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ABSTRACT

In the following report, some of the properties of ALCOA 7075 T651
aluminum, when subjected to high rates of loading, are experimentally inves-

tigated by impacting two rods of the material longitudinally .

One rod is accelerated to a uniform velocity with an air gun launcher.
The stationary second rod is instrumented with strain gages on its lateral surface
in order to defermine the strain~time history following impact. A detailed

description of the experimental equipment is included.

Simple, one-dimensional theory is used to determine the dynamic,
elastic modulus of the test material under the impact condition. Several ob-
servations regarding the behavior of the material under dynamic, plastic

loading conditions are made.

The importance of equipment frequency response is noted and a method
is suggested for estimating the experimental error in strain measurement resulting
from equipment frequency response limitations. Several other possibilities of
experimental error are noted and suggestions for improvement of the experimental

apparatus are given.

A theoretical development for the case of the longitudinal impact of
two viscoelastic rods is presented and the numerical results are summarized for

the impact of two rods of a Maxwell material .

Computer programs to facilitate the determination of air gun parameters

and to evaluate the solutions for the viscoelastic case are included.
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I. INTRODUCTION

Man has long recognized the need for adequate description of the
behavior of materials in various environments. |n many cases, the construction
and application of devices has been made economically and physically possible

only through extensive theoretical analysis and testing.

I n the design of structures, it has been found necessary to possess
knowledge of the behavior of materials under various loading conditions.
Because of the variety of loading that is possible and the endless spectrum of
structural shapes, simple one-dimensional tests have been devised to yield
basic design information which, hopefully, can be applied to more complex
conditions. Although the use of results obtained by one-dimensional tests is
restricted, their popularity has been enhanced by the simplicity with which they
can be conducted and analyzed. It has also been found that one-dimensional
tests generally yield results that are valuable in the analysis of multi-dimensional
problems. One such example, the static tension test, has virtually become a

standard test for materials.

Most students of the subject agree that the science of wave propagation
in solids first began to flourish during the nineteenth century. It is thought that
much of the progress in this area followed as a result of the observations that the
"rigid body treatment" was inadequate to describe some problems where large

amplitude stresses were produced from very high rates of loading (as in impact),

As is the case with many problems in science and engineering, analysis
of the general case of wave propagation in solids involves the solution of very

complicated equations. It has been observed that under certain conditions,



simplifications of the general case can be made. One such simplification of
the general case of wave propagation involves the analysis of wave propagation

in uniform rods.

It is known that Pochammer (1876) and Chree (1889) were independent
authors of the classic theory of multi-dimensional wave propagation in round,
uniform rods of semi-infinite length. It is generally accepted, however, that
Saint-Venant (1883) was the first to intensively examine the case of one-
dimensional wave propagation in rods due to impact loading. Since the time of
Saint-Venant, an enormous amount of literature has been produced with regard

to rod problems alone.

Analyses have been presented for rods whose circular cross-section varies
as a function of a spatial coordinate (both continuously and discontinuously)
for rods of non-circular cross-section and for curved rods. A wide variety of
boundary conditions have been considered, including the interaction of the
lateral surface of a rod with a surrounding medium, and various end conditions.
Among the initial value problems that have been considered are those which
involve: the longitudinal impact of rods (of equal or unequal diameter and
material); the non-longitudinal impact of rods; the application of pressure pulses,
velocities, or heat sources to the ends of both infinite and semi~infinite rods;
and the collision of rods with rigid, finite or semi-infinite masses. The effects
of magnetic fields and high or low temperatures on wave propagation in rods

have also been examined.

These primary investigations have given rise to the analysis of wave prop-
agation in rods of materials which are not ideally elastic, but which can be
described as being aleotropic or inhomogeneous. Some problems have been solved
for rods which are of anelastic materials, among them being those that can be

described as viscoelastic, elastoplastic, or elasto-viscoplastic.



Recently, the study of "hypervelocity impact" has been intensively
pursued. This phenomenon involves impact velocities that approach or exceed
the velocity of wave propagation in the material, leading to the production of
stresses which are of the same order of magnitude as the elastic modulus. Solu-

tions to these problems have involved the treatment of materials as compressible

fluids.

Some of these problems have been solved for the two and three-dimensional
cases. The large majority of investigators have, however, considered only one-
dimensional effects. Certainly, the examination of one-dimensional problems
in wave propagation has led to valuable information regarding the effects of wave
propagation on the material in which the waves are propagated and has provided

valuable information for use with multi-dimensional problems.



[f. LITERATURE REVIEW

A. Elastic and Plastic Waves

The behavior of most metals, when subjected to rapid loading conditions,
can normally be described in terms of some type of elastoplastic or elasto-

viscoplastic analysis.

1. Elastoplastic Theory

Karman [1] and Taylor [2 ] were among the first proponents of the

elastoplastic (strain-rate independent) theory. The distinction of this method

of analysis is that it involves the use of the statically-determined stress—strain
curve to predict the propagation of waves in materials which have received loading
in the plastic range. Basically, the theory states that each level of stress included
by the elastic limit of the material is propagated with the elastic wave velocity
while each level of stress in the plastic range of loading is propagated with a
velocity which depends upon the slope of the static stress—strain curve at that

level of stress. Due to the fact that most stress—strain curves are observed to be
"concave downward" in the plastic region, this theory suggests that the elastic
levels of stress will be propagated with a velocity that exceeds those velocities

associated with the plastic levels of stress.

2. Elasto-viscoplastic Theory

It has been found that the response of some materials to rapid. plastic
loading is distinctly different than that predicted by the strain-rate independent
theory. This phenomenon is normally characterized by an "upward shift" of the
static stress—strain curve in the plastic range of loading and may be accompanied

by an increase in the ultimate strength of the material. Malvern [3 ] suggested



that these characteristics could be predicted by a strain-rate dependent consti-
tutive equation in the plastic range of loading. Analysis of the Malvern
equation shows that if the material is subjected to "step" straining above the
elastic limit, its stress—strain relation will instantaneously reduce to an exten-
sion of the elastic curve into the plastic range. The equation also predicts that
the dynamic stress-strain curve will approach that of the static case if the strain

level is sustained for long periods of time.

3. Experimental Methods

Some interesting experiments, investigating the effect of strain-rate on
various materials, have been conducted using the "split Hopkinson pressure bar.™"
A thin wafer of material is sandwiched between two rods which have been aligned
longitudinally. A compressive pulse is applied to one of the rods and passes
through the rod-wafer-rod interface and into the second rod. Through post facto
analysis of the strain-time and/or displacement-time histories of the rods
(which are assumed to remain elastic during the test), it is possible to deduce the
stress—strain history of the specimen. A more detailed description of the apparatus
that is used can be found in publications by Davies [ 4] and Lindholm [5] with
criticism by Bell [ 6 1. Although there has been a substantial amount of testing
by this method, conclusions regarding the strain-rate dependence of materials
are many times obviated by published results which do not agree qualitatively

much less quantitatively.

Perhaps the most utilitarian test of strain-rate dependence is that which
involves the longitudinal collision of two rods of equal diameter. For rods which
are of sufficiently small diameter, simple one-dimensional considerations are
normally adequate to describe the resultant wave phenomena. One-dimensional
theory predicts the production of infinite strain-rate as a resuit of the collision

of the rods. Thus, for this limiting condition, it can be determined if the



material shows strain-rate dependency . [f the material is not observed to show
strain-rate characteristics under these conditions, it is very likely that it will
not demonstrate strain-rate dependence at reduced rates of loading. Experiments
using this method have been conducted for the elastic case by Krafft [7] and
Ripperger [81] and for the elastic-plastic case by Bell [9,10 . Oetting [11]
has used this method for studies in the plastic range and at low temperature.

The case of a rod, remaining elastic, and impacting a second rod (of a different
material) at such a velocity that a plastic level of stress is produced in the

second rod has been experimentally examined by Waser, Rand, and Marshall [127.

4. Spallation

Spallation, or scabbing, is another phenomenon commonly associated
with the propagation of elastic-plastic waves. It may be described briefly as
a fracturing of material which is located at some distance from the immediate
area of impact or load application. It is generally considered that the mechanism
primarily responsible for this phenomenon is the reflection of compressive stress
waves as waves of tension at the "free boundaries"” of the material, and is a
direct result of the fact that most materials can sustain higher stress levels in
compression than in tension. The level of the reflected tensile pulse must
necessarily exceed the ultimate stress of the material, but this is not a sufficient
condition for spallation to occur. Some of the phenomena which are known to
effect the spallation process are: (a) duration of tensile load; (b) strain-rate
dependence; (c) crack propagation speed; (d) ductility; and (e) magnitude of
the tensile load. In the case of the impact of two rods of different lengths and
of equal strain-rate dependent materials, spallation manifests itself as the
fracturing of a section of the longest rod which is equal to the length of the
shortest rod. This effect was observed by Oetting [11 ] in an examination of

the impact of lucite rods.



A more detailed description of the spallation phenomenon can be found

in a publication by Broberg [ 13 1.

B. Viscoelastic Waves

1. Introduction

It has been observed that some materials exhibit (to varying degrees)
properties such that they respond both viscously and elastically to applied loads.
Such materials have been called "viscoelastic" materials. Among the materials
that have been observed to exhibit these characteristics are: concrete; metals
at elevated temperature; lead; and certain of the newly-developed synthetic

materials.

The elementary method of analysis of viscoelastic materials considers
that their constitutive equations can be represented by series and parallel
combinations of linear springs and viscous dashpots (viscoelastic models). A
good discussion of the macroscopic and microscopic implications of this analogy

is given by Bland [ 141 and by Fligge [ 15 1.

The behavior of these materials under quasi-static loading conditions is
ordinarily reported in terms of their "creep" or "relaxation" characteristics,
which is respectively constituted by their observed response to constantly -applied
stress or constantly -applied strain. The response of these materials in problems
involving wave propagation can generally be termed as "frequency dependent,"
and it is common that their properties, under these conditions, are reported in

terms of "complex modulii."

Unfortunately , the problems in viscoelastic wave propagation become
very complicated and are generally soluble in closed form only for the simplest
of problems with the most elementary models. Solutions to more complex problems

are usually obtained via numerical approximations.



2. One-Dimensional Viscoelastic Wave Propagation

Because of the complexity of problems in viscoelastic wave propagation,
the one-dimensional approximation has proven to be a valuable method of

analysis.

Lee and Kanter [16 ] have considered the effect of a step velocity
applied at the ends of both finite and semi-infinite rods of a Maxwell material .}
Morrison [17 1has considered the effect of a step velocity applied at the ends
of semi-infinite rods of both Voigt and three-parameter mm‘erials.2 The method
of characteristics has been used by Glauz and Lee [ 18] to examine the case of
a step velocity applied to the end of a semi-infinite rod of a four~-parameter
material .3 Lee and Morrison [19] compare the results obtained for the case
of the semi-infinite rod and the various models considered by Lee and Kanter,
Lee and Morrison, and Glauz and Lee with observations regarding simplifications
that can be made in material modeling. The effects of stress, strain, and sinus-
oidal motion applied at the ends of semi-infinite and finite rods were examined
(with the "hereditary integral") by Berry and Hunter [ 20] for materials which
obey Boltzmann's principle of superposition. The propagation of a strain pulse
in a rod of polyethelene (assumed to be semi-infinite) was experimentally

examined by Norris [ 211 using the Hopkinson pressure bar.

]

The Maxwell model consists of a spring and a dashpot arranged in a series
combination.

2 The Voigt model consists of a spring and a dashpot in parallel arrangement.
An example of a three-parameter model is a Voigt model combined in series
with a spring or dashpot.

3

A four-parameter model is a series combination of two Voigt models or a
series combination of a Voigt model with a Maxwell model.



1. THEORETICAL CONSIDERATIONS

A. Introduction

In the developments that are presented herein, it will be assumed that
the elementary one-dimensional theory as applied to the longitudinal propa-
gation of waves in rods is valid. It will be assumed that the rods are of circular
cross-section, of constant area in the unstrained state, and are composed of
an isotropic, homogeneous material. Further assumptions are that "small"
strai ns  (such that the equations of linear elasticity apply) are exclusively
present, body forces and temperature variations are negligible, plane cross-
sections remain plane, and that the stress present at any section of a rod acts
uniformly over that section. Additionally, it will be assumed that the duration
of a disturbance that traverses a rod is large compared to the quantity (rod
diameter/wave propagation velocity). The validity of the one-dimensional

treatment under these conditions has been demonstrated by Kolsky [23].

