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ABSTRACT 

 

 

 

    Early detection of malignant melanoma greatly benefits patients, as the overall 

success is dependent on finding these melanomas before they reach the invasive stage. 

Dermoscopy is a non-invasive skin imaging technique that studies have shown can 

improve the diagnostic accuracy of dermatologists by as much as 30% over clinical 

examination. In this project machine vision and image analysis techniques are used to 

detect annular granular areas in dermoscopy images automatically. The proposed 

algorithm utilizes the luminance ratio between annular and granular areas within the 

darkest 30% of the lesion. All points whose luminance  value are less than 30% of the 

histogram are considered for further processing. The method  has used some 

preprocessing steps  to remove the unwanted effect of luminance reflection, to extract 

hair and bubble from the lesion image and to enhance the contrast of the image. Then 

the lesion plane is searched to find the center and border of annular-granular areas. 

Statistical analysis has shown that the implemented algorithm has the highest 92 percent 

in correct detection of annular granular areas. 
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 INTRODUCTION 1.

 

 

 

1.1 SKIN CANCER 

 

Skin cancer is the most common type of cancer in the United States. The risk 

factors known for skin cancer include the following: lighter complexion, genetic 

predisposition, advanced age, increased sun exposure and high frequency of sunburns [1]. 

There are several types of skin cancer: 

-Basal cell carcinoma: Forms in the lower part of the epidermis, which comprises 

the outermost layer of the skin [2]. Basal cell carcinoma accounts for more than 75% of 

all skin cancers. It is a slow-growing cancer that seldom spreads to other parts of body. If 

left untreated, however, it can spread to nearby areas and invade bone and other tissues 

under the skin, causing significant morbidity [3]. 

-Squamous cell carcinoma: Forms in the squamous cells, which are flat cells that 

form the most superficial layer of the skin [1]. This type is less common than basal cell 

carcinoma. It is more likely to grow deep below the skin and spread to distant parts of the 

body [3]. 

-Neuroendocrine carcinoma: Forms in neuroendocrine cells, which can release 

hormones in response to signals from the nervous system [2].These three types of skin 

cancer collectively comprise a vast majority of non-melanoma skin cancers. When 

diagnosed early, there is a low reoccurrence rate, depending upon which therapy is 

prescribed. The other predominant type of skin cancer is melanoma. 
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  The word melanoma comes from the Greek words; melas (black) and oma 

(tumor) [4]. Melanoma forms in the melanocytes, which are cells that make pigment, 

especially in the skin. Malignant melanoma is the most serious type of skin cancer. A less 

common skin cancer, melanoma has a low survival rate, which is heavily dependent upon 

its invasiveness (99% 5-year survival rate for Stage I, 33% 5-year survival for Stage IV). 

It is a very aggressive tumor that can spread quickly throughout the body, leading to 

death. If caught at an early stage, melanoma can often be cured with a simple excision.  

Estimated cases by the National Cancer Institute show that more than one million 

new cases of non-melanoma skin cancer were diagnosed and less than one thousand 

deaths were caused by non-melanoma skin cancer in 2010. While melanoma accounts for 

only 5% of skin cancers, it is important because it is the cause of 75% of all skin cancer 

deaths [2].  

 Each year, more than 68,000 Americans are diagnosed with melanoma, and 

another 48,000 are diagnosed with an early form of the disease that involves only the top 

layer of skin (melanoma in situ). Also, more than 2 million people are treated for basal 

cell or squamous cell skin cancer each year, making basal cell carcinoma several times 

more common than squamous cell skin cancer [2]. There are four major types of 

melanoma [5]: 

Superficial spreading melanoma: The most common type of melanoma. It is 

usually flat and irregular in shape and color, with different shades of black and brown. It 

is most common in Caucasians [6]. 

Nodular Melanoma: Usually starts as a raised area that is dark blackish-blue or 

bluish-red. However, some do not have any color. [6] 
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   Lentigo maligna melanoma: Usually occurs in the elderly. It is most common in 

sun-damaged skin on the face, neck, and arms. The abnormal skin areas are usually large, 

flat, and tan with areas of brown. [6] 

Acral lentiginous melanoma: The least common form of melanoma. It usually 

occurs on palm, soles, or under nails and is more common in African-Americans [6]. 

