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 ABSTRACT 

 

The ultimate goals of this study were to use experimental data to estimate the 

flight capabilities of a flapping wing nano aerial vehicle (NAV), estimate the power 

required to provide such flight, and develop a controller approach for future use in the 

design of this aircraft.  The experimental data is a collection of measurements of the 

normal force on a flapping wing taken in stationary water, and was used to develop 

empirical coefficient derivatives for use in the dynamic modeling of the NAV.  The 

mathematical modeling of this aircraft was undertaken from a predominantly mechanical 

point-of-view; that is to say the knowledge of more complex aerodynamic concepts, such 

as the unsteady effects that arise with flapping and pitching wings, was limited.  This did 

not inhibit the design process in the study however, since the empirical coefficients 

should account for all of the underlying unsteady effects in flapping flight. 

Using the empirical coefficients, the aircraft was designed using stability 

techniques.  However, current stability concepts in aircraft design are limited to the fixed 

wing aircraft field.  Therefore, a laterally stable aircraft on the micro aerial vehicle 

(MAV) scale was developed to acquaint the designer with rudimentary aircraft design, 

and once the dynamic model was deemed appropriate for the fixed wing aircraft, the 

design technique was applied to a flapping wing NAV.  With the ensuing two-

dimensional dynamic model, simulations were developed to obtain power requirements.  

Finally, a three-dimensional tailless NAV was designed for further simulations and 

testing, and several controller schemes were developed for the two-dimensional flapping 

wing NAV. 
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NOMENCLATURE 

 

 

 

Symbol Description 

Sx Total area of surface x (x = w for wing, x = t for tail) (m2) 

Sexp,x Total exposed area for surface x (m2) 

A Aspect ratio 

λ  Tail taper ratio 

LEΛ  Tail leading edge sweep (rad) 

4
cΛ  Tail quarter chord sweep (rad) 

cw Wing root chord length (m) 

crt Tail root chord length (m) 

ctt Tail tip chord length (m) 

c t  Tail mean chord length (m) 

bw Total wingspan (m) 

bt Total tailspan (m) 

cht Horizontal tail volume coefficient 

Lt Distance between wing and tail aerodynamic centers (m) 

Lf Length of fuselage (m) 

Mcg Resultant moment about the aircraft center of gravity (Nm) 

Lx Total lift at surface x (N) 



 

 

xi

Xp Position p on the aircraft; measured from the nose of the aircraft (p = acw 
for  wing aerodynamic center, p = act for tail aerodynamic center, p = cg 
for center of gravity). 

 
q Dynamic pressure (kg/ms2) 

qt  Tail dynamic pressure (kg/ms2) 

ρ  Fluid density (kg/m3) 

V∞
2  Square of ambient fluid velocity (m2/s2) 

Cmcg
 Moment coefficient about the center of gravity 

CLx Lift coefficient for surface x 

M Mach number 

dx Fuselage diameter at x 

CLxα  Coefficient of lift derivative for surface x 

CDxα  Coefficient of drag derivative for surface x 

CD0 Parasite drag constant 

CL Coefficient for empirical lift coefficient derivative 

CD Coefficient for empirical lift coefficient derivative 

Cf Coefficient derivative function 

RE
b  3-2-1 rotation matrix 

v I  Inertial frame velocity vector ( EEE zyx ,, ) (m/s) 

v b  Body frame velocity vector (vx,vy,vz) (m/s) 

ω I  Inertial angular velocity vector (ψ,θ,φ ) (rad/s) 

ω b  Body frame angular velocity vector (ωx,ωy ,ωz ) (rad/s) 

m Aircraft mass (kg) 

g Gravitational constant (9.8 m/s2) 



 

 

xii

Ma
b  Aerodynamic moments acting on the aircraft in the body coordinates (Nm) 

Fa
b  Aerodynamic forces acting on the aircraft in the body coordinates (N) 

Ib Moments of inertia of the aircraft in body coordinates (kgm2) 

Ixx
'  Specific principle moment of inertia (m2) 

Wb Aircraft weight vector in body coordinates (N) 

αeq  Equivalent angle of attack at the wing (rad) 

α  Aircraft and tail angle of attack (rad) 

α t Tail incidence angle (rad) 

α 0 Wing pitch angle; control input (rad) 

α L Left wing nominal pitch angle (rad) 

α R Right wing nominal pitch angle (rad) 

setα  Wing offset pitch angle (rad) 

δα  Wing variation angle (rad) 

Veq
2  Equivalent fluid velocity at the wing mean chord (m/s) 

V∞
2  Fluid velocity at tail (m/s) 

V Lyapunov function 

V  Lyapunov derivative 

P Required power at wings 

A(x) State dependent coefficient of system states 

B(x) State dependent coefficient of system control signal(s) 

K Gain vector for SDRE controller 

S Solution to Riccati equation for SDRE controller 

eig Eigenvalues at each time step for SDRE controller 



 

 

xiii

G Gain vector for state dependent regulator 

p1-5 User selected poles to be placed with state dependent regulator



 

 

1.  INTRODUCTION 

 

1.1. MOTIVATION 

Unmanned aerial vehicles (UAV) are becoming increasingly important on the 

modern military and civilian scene.  These aircraft allow military personnel to pursue 

reconnaissance objectives and deliver payloads without placing soldiers in dangerous 

situations, and could also be used for civilian purposes such as chemical agent detection 

at hazardous sites or crop dusting.  As seems to be the path taken by most technology, an 

effort to reduce the size while maintaining a viable and useful UAV has been underway 

since the start of the century.  The Defense Advanced Research Projects Agency 

(DARPA) began funding projects for the purpose of developing micro aerial vehicles 

(MAV), and now a push is being made for nano aerial vehicles (NAV).  Neither of these 

vehicles is an accurate representation of the micro or nano scales, the name simply 

implies the size of the vehicle relative to the original UAV scale. 

In order for a UAV to be considered in the class NAV, DARPA has the following 

requirements: 

 

• Gross mass of 10 g (including a 2 g payload) 

• No dimension larger than 7.5 cm 

• Fast forward speed (FFS) of 5-10 m/s 

• Slow forward speed (SFS) of 0.5 m/s 

• Range greater than 1000 m at FFS 
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• Ability to transition from FFS to SFS after completing 1000 m, then maintain SFS 

for greater than 60 s, then hover for greater than 60 s 

• Trip or hover endurance of at least 30 min 

 

The significant physical differences between a MAV and a NAV are that a MAV 

has a maximum gross mass of 100 g, and a maximum dimension of 15 cm.  Examining 

the desired flight capabilities presented by DARPA, it is evident that an aircraft that 

meets these objectives would be ideal for use in the current urban warfare environment.  

Depending on the complexity of the aircraft operation, it is easy to envision every 

squadron or platoon equipped with a NAV specialist such that this single soldier could 

operate the system for short range reconnaissance, chemical agent detection, or payload 

delivery.  The ability to hover would allow a NAV with an onboard camera to enter 

buildings in a war zone to determine if occupants are friendly or foe, and if the latter 

proved to be the case, the enemy positions and strength could be determined.  Like many 

previous technologies that began as military concepts, a capable and effective NAV 

would undoubtedly find civilian uses as well; a NAV could be sent down mine shafts to 

determine oxygen levels or one with thermal imagery capabilities could be used in search 

and rescue missions in hazardous or inaccessible locations. 

 

1.2. STUDY GOALS AND APPROACH 

Most previous studies of flapping wing flight revolve around understanding and 

defining the aerodynamic effects associated with the unsteady characteristics of a 

flapping wing.  However, even after an adequate model or approximation is made to 
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account for these phenomena, the stability of the aircraft can still be in question.  Aircraft 

stability is not only dependent on its aerodynamic characteristics like lift and drag, but 

also on the geometric aspects of the aircraft.  Therefore, the first goal of this study was to 

develop a straightforward and feasible approach to design a stable flapping wing aircraft.  

Since most present literature on aircraft stability deals exclusively with fixed wing 

aircraft, the method defined in these works was applied to a flapping wing aircraft with 

the assumption that, in terms of stability, a flapping wing aircraft in forward flight 

behaves approximately the same as a fixed wing aircraft. 

Following this procedure, a fixed wing aircraft corresponding to MAV size was 

designed first and simulated to ensure confidence in the design method.  Then, using the 

same approach developed for the fixed wing, a flapping wing aircraft of NAV scale was 

developed and simulated.  The fixed wing aircraft and the first flapping wing aircraft both 

had dummy tails, or tails with no control surfaces, to help with stability.  The 

uncontrolled tail reduces system weight with the absence of linkages and extra moving 

parts, but the system was still controlled by varying the incidence angle of the fixed wing 

or the nominal pitch angle of the flapping wing during simulations.   An effort was made 

at the end of this study to design a tailless aircraft to further reduce weight. 

Even though the approach used to calculate the geometric parameters that define a 

statically stable fixed wing aircraft was also used for the flapping wing aircraft, the 

aerodynamic properties of the flapping wing aircraft, such as lift and drag, still needed to 

be defined.  This was accomplished using a collection of experimental data measuring the 

normal force on a single flapping wing in stationary water over a single stroke.  Using 
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this experimental data, empirical lift and drag coefficient derivatives were developed to 

use during simulations of both flapping wing aircraft. 

Lastly, several controller design schemes were developed for future use on this 

project.  For the flapping wing aircraft with the tail, all simulations were in a two 

dimensional plane, and therefore the nominal wing pitch angle was kept the same on each 

wing.  This single wing pitch angle is used as the only system input. The dynamic system 

is highly nonlinear, and control schemes included methods such as feedback 

linearization, Lyaponuv design, two methods of optimal control of a state dependent 

Riccati equation, and two approaches with a state dependent regulator. 

The main objective of this project was to develop an estimation of the power 

required for flight.  With this estimation, appropriate equipment could be purchased to 

further the project with a working model to benchmark the simulations and controllers. 
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 2. REVIEW OF LITERATURE 

 

2.1. EXISTING MICRO AERIAL VEHICLES 

During preliminary investigation, several existing micro aerial vehicle (MAV) 

projects were studied and analyzed.  The purpose of this step was to develop a template 

of the primary MAV roadblocks and the attempted solutions of those obstructions.  The 

models found primarily consisted of three aerodynamic types:  fixed wing, flapping wing, 

and rotary.  The Entomopter of Georgia Tech [1] in Figure 2.1 is a flapping wing model 

as are the Microbat [2] and the micro-mechanical flying insect, or MFI [3] in Figure 2.2 

and Figure 2.3 respectively. 

 

 
Figure 2.1.  Georgia Tech’s Conceptual Entomopter, X-wing Configuration. 

 

The flapping wing MAV use a wing motion similar to biological flyers to achieve 

the aerodynamic effects of lift and thrust. 
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Figure 2.2.  The Microbat. 

 
 
 

 
Figure 2.3.  Conceptual MFI. 