A rod, conforming to the above restrictions, is shown in Figure 1. With
reference to Figure 1: L represents the length of the rod in the unstrained state;
x is the unstrained (lagrangean) coordinate; t is time; U(x,t) is the dis-
placement of a layer of rod material with respect to its corresponding unstrained
coordinate, x, at time, t; and a is a constant. It is considered that Ao and

o are the unstrained area and mass density of the rod, respectively. The
o

I M’_‘! Ux, 1)

Figure 1. Uniform rod



uniaxial stress in the rod will be denoted as 0 and the uniaxial strain as ¢
Stress is defined as the force acting on a section of the rod per unit of the un-
strained area and strain as the change in length of an infinitessimal section of
the rod at x divided by its unstrai ned length. For small strains

— 93U _
e—W—U . (1N

X

B. Method of Characteristics Solution: The impact of two elastic rods

[t is thought that this approximate method for describing the longitudinal
propagation of waves in a rod was first used by Karman [ 11 and Taylor [2 ]
in their studies of elastic-plastic wave propagation in rods and wires. Recently,
this theory (adapted to the longitudinal collision of two rods) was used by
Waser, Rand, and Marshall [12 Tin their study of a strain-rate independent
material and by Oetting [ 111 in his study of two highly strain-rate dependent

materials.

Application of the continuity and momentum equations to an infinitessimal

section of the rod of Figure 1 yields the equations

and
1 v 3)
Vet =5 9% 7 V¢ ’
0]
where V is the velocity of particles relative to the Lagrangean reference frame
and the subscripts x and t denote partial differentiation with respect to the spatial

coordinate and time, respectively.

For small strains, the velocity of propagation of a disturbance with respect

10



to an undisturbed portion of the rod, C, is given by

pode

-

Let the variable, ¢ be defined by the equation

dg = Cde . (5)

In the elastic range of the material
do _ E = _z_ (6)

where E is the elastic modulus. For strain-rate independent materials that have
been loaded plastically, a% normally has a distinct value for each level of
plastic stress. [f it is assumed that the concern is only with materials that are
loaded in the elastic range, or with materials that are highly strain-rate de-

1
pendent, then equation (4) becomes

()

[t can then be seen from equation (7) that C is not dependent on € and equation

(5) becomes

(8)

IS
]
Q
1Y)

Combining equation (8) with equation (2) yields the equation

g, - CV, =0 . ()

For materials that obey the flow law of Malvern [ 3] , equation 6 applies in
the plastic range as well as in the elastic range of loading if the loading rate

11

is very high and the loading time is small. These characteristics of the Malvern

equation are discussed briefly in Appendix 3.
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Combining equation (8) with equation (3), using equations (6) and (7), gives

a second equation

V,-Cg =0 . (10)

Alternately adding and subtracting equations (9) and (10) results in

Vi@, = CV:@) -0 . ()

f

Equation (11) is the set of "characteristics equations" describing particle motion

in a rod of @ material which displays an invariant propagation velocity.

Equation (11) is also, by definition, the total derivative] (D) of the
quantity (V + @) or the quantity (V - ), where
9 dx 9

- . (12)

D= 57— + 3 7x

d
Thus, for an observer moving along the rod with velocity _d_? = *C, the quantity

(V * @) appears as a constant. This is equivalent to saying that along lines of

constant slope % = 3 Cin the x-t plane, (V* @) is a constant. In equation form,
this is
(V+@)| =Constant (13)
slope = -C
(V -@)i = Constant (14)
slope = +C

In general, there is a distinct constant associated with each line.

The total derivative is also known as the "comoving" or "substantial" deriva-
tive. A description of its properties is given by Frederick and Chang [22] .



A disturbance can be induced within a rod by impacting it longitudinally
with a second rod of equal cross-sectional area. One rod is initially at rest
and will be designated the "test rod" (subscript, T). The second rod has an
initial , uniform velocity, Vo' with respect to the test rod and will be identified
as the "impacter” (subscript, 1). At time t = O, the impacter has just reached
a face of the test rod such that the rods are not, as yet, strained due to impact.
The origin of the Lagrangean coordinate, x, is defined to be at the "free end "
of the impacter. Then, at t+ = O, the impacter and projectile constitute a total
length, L. Let the length of the impacter be designated by L/a where a is
a constant greater than two. With the stipulation that the interface of the rods
exists at x = L/a, the system is arranged as that shown in Figure 1 for the

uniform rod.

In this analysis, it will be considered that both rods are of identical

=(p A Q)
o O

material , such that a "matched impedance" condition (pvoC)l T

exists at the interface of the rods. A compressive load will thus be transmitted
1 -

undiminished at the interface. As long as the rods remain in contact, the

following conditiors must be met at the interface:

or = O 0s)
U, = UT
VI = VT
In view of the specified initial conditions,
v, =V
UI = 0
VT = UT = 0

It was shown by Waser, Rand and Marshall [121] that reflections will not occur
at the interface of two equal-diameter rods if the impedance of the impacter is
equal to, or less than, the impedance of the test rod. The condition of free

transmission at the interface (for matched impedance) has also been described

by Kolsky [231 .

13
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Using equations (13), (14), (15), and (16) it is possible to construct a "charac-

teristics net." The significant characteristics of this net are shown in Figure 2.

Equation (8) can now be used to calculate the strain present at any point
in the characteristics diagram and equation (6) yields the corresponding stress.
It can thus be seen that the maximum magnitude of the stress, op , and the max-

imum magnitude of the strain, €r , are respectively given by

= EVo
m = 30 (17)
€ - Vg
E 2C (18)

Vertical lines drawn between the characteristics of Figure 2 (e.g., line D-E)
indicate the length of the non-~zero stress or strain distribution at the value of time
indicated by the intersection of an extension of the line with the t-axis. Hori~
zontal lines drawn between the characteristics of Figure 2 (e.g., line F-G) for
a particular value of x indicate the duration of the pulse at that value of x. It
should be noted that the latter procedure can, in general, yield multi-valued

results for the duration as a function of time.

Through further analysis of Figure 2 it can be determined that a compressive

wave of magnitude o is initiated at the interface of the bars and propagates
into the test rod with velocity C and into the projectile with velocity -C until
it has reached the free face of the projectile (t=L/aC). Att= (L/aC)+,
the wave begins to move through the interface of the rods in the +x direction
and subsequently propagates completely into the test rod. Due to reflection
effects at the free end of the test rod, the wave vanishes about point A at

=L/C. Att= (L/C)+, a wave of tension appears at point A and subsequently
propagates toward the interface of the rods. When the wave of tersion reaches

the interface of the rods, the rods must separate (tension cannot exist at the
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interface). After separation, the wave is reflected at x = L/a and continues to

propagate within the test rod as a wave of alternating sign.

Since the pulse first appears as a wave of tension at x =L - L/a, this
is where spallation or scabbing will first occur, if it occurs at all. Also, it may
be seen from Figure 2 that if the impacter and test rod are of equal lengths the

impact will produce only a single compressive pulse.

C. Traveling Wave Solution: The impact of two elastic rods

It can be shown that displacements, U, of the rod of Figure 1 with respect

to the spatial coordinate, x, satisfy the wave equation

u_, = C°U (19)
where

U = f(x-Ct) + g(x+Ct) . (20)

In the method of characteristics solution it has effectively been stated
that the colliding rods can be considered as one continuous rod as long as tension
is not present at the im‘erfoce.] Proceeding with this assumption, the rod of
Figure 1 exists with the following initial conditions:

U(x,0) = 0 = U_(x,0) (O<x<L)
Ut(x,o) =V |1 - H(x-L/a){, (0x<L)
and the boundary conditions:

U, (0,8) = U_ (L,t) =0 (22)

where H(x) is Heaviside's step function.

This condition has been implied by Goldsmith [241, p. 38, in his solution of
a similar problem by the traveling wave method.
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Equation (20) represents the sum of two traveling waves; f(x - Ct) is a
wave traveling in the +x direction and g(x + Ct) is a wave traveling in the -x
direction. For the elastic case, the waves retain their shape and propagate with

a velocity of magnitude C. By suitable partial differentiation, it can be shown that

o = & [if-+ii} (23)

IV AW

where v =x - Ct, w=x+ Ct; and that

E

+

of _ 1j2u _ 1 3Up 239 _ 1
B , 0w 2

ol

2 oU
TR R 24)

Using equations (24) and (21), evaluation of equation (23) at t = O yields

< EVo . _ oL EVd 1 gl | - 2

o(x,0) = 5C [l H(x a)} + 55 1-H(x a)] (25)
. . . _ EVg

Let time be defined by the non-dimensional variable T=Ct/L, o5 = 5z°, and

a = 5; then, using equation (25), the waves (T = O) are as depicted in Figure 3.

+ O
i
OE C — X/L

Figure 3. Traveling waves (T =O)

It should be noted that since both ends of the rod are free, the traveling
stress waves will be reflected as waves of opposite sign at these boundaries.

Summation of the two waves at increasing values of T reveals that a compressive



stress wave of magnitude o, is generated at the interface and propagates with

E
velocity C into both the impacter and test rod (see Figs. 4-A to 4-C). At

T =0.2, the length of the pulse is 0.4L. At T = O.2+, the wave begins to move
through the interface and is subsequently reflected at the free end of the test
rod as a wave of tension. At T = 1.6, the tension wave has just reached the
interface and the rods separate (tension cannot exist at the interface). The
wave is now reflected as a wave of compression at x = 0.2L and continues to
propagate back and forth in the test rod with alternating sign. A sequence of

stress distributions within the rods for the first traverse of the stress wave is

shown in Figures 4-A to 4-G.

By comparison of Figure 4 with Figure 2 it can be seen that the assumption
of a continuous rod and subsequent use of the traveling wave method has yielded
results which are equivalent to those obtained by the method of characteristics

(with a = 5).

D. Fourier Series Solution: The impact of two elastic rods

With the assumption of a continuous rod, yet another equivalent solution
can be obtained through separation of variables and Fourier series. Application

of the boundary conditions (22) and the initial conditions (21) for a = 5 yields

oC

= - éEvi %'Sin(mr/S) *sin(nrx/L) -sin(nnCt/L) (26)
n
nzl
2vo\ 1, ; Csi /L) *sin (n1Ct/L) (27)
e = - a——; H’Sln(n'ﬂ/S) Sln(nﬂx
n=1

Equations (26) and (27) apply only until a state of fension exists at the
interface of the rods (T = 1.6). A solution for time T > 1.6 can be obtained by
using the series evaluated at T = 1.6 to provide initial conditions for a second
boundary value problem. The solution for T > 1.6 involves, however, a trans-

formation of coordinates and a consequent doubly infinite series and will not be

presented here.
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E. Viscoelastic Solution: The impact of two viscoelastic rods

A Maxwell material is one for which the stress-strain relation can be
described by a linear spring and a viscous dashpot arranged in series. If E is
the spring constant and n is the coefficient of viscous damping, the Maxwell
model is as shown in Figure 5.

| £

0 ~———MN—T} o
E n

Figure 5. Maxwell model

The equation which describes the stress-strain relation of a material has
been called its "constitutive equation." The constitutive equation of the Max -

well model is

E dt n dt
or, after substitution of Wo =E/n
do _ de 28
Woo a3t B dt - (28)

The Maxwell model is ultimately viscous, i.e., it will strain indefinitely

20

upon the application of a constant load and it will act instantaneously as a simple

spring upon the application of step loading. If the coefficient of the dashpot

assumes a value of infinity, the model becomes a simple spring. If the coefficient

of the spring becomes infinite, the model becomes a simple dashpot.

1. The Correspondence Principle

A form of the correspondence principle was used fo obtain solutions for the

stress and strain resulting from the collision of two rods of a Maxwell material .
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The general procedure for applying this form of the correspondence principle
to a one-dimensional problem is as follows:

1. The solution of a problem in elasticity is obtained as a
function of the spatial coordinate, elastic modulus and time.

2. The "elastic solution" of Step 1 is found in a suitable trans-
form plane.

3. The constitutive equation of the viscoelastic model under
consideration is transformed and solved for the stress—strain
relation (corresponding transform - varying modulus).

4. The corresponding transform - varying modulus of Step 3
is substituted for the elastic modulus in Step 2.

5. The inverse of the transformed solution (resulting from
Step 4) is found to obtain the viscoelastic solution in

the t-plane.

The Laplace transform will be used in the application of Steps 2 through 5.
Its use with the correspondence principle when applied to problems of dynamic

elasticity is subject to the restrictions discussed in the following paragraphs.

It was stated by Bland [ 14] that the constitutive equation of the general,

linear viscoelastic model is of the form
P(d)o = Q(d)e (29)

where (if P, and q, are constants)

dn dn
P (d) =an gtn  and  Q(d) =an am

=0 |
For any viscoelastic model considered by Bland, the highest order of the operators,

Q(d) is equal to or greater than the highest order of the operators, P(d). Consider
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the limiting condition where the highest order of P(d) is equal to the highest

order of Q(d). Substitution of equation (29) into the elementary form of the

wave equation

3o _ 32U
3x S 3t? 50)
yields
k
n k. n+2
9 9 _ d -
9 9 3E0 |F T B Pn 5tnF2 y (31)
n=0 n=o
Taking the Laplace transform of equation (31), assuming that the initial con-
ditions involving stress and strain vanish, and noting that % = Ux results in
k k
[ans} 3<U pO{anS } U
3x2
n=o n=o
k_lU(x,o) + ...]—... (31a)

- %pk{sk‘FlU(x,o) + skﬁ(x,o) + s

where the bar notation indicates a transformed variable. Taking the Laplace

transform of equation (29) and assuming the same initial conditions, the result is

k

[i pns”J - {n; qns“F . (32)

n=o0o

aj

Thus, the corresponding s-varying modulus is

k k
w i (fe] ]

n=o

ajla|

Transforming equation (30), the result is

(34)

ax

30 _ %{Szg_su(x,o)—[}(xm) }
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Using equation (33) with equation (34) and noting that € = U , the result is
X

I<v k
320
Lo g0 [ [

n=o0o nN=0

s?U - sU(x,0) - U(x,0)| . (34a)

Equation (34a) is equal to equation (31a) only if the second order (and

higher) partials of displacement with respect to time evaluated at (x,0) vanish.