Melanomas have key features to discriminate them from other skin lesions. These 

symptoms have been codified into the ABCDE system. The ABCDE system can help to 

recognize the signs of melanoma and also serve to distinguish between melanomas and 

moles [3, 4]: 

Asymmetry: One half of the lesion is different from the other half as depicted  in 

Figure 1.1. 

 

 

 

 

 
Figure 1.1: Asymmetry characteristic [20] 

 

 

 

 

Borders: Irregularity of borders is present. The border may be uneven, fuzzy and 

have notched or scalloped edges and the edges of the growth are irregular. It shows in 

Figure 1.2. 

Color: Color changes from one area to another (variegated), often with shades of 

tan, brown, or black, and sometimes white, red, or blue. A mixture of colors may appear 

within one lesion as shown in Figure 1.3. 
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Diameter: The lesion is usually larger than 6mm in diameter and grows larger 

than normal moles; about the size of a pencil eraser as depicted in Figure 1.4. 

Evolution: The mole keeps changing appearance. The beginning of an increase in 

thickness of a mole, freckle, blemish, or birthmark, even if the increase is small, often 

signifies a lesion that is entering a dangerous phase as illustrated in Figure 1.5. 

 

 

 

 

                                  

Figure 1.2: Uneven border [20] 

 

 

 

 

 

Figure 1.3 :  Color changes within the area [20] 
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Figure 1.4 : Larger than ¼ inch in diameter [20] 

 

 

 

 

 

Figure 1.5 : The mole keeps changing in appearance [20] 

 

 

 

Elevation changes (invasiveness) are important because, when the thickness of 

melanoma exceeds 1mm, about 1/25
th

 of an inch, the melanoma is graded at Stage IV and 

the chance of metastasis increases. When the thickness reaches 3mm, the cure rate is only 

about 50% and quickly decreases as the thickness increases further [4]. However, if 

caught at early stage, melanoma can often be cured with a simple excision. Early 

detection of malignant melanoma, therefore, can significantly reduce mortality. 

 

 

 

1.2 DERMOSCOPY IMAGES 

 

Early detection of malignant melanoma greatly benefits patients, as the overall 

success is dependent on finding these melanomas before they reach the invasive stage. 

Dermoscopy was introduced to improve accuracy in the diagnosis of melanoma. 
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Dermoscopy, also known as epiluminescence microscopy, is a non-invasive skin imaging 

technique that has been shown to be effective for the diagnosis of melanoma and other 

pigmented of skin lesions [7, 8]. The procedure requires illumination at a low angle of 

incidence and a liquid contact medium applied at the skin-microscope interface. 

Dermoscopy uses optical magnification and, either liquid immersion and low angle-of-

incident lighting, or cross-polarized lighting, making surface structure more easily visible 

compared to a conventional clinical image. This technique allows the incident light to 

penetrate the top layer of skin tissue and permits a detailed examination of the pigmented 

structure beyond what would be visible to the naked eye. Studies have shown that 

dermoscopy can improve the diagnostic accuracy of dermatologists by as much as 30% 

over clinical examination [9]. Dermoscopy allows identification of dozens of 

morphological features, such as pigment network, dots/globules, streaks, blue-white areas 

and blotches, which aid in the diagnosis of skin lesions [10]. Due to the difficulty and 

subjectivity of human interpretation, automated analysis of dermoscopy images has 

become an important research area for automated skin cancer detection and the 

development of computerized image analysis techniques to minimize diagnostic error. 

 

 

 

1.3 ANNULAR GRANULAR FEATURE IN MELANOMA IN SITU 

 

Lentigo maligna is a type of melanoma in situ predominantly seen in flat, 

pigmented of lesions located on the face. Early melanoma on the face is often difficult to 

distinguish from solar lentigo and seborrheic keratosis. Early features of facial melanoma 

are: 
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-An annular pattern with light brown, dark brown and gray color. They may be 

asymmetrical follicular openings, focal structure-less areas, or thickened or broad 

pigment around follicles. 

-A reticular pattern with light brown, dark brown or gray color. They may be 

focal structure-less areas. 

The presence of black or blue-gray dots/granules, either localized or diffused, is a 

clue to diagnosis of melanoma on the face. Localized black or blue-gray dots/granules 

may be seen in association with either the annular or reticular pattern. Black or black-

gray dots/granules coalesce to form clumps of gray pigment. The clumps of gray pigment 

gradually extend into streaks and ultimately take shape as rhomboidal structures. The 

formation of pigment continues to expand around hair follicles and gradually obscures 

the follicular opening [4]. 