 
 

The Black Widow [4], MITE [5], TH360 [6], WASP and Hornet [7], MicroSTAR 

and Palmtop [8], and the MAV developed by Notre Dame [9] and the Indian Institute of 

Technology at Bombay [10] are all stationary winged aircraft.  For simplicity, the Notre 

Dame and Indian Institute of Technology’s models will be referred to as ND and Indian, 

respectively.  Notice that the Black Widow in Figure 2.4 and the MITE in Figure 2.5 are 

both essentially flying wings with vertical tail surfaces for yaw stability. 
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Figure 2.4.  The Black Widow by Aerovironment. 

 
 
 

 
Figure 2.5.  The Naval Research Laboratory’s MITE. 

 
 

Specific attention should be given to the WASP and the HORNET in Figure 2.6 

and Figure 2.7 respectively, as neither include vertical tails for yaw control.  The absence 

of these vertical tails implies that sideslip velocity was not an issue for the designers of 

these aircraft, and after consideration of this fact, the decision was made to neglect 
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vertical tails on the fixed wing MAV, flapping wing NAV with a tail, and tailless 

flapping wing NAV in this study as well. 

 

 
Figure 2.6.  Aerovironment’s WASP. 

 
 
 

 
Figure 2.7.  Aerovironment’s Hornet. 

 
 

It should be noted that although some aerodynamic tests have been performed 

(specifically, the MFI has produced lift and thrust forces on a single wing), as of 1998 

and 2003 the Entomopter and MFI, respectively, had not completed flights.  Finally, the 

MICOR [11] in Figure 2.8 and the Mesicopter [12] in Figure 2.9 are both rotor-based 

MAVs while the LuMAV [13] and iSTAR [14] use ducted fans. 
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Figure 2.8.  The MICOR. 

 
 
 

 
Figure 2.9.  Battery Powered Mesicopter. 

 
 
 

2.2. AIRCRAFT FUNCTIONAL MODEL 

Functional modeling is a systematic way to relate system inputs, processes, and 

outputs through a generalized block diagram.  For each function block of the diagram, a 

solution exists such that this solution corresponds to a physical device that can complete 

the desired function stated in the block.  A generalized block diagram for a MAV is 

shown in Figure 2.10. 
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Figure 2.10.  Functional Model for Generalized MAV. 

 
 
 

Each action present in the blocks of the function model in Figure 2.10 was 

examined in depth with their respective solutions as found in the review literature in the 

following sections. 

2.2.1. Import Material/Material Energy.  Importing material simply refers to 

the gathering of the replaceable items; batteries, fuel, sunlight, etc.  Due to the fact that 

the materials imported may be disposable batteries or fuel, the Import Material heading 

refers to replacing those items while Import Material Energy describes the inherit energy 

imparted to the system from those items.  Disposable batteries are an excellent choice for 

an energy source in a MAV due to the relatively low expectations for flight time.  The 

combustion configuration uses batteries in addition to fuel to power the electrical control 

systems. 
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The Black Widow uses rechargeable NiCd (Nickel-Cadmium) and NiMH (Nickel-

Metal-Hydride) batteries for flight tests and a disposable Li (Lithium) battery for 

demonstration flights. The Microbat uses a rechargeable off-the-shelf Sanyo NiCd 

battery as well which produces 50 mAhr and weighs 3 g, while the MITE uses a Li-ion 

battery that has a capacity of 750 mAhr.  In the Mesicopter program, multiple batteries 

were tested: the Energizer 2L76, Rayovac 361, and Rayovac 389.  The Energizer 

arrangement in the system required two batteries connected in series to drive the four 

electric motors whereas 12 Rayovac 361 batteries or six Rayovac 389 batteries were 

required for the same four motors.  The MICOR employs three 3 V LiMnO2 batteries with 

a capacity of 430 mAhr.  The TH360 and WASP both incorporate self-designed batteries; 

the TH360 uses a 600 mAhr NiMH battery and the WASP uses a Li-ion battery with an 

energy density of 143 W/kg and an average power output of 9 W.  The Palmtop in Figure 

2.11 and the MicroSTAR in Figure 2.12 are also expected to operate via batteries. 

 

 
Figure 2.11.  Conceptual Drawing of the Palmtop. 
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Figure 2.12.  Conceptual Drawing of the Lockheed MicroSTAR. 

 
 
 

The Hornet and Indian are the only reviewed MAVs that require no batteries.  

The Hornet operates solely on a hydrogen-air mixture.  Through power requirement 

estimations, the Indian uses 490 cm2 of solar panels to produce the predicted 4.9 W 

needed while the MFI is expected to use both a battery and solar panels.  Finally, the ND, 

LuMAV, and iSTAR all use a battery along with hydro-carbon fuels for their internal 

combustion engines (ICEs).  Specifically, the ND in Figure 2.13 uses a 9 V NiCd battery 

with a capacity of 50 mAhr.  Only the iSTAR identifies its fuel, which is a mixture of 

alcohol, nitro-methane, and oil. 

 

 
Figure 2.13.  Notre Dame’s Most Recent MAV, Referred to as the ND in this Study. 

 



 

 

13

2.2.2. Position Material.  Given that the exact methods of the positioning 

techniques of the examined MAV are not specified, the solutions of this sub-function of 

the system are unclear.  However, batteries are usually secured through a clamp of some 

sort and fuel is stored in a tank.  The positioning of the solar panels on the Indian would 

be dictated by convenience of available area.  While a seemingly tedious step in the 

functional modeling process, positioning is crucial to aerodynamic structural modeling, 

i.e. determining the center of mass, efficient use of available space, etc. 

2.2.3. Export Material.  Another vague area in the design process of the studied 

MAV, exporting materials indicates the method of removing used batteries and exhaust 

particles from the system.  Rationale would point to disengaging any clamp or device 

used to hold batteries in position and piping of some kind to transport exhaust gases. 

2.2.4. Convert Material Energy to Rotational Energy.  After materials and 

their corresponding energies have been imported and positioned, the chemical, electrical, 

or solar energy must be converted to a mechanical energy before it can produce the 

required aerodynamic effects.  As is probably apparent by now, the conversion of these 

energies comes from either an electric motor or an internal combustion engine.  The 

Black Widow, Microbat, MITE, TH360, MICOR, Mesicopter, MicroSTAR, Palmtop, 

Hornet, WASP, and Indian all use or are expected to use electric motors; in fact, the 

MICOR has two electric motors and the Mesicopter has four.  In particular, the MICOR 

utilizes a WES-Technik DC 9 V electric motor.  The ND uses a Cox 0.01 in3 

displacement internal combustion engine.  While much of the information discovered on 

the Entomopter is vague, its primary contribution to the functional model is the 

Reciprocating Chemical Muscle (RCM), which is a solution of this energy conversion 
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function.  The RCM uses a non-combustive chemical reaction to create mechanical 

motion, generate enough electricity to power onboard electrical components, and produce 

gas flows to improve aerodynamics.  The MFI is expected to use a piezo-actuator to 

produce mechanical energy. 

2.2.5. Regulate Rotational Energy.  Regulation of the rotational energy was 

specifically addressed in only three of the reviewed MAV, the MFI, TH360, and LuMAV 

in Figure 2.14.  The MFI and TH360 use electronic speed controllers incorporated into 

their control systems to regulate the speed of their motors and the LuMAV has a throttle 

servo.  The remaining MAV undoubtedly regulate their mechanical energy, though it may 

be directly through their control systems like the iSTAR in Figure 2.15 which lists a 

voltage regulator. 

 

 
Figure 2.14.  Conceptual Drawing of the LuMAV. 
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Figure 2.15.  The iSTAR. 

 
 

2.2.6. Change Rotational Energy.  Changing the available rotational energy 

implies the use of gears and/or linkage to amplify or diminish the output of the electric 

motor or ICE.  This output must be changed dramatically for the flapping wing models, 

which leads to the use of a four-bar mechanism or linkage.  These mechanisms can 

directly prescribe the motion of the wings, as is expected in the MFI, or be used along 

with gears, like the Microbat.  While the Entomopter is a flapping wing model, its X-

wing system is directly coupled to the RCM.  However, certain wing motion, like 

feathering, is accomplished with the use of smart materials.  The Black Widow, TH360, 

MICOR, and Indian all use gearboxes to alter the outputs of their electric motor with 

ratios of 4:1 for the Black Widow, 7:1 for the TH360, and 3.75:1 for each of the MICOR 

motors.  The ND, MITE, iSTAR, Mesicopter, MicroSTAR, and Palmtop specifically state 

direct drives for their propellers. 
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2.2.7. Convert Rotational Energy to Pneumatic Energy.  The conversion of 

energy is done through the use of propellers, wings, rotors, and actuators.  When 

propellers are used, they produce thrust while the wings produce lift.  In flapping models, 

the wings create both thrust and lift.  The actuators are for use in rudders, elevators, and 

ailerons.  The LuMAV system was indicated to be similar to its predecessor, the Kolibri, 

in that PZT-5A Flexspar stabilators are used to further control the pneumatic flows in the 

system.  The iSTAR uses four COTS servos weighing 28 g apiece. 

2.2.8. Convert Pneumatic Energy to Signal.  The signal obtained here would be 

the position signal of the MAV.  This signal is crucial to the control system for position 

correction.  The TH360 simply states that angular rate gyroscopes are used while the 

Black Widow lists a magnetometer, differential pressure sensors with a pitot tube, and a 

piezoelectric gyroscope.  The iSTAR incorporates three Murata micro piezo-electric 

gyroscopes and the LuMAV (again based on the Kolibri system) uses 3 Tokin 16DIO 

piezoelectric gyroscopes.  The remaining MAV undoubtedly have similar sensing 

devices, however, none are listed. 

2.2.9. Import/Process Signal.  Importing the signals to the MAV refers to a 

receiver picking up control signals from an external source (remote control).  Processing 

that signal takes place in onboard computers of some sort, where the signal is put through 

a control algorithm.  None of the reviewed MAV list a specific receiver or 

microprocessor. 

2.2.10. Morphological Matrix.  A morphological matrix is simply an array of the 

possible solutions for a given functional model.  When designing, weights can be given to 

selected functions to emphasize more importance on this function.  For instance, if a 
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certain function requires higher costs, larger mass, or greater occupied volume when 

implemented, it would be weighted heavier than other functions.  For this study, the 

morphological matrix provided in Table 2.1 is simply a list of all of the known solutions 

produced from the reviewed MAV with no weights placed on the functions. 

 

Table 2.1.  Morphological Matrix for Studied MAV. 
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3.  DISCUSSION 

 

3.1. RESEARCH METHOD 

Recall from Section 1.2 that the first objective of this project was to develop a 

stable flapping wing aircraft using stability criterion methodologies from established 

fixed wing aircraft development.  Then, using empirical data collected during testing on a 

wing developed by K. M. Isaac [15], dynamic models for both a flapping wing aircraft 

with a dummy tail and a tailless flapping wing aircraft were to be developed.  Simulations 

were to be created to examine the stability and the flight capabilities of these aircraft.  

Several controller design approaches would also be examined for the first flapping wing 

aircraft.  Finally, an estimation of the required power for the system would be made. 

3.1.1. Stability Analysis.  As stated earlier, this project began with the 

development of a statically stable fixed wing aircraft of MAV scale such that the 

established aircraft design processes could be introduced and examined for application to 

a flapping wing aircraft.  After preliminary reading of aerospace texts, it became apparent 

that lift and drag properties can vary greatly between wings due to variations of wing 

properties like airfoil shape, aspect ratio, and sweep angle.  Therefore, the wing used in 

testing by Isaac was used as the main wing for all three aircraft scenarios mentioned.  