Thus, it has been shown that this form of the correspondence principle
(using Laplace transforms) can be applied to the wave equation if the following

conditions prevail:

n n

3
atﬁ (x,0) = %E% (x,0) = O, (n=0,1,2,3...)
n
20U _ _
Stn (x,0) = 0O, (n=2,3,4...) (35)

Equations of the form of (31a) have been solved by Lee and Kanter [14 ,
Lee and Morrison [191] , and Morrison [ 17 1. However, since their concern
was exclusively with linear operators, these solutions could have been obtained
by using the correspondence principle with the elastic solution, equations (35)
satisfied. This form of the correspondence principle (using the one-sided Fourier
transform) has been applied by Bland [ 14] to solve a problem of viscoelastic

wave propagation in a semi-infinite rod.

2. Application of the Correspondence Principle

The problem of the longitudinal impact of two rods satisfies equations (35).

Transforming equation (28), (Wo +s)o =Fs ¢
g _ Qfs)_ _Es
€ P(s) Wo +s

thus,
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Let E assume some finite value, say Eo. Now , noting that E =0 C2 (see

2
equation 7), C” in a transformed elastic solution will be replaced by

Taking the Laplace transform of equations (26) and (27), replacing C2 with

equation (36) and performing the inverse transformation, the result is

[oe]

o = - %EXQ exp(-ﬂg t)}i; —i————-sin(nn/5)~sin(bx)
o" n/1-A2
n=1
-sin(bco/l—AZt) (37)
and, .
2V W 1. . (1-2A2)
g = —=—0( exp (-—L2t) =—.gsin(nn/5) »sin (bx) | ————*
Covr { 2 Z} n =57
n:

-sin(bco/l—Azt) - 2Acos(bco/l—A2t)

+ Wol % —]L2°Sin(n'ﬂ/5) +sin (bx) } (38)
C n
o)
n=1
where
_ E _nmw 2 _ Egq a A = Wq .
WO = b = P Co o o an 2bCO

It has been verified that equations (37) and (38) satisfy initial conditions
(21), boundary conditions (22), the constitutive equation of the Maxwell model
(28), and the wave equation (19) (after substitution of the appropriate operators
for Cz). The series are convergent and real-valued for all values of Wo and t

and reduce to the elastic solutions (26) and (27) when n = «.



3. Numerical Evaluation

Equations (37) and (38) were evaluated numerically by choosing the
non-dimensional parameters, WoL/Co (called the damping paramter, T _ ),
the characteristic time, T = COT/L, and the normalized reference coordinate,
x/L. Stress and strain distributions within the rods for various values of T 5
and for times, T, varying from O to 1 were obtained using an IBM model 360
digital computer. Results were displayed graphically with the aid of a Calcomp

566 incremental plotter. The computer program that was used to evaluate

equations (37) and (38) is listed in Appendix 2.

Composites of the stress and strain distributions obtained from an evalu-
ation of the first 150 terms of equations (37) and (38) with 1 o 1.00 and for
various values of T are shown in Figures 6 and 7, respectively. The values of
stress and strain for the viscoelastic case are reported as multipliers of the

magnitudes of the respective stress and strain that would be realized for the

elastic case (n = =). The corresponding magnitudes of the elastic stress and
strain are:
EV _ Vg
—_ %) =
o, = =2 €
E zco E 2Co

As an example, the value of stress for the viscoelastic case is equal to the
product of a "stress multiplier" and the corresponding value of the elastic stress
magnitude, o_ . In viewing the results, it is important fo remember that the
interface of the rods exists at x/L = 0.2. Reference fo the results of the traveling

wave solution for the elastic case (Figs. 4-A through 4-G) will serve to clarify

the results of the viscoelastic case.

The small oscillations indicated in Figures 6 and 7 are the result of the
non-infinite evaluation of equations (37) and (38). The parts of the distributions
which are nearly vertical are thought to be so; however, they do not appear

vertical because of finite increments in x/L.

25
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4. Summary of Numerical Results

The solutions, evaluated at various values of 1 > O , indicate:
6]

1.
2.

10.
11.

The pulse front is propagated with the velocity Co.

The stress and strain, evaluated at the interface and at T = O+,
are equal to the corresponding elastic values .

The stress, evaluated at the interface and for (C)Jr <T <0.4),

is less than the corresponding elastic value (the difference
varying directly with the magnitude ofTO ).

The strain, evaluated at the interface and for (OJr <T <)

is greater than the corresponding elastic value (the difference
varying directly with the magnitude of T )

A 'residual stress” condition exists in the rods following the
passage of the main pulse. The magnitude of this stress
phenomenon is a direct function of the mangitude of T and
decays with time.

A ‘"residual strain” condition exists in the rods following the
passage of the main pulse. The magnitude of this residual
strain is a direct function of the mangitude of T and increases
with time as long as the residual stress is present.

The strain in the rods varies with the magnitude of the stress and
the time during which the stress is present.

The magnitude of the stress distribution appears to decay expo-
nentially , the rate of decay being a function of the magnitude
of T _.
The "crests" of resultant pulses become increasingly distorted

as T _ s increased.

It appears that a reflected tensile pulse will not occur for T _32m.

The maximum strain occurs at the interface of the rods.
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Apparently , the problem of the longitudinal impact of two finite visco-
elastic rods has not previously been solved. Hence, a direct comparison of
results is not possible. Lee and Kanter [16] have, however, considered the
problem of a step velocity applied to an end of a finite rod of a Maxwell
material . The aspects of the solutions that can be compared are observed to
agree qualitatively. For example, Lee and Kanter have shown that the stress
wave is propagated with the elastic wave velocity (Co) and that the initial
stress amplitude (T = O+) is equal to the elastic stress amplitude. These
investigators have not published a solution for the corresponding strain distri-

butions.



IV. MEASUREMENT SYSTEM
The elastic properties of 7075 T651 aluminum at very high rates of loading
were determined by subjecting two one-half inch diameter rods of the material

to longitudinal impact.

A. Preparation of Test Material

Experimental work was conducted using impacter rods which varied from
2 to 12 inches in length and test rods which varied from 8 to 60 inches in length.
In all experiments, the length of the test rod was equal to or greater than the
length of the impacter. The test material, as obtained from the supplier, was in
the form of one-half inch diameter rods of 12 foot lengths. The test rods and
impacters were cut o prescribed length on a flat-bed lathe to insure that the end
faces of the rods were perpendicular to their axes of revolution. [t was observed
that this method also produced very smooth, uniform end faces. No machine
work was performed on the lateral surfaces of the rods. |t was determined that

the maximum variation in the diameter of the rod material at a given section

was * 0.001 inch.

B. Strain Gages

The test rods were instrumented with Budd metalfilm strain gages (type
C12-121-A) in order to determine their response to the impact condition. The

characteristics of these gages are as follows: effective gage length = 0.125 inch;

30

gage width = 0.085 inch; gage factor = 2.08 *0.5%; resistance = 120 * 0.2 ohms;

epoxy -backed; and temperature and aluminum compensated.

Two strain gages were attached to each test rod such that they were

diametrically opposed and so that their strain axes were parallel with the axis
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of the rod. Also, the gages were placed such that their tabs were away from the
impact end of the test rod. To insure proper positioning of the strain gages on
the test rods, longitudinal alignment lines and circumferential location lines were
lightly scribed on the rods with a vernier height gage. Eastman 910 adhesive was

used to attach the strain gages to the test rods.

C. Wheatstone Bridge

The strain gages were electrically connected so that they became opposite
arms of the Wheatstone bridge shown in Figure 8. In view of the geometrical loca-
tion of the gages, this arrangement negates the presence of any bending strain and
doubles the output with respect to axial strain. Initial balancing of the bridge is
accomplished with the 25 k ohm resistor in series with the galvanometer (for
protection of the galvanometer). Final balancing is accomplished with the 25 k
ohm resistor short circuited. Calibration and strain determination are done with
the 25 k ohm resistor in series with the galvanometer. (This provides an effectively

open circuit between points C and D.)

D. Oscilloscope and Camera

A Tektronix model 564 storage oscilloscope (with 3A3 differential
amplifier and 3B3 time base plug=in units) was used to read the output of the
Wheatstone bridge. This scope and plug-in unit arrangement provides an upper
frequency response limit of 500 k Hz (high bandwidth) and an upper frequency
response limit of 5 kHz (low bandwidth) with display voltage variable from
0.1 mv/em to 10 mv/cm, sweep time capability from 10 sec/cm to 0.1 micro

sec/cm, and corresponding delayed sweep capability .

Photographs of the stored display were taken with a Tektronix oscilloscope

camera.
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Figure 8. Wheatstone bridge
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E. Air Gun Launcher

The impacting rod was accelerated to a uniform velocity using the air gun
launcher shown in Figures 9 and 10. The air gun consists basically of a pressure
chamber section and a barrel-silencer section. The barrel=silencer was sized so
that it permitted unrestricted passage of the impacter. Prior to firing, the impacter
was normally placed at the breech end of the barrel and the barrel was isolated
from the pressure chamber with a diaphragm (aluminum foil). One type of the foil
ruptured consistently at a chamber pressure near 32 psig and the other type at

chamber pressures near 55 psig.

Air pressure was slowly admitted to the chamber until the bursting pressure
(prescribed by the number and combination of foil thicknesses) was achieved. The
pressure differential across the impacter then permitted it to be accelerated toward
the muzzle end of the barrel-silencer. The silencer served to bleed-off the
pressure differential across the impacter, thereby producing a nearly uniform
impacter velocity at the muzzle. The original gun geometry was determined using
a form of the Pidduck-Kent limiting solution. A description of this method and

a listing of the computer program that was used are given in Appendix 1.

F. Velocity Measurement

The velocity of the impacter was measured over a one-foot section of the

silencer using the output of a photo-electric triggering device to start and stop

an electronic counter. The photo-frigger device consisted of two separate channels,

one of which is shown in Figure 11. A light beam (produced by a D.C., high-

intensity lamp ) was shown through a pair of silencer holes at each of the designated

velocity -measurement points. These light beams then fell on the corresponding

photo-tubes associated with each channel of the photo-trigger device. The

circuitry and light source associated with the velocity measurement station nearest

the pressure chamber of the air gun has been designated as photo-station 1.
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Figure 9. Cut-away drawing of air gun launcher (no scale)
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Figure 11, Circuit diagram of a photo-trigger channel
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When the impacter passes through the barrel-silencer and interrupts the light beams
associated with each photo-station, the result is two consecutive voltage outputs
on separate channels. Sample outputs of photo-stations 1 and 2 are shown in

Figures 12 and 13, respectively.

The voltage output of the second photo-station was used to initiate the
oscilloscope trace. In order to insure that the first compressive pulse resulting
from the impact would be displayed, it was found necessary to employ the delayed
sweep feature of the oscilloscope. It was learned that the delay time required to
display the first pulse near the beginning of the trace was a function of impacter
velocity. Hence, a calibration curve of required delay time-vs-impacter velocity
was constructed from test results as impacter velocity was increased. It was found
that good trace location (for an expected impacter velocity) could be achieved by
a simple projection of the existing curve as it developed during the phase of the

program involving gradual increases in impacter velocity .

G. Electronic Counter

A General Radio type 1191 counter was used to determine the interval of
time between the consecutive voltage pulse outputs of the photo-stations. The
General Radio has a time base of 10 M Hz, dual channel inputs, frequency response

from D.C. to 20 M Hz, and a threshold level of # 100 mv.

H. Test Rod Position

The test rod was placed upon a support table at the muzzle end of the
barrel-silencer, as shown in Figure 14, such that 13/16 inch of the test rod was

within the silencer at the time of impact. Five thicknesses of electrical tape were

wrapped around the test rod at two locations to insure that the test rod would not

come in contact with the support table following impact.
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Figure 12.
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Figure 13.
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Sample output of photo-station 1. V  * 140 fps, impacter length
=3 in, sweep time = 1 msec/div, amplification = 2 v/div, and

bandwidth = 5 kHz.