The annular granular feature is often characterized by three regions: 1) an inner 

ring that can be either a dark or light region and is referred to here as a "don't care" 

region, 2) a second ring that has high luminance and is referred to as the “annular” 

region, and 3) an outer ring that has low luminance and is referred to as the “granular” 

region [4]. Figure 1.6 graphically depicts the three regions of an annular-granular area in 

a melanoma in situ. Figure 1.7 shows dermoscopy images where annular-granular regions 

in a melanoma, identified by a dermatologist, are shown in black circles. 

This project is an extension of the work performed by Nishat Nepal [4]. The 

proposed algorithm utilizes the luminance ratio between annular and granular areas. 

Dermoscopy images have been degraded by luminance reflection in them that affects the 
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contrast and resolution of the images. Thus, a contrast enhancement procedure is added to 

the algorithm. A hair and bubble removal function created by Thomas Szalapski is used 

as a pre-processing step in this project.  To improve the efficiency of the algorithm, the 

two largest convex-hull within the darkest 30% areas of a lesion are considered for 

further processing. Darkest 30% of the lesion is calculated according to histogram of the 

luminance and Red, Green, Blue planes and all points whose value are less than 30% of 

the histogram of the related plane are considered for further processing. 

The method for finding the center of an annular-granular melanoma feature is 

changed from Nepal’s thesis and adaptive thresholds are added to the algorithm to 

remove as many false positive points as possible. False positive points are considered as 

annular-granular regions by the algorithm, when, in actuality, while they are not. 

Machine vision and image analysis techniques are used to detect annular granular 

features in dermoscopy images automatically. The rest of the thesis is organized as 

follows: Section 2 concentrates on the algorithm of automatic detection of annular-

granular regions and explains the entire operation and steps needed to extract the annular-

granular areas from dermoscopy skin lesion images, Section 3 discusses some statistical 

tests examined based on results from the algorithm, and Section 4 presents the results 

achieved by this automatic annular-granular detection and determine its success on 

different images. 
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Annular region

Granular region

Don’t care region

 

Figure 1.6: Three regions of annular granular  feature 

 

 

 

 

 

 

 

 

  

   

 

   

   

    

 

 

 

 

 

 

 

Figure 1.7:  Annular-Granular melanoma in dermoscopy images 
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The features to be analyzed have been saved in a series of Excel files for each 

image to be interpreted by a software program called Statistical Analysis Software (SAS 

Institute, Cary, NC). SAS analysis chooses the best features to discriminate annular-

granular features using a logistic regression model. The results obtained in this work, as 

well as suggestions for future work, are explained in Section 4. 

A set of 20 dermoscopy images are used in this research to attempt automatic 

identification of annular-granular features for melanoma in situ diagnosis. As mentioned 

before, these images have some effects of luminance reflection in them that degrade the 

image effectiveness. To resolve the unwanted reflection in the images, pre-processing 

steps are needed before the determination of candidate points for annular-granular areas 

can be made. In the following chapter, the pre-processing steps are discussed and the 

results have been shown in sample images. The remainder of the processing algorithm is 

discussed below. 
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 AUTOMATIC DETECTION ALGORITHM FOR 2.

ANNULAR GRANULAR AREAS 

 

 

 

2.1  OVERVIEW 

 

Dermoscopy is an imaging technique used in diagnosis of melanoma and other 

types of pigmented skin lesion. Automatic skin cancer detection via analysis of 

dermoscopy images is an important research area due to the importance of early 

diagnosis of melanoma. Automation using machine vision is crucial because of the 

difficulty and subjectivity of human interpretation. In addition, accurate color information 

in dermoscopy images is very important for melanoma diagnosis, since inappropriate 

white balance or brightness in the images adversely affect the diagnostic performance. 

Demarcating the inner annular area is the first step in the automatic detection of 

an annular-granular region. The detection algorithm is based on luminance comparison 

between the annular and granular areas. The difference between the average luminance of 

the annular region, AnulL  and the average luminance of the granular region, GranulL  is used 

to determine the pixels in the annular region (Equation 2.1). If this difference is greater 

than zero, the pixel is a candidate for the annular region. 