This wing can be thought of as a flat-plate airfoil with a surface area that resembles half 

of an ellipse as seen in Figure 3.1.  Throughout the rest of this paper, bw (or bt) is defined 

as a wing (or tail) span that includes both wings or tail fins.  In Figure 3.1, cw is the root 

chord length, which is mathematically defined later. 
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Figure 3.1.  General Wing Used by Isaac; Rotation is About the x’-Axis. 

 
 
 

Fixed wing design begins by calculating the horizontal tail geometric properties 

that correspond to the “rule of thumb” methods given in [16].  This method includes the 

use of empirical models developed by the aerospace industry over the years.  Figure 3.2 

shows the body-fixed frame coordinate system on the aircraft.  Assuming that sideslip, 

fluid velocity along the y-axis, is negligible and that all maneuvers will be about the pitch 

axis, in the xz-plane, it is immediately apparent that a vertical tail is not necessary for this 

model.  This assumption was reinforced by examining two balsa-wood and tissue paper 

models that were purchased online [19], and also by the WASP and HORNET mentioned 

earlier, as not one of these models implements a vertical tail for stability.  The online 

models lend more authority to this decision than the WASP or HORNET, since both 

online models are actual flapping wing aircraft.  In an actual environment where heavy 

sideslip velocities are present the aircraft being developed in this study, which is 

anticipated to have limited control capability due to size constraints, would probably not 

be able to overcome the yaw stability issues that arise anyway. 
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Following the method in [16], only a horizontal tail volume coefficient, cht, which 

is a constant developed for use in calculating tail area, and Lt, a general length that 

represents a moment arm, needed to be found for use in Equation 1. 

 

 
t

wwht
t L

cSc
S =  (1) 

 

To determine cht, it was assumed that this aircraft resembled a sailplane such that 

cht = 0.5 from tables in [16].  As for Lt, this was approximated assuming, once again, that 

the aircraft was an unpowered sailplane with a maximum mass of 50 g.  Using the 

approach in [16], this value was estimated as Lt = (0.65)Lf, where Lf is the length of the 

fuselage, which in the DARPA guidelines is bounded by 15 cm.  To calculate these and 

the rest of the tail properties a few more quantities needed to be defined: 

 

• The tail aspect ratio, A, was equal to the wing aspect ratio 

• The tail taper ratio, λ = 0.4 (taken from an example in [16]) 

• The tail leading edge sweep, ΛLE = 12.6° (such that ΛTE = 0°) 

 

The aspect ratio is an important quantity that determines how aerodynamic 

surfaces’ areas are distributed; in other words, if the wing is long and thin or short and 

fat.  The wing used in modeling was a scaled down version of the wing Isaac used to 

collect his force data, and when scaling a wing either up or down, a constant aspect ratio 

is used to keep wing aerodynamic properties constant.  Isaac’s wing was a semi-ellipse, 

defined by a length-to-chord ratio, (lw/cw) = 3, where lw is the wing length from the root 
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chord to the tip, and cw is the root chord length.  Again, the current project had a bound of 

15 cm on total wing length, so lw = 0.075 m in this case which, with the given length to 

chord ratio, corresponds to cw = 0.025 m.  The aspect ratio is defined in Equation 2, 

where Sw is the area of both wings and bw is the total wing span. 
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Note that the value of the aspect ratio using properties of one wing is half of the value 

when both wings are considered.  For this study, the aspect ratio was calculated for one 

wing and that ratio was also used for the tail. 

With a known chord length and wingspan, the area of a full ellipse (since both wings are 

used) was calculated by Equation 3 such that Sw = 002945.0  m2, and the aspect ration, A 

= 3.82. 
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Therefore, with Equation 1 and Lt = 0.0975 m, St = 0.000378 m2.  Finally, the 

following tail properties were calculated using equations found in or manipulated from 

[16] and the previously calculated or defined parameters. 

 

 bt = 2 1
2 ASt = 0.054 m (4) 
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 crt =
2St

bt 1+ λ( )
= 0.01 m (5) 

 ctt = λcrt = 0.004  m (6) 
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In Equations 4-7, crt is the tail root chord length, ctt is the tail tip chord length, and tc  is 

the tail average chord length.  These parameters can be seen on the tail provided in Figure 

3.2. 

 

 
Figure 3.2.  Aircraft Tail Parameters. 

 
 
 

Once all of the tail geometric properties were calculated, the stability analysis 

began.  The first step in pitching stability analysis was to sum the moments created by 
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forces in the xz-plane about the center of mass for a general aircraft which in this case, 

assuming that the angle of attack is small, led to Equation 8. 

 

 ( ) ( )cgacttacwcgwcg XXLXXLM −−−=  (8) 

 

Mcg is the resultant moment about the center of mass, Lw and Lt are the lift forces 

generated by the wing and tail respectively, and Xcg, Xacw, and Xact are the positions of the 

aircraft center of mass, aerodynamic center of the wing, and aerodynamic center of the 

tail measured from the nose of the aircraft respectively, as seen in Figure 3.3.  It is 

necessary to assume that the angle of attack is small in this stability analysis, because lift 

and drag are defined as acting perpendicular and parallel to the fluid velocity.  Therefore, 

if the difference between the aerodynamic centers and the center of mass are to be used as 

moment arms, the aircraft moments are consequently created by forces along the z-axis, 

where these forces are actually vectors with components of both lift and drag.  

 

 
Figure 3.3.  Body Frame Coordinate System on Concept Aircraft.  Note that only the 

Lateral Positions of the Aerodynamic Centers are Given. 
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Mcg, Lw, and Lt are defined by Equations 9-11, where Cmcg is the moment 

coefficient about the center of mass, cw is the wing root chord length, CLw is the wing 

coefficient of lift, CLt is the tail coefficient of lift, and q is the dynamic pressure, defined 

in Equation 12. 

 

 cSqCM wmcg cg
=  (9) 

 wLww SqCL =  (10) 

 tLttt SCqL =  (11) 

 2

2
1

∞= Vq ρ  (12) 

 

In Equation 12, ρ is the ambient fluid density and 2
∞V  is the ambient fluid velocity.  

Notice that the tail dynamic pressure term in Equation 11 is denoted with a subscript t, to 

indicate that the ambient velocity at the tail may be slightly different than at the wing due 

to upwash or downwash effects.  When the equation is divided by qSwc, the result is 

Equation 13. 
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In Equation 13, 

 
wc

XX =  (14) 



 

 

25

 
q
qt

t =η  (15) 

 

According to [16], the dynamic pressure ratio can be approximated as 9.0=tη  for most 

cases.  If the derivative is taken with respect to the aircraft angle of attack, α, the moment 

equation becomes 
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The partial derivative term here arises since the coefficient of lift of the tail cannot 

be directly differentiated with respect to the aircraft angle of attack α, due to upwash or 

downwash effects that arise from the deflection of the ambient fluid as it flows over the 

wing.  In other words, the angle of attack at the tail is not the same as the angle of attack 

of the aircraft, and also changes in an unknown manner with respect to aircraft angle of 

attack variations. 

After observing Equation 16, it was evident that “poles” and “zeros” that indicate 

the stability of linear mechanical systems were not necessarily useful (or easy to find) 

here.  Instead, the aerospace approach to stability is to assess the value of Cmα.  Consider 

the case when Cmα = 0; for every change in the angle of attack the aircraft is in static 

equilibrium as there are no net moments about the center of mass.  If Cmα > 0, there will 

be a net moment in the same direction so as to further increase the angle of attack, and 

therefore the system will become unstable.  Therefore, it is desirable to have Cmα < 0, so 
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for every change in the angle of attack, the aircraft will have a moment in the opposite 

direction to try and drive the resultant aircraft moment back to zero. 

To determine CLwα and CLtα, equations found in [16] were used. 
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M is the Mach number, which was approximated as M = (10/340) since the 

desired maximum forward speed was 10 m/s.  [16] indicated that η = 0.95 was a good 

estimate for most cases.  In Equation 20, dx is the diameter of the fuselage at the wing or 

tail (x = w for the wing and x = t for the tail), which was estimated here as 3 cm at the 

wing and 1 cm at the tail.  This parameter must be considered since the fuselage inhibits 

flow over the aerodynamic surface directly above it.  Sexp,x was subsequently calculated 

by subtracting this area above the fuselage from the total surface area.  Finally, Λ is the 

wing or tail sweep, which was set to 0° for the wing.  Since a taper ratio was used in tail 

design, the trailing edge sweep for the tail was set to 0°, which resulted in a tail leading 

edge sweep of ΛLE,t = 12.6°. 
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It was desired that the final tail arrangement be a fairly common design, and for a 

novice aircraft designer the configuration seen in Figure 3.3 seemed a simple one.  

Inserting the previously calculated values of tail parameters and the known wing 

parameters into Equations 18-20, and then into 17, the coefficient of lift derivatives were 

found to be CLwα = 5.244 and CLtα = 5.136.  Looking back at Equation 16, the partial 

derivative term and the X  term still need to be quantified.  The physical positions used 

to define the X  terms can be seen in Figure 3.4.  From empirical plots in [16], the partial 

derivative term can be conservatively estimated as 

 

 67.0≈
∂
∂

α
α t  (21) 

 

 
Figure 3.4.  Important Parameter Positions on the Aircraft. 

 
 
 

actX  was calculated by examining Figures 3.3 and 3.4 and knowing that forces on 

aerodynamic surfaces can be assumed to act at the mean aerodynamic chord, which is 

approximately one quarter chord length from the leading edge.  Since the trailing edge of 

the tail was assumed to be at the maximum length from the nose, and seeing as the 
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trailing edge angle was 0°, the aerodynamic center for the tail is located tc4
3  from the 

trailing edge.  Therefore, 

 

 ( )tfact cLX 4
3−=   (22) 

 

Equation 22 leads to Xact = 0.14475 m, and combining this result with Equation 

14, 79.5=actX .  Remember also that all of these positions are measured from the nose of 

the aircraft.  Then, from the definition of Lt in [16] it was found that 

 

 tactacw LXX −=  (23) 

 

Equation 23 resulted in Xacw = 0.04725 m and 89.1=acwX .  Determination of the 

position of the center of mass was less cut and dry; in fact the center of mass’s position at 

this point determined the stability of the system.  This analysis began by calculating the 

neutral point, which was found by letting the moment coefficient derivative, Cmα, in 

Equation 16 equal zero and then solving for cgX  (which was denoted npX  during this 

calculation).  The neutral point is the most aft position for the center of mass on the 

aircraft where the aircraft is not unstable.  At this point, Cmα = 0 and there are no net 

moments about the aircraft.  This is also known as trim condition. 
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Substituting in known values, Xnp = 0.05412 m.  Since it was known that the 

neutral point is the position of the center of mass where the system goes from stable to 

unstable or vice versa, the difference between the actual location of the center of mass 

and the neutral point can be thought of as a measure of the system stability, and is known 

as the static margin. 