TIME

impacter length
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The original alignment of the support table was accomplished using a
dummy rod which was identical fo the test rod in that it was of the same material
and that it was also wrapped with five thicknesses of electrical type. The tape
was placed on the dummy rod such that it entered the silencer three inches when
placed in position on the support table. The height and inclination of the support
table were then adjusted so that the dummy rod slid freely in the silencer with both
wrappings of tape in contact with the polished support table. At this point,
alignment lines (parallel to the longitudinal axis of the dummy rod) were placed
on the support table. This procedure was used as an additional assurance that
the test rod would be properly aligned when placed in position prior to the test.

It was generally observed, however, that accurate alignment of the test rod could be

achieved merely by placing it at its test position.

A photograph of the muzzle end of the air gun with the test rod in place,

and of the velocity and strain measuring equipment, is shown in Figure 15.
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Figure 15. Velocity and strai n measuring equipment
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V. EXPERIMENTAL PROGRAM

During all phases of the experimental program, electrical equipment was

allowed at least one-half hour to attain operating temperature .

A. Air Gun Evaluation

The initial phase of the experimental program consisted of the testing and
evaluation of the air gun launcher. Calibration curves of impacter velocity -vs-
chamber pressure were constructed from experimental data and compared to

theoretical predictions.

It was observed that a 2.5 volt threshold level for the electronic counter
provided consistent results and friggering that was not influenced by electrical

noise,

The initial length of the barrel=silencer of the air gun was chosen to be
84 inches. The barrel was originally 60 inches long with the silencer constituting

the remaining 24 inches. It was initially observed that the shape of the experi-

mental velocity -pressure curve for a two-inch projectile did not compare well with

theoretical predictions for an air gun with a 60 inch barrel length. It was ascer-

tained that the number and size of the pressure-relief holes in the silencer did not

; F leratin
allow sufficient pressure-relief to insure that the impacter was not accelerating

. : and size of
within the velocity -measurement portion of the silencer. The number

ally increased. This procedure was

nd theoretical impacter

the pressure-relief holes were then empiric

repeated several times until the slopes of experimental a

: mpare favorably (see
velocity -chamber pressure curves were observed to comp

i tion was
Appendix 1). A final determination of the magnitude of the acceleration

. e veloci
Made by changing the location of the photo-stations such that the averag ty

i ix i he pressure chamber.
of the impacter was measured at a location six ‘nches nearer the p
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The results yielded by this method showed g negligible difference in average
impacter velocity between the photo-stations for chamber loading pressures on

the order of 200 psig. At this point, the length of the silencer had been increased
to 36 inches and 68 pressure-bleed holes of 3/8 inch in diameter had been pro-

duced in the silencer.,

B. Test Procedure

The second phase of the experimental program consisted of the determination
of the strain-vs-time relation at a location on the fest rod resulting from its collision

with the impacting rod.

Initial tests were made at low impacter velocities in order to determine
that all associated equipment was operating properly. The following procedure
was consistently observed in the conduct of tests: (a) the air gun barrel=silencer
was cleaned to insure that no pieces of aluminum foil diaphragm were present as
a result of previous testing; (b) the magnitude of the expected strain was determined
from elementary considerations using the expected impacter velocity and the oscil-
loscope amplifier gain correspondingly set; (¢) the delay time for the oscilloscope
swWeep was sef, corresponding to the expected impacter velocity; (d) the test rod
was placed at its proper position on the support table and the leads of the strain
gages were connected to the Wheatstone bridge; (e) a light oil was applied to
the lateral surface of the impacter and the excess removed with a clean cloth; (f)
the impacter was placed within the barrel; (g) the proper combination of foils
was placed at the chamber-breech interface and the chamber was closed; (h) fhe’
lights of the photo-stations were turned on and the photo-stations were triggered by
@ manual interruption of the light sources in order fo determine if the counter and
scope were being triggered properly; (j) air was slowly admitted to the chamber

. hot h
until the diaphragm burst and its bursting pressure was noted; and (k) a photograp

of the stored display was taken with the oscilloscope camera.
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V1. EXPERIMENTAL RESULTS

A. Determination of Results

When strain gages are mounted at a location x =& on the test rod of
Figure 2, the strain-time history indicated by the gages can be determined by
following a line drawn through x = € and parallel to the t-axis in the direction
of increasing t. The validity of this theoretical consideration for the case of
rods made from 7075 T651 aluminum was the chief concern of the experimental

program.

The Aluminum Company of America [ 251 lists the properties of cold
finished 7075 T651 aluminum rod as follows: (a) modulus of elasticity -
10.4 x 106 psi; (b) yield strength - 66,000 psi; (c) ultimate strength -
77,000 psi; and (d) density - 0.101 Ibm/cu in. The 7075 prefix indicates
that this material contains the following percentages of alloying elements:
(@) 1.6% copper; (b) 2.5% magnesium; (c) 0.3% chromium; and (d) 5.6%
zinc. The T651 suffix indicates that the material has been solution heat-treated
and subsequently stress—relieved by stretching to a permanent strain of 1.5 to

3.0%.

Experimental results were obtained by interpreting photographs of oscil-
loscope traces that resulted from tests at various impacter velocities. A graphical

representation of a typical oscilloscope trace is shown in Figure 16.

It was determined during the course of the experimentation that direct

viewing of the stored display yielded results that differed slightly from those

obtained from the phofographed trace. Calibration of this error revealed that

the photographed results showed magnitudes that were smaller by a factor of

i f th
approximately 0.025 division/division, the error being zero at the cenfer of the



45

graticule and increasing almost linearly in both the voltage and time directions.
It was observed that a small distance existed between the graticule face and the
face of the cathode-ray tube of the oscilloscope and this condition caused the

observed parallax error. All distances measured from photographed oscilloscope

traces were appropriately corrected to insure accurate representation of the results.

A calibration check prior to each shot showed a consistent calibration
voltage of-18 mv. With reference to the Wheatstone bridge of Figure 8, the
calibration strain is

-120 ¢

% =-0.2851% strai
(2) (2.08) (10120 ) x 1C0% strain

(%) =

€cal

where 2.08 is the gage factor as provided by the strain gage manufacturer.
Dividing the equivalent strain by the calibration voltage results in a strain-

voltage calibration of 0.01584% strain/mv.

Once the corrected magnitude of the first voltage pulse was determined,
it was then possible to calculate the corresponding magnitude of the strain pulse

by using the strain-voltage calibration of 0.01584% strain/mv.

Three methods were used to determined the velocity of wave propagation

in the test material. The first method (f1 method) involved determination of the

duration of the first compressive pulse (see Fig. 16) and dividing this time into

h
the theoretical pulse length (2L/a). In the second method (t2 method) the

elapsed time between the beginning of the first compressive pulse and the
16) and divided into the distance

beginning

of the first tensile pulse was determined (see Fig.

fraveled by the wave front during this time, 2(L -£). Inthe third method

('r method), the elapsed fime between the beginning of the first compressive

PUlse and the beginning of the last determinable tensile pulse was measured and

i 16,
divided into the corresponding distance traveled by the wave front. In Figure

| Ise.
the last determinable tensile pulse corresponds to the second tensile pu
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Figure 16. Graphical reproduction of a typical oscilloscope
trace. Graticule divisions (div) shown.

Figure 17. Photograph of stored oscilloscope trace for Shot
Number 6. Vg = 95.3 fps, sweep time = 50_ u
sec/div, amplification = 10 mv/div, bandmdthﬁ —
500 kHz, cal = 0.01584% strain/mv, L=19in,

L/a=3in,and E =7 in.
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Figure 16. Graphical reproduction of a typical oscilloscope
trace. Graticule divisions (div) shown.

Figure 17. Photograph of stored oscilloscope trace for Shot
Number 6. Vg = 95.3 fps, sweep time = 50_ u
sec/div, amplification = 10 mv/div, bandmdrh =
500 kHz, cal = 0.01584% strain/mv, L= 19 in,

L/a =3 in, and & =7 in.



A photograph of the stored trace that was obtained as a result of Shot
Number 6 is shown in Figure 17. From Figure 17 it is determined that the
maximum magnitude of the first compressive pulse is 1.80 div (averaging small
oscillations) with a corrected magnitude of 1.025 div (1.80) = 1.84 div. The

resultant maximum strain is
e = ~(1.84 div) (10 mv/div) (0.01584% strain/mv) = -0.292% strain.

Applying the f method to Figure 17, it is determined that the distance from the
beginning of the first compressive pulse to the beginning of the second tensile
pulse is 5.58 div with the corrected magnitude of 5.58 div (1.025) = 5,72 div.
From the characteristics diagram of Figure 2 it is determined that the distance
traveled by the wave front during this time is 4(L - ¢ )+ 2(¢ - L/a) or, from
Figure 17, 4(19 - 7 in) + 2(7 -3 in) = 56 in. Thus, the propagation velocity
(by the ty method) is determined to be

C-= 26 in - = 16,320 fps .
(12 in/ft) (5.72 div) (50 x 10 ~ sec/div)

The results obtained by using the above methods with photographed
- 1 -
traces for various impacter velocities are shown in Table |. Due to the charac
teristics of the photograph obtained as a result of Shot Number 9, it was not

. : thods. Strain
possible to determine the propagation velocity by the 1'2 or ’r3 me thods rai

gage failures after the passage of the first compressive pulse did not allow deter-

i Shots 10, 11,
mination of the propagation velocity by the f2 or ’r3 methods for Shots

and 12.

The plotted results of maximum compressive strain-vs-impacter velocity
; linear
(from Table 1) are shown in Figure 18. These variables show a nearly linea

.l d. The maximum
relaﬁonship at impacter velocities up fo 237.0 feet/secon

: f impacter
deviation from the observed linearity occured at the highest value o p

velocity (389 feet/second).
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[f only the linear portion of the strain-impacter velocity curve is
considered, it is possible to determine an "impact modulus" relating theoretical

stress to measured strain using the equations

_ Vo
T T
and
2
E=0,C (39)
resulting in
2
_ P v 4
£ = . [ € } ' (40)

From the linear portion of the plot shown in Figure 18, Vo/e = 32,500
ft/sec. Using this with equation (40), the result is

_ (0.101 Ibm/cu in)(12 in/ft)(32,500 fps) > _ 9 o4 x 10° osi
1- 4(32.2 ft-Toy,/Tof-sec 2 )

where E] is the impact modulus of elasticity.

E

Figure 19 shows a plot of propagation velocity as a function of impacter
velocity. It appears from an analysis of Figure 19 that the velocity of wave
Propagation is not a function of impacter velocity over the range of impacter
velocities employed. It was also observed that the average propagation velocities
resulting from each of the three measurement methods (f] , f2, and t3) did not
differ appreciably (16,310, 16,500, and 16,270 ft/sec, respectively). The
average propagation velocity (all results weighed equally) was determined to

be 16,350 ft/sec. Using this average result with equation (39), the result is

(0.101 Ibp/in3 )(16,350 fps)? (12 in/ft ) _ 10.1 x 10° o
E2 - (32.2 ft ~1by/Ibf -sec 2)

where E2 is the impact modulus of elasticity .

In view of the two independently-determined values of the impact
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modulus (E] and E2) it was considered that the value of E = 10.0 x 10° psi
would adequately describe the dynamic stress-strain relationship. Using

E=10.0x 106 psi with the equation

E/po o
results in
. N
o (psi) = - | L19:0x 10°psi) (0.101 |bm/m2)(12 m/ff)} \;o [fr/sec} = -307.0 V,
(32.21b - ft/lbf - sec?)

also, ¢ = QE— , or

in/i o (psi) = -3.07x107 V (42)

e (in/in) = = . o

(10.0 x 10° psi)

Equations (41) and (42) were evaluated at the experimental values of impacter
velocity and the results are indicated in Table . A graph of theoretical stress-
vs—experimental strain was constructed using the results listed in Table I and

is shown in Figure 20. The manufacturer-specified properties of the aluminum

(under static loading conditions) are also indicated by Figure 20.

B. Analysis of Experimental Results

Analysis of Figure 20 reveals that a linear relationship between theoretical
stress and experimental maximum strain exists up to stresses which are greater than
the statically -determined ultimate stress. The slope of this curve is approximately
4% less than the static modulus of elasticity. This fact implies that the use of
the static modulus of elasticity of this material to predict dynamic strains at stress

levels up fo the yield stress will generally be acceptable in design problems.

For those shofs where the magnitude of the siress pulse (via elastic theory)

: ; d that for each
was less than the static elastic limit (see Fig. 20) it was observe

(41)
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shot the crest of the first strain pulse was nearly flat, e.g., Figure 17. It

was noted, however, that for shots where the elastically -predicted maximum
stress exceeded the statically-determined yield stress, an apparent discontinuity
developed in the strain pulse rise time. An example of this phenomenon is

shown in Figure 21.