To implement this method on the dermoscopy images, some pre-processing steps 

are needed. These steps include contrast enhancement, hair and bubble removal and 

finding the darkest 30% area of the lesion, as annular-granular regions are found 

particularly in this area.  
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GranulAnulRsult LLL
 

ringAnnular  of Area

ringannular inner  of  valuepixel
AnulL

                               

(2.1) 

 

ringGranular  of Area

ringgranular outer  of  valuepixel
GranulL

 

 

 

 

2.2   FIRST STEP - CONTRAST ENHANCEMENT 

 

Dermoscopy images have insufficient contrast, making the determination of a 

threshold between light area and dark area of the image difficult. A pre-processing step is 

therefore needed to enhance the contrast of dermoscopy images. Contrast enhancement 

techniques are widely used for image processing to achieve wider dynamic range. 

Histogram-based techniques are often used for image enhancement. One of the 

advantages of histogram-based techniques is the simplicity in implementation. 

Histogram-based techniques are based on two primary methods: histogram stretch and 

histogram equalization, which try to increase the dynamic range of the image. 

In this project, the histogram stretch method is used to increase the image contrast 

and achieve the enhancement needed for processing. Because annular-granular regions do 

not exist in the darkest and lightest areas of a lesion, the lowest 5% and the highest 5% of 

each Red, Green, and Blue plane histogram are omitted. The remaining histogram region 

is stretched by a factor of 150*(highest luminance - lowest luminance). Figure 2.1 shows 

the result of this contrast enhancement method for a dermoscopy image where Figure 2.1 

a shows the original image and Figure 2.1 b) shows the resultant image using the 

histogram stretch method.  
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 a) 

 

 

b) 

 

 
Figure 2.1 Histogram enhancement , a) Original image ,  b) Resultant image: 

Histogram stretch method     

 

 

 

 

2.3 SECOND STEP - HAIR AND BUBBLE REMOVAL 

 

The existence of hair and bubble in a dermoscopy image can cause a significant 

error in the detection processing, thus a method is needed to exclude these from the skin 

lesion mask. To solve this problem, a function written by Thomas Szalapski, is used that 

returns a mask identifying the location of the hair and bubble in the lesion. The returned 
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mask is a binary mask with pixels having a value of one where hairs and bubbles are 

present. 

Using the exclusive-or logical operation between the lesion mask and the 

produced hair-bubble mask, a new mask is generated for further processing. This new 

mask omits hair and bubble areas.Figure 2.2 (c) shows the outcome lesion mask for a 

sample dermoscopy image. 

 

 

 

 

a)    

     
b) 

 

 

                
Figure 2.2: Mask output a) Lesion mask b) Hair-Bubble mask c) Resultant mask 
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c) 

 

 

 
Figure 2.2: Mask outputs a) Lesion mask b) Hair-Bubble mask c) Resultant 

mask.(cont.) 

 

 

 

 

2.4  THIRD STEP - FINDING DARKEST 30 PERCENT OF THE LESION 

 

Most of the annular-granular regions lie in the darkest part of lesion; it is therefore 

more convenient to locate the darkest part of the lesion for further processing. In this 

algorithm, the darkest 30% of the image is considered for further processing. The digital 

image is separated into its red (R), green (G), blue (B), and luminance (L) planes. The 

luminance value (L) at pixel location (x, y) is defined as:  

 

             L(x, y) =0.2989R(x, y) +0.5870G(x, y) +0.1140B(x, y)                           

(2-2) 
 

Each plane is filtered by a median filter with a 51×51 window size to remove 

noise, thereby making the image smoother. The points laying in the darkest 30% the 

histogram of each plane are then identified. These points are passed to a function in 
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MATLAB which uses the BWLABEL command to label and classify the points. Those 

connected points with the same label are bounded by the smallest convex polygon called 

the convex hull. The two largest convex polygons among the four planes are considered 

as the darkest 30% lesion mask. Figure 2.3 shows the final darkest 30% mask area related 

to a sample image. Finally, the logical OR operation is used to create one lesion mask 

from these two depicted masks. 

 

 

a)          b) 

Figure 2.3: Two largest polygons a) First largest polygon from the RGBI planes  

b) Second largest polygons from the RGBI planes 

 

 

 

 

2.5 FOURTH STEP - OBTAINING ANNULAR AREA CANDIDATE POINTS 

 

Annular-granular melanoma areas consist of three regions: 1) the “don't care” 

area, 2) the annular ring and 3) the granular ring. Based on previous work and 

observations, it was estimated that the typical radius of annular-granular regions could be 

approximated to 3 pixels for the “don't care” region, 4 pixels for the annular region and 3 

pixels for the granular region. However, some melanoma images have larger annular-

granular regions, also. For these regions, a larger set of radii was used: 5 pixels radius for 
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the “don't care” region, 12 pixels for the annular region and 5 pixels radius for the 

granular region. 

