synchronization.  Further research should also be performed in synchronizing relay 

operations and methods of control for distributed generation to maintain synchronization 

during islanded conditions. 

The most important work to be done in the field of distributed generation is in 

utilizing the technology and studying its benefits in real-world environments.  Much has 

been studied in the field in terms of simulations, but there are very few case studies of the 

technology actually in use on distribution systems.  Several possible technologies for 

distributed generation will require research to improve efficiency, durability, and reduce 

costs.  The research into distributed generation is sure to expand over the coming years, 

as non-renewable fuel prices increase and because the use of distributed generation 

provides a variety of benefits that cannot be obtained from other sources. 
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APPENDIX A 

DIgSILENT MODELS 
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Figure A.1 DIgSILENT model of 34-bus system 
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Figure A.2 DIgSILENT model of DFIG/wind turbine 
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DIgSILENT MODEL PARAMETERS 
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Table B.1 Line data 

Line Model Distance (km) Voltage (kV) Frequency (Hz) 
800 802 300 0.7862 24.9 60 
802 806 300 0.5272 24.9 60 
806 808 300 9.8216 24.9 60 
808 810 303 1.7687 24.9 60 
808 812 300 11.4276 24.9 60 
812 814 300 9.0598 24.9 60 
814 RG10 301 0.003 24.9 60 
850 816 301 0.0945 24.9 60 
816 818 302 0.5211 24.9 60 
818 820 302 14.673 24.9 60 
820 822 302 4.1871 24.9 60 
816 824 301 3.1113 24.9 60 
824 828 303 0.9233 24.9 60 
824 826 301 0.256 24.9 60 
828 830 301 6.2288 24.9 60 
830 854 301 0.1585 24.9 60 
854 856 303 7.1095 24.9 60 
854 852 301 11.2234 24.9 60 
852 RG11 301 0.003 24.9 60 
888 890 300 3.218 4.16 60 
832 858 301 1.4932 24.9 60 
858 864 303 0.4937 24.9 60 
858 834 303 1.7766 24.9 60 
834 842 301 0.0853 24.9 60 
842 844 301 0.4114 24.9 60 
844 846 301 1.1092 24.9 60 
846 848 301 0.1004 24.9 60 
834 860 301 0.6156 24.9 60 
860 836 301 0.8167 24.9 60 
836 840 301 0.2621 24.9 60 
836 862 301 0.0853 24.9 60 
862 838 304 1.481 24.9 60 
890 System Short 0.0001 4.16 60 
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Table B.2 Line model parameters 

Model Type 

Rated 
Current 

(kA) 
Phases/
Neutral R0+jX0 (Ω/km) R12+jX12 (Ω/km) 

B0 
(µS/km) 

B12 
(µS/km) 

300 Overhead 1 3/1 1.0875 + j1.4741 .6961 + j0.5179 1.8702 3.8259 
301 Overhead 1 3/1 1.4838 + j1.6024 1.0504 + j0.5228 3.6696 1.8227 
302 Overhead 1 3/1 0.58 + j0.3077 0.58 + j0.3077 0.8753 0.8753 
303 Overhead 1 3/1 0.58 + j0.3077 0.58 + j0.3077 0.8753 0.8753 
304 Overhead 1 3/1 0.3981 + j0.2944 0.3981 + j0.2944 0.904 0.904 

Short Overhead 1 3/1 0.0001 + j0.0001 0.0001 + j0.0001 0.0001 0.0001 
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Table B.3 Load data 
    