With reference to Figure 21, it is determined that the strain at the
gage location first rises very sharply and then abruptly changes slope at
e =-0.65% strain. The strain continues to increase at a reduced rate to a
magnitude approximately predicted by elastic theory (see Fig. 20). The
shots (9 through 12) that resulted in elastically-predicted stress levels exceeding
the static yield stress of 66,000 psi showed a similar discontinuity in rise time

at e %0.65% strain. From Figure 20 it can be seen that € = 0.65%

scope trace for Shot Number 11.
50 u sec/div, amplification =

z, cal = 0.01584% strain/mv,
Gage failed after

Figure 21. Photograph of stored oscillo
V. = 294 fps, sweep fime =
28 mv/div, bandwidth = 500 kH '
L=11in, L/a=3in,and £ = 5.51n.

first pulse.



shot the crest of the first strain pulse was nearly flat, e.g., Figure 17. It

was noted, however, that for shots where the elastically -predicted maximum
stress exceeded the statically-determined yield stress, an apparent discontinuity
developed in the strain pulse rise time. An example of this phenomenon is

shown in Figure 21.

With reference to Figure 21, it is determined that the strain at the
gage location first rises very sharply and then abruptly changes slope at
e =-0.65% strain. The strain continues to increase at a reduced rate to a
magnitude approximately predicted by elastic theory (see Fig. 20). The
shots (9 through 12) that resulted in elastically-predicted stress levels exceeding
the static yield stress of 66,000 psi showed a similar discontinuity in rise time

at e %0.65% strain. From Figure 20 it can be seen that € = 0.65%

scope trace for Shot Number 11.
50 u sec/div, amplification =

cal = 0.01584% strain/mv,
Gage failed after

Figure 21. Photograph of stored oscillo
V. = 294 fps, sweep fime =
20 mv/div, bandwidth = 500 kHz, cal
L=11in, L/a=3in, and & =5.5in.
first pulse.
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strain corresponds fto an elastic stress level of 65,000 psi (approximately equal
to the statically ~determined yield stress of 66,000 psi). This phenomenon would
seem to indicate that the pulse consists of an elastic front followed by a region
of elastic strain superimposed upon plastic strain. Unfortunately, due to strain
gage failures (e.g., Fig. 21), it was not possible to determine if plastic strain
existed following passage of the main pulse. It is the opinion of this investigator
that residual plastic strain did exist following the passage of the first elastic-

plastic pulse.

It appears that the above described phenomena correspond well with
results predicted by the strain-rate independent theory as proposed by Karman (1]
and Taylor [21 . This theory predicts the existence of a distinct wave velocity

for each level of plastic stress given by the equation

1 d o
C=vV — d
[
O
where j S = E in the elastic region and is a single-valued function of strain
£

in the plastic region of the static stress—strain curve. Due to the nature of most

. . . i the
experimentally -determined static stress-strain curves (e.g., aluminum),

elastic stresses will be propagated at a velocity which exceeds those wave

velocities associated with each stress level in the plastic region. It is to be

observed, however, that since the level of elastic stress constitutes a large

portion of the total elastically-predicted stress level (for the range of impacter

: tndi i th
velocities considered experimeany) the primary indication of pulse leng

should correspond to that predicted by the elastic theory . This was approxi-

- 1 ity).
mately verified by the experimenfol results (see Table | - Propagation velocity)

i t
The strain-rate dependent theory, after Malvern [ 3 1, predicts tha

i initi ss will rise
for the impact case (instantaneously applied load) the initial stre

: i tic region.
fo a value predicted by an extension of the elastic curve into the plastic reg
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The stress is then predicted to decrease with time, becoming the value predicted
by the static stress—strain curve for large values of time. It can be seen that

the constitutive equation proposed by Malvern [ 3] bears a distinct similarity

to the constifutive equation of the Maxwell model for short times. It was also
noticed that the results of experimentation in the plastic range of loading
(e.g., Fig. 21) bear a distinct similarity to the strain distributions predicted
for the collision of two Maxwellian rods (Fig. 7). A brief discussion of the

implications of the Malvern equation is given in Appendix 3.

In view of the above theoretical considerations, it was concluded that
the material could not be judged as being either strain-rate independent or
strain-rate dependenf] and that further extensive experimentation would be
required for this determination to be made. As a result of this fact, the stress
strain curve of Figure 20 only indicates the elastically-determined theoretical
stress versus the experimeni‘ally—determined maximum strain and does not imply

that the stresses indicated above the elastic limit are actually present during

impact. |If the material is strain-ratfe dependent, after Malvern [3] , these

stress levels correspond to the stress present at the instant of impact. If the

material is strain-rate independent, after Karman [l Jand Taylor [2 1, the

true stress is smaller than that indicated by Figure 20 for those shots made above

the observed elastic limit stress.

With these considerations in mind, it was concluded that the results

served to demonstrate that the maximum strain could be satisfactorily predicted

. : impacter velocities
(Within 6%) by a simple extension of the elastic curve for imp

: d by the fact that
up to approximately 300 fps. This statement must be tempered by

3. .
be insensitive to strain rates up to (10 in/in)/sec

7075 T6 aluminum was found fo loyed the spIit—Hopkinson pressure bar.

by Maiden and Green[ 26] who emp
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the projectiles used in the plastic range were 3 inches in length (corresponding
to an elastic pulse length of approximately 30 micro-seconds). It is very likely
that the duration of the elastic pulse will, in part, determine the level of the
plastic strain. The strain pulses were measured at a point 2.5 inches from the
location of the interface of the rods in Shots 2 and 12, and 4 inches from the
interface in Shots 10 and 11. The point of measurement has possible significance
with regard to the level of maximum strain in the plastic region of loading due

to the absorbtion of energy in the process of plastic straining.

Small-amplitude, high frequency oscillations were observed to occur
on the traces following initiation of the first compressive pulse (see Fig. 17).
These oscillations were also observed by Kolsky [ 271 and are thought to result
from the effects of radial modes of vibration described by the Pochammer-Chree
equations. These modes act, in general, to distort and reduce the amplitude

of a propagated pulse.

Damping properties of the aluminum can be observed by comparing the
magnitudes of successive reflected pulses. In those shots where the magnitude

of the produced stress was less than the observed yield stress, the effects of

material damping were concluded fo be quite small. In fact, it is quite probable

that the effects of material damping (in this case) are of the same order of

magnitude as the dispersive effects of radial modes. A quantitafive examination

of the effects of material damping was nof undertaken.

C. Discussion of Possible Error

1. Photo-electric Velocity Measurement

It was necessary to allow the light beams produced by the high-intensity

. e e : hol
lamps to pass through holes which were 3/8 inch in diameter (silencer ho es)

. - triggering.
in order to produce a sufficient light level at the photo-tube for proper iriggering



58

As the impacter passes through the barrel, it breaks the initially -established
light beam and the friggering pulse is subsequently produced. It is not known,
however, if the portion of the light beam that must be broken by the impacting
rod is the same for both photo~stations. The worst possible condition that could
exist is if one station triggers at a very small reduction in its light level (when
the impacter just begins to interrupt the beam) while the other station triggers
at a very small light level (when the projectile almost completely blocks the
beam). Since the distance over which the velocity is measured is equal to

12 inches, the largest possible error that can be caused by this effect is  *6%

of the true velocity.

It was not possible to determine the exact trigger level of each photo-
station because dynamic movement of the impacter (10 to 15 fps) is required
for triggering to take place. Every effort was made to produce electrically
equivalent photo-stations and equal light intensities at both measurement
points. Therefore, the actual error resulting from this condition should be

quite small.

2. Electrical Noise

In most of the photographic resulfs obtai ned, it was noticed that the

trace indicated a small A.C. voltage preceding the indication of the first

i f cy of
compressive pulse (e.g., Fig. 21). It was determined that the frequency

this "noise" was approximately equal to 10kHz for all traces in which it appeared.

It was noted that noise at an approximate frequency of 10 kHz also appeared in

i i t certain
the traces of the photo-station outputs (see Figs. 12 and 13). It isnotc

whether this noise is produced by the light stations or arises from an ind.ependem
source (such as the motion of the projectile in the barrel). However, its result
is to add to the difficulty in interpreting the results of photographed 'trcces .. In
all cases, an effort was made to determine the contribution of electrical noise

arl ot nitude.
and to modify the results in accordance with its observed mag
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The contribution of the radial modes of vibration tended to produce
oscillations in the pulse crests (see Fig. 17). An attempt was made to average
these oscillations in order to determine the true magnitude of the longitudinal

strain.

3. Strain Indication

Eastman 9210 contact cement was used to fasten the strain gages to the
test rod. Indications are that the cement functioned well in this capacity, as
the observed pulses rose quite rapidly and produced results similar to those
expected in the elastic range of impacter velocities. |t was mentioned earlier
that strain gage failure occurred in the highest velocity shots. This failure
was not associated with the gage itself but with the fastening of lead wires to
the strain gage tabs. The lead wires were soldered to the tabs using a very
small quantity of solder. However, due to the very high accelerations involved
in the impact condition, the inertia forces that are associated with the solder

connections become quite large and this effect can manifest itself in the fracturing

of the gage tabs.

4. Frequency Response

During the course of the experimentation, it was determined that the

: i i i i e. The
frequency response of the measuring equipment is of vital importanc

i train measurement
oscilloscope was observed to limit the frequency response of the s

e limit of

(high

system. The oscilloscope that was used had an upper frequency respons

S5kHz (low bandwidth) and an upper frequency response fimit of 500 kHz
the implications of frequency

bandwidth). In order to more fully describe
dwidth of 500 kHz and

i t a ban
response, a photograph of a scope trace obtained a

. . .
i omparable impact conditions, a
a photograph of a scope trace obtained, under comp

i tively.
a bandwidth of 5 kHz are shown in Figures 22 and 23, respectively



Figure 22. Photograph of stored oscilloscope trace for Shot Number 3.
Vo = 46.3 fps, sweep time = 50 sec/div, amplification =
5 mv/div, bandwidth = 500 kHz, cal = 0.01584% strain/mv,
=19in, L/a=3in,and E =7 in,

e S

Figure 23. Photograph of stored oscilloscope trace. Vg = 42.3 FPS.’ sweep
ation = 5 mv/div, bandwidth

time = 50 usec/div, amplific . ! i
5 kHz, cal =0.01584% strain/mv, L=19in, L/a = 3 in, and

E =7 ths
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Figure 22. Photograph of stored oscilloscope trace for Shot Number 3.
Vo = 46.3 fps, sweep time = 50u sec/div, amplification =
5 mv/div, bandwidth = 500 kHz, cal = 0.01584% strain/mv,
=19in, L/a=3 in,and &€ =7 in,

e o
V, = 42.3 fps, sweep

Figure 23. h of stored oscilloscope trace.
e ikt S ation = 5 mv/div, bandwidth

time = 50 usec/div, amplific . i
5 kHz, cal = 0.01584% strain/mv, L =19 in, L/a =3 in, and

E =71ins
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As can be determined from Figures 22 and 23, the shots were made ot
comparable impacter velocities and involved identical impacter-test rod geometry .
The most noticeable difference in the characteristics of Figures 22 and 23 is the
rounding of pulse "corners" that can be observed in Figure 23. Further observation
reveal s that Figure 23 indicates significantly less pulse magnitude (approximately
50% less) than is shown by Figure 22. This difference is certainly not traceable

to the small difference in impacter velocities of the shots.

In general, a pulse consists of a summation of the contfributions of a wide
spectrum of frequency components. The Fourier series, discussed by Churchill [ 29]
has been used to describe periodic functions in terms of the contributions of theis
frequency components. The Fourier sine-cosine series describes a periodic function
as an infinite summation of contributions from sine and/or cosine functions from
a specified minimum to infinity. Physically, the lowest frequency of the series
is determined by the frequency of the function that is to be represented. The
lowest frequency terms of the series are normally observed fo moke the largest

contribution to the basic shape of the function with the higher frequency terms

confributing to a refinement of the basic shape. The number of series terms that

is required to accurately describe a function is largely dependent on the shape

t ies.
of that function and is inversely related fo the rate of convergence of the series

: i i ent
It is known that a relatively large number of series terms is required to represen

waves of the "square' or nrectangular’ variety .

The implication of the above discussion is that the strain measuring

devices must be sensitive to a relatively wide range of frequencies in order to
display the true results with required accuracy. A Fourier analysis of the
theoretical wave train corresponding fo Figures 22 and 23 shows that the \o-wesf
frequency is approximately 6.7 kHz. In the low bandwidth mode, the oscillo-
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scope passes frequencies up to 5 kHz without significant attenuation. ! Physically,
this means that all frequencies of the wave train in Figure 23 have been signifi-
cantly attenuated while the first 74 frequencies (up to 500 kHz) have been passed
without significant attenuation for the wave train of Figure 22. Some of the
differences between the wave train of Figure 22 and its corresponding theoretical
pulse train have probably arisen from frequency response limitations. It is the
opinion of the author that the presence of 74 frequencies (without significant

attenuation) is sufficient to describe pulse magnitudes to within an accuracy of

1% for the wave trains considered experimentally.

The above discussion implies a "first approximation" to the problem of
equipment frequency response. | is suggested that a Fourier analysis be applied
to the theoretical pulse train associated with a given impac ter-test rod geometry .
Physical evaluation of the Fourier series within the limits of equipment frequency
response should then be accomplished. The results of the series evaluation should
then be compared to the theoretical wave train in order to deftermine the expected
accuracy of experimental results. This suggested method of Fourier analysis is

discussed more thoroughly in Appendix 4.