Some images have both thicker annular-granular regions and less thick annular-

granular regions, which are better determined by using the smaller radius set. For these 

images, both sets of radii are used to find the candidate points. The radius set is chosen 

according to the size of the darkest 30% lesion mask. 

According to the lesion mask size, two sets of radii approximated for the annular-

granular regions. These radius sets were determined by examining different dermoscopy 

images [4]. The small radius set considers a radius of 3 pixels for the “don't care” region, 

4 pixels for the annular region, and 3 pixels for the granular region. The large radius set 

consists of 5 pixels for the “don't care” region, 12 pixels for the annular region and 5 

pixels for the granular region. 

Table 2.1 shows the relationship between the lesion mask size and the set of 

radius used to determine the candidate points.   

 

Table 2.1: Lesion mask size versus radius set used for processing 

 

 

 

Lesion mask area Radius set chosen 

1 to 56000  Pixels Small radius set 

56001 to 13000 pixels Large and small radius set 

Greater than 13000 Large radius set 
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Candidate points for the annular region were obtained by using an appropriate set 

of radii based on the size of the darkest 30% lesion mask. Each pixel that lies in the 

darkest 30% lesion mask is considered as a potential annular center pixel, and the sum of 

the luminance of the pixels that fell in the inner annular ring was calculated. Similarly, 

the sum of luminance of the pixels in its outer granular ring was calculated. Those pixels 

whose difference between the luminance of the annular region and the granular region 

(Equation 2-1) according to the radius set are greater than zero ( RsultL  > 0) will be 

considered as candidate points for annular region centers.

 
 After finding the candidate center points for annular regions, it became apparent 

that some of these points were redundant and needed to be removed. First, we sorted the 

identified points based on maximum resultant intensity. Resultant intensity, RsultL , is the 

difference of the luminance between the annular region and the granular region. The 

points with maximum resultant intensity are kept for the second step. We next considered 

the points with maximum resultant intensity and calculated the distance of the points with 

other selected points then removed the points existing within the distance of annular-

granular outer radius. The remaining points constitute the annular region. 

 

 

 

2.6  FIFTH STEP – FINDING ANNULAR REGION BORDERS 

 

The candidate annular-granular center points were obtained according to the 

radius set and lesion mask size. In this step, new radii for the annular region and the 

granular region are estimated according to the data extracted from the previous step. To 

find the border of the annular region, the standard deviation within a specified window 

size around each candidate point was calculated to determine a threshold for the annular 



19 

 

region.  By examining different sizes of window for calculation of the standard deviation 

within an annular region, it was found that the  3131  window produced the best result. 

 For the subsequent step, all points lying within a distance of 30 pixels in the 

north direction were considered and the first drop in luminance was observed. If the drop 

was:  1) greater than the calculated standard deviation around the center point, and 2)  

maintained for at least 5 pixels, then this point was considered as the start of the granular 

region. 

This process was repeated for the other cardinal directions:  north, south, east, and 

west using a 6161  square window.  

For each candidate point, at most 4 points were considered for the beginning of 

the granular area. Only those that had fallen in luminance in at least 3 directions were 

considered for further processing; all others were omitted. The remaining points, with 

their respective border points, were used to update the annular region radius. 

 

 

 

2.7 SIXTH STEP - FINDING THE CENTER OF THE ANNULAR REGION 

 

The annular border points, plus the candidate annular center point, were used to 

improve the estimate for the annular-granular center location. To determine the center of 

annular-granular area, it was assumed that the set of four border points lay on the 

perimeter of a circle. Thus, finding a circle equation that goes through the border points 

can map the center of an annular-granular region. In the case that four border points were 

found, we can designate X to be the location of the center of annular-granular area that 

lies halfway on the line that goes through the east and west border points. We can 

similarly designate Y to be the location of the center of annular-granular area as the 
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halfway point on the line that goes though the north and south border points. The 

coordinate (X, Y) would then form the center of the annular region. In the case that 3 

border points are found, the center of the circle that goes through these three points is 

found. This method is described below.  Figure 2.4 shows a picture of the circle that has 

only 3 border points and the calculation of its center 

Suppose that P1, P2 and P3 are three border points of one annular candidate point. 