Location Model 
Phase a (MW + 

jMVAR) 
Phase b (MW + 

jMVAR) 
Phase c (MW + 

jMVAR) 
802 2 PH-N 0.0225+j0.01125 0.01875+j0.0105   
806 3 PH-N 0.0225+j0.01126 0.01875+j0.0106   
808 1 PH-N 0.012+j0.006     
810 2 PH-N 0.012+j0.007     
816 1 PH-N 0.00375+j0.0015     
818 1 PH-N 0.0255+j0.0255     
820 1 PH-N 0.0255+j0.0256     
820 1 PH-N 0.10125+j0.0525     
822 1 PH-N 0.10125+j0.0525     
824 1 PH-N 0.003+j0.0015     
824 ABC-YN 0.01+j0.005 0.01+j0.005 0.01+j0.005 
824 1 PH-N 0.00375+j0.0015     
826 1 PH-N 0.003+j0.0015     
828 ABC-YN 0.00175+j0.001 0.00175+j0.001 0.00175+j0.001 
828 1 PH-N 0.003+j0.0015     
830 ABC-D 0.015+j0.0075 0.015+j0.0075 0.0375+j0.015 
830 ABC-YN 0.00175+j0.001 0.00175+j0.001 0.00175+j0.001 
854 1 PH-N 0.003+j0.0015     
856 1 PH-N 0.003+j0.0015     
832 ABC-D 0.00525+j0.00225 0.0015+j0.0015 0.009+j0.0045 
858 ABC-D 0.00525+j0.00225 0.0015+j0.0015 0.009+j0.0045 
858 ABC-D 0.003+j0.0015 0.01125+j0.006 0.00975+j0.00525 
858 1 PH-N 0.0015+j0.00075     
864 1 PH-N 0.0015+j0.00075     
834 ABC-D 0.003+j0.003 0.01125+j0.006 0.00975+j0.00525 
834 ABC-D 0.012+j0.006 0.015+j0.0075 0.0825+j0.04125 
842 1 PH-N 0.00675+j0.00375     
844 2 PH-N 0.01875+j0.009 0.015+j0.00825   
844 1 PH-N 0.00675+j0.00375     
844 1 PH-N 0.00675+j0.00375     
846 1 PH-N 0.01725+j0.00825     
846 2 PH-N 0.01875+j0.009 0.015+j0.00825   
848 1 PH-N 0.01725+j0.00825     
848 ABC-D 0.03+j0.024 0.03+j0.024 0.03+j0.024 
860 ABC-D 0.0225+j0.01125 0.0075+j0.0045 0.0315+j0.0165 
860 ABC-D 0.012+j0.006 0.015+j0.0075 0.0825+j0.04125 
860 ABC-YN 0.03+j0.024 0.03+j0.024 0.03+j0.024 
836 2 PH-N 0.0135+j0.00675 0.0165+j0.00825   
836 ABC-D 0.0225+j0.01125 0.0075+j0.0045 0.0315+j0.0165 
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Table B.3 Load data (cont.) 
    

Location Model 
Phase a (MW + 

jMVAR) 
Phase b (MW + 

jMVAR) 
Phase c (MW + 

jMVAR) 
840 2 PH-N 0.0135+j0.00675 0.0165+j0.00825   
840 ABC-YN 0.0135+j0.0105 0.0135+j0.0105 0.0135+j0.0105 
862 1 PH-N 0.021+j0.0105     
838 1 PH-N 0.021+j0.0105     
890 ABC-D 0.225+j0.1125 0.225+j0.1125 0.225+j0.1125 
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Table B.4 Capacitor data 
Location Technology Power (MVAR) Nominal Voltage (kV) 