 

 smnpcg XXX −=  (25) 

 

Based on the examples in [16] a static margin, X sm , of 15% was selected, and thus 

0148.2=cgX  and Xcg = 0.0504 m from Equation 14.  Finally, substituting all of the 

known and calculated values into Equation 16, the moment coefficient derivative was 

calculated as Cmα = -0.846 which was acceptable since Cmα is negative. 

This same process was repeated for an aircraft of NAV scale to develop the 

geometrical properties of the two flapping wing aircraft, which can be seen in Table 3.1.  

Note that no tail properties needed to be calculated for the tailless flapping wing aircraft, 

and seeing as the wing properties remained the same for each flapping wing version, the 

only difference between the two came about in the determination of the positions of the 

aerodynamic centers and the center of mass.  Due to the absence of the tail, the 

aerodynamic center of the wing must be behind the center of mass on the tailless flapping 
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wing NAV.  This is how a plane referred to as a “flying wing” maintains its stability.  

Notice in Equation 16 that with the absence of the tail moment term, placing the wing 

aerodynamic center behind the center of mass is the only way to force Cmα to be negative. 

 

Table 3.1.  Parameters for the Two NAV Scale Aircraft 

 
 
 

 
3.1.2. Dynamic Model.  After the geometric and constant aerodynamic 

parameters were calculated, the dynamic model of the fixed wing aircraft was developed 

such that all of the system states’ first order derivatives were mathematically related to 

the states themselves.  The states for this system were the aircraft inertial translational 

positions, inertial angular positions, body translational velocities, and body angular 
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velocities.  All of these states can be calculated for any time t with a simple numerical 

integrator. 

First, the coordinate frames used in this model were defined.  The inertial frame 

was fixed on the surface of the earth with the x-axis pointing north, the y-axis pointing 

east, and the z-axis pointing down.  Next, a coordinate frame was put into the atmosphere 

(possibly, but not necessarily, at the aircraft center of mass) that translated with the 

aircraft center of mass, but stayed aligned with the inertial frame.  Lastly, a body frame 

was attached to the aircraft center of mass that was allowed to yaw, pitch, and roll as well 

as translate with the aircraft.  These frames were referred to as the inertial, atmospheric, 

and body frames respectively.  The purpose of the atmospheric frame was to introduce 

“wind” velocities in the calculations, but no ambient wind velocities were considered for 

this project, so little else will be said about the atmospheric frame.  Wind velocities can 

be added later on though, to account for specific flight conditions and produce a more 

realistic simulation.  The aircraft body frame is the accompanying frame in Figure 3.3. 

To relate the inertial velocities to the body frame velocities, Euler angles were 

implemented.  A 3-2-1 Euler sequence was applied; the z-axis was rotated through an 

angle ψ, the resulting y-axis was rotated through an angle θ, and the following x-axis was 

rotated through an angle φ.  Using these rotations, the transformation matrix that takes 

elements in the body frame into the inertial frame is 
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In Equation 26, and many of the equations to follow, the form sx = sin(x) and cx = cos(x) 

is used to shorten the equation. 

For a system with small deviations in ψ, θ, φ, the transformation matrix works 

well.  However, if the angular displacements are large, the matrix can become singular.  

For the current aircraft, if the stability analysis was performed correctly, these angular 

displacements should not reach singular values (namely, θ should not approach 
2
π ).  In 

the case of hovering, θ may approach its singular value, depending on the aircraft 

orientation needed for this maneuver, and in that case the Euler rotations could be 

converted to quaternion rotations, which do not contain singularities. 

The derivatives of the Euler angles are needed for system modeling, just as 

derivatives of the other states are needed in the system model.  From the reading in [17], 
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In Equation 27, ωx is the body roll rate, ωy is the body pitch rate, and ωz is the body yaw 

rate.  After examining Equation 27, the singularity of θ is much more apparent, since 
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Note that for both the fixed and flapping wing aircraft models, the six state equations 

defined by Equation 27 and Equation 28, which relates the inertial and body velocities, 

remain exactly the same. 
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The remaining model was developed to provide the accelerations that arise from 

the system forces and moments.  Following the method in [18], Newton’s second law can 

be expressed as 
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bv  is a column vector of the body velocity, and if the atmospheric frame was used, av  

would be the velocity of the ambient air in the atmospheric frame and 
b

av  would be the 

velocity of the aircraft relative to the atmosphere such that 
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bω in Equations 29 and 30 is a column vector of the body angular rates, Wb is the weight 

of the aircraft in the body frame with  
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b
aF and b

aM  are the aerodynamic forces and moments to be defined later.  Lastly, 

the Ib term is the inertia matrix of the aircraft in the body coordinate system, which in this 

study was comprised of only the principle moments of inertia.  For those unfamiliar with 

the use of the body coordinate system, this inertia matrix is the primary reason for the 

body frame; if a frame was not affixed to an aircraft that translated, pitched, rolled, and 

yawed with the aircraft, the inertia matrix would have to be recalculated at every time 

step.  For this aircraft only the inertia of the fuselage was considered, and the fuselage 

was assumed to be an ellipsoid with a diameter of 3 cm and a length of 15 cm such that 
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Note that the general moment of inertia term here was calculated by Equation 34 where a 

and b are some characteristic lengths of the aircraft. 
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Hence, 'I  represents a specific moment of inertia, or a moment of inertia with the mass 

term factored out.  The inverse of the inertia matrix is 
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After substituting Equations 32-35 into 29 and 30, expanding the cross-product 

terms, and solving for ⎟
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Equations 27, 28, 36, and 37 contain the 12 first-order, nonlinear equations 

necessary to represent the aircraft dynamics for all three cases.  The difference between 

the three cases lies in the determination of b
aF  and b

aM . 

3.1.3. Aerodynamic Forces and Moments.  For the fixed wing aircraft, the 

calculation of b
aF  and b

aM  was fairly straightforward.  Beginning with Fx, this 

aerodynamic force can be thought of as the drag on the aircraft.  As of yet, no drag 

coefficients have been determined for the plane in this writing.  According to [16] there 

are numerous types of drag that can be considered, but for this novice design pass only 

the parasite drag, which is dependent on some constant value, CD0, and drag due to lift, 

2
LKC , was considered.  With these two types of drag, CD is defined in [16] by Equation 

38, where Equations 39 and 40 are used to simplify the expression to Equation 41. 

 

 2
0 LDD KCCC +=  (38) 

 
αLC

K 1
=  (39) 

 ααLL CC =  (40) 

 2
0 ααLDD CCC +=  (41) 

 

Letting CD0 = 0.05, Equation 41 becomes an equation for drag in terms of known 

parameters.  α is strictly defined as the aircraft angle of attack, which was quantified as 

the angle between the aircraft’s horizontal axis (x-axis) and the ambient fluid.  Therefore,  
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

z

v
v1tanα  (42) 

 

Notice from Figure 3.4 that vx should always be negative in this project.  Hence, a 

negative vz will produce a positive angle of attack.  This intuitively makes sense.  When 

looking at the velocity terms, it may seem that since this angle is based only on the 

aircraft velocity, there may be need for another term to consider the aircraft orientation.  

But since the body frame rotates with the aircraft, Equation 42 incorporates the plane’s 

orientation and is indeed the angle of attack.  In fact, in [16], the only definition of α 

equates the derivative of the angle of attack with respect to time to the pitch rate, ωy.  The 

angle of attack for a flapping wing was significantly more difficult to quantify with this 

method since all of the angular velocities of the wing were not presently known, which is 

why the definition from [16] was not used.  In fact, for a more precise model, all of the 

body angular rates should be included in calculation of the angle of attack and in system 

damping.  Other than the pitch rate though, the body angular rates were assumed 

negligible so as not to contribute to an effective angle of attack, which leads to damping.  

In fact, system damping was neglected as it would increase complexity; any results 

without damping could be considered at the very least a worse case scenario anyway. 

That being the case, Equation 42 is an accurate representation of the aircraft angle 

of attack, although the angle of attack of the wing and tail varied slightly from Equation 

42 due to the incidence angles of these surfaces.  Incidence angles arise at the wing, for 

instance, when the wing is built at some angle with respect to the x-axis of the aircraft.  

These incidence angles were labeled wα  and tα  for the wing and tail, respectively.  
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Although incidence angles may seem unimportant, they are an integral part of aircraft 

flight, especially steady level flight. 

During steady level flight, the aircraft flies at a constant altitude and velocity.  If 

no incidence angles are present, the tail moment would always be greater than the 

moment created by the wing.  Therefore the aircraft would always try to drive α  to zero 

(since 0<αMC  from the stability analysis).  Once 0=α , there would be no lift without 

an incidence angle and therefore the aircraft would rotate, dive, and repeat the process.  

Hence, the incidence angles allow the wing moment to equal the tail moment at a non-

zero α , which means that lift will still be present for level flight. 

Recall from Section 3.1.1 that the aerodynamic vertical and horizontal forces 

acting on the wing and tail are not simply lift and drag, since lift is perpendicular to the 

ambient airflow and drag is parallel as shown in Figure 3.5.  Note however, that Figure 

3.5 simply shows lift and drag directions with respect to airflow on the aircraft body; 

when the wing and tail are considered, the incidence angles must be added to the angle of 

attack to calculate the vertical and horizontal forces. 

 

 
Figure 3.5.  Relationship of Aerodynamic Forces. 
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The terms for the lift and drag on the tail and wing are 

 

 ( ) 2

2
1

∞+= VSCL wwLww ααρ α  (43) 

 ( ) 2

2
1

∞+= VSCL ttLtt ααρ α  (44) 

 ( ){ } 22
02

1
∞++= VSCCD wwLwDw ααρ α  (45) 

 ( ){ } 22
02

1
∞++= VSCCD ttLtDt ααρ α  (46) 

 

2
∞V  is the square of the magnitude of the aircraft velocity, 222

zx vvV +=∞ .  Since it was 

stated earlier that the atmospheric velocities were assumed to be zero, ∞V  is the fluid 

velocity as well.  Although the sideslip velocity, vy, is a state that may possibly have a 

non-zero value due to inertial and gravitational forces, it was assumed earlier that the 

sideslip velocity would be negligible such that Fy = 0.  Therefore, using Figure 3.5 as a 

basis and assuming that the aircraft thrust, T, acts along the x-axis, the vertical and 

horizontal forces for the fixed wing aircraft can be expressed as 

 

 ( ) ( ) ( ) ( ) TLLDDF ttwwttwwx −+−+−+++= αααααααα sinsincoscos  (47) 

 ( ) ( ) ( ) ( )αααααααα +++++++= ttwwttwwz DDLLF sinsincoscos  (48) 

 

As for the aerodynamic moments acting on the aircraft, the yaw moment is based 

on the sideslip, so Mz = 0.  The roll moment is based on unbalanced lift forces, and since 
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there were no control surfaces in this model to incorporate unbalanced forces, Mx = 0.  