Unfortunately , many of the published experimental findings in the area of

. . : i i t
impact studies have not been accompanied by information regarding equipmen

. i ies that
frequency response limitations. It is possible that some of the discrepancies tha

. response
have arisen regarding tests with materials result from such frequency resp

limitations.

———

]

imi 5 kHz and
The attenuation at both of the upper frequency response limits z

500 kHz) is approximately 3 db.
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5. Integration Effect of the Strain Gages

This source of error arises from the fact that the strain gages are of
finite length (in this case, 0.125 inches). It was determined experimentally
that the average velocity of wave propagation inthe aluminum was 16,350 ft sec.

Thus, the total time for the wave front to traverse the length of the strain gages is

. (0.125in) /(12 in/f1)
g~ 16,350 ft/sec

= 0.637 usec

Consider the case where the pulse just arrives at the gage when t = 0. If it is

assumed that the frue strain pulse can be represented by the step function & = ¢ H(t),

it follows that

t C
el g € Y -~ —"qg

where vy is the gage length, Ciis the wave propagation velocity, ¢ | s the

indicated strain, and t is time. It can thus be seen that a rectangular pulse

(of zero rise time) will have an indicated rise time equal to ‘rg

By viewing the photographed oscilloscope traces, it was determined that

. i the observed
the rise times of strain pulses were consistently near 5 microseconds  (the

. : is therefore,
initial rise time did not appear to be a function of strain). It is, ther

. i much as
possible that the integration effect of the strain gages contributes as mu

0'637/5, or 12.75% of the total observed rise time.



64

ViI. CONCLUSIONS

The experimental results indicate that the simple, one-dimensional
theory served quite well to predict wave propagation effects, within the elastic
range of loading, for 7075 T651 aluminum rods. The experimental strain-time
results are observed to agree within 4% of those calculated using the properties
of the aluminum as specified by the manufacturer. This 4% difference was
manifest in an experimental, dynamic elastic modulus of 10.0 x 107 psi as

opposed to the manufacturer-specified, static elastic modufus of 10.4 x 107 psi

(see Figure 20.)

For those tests conducted in the plastic range of loading (e.g., Figure 21,

it appeared that the fronts of the experimentally observed strain pulses were of

a magnitude approximately equal to the static yield strain of the material. In

each of these tests, the "elastic front" was apparently followed by a monotonically

i * . tl f
increasing plastic strain for the duration of the primary pulse. The duration o

the primary pulse was observed to be closely approximated by the value predicted

via the elastic theory. It is suspected that this primary pulse was followed by

permanent plastic strain, although this condition was not measured quantitatively .
The material was observed to sustain stress conditions (predicted by elastic theory)
well in excess of the static ultimate strength for pulse durations of 30 micro-
seconds. Under the specific conditions of the tests, it was determired fhi:f the
maximum strain at the sirain gage location for impacter velocities producmg'
plastic stresses could be predicted approxima’rely (within 6%) by GT‘ .eXfe“S‘O”
of the elastic strain-vs-impacter velocity curve for impacter velocities up fo

294 fps (see Figure 18).

ping properfies of the aluminum were quite

It was observed that the dam



small in the elastic range of loading and it is thought that the effects of material

damping can be neglected for design purposes.

From the photographs of oscilloscope traces, it was determined that

the minimum strain-rate resulting during experimentation was on the order of
300(in/in)/sec while the maximum strain-rate was approximately 1000(in ‘in) sec .
However, it was observed that the initial rise time of the pulses was consistently
near 5 micro-seconds regardless of the value of the strain. It was, therefore,
concluded that the effects of frequency response and "integrating effects” of

the strain gages played an important role in the indicated strain-rate. It is the
opinion of the author that the strain-rate, as predicted by theory , was nearly

infinite but that this fact was obscured by equipment limitations.

Theoretical results, obtained for the longitudinal collision of two

Maxwellian rods (see Figures 6 and 7), have indicated hat there exists a max-

imum characteristic length of the material which a dynamically -produced

disturbance will effectively traverse. It is thought that this phenomenon can

be successfully employed in the design of viscoelastic packaging materials. The

. 1 iat
theoretical development used for the Maxwellian rods has been cpplled to Voig

) rical results have
and ’rhree—parameter materials (see page 8 ), however, numert

not, as yet, been obtained.

It is the opinion of the author that the air gun launcher technique can

. onstrated visco-
successfully be applied to cerfain of the materials that have demons

elastic characteristics.
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Vill. RECOMMENDATIONS

The methods and equipment used in this experimentation were observed
to produce satisfactory results within the elastic range of loading. Some modi-
fications of the equipment may be necessary, however, when plastic loading is
under consideration. During compressive loading, some radial expansion of the
material occurs as a result of the Poisson effect. This radial expansion could
cause a significant interaction of the lateral surface of the impacter with the
interior of the silencer when large, longitudinal strains are produced ( as in
the plastic range). For Shot Number 12, the plastic strain of the impacting rod
was large enough to cause it fo become lodged in the silencer. In addition to

being an unacceptable inconvenience, this condition very likely caused a

significant amount of error in the results. One solution fo the problem is to

increase the inside diameter of the barrel-silencer to allow for the radial expan-

sion of the rod. Unfortunately, this procedure will eventually produce impacter-

test rod alignment problems. A betfer solution for studies in the plastic range

may be to encircle both the impacter and fest rod with two, or more, rings of a

much softer material (such as teflon).

A determination of impacter and test rod lengths on the basis of a Fourier

time analysis is highly advisable in order fo insure that the frequency response

sanifi t results.
limitations of the equipment do not significantly alfer the true testr

Perhaps the greatest failing of the experimental method under consideration

i . » . f f
is that it does not allow for a physmal determination o | ‘
ital in the elastic range of loading. How-

he stress as it does for

the strain. This consideration is nof v

'+ becomes quite important in the plastic range

ever , in the opinion of the author,

at the interface of the rods is determined via

of loading. Normally, the sfress ot oo
; in- independent theot
theoretical considerations involving either the strain-rafe indep



or the strain-rate dependent theory with the observed value of impacter velocity .
It is the opinion of this investigator that an independent means of measuring the
stress at the interface of the rods is necessary in order to determine the true

validity of any theory of plastic wave propagation.

More efficient shielding of the photo-electric trigger outputs and/or
use of shielded strain gage leads should serve to reduce the observed presence

of external noise on the scope traces.

As a result of the experimentation it appears that the chamber volume
of the air gun launcher is not being used effectively in view of the current
barrel length of 48 inches as compared fo the silencer length of 36 inches. A

substantial increase in the length of the barrel is recommended. [t is also

recommended that the size of the silencer holes designated for the passage of the

light beams be reduced (possibly by a system of lenses)
of photo-station 1 be subsequently moved as close as possible to the muzzle to

elocity.

and that the location

minimize errors in measurement of the impacter v
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APPENDIX 1
AIR GUN DES|GN
The air gun launcher used to accelerate the impacter was designed using

a modified form of the Pidduck~Kent limiting solution as described by Hull and

Oetting [28 1 . The basic configuration of the air gun is described in Figure 24.
e

(. |b c |

I L

L

t Z -

% BARREL \ E

IMPACTER

— CHAMBER

Figure 24. Basic air gun configuration

The impacter velocity, VO, is given by the equation

xp)'
1-<§h>
b

where b is the speed of sound in the propelling ga
ratio of propelling gas. The rafio Xb/Yb is given by the equation

1/2 (1-1i

v o= Z_p /3
© y-1 o

s and Y is the specific heat

Xb . ‘C (dg/d )2 (]—2;
Yy, o e (de/dp)2 + lp
issi tio (G M
and o is defined by the equation for the gas mass/missile mass rafio
o
;
— : ' (1-3)
G 2y e o~ |
M = Y"l'ao (1—@1&1 + /}__ B ]_,ao-i- slw |
y+1 E ;

Y vy+1



Equation (1-2) is determinate for a specified air gun geometry. Inasmuci
as a_ is contained implicitly in equation (1-3), it is convenient to first solve
for the gas mass/missile mass ration (G/M) as a function of Ya_ and to display
0

the results in the form of a graph of /?o-vs-(G/M). The parameter '/Ob

can then be determined for a given chamber pressure and missile mass and used

with equation (1-1) to obtain the expected impacter velocity.

For the gun that was used during the second phase of the experimental

program (see page 33), the air gun geometry was as follows: db = 0.5 inches;

‘b = 48 inches; d =4 inches; and lc =12 inches. It should be noted that |.D
c

denotes the distance from the chamber-breech interface to the nearest pressure -
relief hole of the silencer. The Pidduck-Kent equations do not provide for the use

of a silencer and it should be noted that the silencer is not shown in Figure 24

The air gun was constructed entirely from steel. The pressure chamber

was constructed from pipe with the front and rear faces welded in place. The

i i i riginal
barrel-silencer was constructed as a unit from seamless tubing with an orig

The interior of the barrel=silencer was enlarged
A

inside diameter of 0.5 inches.

; i i ds.
slightly using a grinding process fo permif free passage of the impacting rocs

i s 1de
rough check revealed that the maximum allowable chamber pressure is on fre orcer
of 2500 psig with two as a factor of safefy. Air pressur

of a regulated, high-pressure (2000 psig), bottled source.

e was supplied by mean

i | ize and
It became apparent during the conduct of the first tests that the si
llow uniform motion of

icient tc a
humber of the pressure-relief holes were not sufficien
~measurement portion of the silencer
he 48 incr

(experi-
the impacter through the velocity

i h for t
mental results did not agree well with those predicted by theory

as increased, the experimental

barrel). It was observed that as chamber pressure W crimen
y tne Pidduck -Kent

dicted b
velocities became significantly larger than those predic



relations] using the above air gun geometry. This phenomenon was attributed

to the fact that successively longer portions of the silencer are required to proviae
the necessary pressure-relief as chamber pressure is increased, thereby increasing
the physical barrel length, 'b’ to some "effective" value. As can be seen from
equations (1-2) and (1-1), this effectively increased barrel length causes an
increased impacter velocity. In order to investigate thi s phenomenon quanti-
tatively , the Pidduck-Kent equations were solved for several different barrel

lengths from 48 to 84 inches, allowing the remaining parameters (dc, IC, ond dD»

to remain at their specified values.

After several step-wise increases in the silencer pressure-relief area,
recsonable agreement was obtained between the results yielded by the Pidduch -

Kent equations (with |, =72 inches) and those obtained experimentally tsce

b

Figure 25). In general, the slopes of the theoretical and experimental curves of

i i was taren
impacter velocity -vs—chamber pressure correspond favorably . This fact was tab

i i ion i ity - ortion of
as a primary indication that acceleration in the velocity-measurement p

the silencer was small. By changing the locations of the photo-stations, it was

ge in average impacfer velocity was

experimentally determined that little chan

: i i lengths
present in the velocity -measurement portion of the silencer for impacter 1€ng

as small as 2 inches with chamber loading pressures up fo 200 psig-

| results of Figure 25 can generally be observed to sihow

The experimenta
chamber pressure than the corresp

onging
a smaller impacter velocity for a given

from friction
theoretical results. It is likely that this phenomeno

n results, in part,

—————

]

is used to calculate

ber pressure (psia)

It should be noted that the absolute cham he prediction of impacter

. ; t
G/M in the Pidduck-Kent equations, leading tod that much better agreement
velocities at zero gage pressure. |f Wa9 observe

. uld be obtained if
between theoretical predictions and experinertal 150 B EHL i gguchven
gage pressure was substituted in lieu of absolute pres

: ion of the theoretical
relations. This substitution has been made in the calculation

results that are presented in Figure 25.
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between the lateral surface of the impacter and the interior of the barre!-
silencer. It is also probable that there is some seepage of the propelling gas

along the lateral surface of the impacter as it passes through the barrel.