844 ABC-Y (AC) 0.3 24.9 
848 ABC-Y (AC) 0.45 24.9 

GS-G1 DC 2 1.15 
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Table B.5 Voltage regulator 1 data 
Regulator 1 (RG10-850) 
Rated Power: 5 MVA 
Nominal Frequency: 60 Hz 
HV-Side: 24.9 kV Y-N (850) 
LV-Side: 24.9 kV Y-N (RG10) 
Short Circuit Voltage uk: 3% 
X/R: 0.5926001 
Phase Shift 0 
Tap Changer: HV 
Voltage per Tap 0.625% 
Neutral Position: 0 
Minimum Position -16 
Maximum Position 16 
No Load Current 0% 
No Load Losses  0 kW 
Mag. Reac. / uk0 100 
Tap Changer: Discrete 
Controlled Node: HV 
Phase: Pos. Seq. 
Control Mode: V 
Voltage Setpoint 1.00 p.u. 
Lower Voltage Bound 0.97 p.u. 
Upper Voltage Bound 1.02 p.u. 
LDC: Internal 
CT Ratio: 100 A 
VT Ratio: 120 
Rset: 2.7 V 
Xset: 1.6 V 
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Table B.6 Voltage regulator 2 data 
Regulator 2 (RG11-832) 
Rated Power: 5 MVA 
Nominal Frequency: 60 Hz 
HV-Side: 24.9 kV Y-N (832) 
LV-Side: 24.9 kV Y-N (RG11) 
Short Circuit Voltage uk: 3% 
X/R: 0.6000007 
Phase Shift 0 
Tap Changer: HV 
Voltage per Tap 0.625% 
Neutral Position: 0 
Minimum Position -16 
Maximum Position 16 
No Load Current 0% 
No Load Losses  0 kW 
Mag. Reac. / uk0 100 
Tap Changer: Discrete 
Controlled Node: HV 
Phase: Pos. Seq. 
Control Mode: V 
Voltage Setpoint 1.00 p.u. 
Lower Voltage Bound 0.97 
Upper Voltage Bound 1.04 
LDC: Internal 
CT Ratio: 120 A 
VT Ratio: 100 
Rset: 2.5 V 
Xset: 1.5 V 
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Table B.7 Transformer 1 data 
Transformer 1 (832-888) 
Rated Power: 5 MVA 
Nominal Frequency: 60 Hz 
HV-Side: 24.9 kV Y-N 
LV-Side: 4.16 kV Y-N 
Short Circuit Voltage uk: 3% 
X/R: 2.1474 
HV Side Star Point: Grounded 
HV Grd. Z (Re + jXe): (0+j0) Ω 
LV Side Star Point: Grounded 
LV Grd. Z (Re + jXe): (0+j0) Ω 
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Table B.8 Three-winding transformer data 
DFIG 3-Winding Transformer 

HV-Side Power: 5.6 MVA MV-Side Star Point: Grounded 
MV-Side Power: 5 MVA MV Grd. Z (Re + jXe): (0+j0) Ω 
LV-Side Power: 0.6 MVA LV Side Star Point: Grounded 
HV-Side Voltage: 4.16 kV LV Grd. Z (Re + jXe): (0+j0) Ω 
MV-Side Voltage: 3.3 kV Phase Shift: 0 
LV-Side Voltage: 0.69 kV Phase Shift: 150° 
HV-Side Connection: D (System) Phase Shift: 150° 
MV-Side Connection: YN (WT1)   
LV-Side Connection: YN (U11)   

Pos. Sequence Short Circuit Voltage Copper Losses 
HV-MV: 5.3571430% HV-MV: 13.1537 kW 
MV-LV: 0.4285715% MV-LV: 0.1894133 kW 
LV-HV: 0.4285715% LV-HV: 0.06887756 kW 

Zero Sequence Short Circuit Voltage Magnetizing Reactance 
HV-MV: 2.6785710% Position: Star Point 
MV-LV: 0.3214286% No Load Current: 0.70% 
LV-HV: 0.3214286% No Load Losses: 3.9 kW 
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Table B.9 Main generator data 
Main Generator-Reference Machine (800)  
Nominal Apparent Power: 5 MVA Synchronous Reactance 
Nominal Voltage: 24.9 kV xd: 2 p.u. 
Power Factor: 1 xq: 2 p.u. 
Connection: YN Zero Sequence Data 
Voltage-Controlled Reactance x0: 0.1 p.u. 
Active Power Dispatch: 2.5 MW Resistance r0: 0 p.u. 
Reactive Power Dispatch: 1 MVAR Negative Sequence Data 
Voltage: 1.05 p.u. Reactance x2: 0.2 p.u. 
Angle: 0 Resistance r2: 0 p.u. 
Prim. Frequency Bias: 0 MW/Hz Subtransient Reactance 

Reactive Power Limits saturated value xd'' sat: 0.2 p.u. 
Minimum: -5 MVAR Stator Resistance 
Maximum: 5 MVAR rstr: 0 p.u. 

Active Power Limits Reciprocal of short-circuit ratio: 1.2 p.u. 
Minimum: 0 MW Salient Pole Series 1   
Maximum: 5 MW xd': 0.3 p.u. 