That left the pitching moment, so considering the vertical forces acting on the wing and 

tail, and the positions of the wing and tail aerodynamic centers and the center of mass, 

 

 ( ) ( ){ } ( ) ( ){ } tttttwwwwwy XDLXDLM αααααααα +++−+++= sincossincos   
  (49) 
 
 acwcgw XXX −=  (50) 

 cgactt XXX −=  (51) 

 

All of the forces and moments defined above were inserted into the differential 

Equations 36 and 37 for the final fixed wing dynamic system.  During early simulation of 

this system, the parameters wα , tα , T, and the state initial conditions were varied to see 

if the system behaved appropriately.  However, this system is highly nonlinear, and 

without an extensive background in aerospace, an intuitive feel for the appropriate 

response was not possible.  Therefore, a base checkpoint was considered; steady-level 

flight.  If a constant T, wα , tα , and initial conditions could be calculated which produced 

steady-level flight, variation of the aforesaid parameters from these values should 

produce easily anticipated results. 

For steady-level flight, there should be no rotations, accelerations, or translation 

in the z-direction.  This leads to 

 

 0,,,,,,,,,,,,,,,,,,,, =αωωωφθψωωωφθψ zyxzyzyxzyx vvvvvzyx  0≥∀t  
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0=α  since vz = 0, and based on the earlier discussion of incidence angles, this makes 

sense.  After all of the above values were substituted into Equations 27, 28, 36, and 37 

the remaining equations were 

 

 01
' == y
yy

y M
mI

ω  (52) 

 01
=−= gF

m
v zz  (53) 

 01
== xx F

m
v  (54) 

 

Letting wLw SCb αρ
2
1

1 = , tLt SCb αρ
2
1

2 = , wD SCb 03 2
1 ρ= , tD SCb 04 2

1 ρ= , and 

again using the form cx = cos(x) and sx = sin(x), Equations 52-54 simplify to 

 

 ( ){ } ( ){ } 02
242

2
131 =++−++ tttttwwwwww sbbcbXsbsbcbX ααααα αααα  (55) 

 ( ) ( ) ttttwwww
x sbbcbsbbcb

mgvV
αααα αααα 2

242
2

131

22

+++++
==∞  (56) 

 ( ) ( ){ }ttwwttwwx sbsbcbbcbbvT αααα αααα 21
2

42
2

13
2 −−+++=  (57) 

 

Selecting a likely value for wα , Equation 55 was solved with the built in Matlab 

command fsolve.  Once αt was found, αw and αt were inserted in Equation 56 to find the 

initial condition of vx.  Finally, with αw, αt, and vx, Equation 57 could be solved for the 

necessary thrust, T, required for steady-level flight. 
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3.1.4. Time Dependent Empirical Coefficients.  Note that the form of the 

dynamic model in Equations 27, 28, 36, and 37 remained the same for the flapping wing 

aircraft, although the terms 2
eqV , αeq, CL, CD, Cf, β, and sn are added to calculate the wing 

forces now.  The terms CL, CD, and Cf were used to replace the constant coefficient 

derivatives used for the fixed wing aircraft such that ( )tfCLw 1=α  and ( )tfCDw 2=α .  

If at this point there is uncertainty as to why there is a need of these derivative 

terms (since most mechanical engineers are more familiar with coefficients of lift and 

drag) simply think of holding a hand out of a vehicle window while riding in a car.  If the 

hand is held perfectly level, there is little or no lift upward force.  If the hand is held at a 

small upward angle, there is a force felt up.  This force increases as the angle increases.  

It is evident that the coefficients of lift and drag are a function of the angle of attack.  

These coefficients are functions of other parameters as well, such as the aspect ratio, 

taper ratio, and wing sweep, but the effects from these latter factors are usually 

considered negligible. 

As there were no methods in [16] for developing these coefficients for a flapping 

wing, it was evident from the data in [15] that the normal force on the test wing, and 

therefore the lift and drag coefficients, varied throughout the stroke.  In fact, upon 

observation, it was immediately obvious that the data resembles a time-dependent 

sinusoid.  A sample of Isaac’s actual data can be found in Figure 3.6, and a general plot 

of the force data used to determine a time dependent function is given in Figure 3.7. 

The green vertical bars in both figures represent a pitching phase, or reversing of 

direction of the wing.  With this knowledge and an examination of Figure 3.6, it was 

apparent that the frequency for the force sinusoid was twice the flapping frequency.  This 
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is because the force normal to the wing starts at zero at what can be assumed is the 

bottom of the stroke angle (at the first green bar).  As the stroke angle reaches its 

maximum value (at the second green bar), the force has returned to zero.  When the wing 

returns the its starting position (at the third green bar), the force has once again returned 

to zero. 

 

 
Figure 3.6.  Isaac’s Data; the Left Plot is the Force Normal to a Wing Flapping at 0.22 Hz 

and the Right Plot is at 0.29 Hz.  Both Wings have an Angle of Attack of 30°. 
 
 
 
 

 
Figure 3.7.  General Sinusoid used to Approximate Time-Dependent Force Functions. 
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Therefore, each time the wing completes one cycle, the force function has 

completed two cycles.  That being stated, the normal force function for a set of data was 

approximated as 

 ( )φω ++= tACFn sin  (58) 

 

Note that the desired starting point for flapping is at the mid-stroke (wings aligned with 

the aircraft horizontal axis).  This point is halfway between the first and second green 

bars in Figure 3.7, which is the peak of the sinusoid, so 
2
πφ = . Recall the trigonometric 

identity ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=

2
sincos πxx .  Also, since the sinusoid minimum is Fn = 0, C = A for this 

case, and dfπω 2=  where fd is the frequency of the data.  As stated above, this frequency 

is twice the flapping frequency f, so the final force function was defined as 

 

 ( )( )ftAFn π4cos1+=  (59) 

 

After initially calculating these functions, the leading coefficient of the function 

was multiplied by either sine or cosine of the angle of attack that the data was collected at 

to arrive at the lift and drag functions 

 

 αα sin, nf FL =  (60) 

 αα cos, nf FD =  (61) 
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The coefficients of lift and drag were then calculated for each set of data by 

dividing Equations 60 and 61 by the dynamic pressure and area of the wing.  A derivative 

function with respect to the angle of attack was calculated by subtracting the coefficient 

of lift at one angle of attack from the coefficient of lift at the other and then dividing by 

the difference in the angles.  

 

 
( ) ( )

21

21

αα
αα

α −
−

= LL
L

CC
C  (62) 

 

The coefficient of drag derivative is calculated in a similar manner.  This will all 

be shown shortly; the reason for this explanation is that once these steps were completed, 

an arbitrary time was chosen and each function was evaluated at this time.  The result 

was multiplied by its corresponding angle of attack and dynamic pressure, and then 

divided by either αcos  or αsin .  The resulting value should have corresponded to the 

actual data at that time.  While the end result from the functions derived from the data at 

0.22 Hz correlated quite well with the actual data, the same could not be said for the 

functions for 0.29 Hz.  Therefore, the functions used to develop the coefficient 

derivatives at this time were based solely on the 0.22 Hz data. 

The coefficient for Equation 59 for both angles of attack at 0.22 Hz was estimated 

as A30° = 0.08 and A45° = 0.11.  Recall in normal applications, αcosnFL =  and 

αsinnFD = , where the lift will be perpendicular to the fluid flow and the drag will be 

parallel to the fluid flow.  In this project’s application however, the wing is assumed to be 

flapping in a stroke plane that is perpendicular to the forward velocity of the aircraft and 
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therefore the lift from these equations will actually be the system drag while the drag 

from these equations will be the system lift, hence the reversal of sine and cosine in 

Equations 60 and 61. 

Multiplying these coefficients by αsin  for lift and αcos  for drag creates four 

equations:  two lift equations corresponding to the two angles of attack, and two drag 

equations corresponding to the two angles of attack.  Notice that dividing Equation 59 by 

some constant only changes the leading coefficient, so the four new coefficients were: 

  

• 04.0
30

=
L

A  

• 077782.0
45

=
L

A   

• 069282.0
30

=
D

A  

• 077782.0
45

=
D

A  

 

To compute the time dependent coefficient derivatives, the coefficient for the lift 

function at 30° was subtracted from the coefficient of the lift function at 45° and the 

resulting difference was divided by the difference in angles.  The drag coefficient 

derivative was computed the same way, and the final coefficient derivatives were 

Equations 63 and 64, where CL = 3.41445 and CD = 0.768145. 

 

 ( )( ) fLLw CCftC =+= πα 4cos141445.3  (63) 

 ( )( ) fDDw CCftC =+= πα 4cos1768145.0  (64) 

 ( )ftC f π4cos1+=  (65) 
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The fluid velocity at the wing also changes when a flapping wing is used.  The 

velocity still has components of both vx and vz from the body velocities, but also from the 

flapping velocity of the wing.  Therefore, the equivalent velocity at the wing is defined in 

Equation 66, where 2
fv  is the square of the flapping velocity. 

 

 2222
zxfeq vvvV ++=  (66) 

 

The flapping velocity is defined in [1] be Equation 67, where ψ  is the stroke angle in 

radians, lc is the length of the wing from the wing pivot to the mean chord, and f is the 

flapping frequency. 

 

 flv cf ψ2=  (67) 

 

The angle of attack of the flapping wing cannot merely be thought of as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

x

z

v
v1tanα  anymore, because the velocity at the wing has components from vx, vz, 

and vf.   Knowing the components of the equivalent velocity, the equivalent angle of 

attack in Figure 3.8 was defined as 

 

 βααα −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
−= −

n
x

znf
neq s

v
vsv

s 0
1

0 tan  (68) 
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Figure 3.8.  Schematic used to Calculate eqα  in Terms of Fluid Velocities. 

 
 
 

0α  is an input to the system which corresponds to the angle of the wing measured from 

the negative x-axis.  For the flapping wing aircraft with a tail this value was the same for 

both wings, where the tailless flapping wing aircraft separated 0α  into αL and αR to 

calculate each wings forces independently. 

sn is a signum function that determines the sign of the flapping velocity 

throughout the stroke.  In other words, if the wing is in the upstroke, sn = 1 and if it is in 

the downstroke sn = -1.  Mathematically, 

 

 ( )( )ftsn π2sinsgn=  (69) 

 

The negative sign has to be applied to the vx velocity since a positive vx is along a 

negative x-axis in a normal Cartesian coordinate system.  
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In Figure 3.8, the velocities used to calculate αeq were the fluid velocities, which 

are the negative of the body velocities.  The term snvf + vz was used to emphasize a net 

positive body velocity along the z-axis.  If both velocity components were reversed in 

Figure 3.8, both would correspond to velocities in the positive direction of the axes of a 

Cartesian coordinate system.  These reversed velocities were then related to actual body 

velocities to apply the correct signs to Figure 3.8.  Note that as long as both velocities are 

reversed, any resulting term calculated with these velocities will remain correct.  In the 

case of Figure 3.8, the velocity along the z-axis would be a positive velocity in body 

coordinates, and the velocity along the x-axis would be a negative vx in body coordinates.  

Along with the negative sign applied to vx, this would result in a positive β according to 

Equation 68. 

When compared with the definition of the angle of attack, this would seem wrong.  