Equations (1-1), (1-2), and (1-3) were solved with the aid of an IBM
model 360 digital computer. The computer program is listed at the end of this
appendix. The program first solves equation (1-3) for G/M as a function of

‘/_a—o for air (v = 1.4) with increments of 0.001 in ‘/_TJ—O, beginning at "5;)
The corresponding values of G/M and ‘/?o are stored by the computer and sub-
sequently used in a linear interpolation process fo determine /—o_; as a function
of G/M for use with equation (1-1). The program is constructed to yield results
for five barrel lengths and any number of projectile lengths as required. For
specific test material parameters, the program will also yield the theoretical
elastic wave propagation velocity in the material and the duration of the pulse
that is produced by projectiles of the specified lengths. For convenience, an

. . . M , e_
impacter velocity-stress-strain matrix 1s also calculated using the simple, on

dimensional, elastic theory.
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MET2C 152 GAS GUN NPTIMIZATION USING DIDDCK v
LIMITING SOLUTION ALLEN G. REHRING

CT=CHAMRER TEMPERATURFE (NFGRFFS OANK [NF)
XK=SPECIFIC HFAT RATIO OF PROPELLING GAS
CN=CHAMBER DIAMETFR{IN),CL=CHAMRFER { ENGTH(T")

R=GAS CONSTANT(FT LRF/(LBM R)

RNP=2ROJECTILF DENSITY(LRM/CU IN),SL=PROY L eNGTH( ] )
BNO=RARREL NDIAMETFR{IN),BL=RARBRFL LENGTH(IN])
DIMENSINN GM(S99),A01999),SQA(393) (XPYR{&) ,HDP(5),
18L(5)SLI6)4ST{5),STXLS)

READ (19101) CTyXKoCDygRD R JCL,RADGATM, (RL(K) ¥ =1,
TUSLILYyL=146),E,SULT,SYP,SPEC,SINC,VINC

PART 1 NF PROGRAM

CALCULATION OF G/M VRS, ROAT(ANQ) FROM PINNHOK Wi T
RELATTON
SNA(1)=.001

A=7 J%XK/(XK-1,)
B=XK/{(XK—~1,)
C=1./(XK—1,)
D=(XK+1.)/{XK=-1.)
F=1l./0XK%+1.)
WRITE {3,412) XK
WRITE (3,413)
UARY ROOT(AD) IN SMALL INCREMENTS Fan¥ .ocl ey
CALCULATE CORRESPONNING VALUES OF (GAS MA§</“Y‘;\t; .
MASS) FROM PIDDUCK KENT RELATION. STORE NONEe TR Y
NN 42 1=1,999
AN(I)=SQA({T %%
GM{I)=A%(AO(T)/{ ().
lF*(soRT(1.-A0([))+ARSIN(SQA(I?)/S
WRITE (3,102) SQA(I1,GM(I)
[F(GM({TI)-10C0.)42+9+9
SQA(TI+1)=SNA(T1)+.001

CN=SQRT (32.2%XK¥R*CT)

VARY PROJECTILE LENGTH STORED
DN 82 L=1v6

XM= (SL (L )%3. 14%RD¥*2 /4, )¥ROP
CV=CL %3, 14*%CD%X%2/4.

WRITE (3,401) CT,XK

WRITE (3,402) CD,CL

WRITE (3,403) BD,ATM

WRITE (3,404) R,RCP

WRITF (3,406) COsXM

WRITE (3,407) CV

WRITE (3,405) SL(L)

NN B4 K=1,5 Ay xx24RLIKY)
xavaxx)=%EL*(CO/BD)**2)/((L*(CD/““’ -

—AO(I))*#B))*((I.—AQ(l)?**ﬁ/“*
QACT )]

YNNFR INNEX ()

N=1

WRITE (3,410) (BLIK),K=1+5)

WRITE (3,411)

ParT 2 M £CIFIED

PART 2 OF PROGRA ALCULATER FAR SOEC |
[Ty 15 NOW C AR

gﬁngggitﬁ XE;?SETERS AT VARIOUS VALUES
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GO0,

eleleNeoReoNeleaNeNeNe e Ne e

PR FSSIHIRF
VARY CHAMBER PPFESSIIRE INDEX (J)
N %1 J=1,201
CPC=CP—-ATM
GX={CP/ (12 %RECTI)%RCV
AM=GX /XM
LINFAP INTERPOLATION IS USED TN CALGCULATE POOT (2} <
SPFCIFIED (GAS MASS/MISSILF MASS) . VALUFS FN?
INTERPPOLATION HAVE REEN STOREN UNDFR [NDEX(T)
NN 50 I1=N,999
IF{CMIT)-AM) 50D,5,6

5 SOX=SQA(I)
G3 TN 7

6 M=1-1
SOX=SQA{MY+(AM=GMIM))*((SQA(M+1)-SOAM) ) /(OME24) -
1GM(M)y)
GO IN 7

50 CAONTINUE
VALUES OF (GAS MASS/MISSILF MASS) FOR SPFRCIFTIET
CHAMRER PRESSURE AND CORRFSPONDING VALUES NF ornorrse)
ARE INDICATED IN UP VRS, [P PRINT NUT, G/¥ AN =707
(AD) MUST CORRESPOND FAVNRARLY WITH THASK vist A =¥
PIDDUCK KENT RELATION

T DN A9 K=1,5
X3YR(K)=(CL*(CD/RDIX%2)/(CLX{CN/AN) ¥ ¥ 24R LK) )

69 up(x)zxz./(xK-l.))*co*sax*tl.—tX%YB(K)3**‘*“—‘-"*’~
WRITF (3,103) CP,CPG,AM,sox,(UDlK)'K=1.5’
N=M

51 CP‘—‘((’&IO.

HIRD PAR PROGRAM . L
JWlV?LOé?IYOgF WAVE PROPAGATION I[N TEST MATHE AL D7)
ST=THEQRETICAL STRESS IN TEST MATERIAL(PST)
STX=THEQRETICAL STRAIN IN TFST MATERTAL (?;R )
E=MODULUS OF ELASTICITY 0OF TEST MATERTAL (;}
DUR=DURATION OF PULSE PRONDUCED ny PROJECTIL

{MICRD ONDS) .
XLé=§FNé$gUF PULSE PRODUCED RY DQ”JEFT‘L:r:l :
SULT=ULTIMATE STRESS OF TEST “ATFQIAL':T& LOAN[DCTY
oYP= YIELD STRESS OF TEST MATERIAL,STATIZ b 0
MAX VELOCITY REFFRS TN FINAL VELDCIT;~L LﬁwaNQ A
AT TERMINAL CHAMBER PRFSSURE FOR RARRE ~
STNGLE PROJECTILE LENGTH.

WRITE (3,427)

WRITF (3,414)

WRITF (3,415) R0OP

WRITFE (3,416) F

WRITE (3,418) SULT

WRITFE (3,419) SYP

WRITFE (3,420) SLI(L)

VW=SQRT (386.%E/ROP)/12.

WRITE 417) VW
DUR=$SC?£)/(VH*b.O))*lCOOQOO'
WRITE (3,422) DUR
XLP=2,%SL(L)

‘v ~‘((\,-‘v‘
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52

10

72
73
101
102

80

WRPITE (3,421) XLP
DY 682 K=1,5
ST{K)=PNPRVWXUP(K) /b4 ,4%]127.
STX(KY=UP(K) /(2. %VW)}*100.,

WRITFE (3,423) (RL{K),K=1,5)

WRITFE (3,424) CPG,{UP{K),K=1,5)

WRTITE (3,425) (ST(K),K=1,5)

WRITFE (3,426) (STX{K)4K=1,5)

CINT INUE

FOURTH PART 0OF PROGRAM

PROGRAM WILL INCREMFENT STRESS FROM JERM T MAX[“iw
SPECIFIED RY INPUT IN INCREMENTS SPECIFIED AND
CALCULATE REQUIRED VELNCITY PLUS RFSULTANT ST2AT, o
CONVFENIENGCE,A VFLOGCITY-STRESS=STRAIN PRINT Nyt 1¢ 2y
GIVEN

SPFEC=DES IRED MAXIMUM STRESS(PSI)

SINC=NES [RED INCREMENTS OF STRFSS(PSI)

VINC=DES IRED INCREMENTS OF PROJECTILF VELOCTTY

NUF TN COMPUTER LIMITATIONS,VARTABLES INVOLVING
PRNJECTILE VELNCITY,STRESS,AND STRAIN HAVE "FCT
RE-NAMEN,

STR=STRESS(PSI)=ATR (MEANING ONLY)
STRX=STRAIN({Z)=ATRX {(MFANING ONLY)
UPX=PROJECTILE VELNCITY{FPS)=APX (MEANING ONL
WRITE (3,428)

WRITE (3,414)

WRITE (3,415) RQOP

WRITF (3,416) F

WRITE (3,418) SULY

WRITFE {3,419) SYP

WRITE {3,417) VW

WRITE (3,429)

STR=0Q,

APX=0,

DN 72 M=1,100C

IF{STR-SPEC)1C,10,73

UPX=STR*64,4/ (ROPXVH¥12.)
STRX=UPX%100./{2.%VW)
ATR=ROPRVWXAPX/64.4%12.
ATRX=APX/(2.*VW)*100.

WRITF (3'430’ STR,UPXQSTRX'ADX'ATR'ATQX
STR=STR+SINC
ADPX=APX+VINC
STOP

FORMAT (6F12.2)
FORMAT {2F12.5)

\A

TF12.4)

103 FORMA FO.1¢3XyFOa193%s (L 15D HEATY,
401 FoﬁmaI :zx,'éHAéPER TEMP(R}=",4F10a40 6%
1* RATIN=1,F5.2) ):l,F‘S.Z,ll‘v'C”Avaco"

402 FRMAT (2X,'CHAMRER DIACIN

403

404

1*(PSTIA)=*',F5.7)

1' LENGTH{IN}=',F5.2) (IN)z"FS.Z'ng'iATM PRESS Y,

FORMAT (2X, 'BARREL DIA '
13X'IDQUJC(‘,T‘LC '

- o’
FORMAT (2X, 'GAS CONSTANT="9F 6%



1* DFEMSTTYV=?
405 FARMAT (22X,
406 FORMAT (2X,

1 MASS=9',E7
407 FOARMAY (2X,
410 FARMAT (2X,
411 FOARMAT {23X,

81

yFT7.4)

PPRENJECTILE LENGTH{IN)=',F 8, 7)

tVFL 0OF SOUN”(rT/SFC):',f—’).(.")v'lp;:' K
«4)

'CHAMRER VOLUME=1',F10,3)

TBARPREL L ENGTH(IN)=',268X,5F]7,7)
TOP{PSTAY Y 4 X, ' CP{PSINY Y ,aX, tn /M Ty

1'RODT AN )Y, 20X, *PROJECTILE VELNCITY (FPSY ')

412 FNORMAT {2X,
413 FORMAT (4X,
414 FORMATY (22X,
415 FORMAT (2X,
416 FORMAT (22X,
1F12.3)
417 FORMAT (12X,
1' MATI =1',F9
418 FORMAT {2X,
419 FNORMAT (22X,
1F9.2)
420 FORMAT (2%,
421 FORMAT {2X,
422 FORMAT {2X,
423 FORMAT (2X,
424 FORMAT {(2X,
15F14.4)
425 FORMAT (2X,
4726 FORMAT (272X,
427 FORMAT (2X,

1' AT TFRMINAL CP FOR BRARREIL

428 FORMAT (2X,
429 FORMAT {3X,
1*STRAIN(R)?
2'STRAIN(Z)?®

430 FORMAT (2X,F12.142X,F12e%;

12X,F12.7)
END

YSPECIFIC HEAT RATIO=',75.7)
TROOT(ANY Y ,6X, 4G /MY)

TTEST MATERTAL IS 79275 TA51 ALuMIet)
'TEST MATERTAL DENSTITY (1 3M/0) IN)="',f 7./)
TMODULUS OF ELASTICITY 0OF TEST MATU (PO 1,

'VELNCITY OF WAVE PROPAGATION [N T:5T7,
«?)

TULTIMATE STRESS QOF TEST MATL(PSEI='," . ")
'YIELD POINT STRESS OF TEST MATLIRS]) ',

tPROJECTILE LENGTHUINI=',F5.7]
YPULSE LENGTH({IN)=',F5.7)
tDURATION OF PULSE(MICRN STC)="
YRARREL LENGTHUIN)=',15%,5F14.7) -
CMAX CP(PSIGY=",FTs292%, ' ¥AY VEL ey~

R

= LS RN
sMAY EXPECTFD STRESSI(PSII=1,10X, ! i

*MAX EXPECTED STPAIN(1)='117X.GV:?.:YP‘
tMAX VELOCITY REFERS T THAT CALCHIL: '

AT

LENGTHS AND PR EET

T Y

" STRESS-VELDNCITY-STRAIN qotcrnuj :;;;
*STRESS(PST)Y 2%, 'PROJ vFL(Fps|‘;éI;' N
+ 11X, 'PROY VEL(FPS) 2%, * STRESSE '

)

SV

OXGF12.T910%,F17.1



APPENDIX 2

COMPUTER PROGRAM FOR THE SOLUTION OF EQUATIONS (36) AND (37}

The computer program is written to yield the stress and strain distributions
with (x/L) resulting from the longitudinal impact of two Maxwellian rods. Stress
and strain are indicated as myltipliers of the corresponding stress and strain that
would be realized in the elastic case. The siress and strain multipliers are
calculated from x/L = 0 to x/L = 1.0 in increments of 0.005 for each of eleven

values of normalized time, T.

The output of the program is listed as a stress multiplication matrix and
a strain multiplication matrix. The columns of the matrices represent the stress
or strain distribution at a given value of normalized time. The dato are also
presented in the form of computer punch cards which have a corresponding matrix

i data for
representation. These punch cards can subsequently be used as input datfa for

: i i f the results.
a plotter program in order fo obtain a graphical representfation o

S n 1. f 3 ’ 1 .