Ground Impedance   
Star Point: Grounded   
Rearth+jXearth: (0+j0) Ω   
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Table B.10 Diesel generator synchronous generator data 
Distributed Generator-Diesel (890)  
Nominal Apparent Power: 5 MVA Synchronous Reactance 
Nominal Voltage: 4.16 kV xd: 2 p.u. 
Power Factor: 1 xq: 2 p.u. 
Connection: YN Zero Sequence Data 
Power Factor Controlled Reactance x0: 0.1 p.u. 
Active Power Dispatch: .6230 MW Resistance r0: 0 p.u. 
Reactive Power Dispatch: 0 MVAR Negative Sequence Data 
Voltage: 1.0 p.u. Reactance x2: 0.2 p.u. 
Angle: 0 Resistance r2: 0 p.u. 
Prim. Frequency Bias: 0 MW/Hz Subtransient Reactance   

Reactive Power Limits   saturated value xd'' sat: 0.2 p.u. 
Minimum: 0 MVAR Stator Resistance   
Maximum: 0 MVAR rstr: 0 p.u. 

Active Power Limits   Reciprocal of short-circuit ratio: 1.2 p.u. 
Minimum: 0 MW Salient Pole Series 1   
Maximum: .6230 MW xd': 0.3 p.u. 
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Table B.11 Microturbine generator synchronous generator data 
Distributed Generator-Microturbine (890)  
Nominal Apparent Power: 5 MVA Synchronous Reactance 
Nominal Voltage: 4.16 kV xd: 2 p.u. 
Power Factor: 1 xq: 2 p.u. 
Connection: YN Zero Sequence Data 
Voltage Controlled Reactance x0: 0.1 p.u. 
Active Power Dispatch: .5736 MW Resistance r0: 0 p.u. 
Reactive Power Dispatch: .243 MVAR Negative Sequence Data 
Voltage: 1.02 p.u. Reactance x2: 0.2 p.u. 
Angle: 0 Resistance r2: 0 p.u. 
Prim. Frequency Bias: 0 MW/Hz Subtransient Reactance   

Reactive Power Limits   saturated value xd'' sat: 0.2 p.u. 
Minimum: 0 MVAR Stator Resistance   
Maximum: .243 MVAR rstr: 0 p.u. 

Active Power Limits   Reciprocal of short-circuit ratio: 1.2 p.u. 
Minimum: 0 MW Salient Pole Series 1   
Maximum: .5736 MW xd': 0.3 p.u. 
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Table B.12 Small wind turbine DFIG data 
Distributed Generation-Small Wind Turbine 
(890) 

Use Integrated PWM Converter 
Active Power: 0.5736 MW 

Reactive Power: 0.243 MVAR 
Slip: 8% 
Rated Slip Ring Voltage: 1939 V 
Rated Voltage: 3.3 kV 

Rated Mechanical Power: 5000 kW 
Nominal Frequency: 60 Hz 
Pole Pairs: 2 
Connection: Y 

Single Cage Rotor 
Stator Resistance Rs: 0.00298989 p.u. 

Mag. Reactance Xm: 2.5 p.u. 
Stator Reactance Xs: 0.125 p.u. 
Rotor Resistance RrA: 0.004 p.u. 
Rotor Reactance XrA: 0.05 p.u. 
Locked Rotor Current: 7 p.u. 
R/X Locked Rotor: 0.4288744 
Inertia: 101.7156 kgm^2 
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Table B.13 and Table B.14 PWM converter and series reactor data 
PWM Converter (U12-GS-G1) 
AC-Voltage: 0.7042283 kV 
Rated Power 2 MVA 
No-Load Losses: 0 kW 
Short Circuit Impedance 0% 
Copper Losses 0 kW 
Sinusoidal PWM Modulation 
Control Mode: Vdc-Q 
DC Voltage Setpoint: 1.15 p.u. 
Controlled Node (DC): GS-G1 
Reactive Power Setpoint -0.3 MVAR 
Controlled Flow: WT1H-G 
Model: Const. V 

 

Series Reactor (U11-U12) 
Rated Voltage: 0.69 kV 
Rated Power: 2 MVA 
System Type: AC 
Phases: 3 
Short-circuit Voltage uk: 31.80% 
Copper Losses: 20.99996 kW 
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