Examining Figure 3.8, β should be a negative angle regardless of α0, since it is acting 

downward on the x-axis.  But notice the conflicting way that α0 and α are measured; α is 

positive below the x-axis, and α0 is measured positive above.  Using this method, if β was 

measured in the same way as α, then β would have to be added to α0 to obtain the correct 

equivalent angle of attack.  This definition of αeq would confuse most readers, and 

therefore it was easier to define αeq by subtracting a positive value rather than adding a 

negative.  In fact, the latter case here is still what was performed, because 

( ) ( )1 1tan tanx x− −= − − . 

The last step in developing the flapping wing aircraft parameters was to determine 

the vertical and horizontal forces acting on the aircraft in the body frame as components 

of the aircraft lift and drag.  This was done in much the same way that the vertical and 
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horizontal forces were determined for the fixed wing aircraft, and in fact the vertical and 

horizontal forces acting on the tail remained exactly the same.  A schematic of the forces 

acting on the flapping wing can be seen in Figure 3.9. 

Following Figure 3.9, the vertical and horizontal forces for the flapping wing 

were found to be 

 

 ββ sincos wwwx LDF +=  (70) 

 ββ sincos wwwz DLF −=  (71) 

 

 
Figure 3.9.  Schematic to Calculate Vertical and Horizontal Forces on Flapping Wing. 

 
 
 

Combining these with the vertical and horizontal forces at the tail as defined in 

the previous section, the vertical and horizontal forces and the moment acting on the 

flapping wing aircraft are 
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 ( ) ( )ααααββ +−+++= ttttwwx LDLDF sincossincos  (72) 

 ( ) ( )ααααββ ++++−= ttttwwz LDDLF cossinsincos  (73) 

 ( ) ( ) ( ){ } tttttwwwy XDLXDLM ααααββ +++−−= sincossincos  (74) 

 

Notice in Equations 70 and 71 that the signs for the flapping wing alternate from 

the signs for the tail (or fixed wing).  This is because a positive α for the fixed surfaces is 

below the x-axis, while a positive β is above the x-axis due to the way β was defined.  

While the lift and drag terms for the tail in Equations 44 and 46 were used again in 

Equations 72 and 73, the lift and drag terms for the wing became 

 

 weqeqfDw SVCCD 2

2
1 αρ=  (74) 

 weqeqfLw SVCCL 2

2
1 αρ=  (75) 

 

3.1.5. Controllers.  The last objective of this study before simulations were 

completed was to lay out several controller design methods, and apply each method to the 

flapping wing aircraft system.  The simulation results with each controller were then 

examined to determine the feasibility of each controller approach for future use in this 

project.  Note that the system used in this part of the study was for the flapping wing 

aircraft with a tail, and that all controlled simulations were for two dimensional flights in 

the xz-plane.  Since flight was restricted to a two dimensional plane, state equations for y, 

ψ, φ, vy, ωx, and ωz could be neglected and their values in other equations could be set to 

0.  The state equation for x could also be neglected since for this first pass at controller 
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design no tracking was to be required for x, and also since no other controlled state 

equations include arguments of x. 

The possible control signals for two-dimensional flight are the flapping 

frequency, f, and the nominal pitch angle of the wing, α0.  These two parameters are 

control signals because control of other system states is done by directly varying these 

values.  The phrase “controller design” actually refers to determining the equation used to 

calculate the control signal in order that the states behave appropriately.  In order to 

further reduce the complexity of the controller design, and because it is hard to visualize 

a varying frequency, f was assumed constant for these simulations.  Terms without the α0 

can be lumped together to simplify the equations further, as in Equations 76 and 77.  

Therefore, the state equations for controller analysis were reduced to Equation 78. 

 

 ( ) ( )αααα +−+= ttttxt LDF sincos  (76) 

 ( ) ( )αααα +++= ttttzt DLF sincos  (77) 
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 (78) 

 

3.1.5.1. Output Tracking via Feedback Linearization.  The first controller was 

designed via feedback linearization of the output.  The output in this instance was the 

altitude; therefore yout = z, and it was desired to make this output track a reference zref.  



 

 

53

Notice though, that z is not an expression which contains the control term, α0.  Therefore, 

z was differentiated until α0 appeared. 

 

 zxout vcvszy θθ +−==  

 ( ) zxyzxout vcvsvsvczy θθθθ ω +−+−==  

 ( ) ( )[ ] gFsFcVCsCcCccCsCs
m
S

xtzteqeqfDLDL
w +−+−++−= θθββθββθ α

ρ 2

2
 

 ( ) ( )[ ] gFsFcVCCC
m
S

zy xtzteqeqfDL
w

out +−++−+== θθαθβθβ
ρ 2sincos
2

 (79) 

 

Next, in order to control the system error between the output and its reference, Equation 

80 was developed by letting 

 ekekzz r 21 −−=  (80) 

 

Rearranging Equation 80 created the system error dynamic equation, where refzze −= , 

refzze −= , and refzze −= . 

 

 012 =++ ekeke  (81)  

 

With Equation 81, the error dynamics were set by selecting values for k1 and k2.  

Once the error dynamics were acceptable, Equation 80 was equated with Equation 79, 

and with Equation 68, the necessary control signal was found. 
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( ) ( )

( ) ( )[ ]
β

θβθβ
ρ

α θθθθ +
+−+

−−+−+−−−−
=

2

21
0

sincos
2 eqfDL

w

ztxtrefzxrefref

VCCC
m
S

gFcFszvcvskzzkz
 (82) 

 

3.1.5.2. Controller Design with Lyapunov Function.  The Lyapunov approach 

[20] to controller design uses a positive definite function to approximate the system 

energy.  The selection of the positive definite function is more or less arbitrary, but it can 

be quite difficult to select a function that performs correctly.  The Lyapunov function, V, 

of the system states, x, must be positive definite, that is as 

 

 ∞→x      then     ( ) ∞→xV  

 

Using this approach, any state used in the Lyapunov function will be regulated; 

that is, the state should be driven to 0.  Since some states, like vx, should not be zero in 

steady-level flight, an error-state should be developed for these states or they should be 

omitted from the Lyapunov function.  In this case, the Lyapunov function was selected to 

regulate an error-state for the altitude, z, and the pitch rate, ωy.  The error-state is very 

simple to develop when a constant reference is desired, because the derivative of the 

reference is 0.  The Lyapunov function used for this study is in Equation 84. 

 

 refe zzz −=  

 zxrefe vcvszzz θθ +−=−=  (83) 

 22

2
1

2
1

yezV ω+=  (84) 
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To ensure system stability, the time derivative of V should be negative definite.  

In other words 

 

 ( ) −∞→xV      as     ∞→x  

 

The above statement means that as the states proceed away from their equilibrium point, 

the derivative of the energy function becomes more negative.  Hence, if V represents 

some form of the energy of the system, then the energy is always decreasing until the 

system is in equilibrium.  Therefore, this method of Lyapunov design is to calculate a 

control signal such that V  is negative definite.  The exact form of V  after the control 

signal is calculated will determine the method of convergence of the states.  In this case, 

it was desirable that 

 

 22
yezV ω−−=  (85) 

 

This form of the Lyapunov derivative indicates global asymptotic stability; that is, for 

any initial conditions, if the Lyapunov derivative is of this form, the states will return to 

their equilibrium point, which in this case would be [ ]0 0
T T

e y eq
z ω⎡ ⎤ =⎣ ⎦ . 

Proceeding, the time derivative of Equation 84 was 
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With early uncontrolled simulations, ωy was well behaved and very stable, so it 

may have been a little confusing at the beginning of this section why this state would 

need to be regulated.  Upon examination of Equation 86 though, it is obvious that a state 

besides ze must be introduced for regulation in this approach since the state equation for 

ze does not contain any control terms to be solved for.  The reason vx or vz was not used 

was because error-states would have to be developed for them, and the exact references 

were not know.  ωy is a much stronger state to use also, because regulation of ωy should 

mean that the aircraft is flying at a constant angle.  Setting Equation 85 and 86 equal, the 

control signal was found as 
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3.1.5.3. Optimal Control via State Dependent Riccati Equation.  Optimal 

control uses a cost function to find the optimal trajectory required to regulate the states.  

The cost function in Equation 88 is a general equation used in optimal control, where Q 

and R are user selected matrices. 

 

 ( ) ( )∫
∞

+=
0

dtRQuJ TT uuxx  (88) 

 

Q and R help the designer weigh the states or the control signal.  For example, if the 

states must perform with high precision and it is of no consequence how the control 

signal behaves, Q would be very large and R would be relatively small in comparison.  
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On the other hand, if control is at a premium and the state error is of no importance, R 

would be very large and Q would be small.  In this study, the latter example is the case, 

since 
20
πα ≤ . 

The Riccati equation in Equation 89 is solved for S, where S is used to calculate 

the control signal in Equation 90 that minimizes the cost function in Equation 88. 

 

 01 =+−+ − QSBSBRSASA TT  (89) 

 1 TR B S K−= − = −u x x  (90) 

 

A and B are the system matrices composed of the coefficients of the states and 

control signal respectively.  However, since this system is nonlinear, the states and 

control signal are multiplied by other states.  This leads to the State Dependent Riccati 

Equation (SDRE) [21].  When using the SDRE, the system is put in a pseudo linear form; 

a single state is factored out of each term and the remaining term is evaluated at that 

specific time step to produce a coefficient.  In other words, 

 

 ( ) ( )uxxxx BA +=  (91) 

  

A(x) and B(x) are attached in the Appendix.  Notice in A(x) that the 2
fv  term was 

divided by vx in the vx column of the matrix.  This forced the 2
fv  term to be pseudo linear 

since no state could be factored out of the term in its original form by using the approach 
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This method lets the 2
fv  term become a coefficient of vx.  After the system matrices were 

developed, Q and R were selected for input to the built-in Matlab command 

 

 [ ] ( )RQBAlqreigSK ,,,,, =  (92) 

 

This command returns the controller gain K in Equation 90.  S is the solution of the 

Riccati equation, and eig are the eigenvalues of the system.  Note that since this is a 

SDRE, Equation 92 is evaluated at every time step during simulations and as such, K, S, 

and eig change with every time step. 

3.1.5.4. State Dependent Regulator.  The system was placed in pseudo linear 

form for the State Dependent Regulator exactly in the same way as for the SDRE.  

Therefore, the A and B matrices in the Appendix apply to this controller as well.  With 

this approach however, system eigenvalues are selected such that they remain constant 

for every time step.  The control signal gain must still be calculated at every time step 

with 

 

 G = acker(A,B,[p1 p2 p3 p4 p5]); (93) 

 

G represents the one by five gain vector that took the place of K in Equation 90.  

p1-p5 were the desired system eigenvalues to be placed by the acker command.  The place 
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command could have been used in this method; however the acker command can place 

complex conjugate poles while the place command cannot. 

 

3.2. RESULTS 

3.2.1. Simulations.  The fixed wing aircraft simulations performed quite well; or 

as well as can be expected for a first time aircraft designer.  When the small angle of 

attack theory used for stability analysis was used in simulations (ie. Fz = L and Fx = D) 

along with arbitrary values for T, αw, and αt, the aircraft responded with a either a 

climbing or falling parabolic flight path.  Steady-level flight was also obtained with a 

calculated constant thrust value during simulations.  However, using the vertical and 

horizontal forces developed with components of lift and drag produced drastically 

different results, as seen in Figure 3.10. 