14 .1 minutes of computer

128,288 bytes.

highest mode number of the series is chosen to be 150,

fime is required and the storage allocation requirement is

construction of the program and its

Further information regarding the

. . ram, beginning on
input data requirements can be found ina listing of the program, beg

the next page.
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ME 172G 152 AL BEHRING ONFE DIMENSTINNAL VISrae|actyr
STRESS AND STRAIN WAVE PROPAGATINN IN A CorSTANT oo
FINITF ROD., A MAXWELL MODFL IS USFN T PESrofas v
STRESS-STRAIN RELATIONSHIP, THE SOLUTINN INVEOL VES Yo
CORRFSPONDENCF PRINCIPLE AND FOURIFR SFRIFS,

.

NEFINTTION OF VARRTARLES FOLLOWS

E=MODULUS 0OF ELASTICITY(SPRING IN MAXWFLL ™MON! ()
EYA=COEFFICIENT OF VISCOUS DAMPING{NASHPOT [N MAY®Ril]
MNODEL)

WO=RATIO 0OF ELASTIC ELEMENT TO VISCOUS FLEMENT (/814
RO=DNFNSITY {MASS/VOLUME)

CO=FLASTIC WAVE PROPAGATION VELOCITY=SQRT(F/PO)
X=L AGRANGEAN REFFRENCE COORDINATE

L=LENGTH OF ROD IN UNSTRAINED STATE
XN=NORMALIZFD REFERENCE COORDINATE (Xx/L)

T=TIMF

TAUY=CHARACTFRISTIC TIME (CO*T/L)
TAUD=RELAXATION PARAMETER (WO%L/CO)

AS=STRFSS MULTIPLICATION FACTOR

ES=ELASTIC VALUE OF STRESS (E*xVN/{2,%*CN))

TRUF STRESS = AS%ES

RS=STRAIN MULTIPLICATION FACTOR

EST=FLASTIC VALUE OF STRAIN (VO/(2.,%CN))

TRUF STRAIN=RS*FST )
A=PAT§O n; (IMPACTER LENGTH+TEST RAR LFENGTH) 70
IMPACTER LFNGTH, AN INTEGER

DEFINITION OF INDICES FOLLOWS
M=NUMBER OF HIGHEST MODE 0OF SERIES
N=SERIES MODE NUMBER

K=NORMAL IZED REFERENCE CONRDINATE TNDEX
NT=CHARACTERISTIC TIME INDEX

ALL OTHER INDICES DUMMY

SERIES SET-UP FOLLOWS

COMMON DEAF (150),CAT(201,15C), ’
IDOG(150),CHOP(150),CHOPP(10).TMH1? ’
2AS{11),SX{11),RS(11)

READ (1,102) TAUO,A,M
XP1=3,1415926536

RN:]..

DN 84 N=1,M

DEAF(N)=RN%XPI

XN=0.

DN 83 K=1,201
CAT(K,N)=SIN{DEAF{N)*XN)

XN=XN+,005
DELT(N)=TAUN/ (2. *DEAF(N))
DELS(N)=DELT{N)*%*2
DUG(N)=RN*SORT(ABS(1.-DELS(N)))
RN=RN+1,

NA=2 %A

DO 46 N=1,NA

DELT(150),,nELstIo 1y
FROGITTI ST



O

46

55

56
57
58

41

52

51

CHOPPINI=SIN(DFAF(N)/A)

N=1
nn 57

NX:IQM

IF{N-M})55,5%,58

DN 56 ND=1,NA

CHOP{N)=CHOPP IND)

N=N+1

CONTINUE
CNNTINUE
TAU(1)=0.

nn a4l

N¥=1,11

FROCINT)I=EXP{TAUDXTAUINT)/ 2.}
TAUINT+1)=TAUINT )I+.1

XM=M
WRITFE

(2,4356)

TAUOC, XM

CALCULATION DF STRESS MATRIX FOLLOWS

WRITE
WRITE
WRITF
WRITE
WRITE
WRITF
DO s1
Do 52
XS=0,

SINT)=

RN=1.
DN 65

IF(1.-DELSIN)I3,2,1
3 XS={1./DOG(N)IXCHOP (N)*CAT (K,

{3,399)
(3,427)
(3,428)
(3,400)
(3,421)
(3,411)

K=1,201
NT=1,11

0.

N=1,M

1TAUINT))

G TN 65 )
XS=(XPI*TAU(NT)*CHOP(N)*CAT(KvN’

GO 10

XS=CHOP(N)*CAT(KvN)*SIN(XPI*ﬂOG
SINT)I=S{NT)+XS

65

A
M

TAUO
(TAUCNT) JNT=1,11)

N)XSINH{XPT2DAGIN) *

(N)*TAU(NT)’/““C(N)

AS(NT)=—4,%S(NT)/(XPT*FROGINT))
CONTINUE

WRITE
WRITF

(3,450)
(2,388}

XN=XN+.005

WRITF

CALCULATINN OF STRA

WRITF
WRITE
WRITF
WRITF
WRITE
WRITE
xN:Oo
DO 31
DO 32
XS=0,

(3,101)

(3,469)
(34427)
(3,428)
(34400)
(3,421)
{34412)

K=1,201
NT=1,11

XN,(AS(NT),NT=1911!
(AS(NT)vNT=2,11)

[N MATRIX FOLLOWS

A
M

TAUN

(TAUINT), NT=1,11)



85

XSS=0.
SINTY=C,
SXINT)=0.
RN=1,
NN 26 N=1,M
TE(1.-DELSIN))A,5,4
b XS=CHIOPIN)RCAT(KyNIH{((1.=2.4DFLSIN) ) /DOG(N) ) =
ISINHIXPI*DOGINI*TAUINT) ) =( 2. #DELTN) /RN)IACNSH{ YD ¢
200G(NI®TAUINT }))
XSS=(1./ (RNX%2))*CHNP (N}XCAT(K,N)
6N TO 3%
5 XS={—2 . &DELT(N)/RNIXCHOP (N)XCAT(K,N)
XXS={1,/ (RN&%2))%CHOP (N)*CAT(K,N)
GN TN 35
& XS=CHAP IN)XCAT (K NIR{{{1e=?.«DELSIN)I/DOG(N] PESTNIY e
INNGIN)XTAUINT ) 1= {2 ¢DELTIN) /RN RCOS{XPIHNNG(N) *
2TAII(NT)))
XSS={1./ (RN,%2))*CHOP (N)*CATIK,N)
35 S{NT)I=S{NT)+¥S
Rsz’\!"l -
36 SX(NT)=SX{NT)+XSS
RSINT)={~4¢/XPI)R(SINT)/FROG(NT)+(TAUN/XPL)HSXLTTYH)
32 CANTINUE
WRITE (3,450) XN, (RSINT),NT=1,11)
WRITFE (2,388) [RSINT)I,NT=2,11)
31 XN=XN+,005
WRTITE (3,413)
389 FNRMAT (4F18.15)
102 FORMAT (2F12,.6,15)
399 ENRMAT (2X, ' STRESS MATRIX FOLLOWS',////} N
400 FORMAT ([2X,'RELAXATION PAQAMETEP="F7'3://
413 FORMAT {2X,*CONCLUSION DF’STQAfN MATRIX!)
421 FORMAT (2X,'TIME',11F10.7 NOEASTO Y
411 FORMAT :2x:'xm',4ox.'sraess MULrn%lggTagén le'.
428 FNRMAT [2X,[5,'TFRMS OF THE SFRIES APE AT
1' EVALUATION?)
450 FNIRMAT (F6.3,11F1C.4)
388 FORMAY (10F7.4) ' 1177)
101 FARMAT {2X,*CONCLUSION OF STRESS MATRIX'.//
427 FORMAY (2X,'A=',F6.2)
469 FNRMAT (2X,'STRAIN MATRIX FO
412 FORMAT {2X, "XN?1,40X, "STRAIN
356 FNRMAT (2F6.3)
CALL EXIT
END

LLOWS /7 /7 /)

MULTIPLICATION FACTAEN
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APPENDIX 3

SOME IMPLICATIONS OF THE MALVERN EQUATION

Malvern 3 1has suggested that the stress-strain relation for a metal

loaded in the plastic range is

d

dt

Ee*c} = g(o,¢e)

One of the simplest forms of this equation, as suggested by Malvern, postulates
that g (0, ¢€) is a linear function of the rate of departure of the true stress -
from the value given by the static tension test at a specified value of strain

In equation form this simplification yields

g—E[Ee-o] = K[O-f(e)} 1z-1

where K is a constant and the physical significance of the variables is descripec

by Figure 26.

/ EXTENDED ELASTIC (E |
o} /
/
// T~ DYNAMIC (c)
/
Y

—T QUASI-STATIC [ fle) ]
o)

YpP

1 -

vern

i Mal
Figure 26. Stress—strain diagram proposed by Ma



Taking the Laplace transform of equation (3-1), the result is
Ese - Ee(o) - So +0(o) = Kg - K&{f(e)} (3-21

where the bar notation denotes a transformed variable. [f it is assumed that
. . . . + . .
plastic loading is applied at t = 0 , then Ee (0) =0 (0) and equation (3-2)

becomes

'G—{K+s} = Ese + Ki{f(e)]

or, after suitable re-arrangement,

- _ ES—E— K . (3-3.
O = Ryrs ' R+s S’{f(g)}

Assuming that the strain is specified by the step function e=c 1 (t) where Hit!

is Heaviside's step function, equation (3-3) becomes

° = %rs ' Krs LA£le Bl )]

Employing the convolution integral

~1
:j, {Q(S)r(s)] = étQ(t—T)R(T)dT

fo find the inverse of equation (3-4), the result is

n

- -Kt
o = {Ee_e Kt f(eo)[l‘e }}H(t)

= OJr the stress is that value

From equation (3-5) it can be seen that at | H
) and that s t becomes ver,

predicted by an extension of the elastic curve (E “o (e )

y the static test,

large,, the stress approaches the value predicfed b .
n associated with the Maiver!

Equation (3-5) describes the "relaxation” phenomeno

fheory .



&b
The relaxation phenomenon described by the Malvern equation is
similar to that shown by a Maxwell material. Suitable rearrangement of

equation (28) results in

{Ee—g

= W
o

o—o} . 1Z-0

DWQ
o

It can be seen that equation (3-1) reduces to equation (3-6) if fle)=0. For
a Maxwell material subjected to a step strain, ¢ =€ H(t), it can be shown
that

g = [Ee e
o
Equations (3-5) and (3-7) yield similar results for small values of time such as
TR
those associated with pulse propagation. In view of the observed similarity o
. . ; 21
experimental results obtained in the plastic range of loading (e.g-, Figure

. . . } .
with the plotted results of the viscoelastic solution (see Figure 7), further

investigation into the strain-rate dependent theory is recommended.



APPENDIX 4

SUGGESTED METHOD FOR FOURIER TIME ANALYSIS

If the location of the strain gages (&) is chosen such that the initial
compressive pulse is measured as closely as possible to the interface of the rods,
and such that the strain gages are subjected to the maximum pulse duration
(g—é) for the first and successively reflected pulses, it can be seen from the
characteristics diagram of Figure 2 that the strain measurement system will be

subjected to the train of pulses indicated in Figure 27.

Vo ‘
2L |
aC | ?
- Sy oo
C aC

Figure 27. Resultant elastic pulse train

. . gt d Cis the
With reference to Figure 27, v represents voltage, t is fime, an

. ion for the
velocity of elastic wave propagation. The Fourier representation

pulse trgin of Figure 27 is

oo

v(t) = '2"!9- L [1 - cos(nm )cosn re/(d+e)] sin(wan’f)
'n n
n=]

where ¢ = 2L/aC, e =[2L(1- __2__> 1/, and fn = n/(2d+e).

89

i4-1



From equation (4-1) it can be seen that the lowest frequency present (F) s

ﬂ = ]/K2d+e) cps

As an approximation, it is suggesfed that the upper frequency response limit
of the strain measuring system (fm) should be used as the highest frequency

of (4-1), then

m= f /f
m ]

where m is the largest infeger that is present in fm/f].

Then, for the impacter-test bar combination under consideration, the

il . . . *
fimited" series representation is
m

vit) = (ZVO/ ™) (1/n) [] - cos(n)cosfnme/(d+e]] sin(2n f 1) 4-2

n=1

* e 1
. . : arison with
Numerical evaluation of equafion (4-2) and subsequent comp s

g i ion' of th
the results indicated by Figure 27 should serve as a first approximation” of t"¢€

s it ore
error to be expected as a result of frequency response limitations. A mor

. : he agttencotic”
exact approximation of the expected results can be derived by using th€ @

. AY
odify the constants in (4-1..

characteristics of the strain measuring equipment to m

. th ro erties
It should be noted that this theory has been developed using fhe PToP

; i ter-
rticulor impac
{f, for a pa

of the test material under elastic loading conditions.

fest rod combination, it is determined that the error due to frequency

this acceptability should also

limitations is acceptable for the elastic case,

Prevail for the plastic case.
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