Although the aircraft was still stable, the flight path was a series of loops.  The 

steady level flight simulations were also significantly different from the small angle 

theory simulations, but this was because of the inability of Matlab to solve Equation 55 

due to optimality constraints in the built-in Matlab command fsolve. 
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Figure 3.10.  Aircraft Path, x vs. –z, for Fixed Wing Aircraft with Vector Forces. 

 
 
 

Simulations for the flapping wing aircraft were extremely more difficult.  Without 

precedence of dynamic simulations for a flapping wing model using this empirical 

approach, not much was known about exactly how the aircraft should behave for a given 

set of inputs.  Adding to the difficulty is the selection of the three simulation inputs, 0α , 

tα , and f.  Again, a base value of these parameters was not available, and so selections at 

first were hit and miss.  However, two of these parameters could be estimated, or at least 

bounded, with a fair amount of certainty.  For tα , it was clear after flight tests with the 

models purchased from [19] that a negative tail incidence angle was desirable for level or 

climbing flapping wing flight.  Also, it was assumed that a flapping frequency much 

greater than 20 Hz could not be realized at this scale due to mechanical and structural 

limitations.  As for 0α , too high of an angle here would not produce much lift, but too 
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small of an angle would just produce close to zero net lift throughout the stroke, and very 

little thrust.  Nevertheless, 0α , could still be bounded by 
2
π . 

Early simulations repeatedly showed singularities in the calculations.  If the 

aircraft went into too steep of a dive or climb, an infinite derivative stopped all 

calculations immediately.  However, some simulations seemed to be headed in the right 

direction early on, because even though α  seemed unstable, the aircraft flight at times 

was reasonable.  This was chiefly due to two main model errors.  First, since no stall 

model was incorporated in the aircraft dynamics, an increasing angle of attack inevitably 

resulted in increasing lift (or drag).  While it is [15] indicates that flapping wings usually 

operate at higher angles of attack, it is doubtful that this includes angles on the order of 

90°. 

Also, the tangent function used to calculate the angle of attack in Equation 68 was 

implemented in Matlab as an atan function which only considers angles in the first and 

fourth quadrants.  So, every time the angle of attack would reach 90°, for example, a 

discontinuity would occur such that the angle of attack at the next time step was -90°.  If 

these two errors had not been noticed, the model would have seemed stable. 

Eventually, these and other problems were found and corrected.  The final model 

responded quite well during simulations.  In Figure 3.11, the altitude and aircraft angle of 

attack versus time can be seen.  For Figures 3.11 and 3.12, the initial conditions for the 

states, x were ( ) [ ]T0,0,0,0,0,15,0,,0,100,0,00 −−= πx .  
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Figure 3.11.  Altitude and α Versus Time with f = 5 Hz, α0 = 10°, αt = -10°. 

 
 
 

Notice that πθ =  was used to rotate the inertial frame into the desired body 

frame position, which also explains the negative signs for the altitude and vx.  As such, 

this angle for θ was always used as the “starting point”.  These two parameters must 

always be negative; if the altitude was positive, then the aircraft has hit the ground, and if 

vx was positive, the aircraft was flying backwards.  The input parameters for each 

simulation are provided with the figures.  It was also found that the steady state 

oscillation frequency of the states is very close, in fact almost identical, to the input 

flapping frequency.  This could be of use in future studies if a linearization technique is 

attempted, because although it was suspected that the state outputs would be oscillatory 

in nature, it was not known what this oscillation frequency would be.  In linear systems 

theory, the output should have the same frequency as the input, but here, the coefficient 



 

 

63

derivatives are twice the input frequency, and therefore it was thought that the output 

frequency could possibly be 2f. 

 

 
Figure 3.12.  Altitude and α Versus Time with f = 15 Hz, α0 = 10°, αt = -10°. 

 
 
 

Examining the two figures, it is evident that the amplitude of the steady state 

oscillations is much smaller in Figure 3.12 than in Figure 3.11.  Also notice that the angle 

of attack does not settle on 0°, but on approximately 18°.  This was due to the tail 

incidence angle discussed earlier, and also to the variation of the pitch angle, α0, in the 

wing stroke.  Even though a similar response with respect to angle of attack behavior 

could be produced for an aircraft with a positive tail incidence angle, the positive angle of 

the tail surface causes the aircraft to nose down; hence the aircraft hit the ground within 3 

- 4 seconds.  Using flapping frequencies on the order of 20 Hz, climbing flight could 

never be produced.  Consequently, the magnitude of the flapping frequency and tail 
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incidence angle were increased in the hopes of finding steady-level flight conditions, and 

the result can be seen in Figure 3.13. 

 

 
Figure 3.13.  Altitude Versus Time with f = 116.325 Hz, α0 = 4°, αt = -9°. 

 
 
 

In Figure 3.13 the aircraft was still slightly climbing at the end of the simulation, 

but when the state values towards the end of the simulation are substituted as initial 

conditions, the aircraft only climbs 0.035 m in a 30 second run time in Figure 3.14.  The 

initial conditions for Figure 3.14 were vx(0) = -15.94 m/s, vz(0) = -3.6 m/s, ωy(0) = 0.0305 

rad/s, and θ(0) = 192.8° and these are referred to as the steady-level conditions or values 

throughout the rest of this paper.  However, the flapping frequency used here is much too 

large to be realized with current equipment.  
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Figure 3.14.  Altitude Response with Steady-State Values as Initial Conditions. 

 

The power required for steady-level flight was calculated by multiplying the 

vertical force on the wing by the flapping velocity, vf.  The force in the horizontal 

direction was neglected since by definition, vFP •= .  Therefore, since velocity 

component in the direction of the horizontal force was ideally 0, the only remaining 

power came from the vertical force.  Using this approach, the maximum power required 

at the wings is 1.65 W.  This is a significant amount of power for such a small vehicle and 

is chiefly due to the high flapping frequency. 

After a second look at Figure 3.6, it became a little clearer why such a high 

flapping frequency is needed for climbing or steady flight.  Notice from Figure 3.6 that 

the force returns to zero at every extreme (or close to the extreme) of the stroke.  After 

fitting a sinusoidal function and multiplying by a trigonometric function of the angle of 

attack, and dividing by a dynamic pressure using a constant velocity, the lift or drag 
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function still possesses the feature of returning to zero.  The remaining manipulations to 

develop the coefficient derivatives do not change this fact either.  So, at certain times 

during the flapping process, the forces acting on the flapping wing become zero, 

regardless of the flight conditions. 

This cannot be correct though, because the body velocities will create some kind 

of force on the wings even if the wings were not flapping.  The problem arises partly 

from using a constant velocity to develop the lift and drag functions.  If the exact velocity 

at each time step was used, the lift and drag forces would be more exact, but another 

problem would arise; dividing by zero when the wing changes direction.  Since a simple 

four-bar mechanism was used to drive the wing in the experiment, the velocity profile is a 

perfect sinusoid.  Therefore, when a sinusoid was fit to the force function with the same 

frequency, both the velocity and force became zero at the same point.  According to 

l’Hospital’s Rule, if ( )xf
ax→

lim  and ( )xg
ax→

lim  equal 0 or ± ∞, 
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Using this correlation, a nonzero quotient could be found.  The end results were constant 

lift and drag functions; exactly like a fixed wing coefficient derivative. 

So, using the above method, the unsteady effects embedded in the data are 

neglected by fitting a perfect sinusoid to the force data.  In fact, when Figure 3.6 is 

examined closely, it can be seen that the points where the force is zero are out of phase 

with the data flapping frequency.  This is because the wing was reversing direction at this 
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point and because of the unsteady effects associated with a flapping wing, the force will 

not be zero exactly when the wing reversed direction.  For instance, when the wing is 

moving up just before the end of the stroke, it is “pulling” some fluid with it.  When the 

wing stops to reverse direction at the stroke extreme, the fluid’s momentum continues to 

push up on the wing and create a force.  Therefore, the wing starts to move slightly in the 

downward direction before the force becomes zero. 

The lift and drag coefficient derivatives must then be calculated with the data at 

each time step.  Without analytical functions, l’Hospital’s Rule cannot be used, but the 

time step used while taking data could be set up in such a way that the velocity is never 

exactly zero, and hence, the lift or drag would never be infinity.  While the lift or drag 

could still become a very large number when the velocity becomes close to zero, the 

manipulation in Equation 62 would still work since it would be using a finite number.  

Finally, a spline could be used to fit a more exact equation to the coefficient derivative so 

the result could be used in simulations. 

The three dimensional simulations did not perform well in the sense that no set of 

conditions were ever found which resulted in steady level flight.  However, to start the 

simulations, αL and αR were set equal to each other to gauge the system response against 

the flapping wing NAV with a tail and the tailless NAV was stable for most inputs, but 

the states did not settle as quickly as a comparable simulation with the tailed version as 

can be seen in Figure 3.15.  It is believed that without the presence of the energy-

absorbing tail, the aircraft was more prone to drawn out oscillations.  As such, negative 

lift from the wings was sure to have a more pronounced effect on this aircraft.  Upon 

further consideration, it is hard to think of a biological flyer that does not have some 
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secondary surface for control.  Birds of course have a tail, but even butterflies possess a 

smaller set of wings behind their first set of wings.  Therefore, from these first results and 

considerations, it was doubtful that this aircraft could ever maintain steady level flight.  

The initial conditions used for the simulation in Figure 3.15 were the steady level 

conditions obtained earlier. 

 

 
Figure 3.15.  Two Dimensional Flight of Tailless NAV with f = 80 Hz, αL = αR = 10°. 

 
 
 

However, another two dimensional simulation was attempted after considering 

how the variations in αL and αR were to be applied for three dimensional maneuvers.  

Assuming that the flapping mechanism would have a default nominal value for α0, any 

changes, by a servo for example, would add to the pitch angle during one portion of the 
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stroke, and detract from the nominal angle during the reverse stroke.  That led to a new 

definition for α0 with Equation 94. 

 

 0 n sets δα α α= +  (94) 

 

In Equation 94, αset represents the nominal pitch angle for each wing to follow.  Any 

variations in the angles between the wings are done through αδ.  This allows the 

difference in the wings pitch angles to remain equal throughout the stroke, instead of one 

wing angle being greater by some amount during the upstroke and then being less by that 

amount during the down stroke. 

Using this method, and letting αset = 10° and αδ = 2°, it can be seen in Figure 3.16 

that the aircraft does not fall quite as fast as in Figure 3.15. 

 

 
Figure 3.16.  Two Dimensional Simulation for Tailless NAV with Offset Pitch Angle. 
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Although the aircraft in Figure 3.16 still falls, this method could eventually be 

used to optimize the angle of attack when both wings are set at the same angle.  By using 

a large αset, and a large αδ, there would be a larger positive angle during the upstroke and 

possibly a positive (or at least slightly negative) angle during the downstroke. 

The three dimensional simulations for the tailless aircraft were not as favorable.  

During these simulations, the aircraft showed instability after a rotation had begun.  Two 

approaches were used with these simulations; using an offset angle for the entire 

simulation and using an offset angle for just the first quarter second of the simulation.  

The second method was a feeble attempt to replicate a control signal; a quick correction 

to adjust flight.  Figure 3.17 is a plot of the three dimensional flight path for a constant 

adjustment angle αδ.L = 2°, while αδ.R = 0°, αset.L = 10°, and αset.R = 10°. 

 

 
Figure 3.17.  Three Dimensional Flight Path for Tailless NAV with f = 80 Hz and Offset 

Wing Pitch Angles. 
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Figure 3.17 presents another beacon of hope for the tailless aircraft.  Once 

rotation began, the aircraft slowly climbed for a few meters, and then slowly it began to 

fall before climbing once again.  Without an animation to show the exact orientation of 

the aircraft at all times, it is difficult to visualize how it accomplished these maneuvers, 

but after matching times between altitude and pitch angle plots, it was found that at some 

moments the aircraft was flying upside down while it was climbing. 

The results from the impulse offset angle in Figure 3.18 look similar to Figure 

3.17 initially, but once αδ.L is set back to 0°, the aircraft continues to climb.  Again, the 

pitch angle indicates that at times the aircraft is upside down. 

 

 
Figure 3.18.  Three Dimensional Flight Path for Tailless NAV with f = 80 Hz and 

Momentarily Offset Wing Pitch Angles. 
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The fact that this aircraft experiences climb during moments when it is upside 

down, points to a number of problems.  Mathematically, the aircraft may become more 

stable in this mode.  This should not be the case due to the previous stability analysis.  

Secondly, perhaps not enough conditions were tried to achieve climbing flight when the 

pitch angles were not offset.  Also, since the inertial terms were not canceled in the 

dynamic model for these simulations, they may add enough force to produce climbing 

flight whenever certain states have a non-zero value.  Lastly, as is always a potential 

problem, there may be an error in the dynamic model, that was not encountered with 

previous simulations due to the cancellation of certain terms. 

It is believed from these simulations that tailless flapping wing flight is possible, 

but difficult.  At the very least, some sort of drag element should be placed in the rear of 

the vehicle to help keep the nose up.   

3.2.2. Controller Simulations.  All of the controllers designed previously failed 

to produce the desired results.  In fact, most of the controllers drove the system unstable 

in a short amount of time.  For a check point, the controller simulations were given initial 

conditions corresponding to the state values obtained during steady-level flight.  The 

control signal should have followed closely to the input for the uncontrolled simulations.  

However, the control signal continued to grow throughout the controlled simulation until 

the system became unstable.  In Figure 3.19, the altitude does not rise very quickly, but 

the fact that it does indeed climb indicates that the controller is not performing correctly. 
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Figure 3.19.  Altitude and α vs. Time with Feedback Linearization. 

 
 
 

The angle of attack in Figure 3.19 also grows during the entire simulation.  The 

gains k1 and k2 in the error dynamic equation were varied to examine the simulation 

results, but the feedback system is highly sensitive to these values.  No set of conditions 

could be found to create a favorable response from the system.  One positive detail to 

come from the feedback linearization analysis was the concept of step calculations.  If 

Equation 82 were examined, it is clear that the control signal becomes infinite when Cf = 

0.  Therefore, when Cf approaches zero, the calculations are canceled for a short time.  

Even though a saturation level can be set for the control signal, in a physical realization 

of this project, the actuator and the aircraft itself would not be able to respond to these 

changes in such a short amount of time. 
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The Lyaponuv simulations were even less optimistic, and with after examining 

Equation 87, it was clear why.  In Equation 87, the numerator is divided by ωy.  So, if the 

controller is successful in regulating ωy then α0 becomes ∞.  There is a “trick” when 

using Lyaponuv technique; since the derivative of V has to be less than zero and not 

equal to zero, terms are usually dropped, added, or manipulated in order to simplify the 

derivative.  Although this approach was known, there were no apparent mathematical 

manipulations that would simplify the derivative. 

The SDRE technique seemed most promising before simulations were started.  It 

is a relatively easy method to apply, and changes to the system gains were as easy as 

making a new guess for Q and R.  However, therein lies the problem for this method.  

The selection of the values for Q and R, other than an estimated knowledge of their 

relative size, is completely arbitrary.  Many combinations of Q and R were attempted, but 

not one case was ever found that did not drive the system unstable, as seen in Figure 3.20. 

 

 
Figure 3.20.  System Response with SDRE Control. 
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Notice that the simulation in Figure 3.20 ran for 0.3 seconds.  This is because a 

singularity or ill-conditioned A or B matrix arose after this time.  This was typical of most 

of the SDRE simulations. 

The state dependent regulator had the best simulation results.  This method was 

still hit and miss, but that is true with almost all of these methods since so much depends 

on the selection of poles or weight matrices or error dynamic constants.  In Figure 3.21, 

the angle of attack certainly becomes unstable, but the altitude is not responding correctly 

at early in the run either.  However, during this simulation, α0 was at least feasible for the 

entire run. 

 

 
Figure 3.21.  Altitude and α vs. Time for a State Dependent Regulator. 
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Refinements were made to these last two methods in a hope to regulate the 

controller dynamics.  Due to the discontinuity of sn, the control signal undergoes highly 

dynamical behavior.  In fact, a physical actuator would not be able to realize the 

dynamics induced in the control signal by the signum function.  Recall from earlier 

discussions that a constant velocity was used to calculate the coefficient derivatives, and 

therefore this signum function is needed to present both signs of the velocity in the 

calculations.  The true sinusoidal velocity function calculated from the flapping 

mechanism should help all of these simulations, but for now an integrator was applied to 

the SDRE system.  An integrator helps smooth out the control signal α0, now a state, 

since the linear quadratic regulator is trying to drive α0 to zero.  z  was also added as a 

state to try and smooth out the altitude path.  Note that these two steps were only applied 

to the SDRE system.  The final SDRE results can be seen in Figure 3.22, while the state 

dependent regulator changes are in Figure 3.23. 

 

 
Figure 3.22.  Altitude and α vs. Time for a SDRE with an Integrator and z . 
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Figure 3.23.  Altitude and α vs. Time for a State Dependent Regulator with Nominal 

Control Signal. 
 
 
 

A nominal control signal was added to both the SDRE and state dependent 

regulator systems.  This control signal is needed since during steady level flight, a non-

zero control signal is needed.  The nominal control signal was obtained from the 

uncontrolled steady level simulations. 

As is seen in the figures, both systems seem to behave quite well at first.  

However, the instability builds slowly to drive the system unstable.  Notice the time scale 

in Figure 3.22.  Again, like simulations in Figure 3.20, the state dependent matrices used 

in the Riccati equation become ill conditioned after a short time.  The most promising 

results from the controller analysis seem to point to the final arrangement of the state 

dependent regulator. 
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4. CONCLUSION 

 

This project was a great success in developing an approach for creating a 

statically stable flapping wing aircraft.  Although a large number of cases were tried that 

resulted in an unstable system, the same can be said for a great deal of nonlinear systems; 

the positive point is that many combinations were found in which the aircraft was stable.  

As discussed earlier, it is doubtful that the coefficient derivatives would ever be zero if 

the velocity at each point in the stroke was used instead of an average velocity when the 

empirical lift and drag functions were calculated.  That does not take away from the 

usefulness of this study however, since a plane that flies at moments when zero lift is 

present will sure fly when the lift is non-zero. 

Although all of the control schemes failed to track the desired constant altitude 

reference in this study, they can still be used as a guideline for controller development 

later on in this project.  It is quite possible that the controllers were trying to be too exact 

when regulating the system.  In fact, when the calculated control signal of the SDRE 

system at the second time step was compared to the control signal used for steady level 

flight, the SDRE control was much higher.  This points to the controller trying to drive 

out any oscillations from the states, but this is contradictory to the uncontrolled steady 

level simulations.  It is evident that this system will have some oscillations during steady 

state flight, so some error will have to be accepted in the controller. 

Since the system error can be weighted with SDRE control, this is the control 

method that is suggested for future work.  The state dependent regulator would also be a 

good choice, since both of these methods are easy to implement and manipulate, but with 
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the SDRE it is simpler to select user inputs given that the selections of the Q and R matrix 

don’t physically mean anything.  With the state dependent regulator, the selection of the 

system poles (or eigenvalues) corresponds directly to the state responses.  Another 

advantage of the SDRE control is that many other optimal control techniques can be 

applied later if the system is found to work with SDRE.  After the three dimensional 

simulations, it is also suggested that any future considerations include a tail of some 

form.  A tail of the length and shape used for this NAV is not necessarily needed; by 

simply decreasing Lf at the beginning of Section 3 the aircraft length can be diminished to 

further reduce weight, but a tail should be on the flapping wing aircraft to keep the nose 

up and help with other aspects of stability.  Even a bulbous piece of balsa wood projected 

at an upward angle behind the aircraft could help keep the nose up…although the 

aerodynamics might be difficult to model. 

It was stated in the simulation results that the power required by both wings 

during the steady level flight was 1.65 W.  As few aircraft have actually been built at the 

NAV scale, it is hard to judge if this power requirement is the norm.  However, based on 

the MAV in the literature review, this seems like a large value.  Furthermore, this is only 

the power required at the wings; the actual motor power rating would have to be larger 

still due to losses in the motor and flapping mechanism, inaccurate assumptions in the 

force model, and power requirements by onboard computing and control equipment.  

Again, this power requirement is due to the extremely high flapping frequency, which 

would probably be lower with refinements to the experimental data. 

The data from [15] was not originally developed for the purpose of creating these 

derivatives.  The flapping velocity and force data were not taken simultaneously and 
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therefore, even though the exact data was available, it could not be assured that the 

velocity at a given moment corresponded to the actual force at that moment.  Data taken 

in moving fluid would also improve these coefficients, as it is suspected that the ambient 

fluid produces some sort of parasite force on the wing irregardless of the wing flapping 

velocity.  This is speculation, but force data from in a moving flow field should indicate 

the accuracy of this assumption. 

Since flapping wing aerodynamics are based upon unsteady effects from the wing 

rotations, both flapping and pitching, a study into any empirical correlations for data with 

various rotational properties (both acceleration and velocity for flapping and pitching) 

could also be performed to improve the system coefficients.  Of course, this would 

require a wide array of data taken a multiple wing beat frequencies, pitching velocities, 

and angles of attack, but the worst it could do was verify the current model of the wing 

forces. 

There are a number of ways that this project could be further improved with 

future work.  Once the final flapping mechanism is selected, the continuous analytical 

velocity function of the wing can be substituted into the calculation of αeq instead of 

using the snvf term.  With known actuator dynamics, a more precise model of the nominal 

pitch angle could also be developed.  With these two quantities redefined, a great deal of 

the discontinuities or “jumpiness” of the response would probably be avoided.  In fact, 

this could possibly improve the controller design in the study as well, since a great deal 

of nonlinear control theory assumes the use of continuous state equations. 

The dynamic model could also be improved by quantifying a number of terms 

that were neglected in this study.  Fuselage lift and drag, forces due to sideslip, damping, 
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and the inertial terms corresponding to the actual aircraft shape and its wings could be 

modeled to enhance the system model. 
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