Consider the line a, which goes through P1 and P2, and the line b, which goes through P2 

and P3. The slopes of the lines a and b are used to find the center of the circle. The circle 

center is the intersection of two bisector lines which are perpendicular to lines a and b. 

The slopes of the lines a and b can be found by the following equations: 
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Figure 2.4: Drawing a circle using three border points 
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So the X coordinate of the circle center is defined by equation(2-4),and  the Y 

coordinate of the center is defined by substituting the X value in one of the following line 

equations(2-5): 
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By this method, the center of the annular-granular region was determined and the 

circle radius is the annular region radius. 

After the new centers were obtained, the candidate points that lay within a small 

distance, less than outer radius, converged into one pixel. To further remove points that 

lay within a small distance less than outer radius, a process similar to Section 2-5 was 

used. The sum of the luminance of the inner annular ring was calculated and weighted by 

its area; the same process was performed for the granular ring. The difference of these 

two weighted sums was then calculated. The center points having a small difference and 

that lay within an update radius distance of other center points were omitted.  

Consequently the “don't care” regions, the annular radii and granular radii were 

calculated for the remaining points. The area of the “don't care” region was considered to 

be 20% of the area created by update radius:   
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As a result the radius of the don't care region was calculated to be

updatecaredont RR 2.0' . The area of the outer ring was taken to be 150% of the total area of 

the circle having a radius of
updateR . The area of the annular-granular region can be written

25.1 updategr RA . Hence the new radius of the granular ring was calculated to be

updategr RR 5.1 . At the end of these processing steps, the number of false positive 

points was still high and additional thresholding was required to remove these unwanted 

points. 

 

 

 

2.8 SEVENTH STEP - REMOVING FALSE POSITIVE CENTER POINTS 

 

After removing the points that lay within the update radius of other center points, 

there were still points that lay in the dark area and they were not annular-granular center 

points. To solve this, an appropriate threshold should be set to remove extra candidate 

points that exist in the dark region. 

The histogram of the image has an approximately normal distribution; this 

property was used to determine a suitable threshold. According to the normal distribution 

property, 68 percent of the points lay within the one standard deviation distance from the 

mean value (Figure 2.5). 

Since annular-granular regions do not lie in the very dark and the very light areas 

of the histogram, a proper threshold can be set using the mean value of the lesion area 

and a determined fraction of the standard deviation of the lesion area. By comparing 
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different threshold values, the final threshold for removing extra false positive points was 

set to: 

Threshold= Average_lesion luminance plane +…

           (2-7) 

                (-0.8)  standard deviation of lesion luminance plane 

 

 

 

 

   

     Figure 2.5: Normal distribution probability density function [19] 

 

 

 

 

By using this threshold value, more false positive center points lying in the dark 

area of the lesion were removed. 

 

 

 

2.9 EIGHTH STEP - CALCULATING NEW ANNULAR BORDER POINTS 

 

The remaining center points were used to find the annular border points. The 

Principal Component Transform (PCT) was used to create an image with higher contrast 

and the resulting image was used to find the border points. A PCT searches for c k-
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dimensional orthogonal vectors that can best be used to represent the data, where c ≤ k. 

The original data are thus projected onto a much smaller space. PCT transform was used 

to find the plane of maximum possible variance. 

The basic procedure is as follows: 

The input data are normalized, so that each attribute falls within the same range. 

This ensures that attributes with large domains will not dominate attributes with smaller 

domains. 

 PCA computes c orthogonal vectors that provide a basis for the normalized input 

data. These    are unit vectors so that each points in a direction perpendicular to the 

others. These vectors are called the principal components.  The input data are a linear 

combination of the principal components. 

The principal components are sorted in order of decreasing "significance", or 

strength.  The principal components essentially serve as a new set of axes for the data, 

providing important information about variance.  The axes are sorted such that the first 

axis shows the most variance among the data, the second axis shows the next highest 

variance, and so on.  

Since the components are sorted according to decreasing order of "significance"; the 

size of the data can be reduced by not calculating the features that comprise the weaker 

components (those with low variance).  Using the strongest principal components, it 

should be possible to reconstruct a reliable approximation of the original data [8]. 

 The remaining center points, plus a neighborhood of 25 25 windows around each 

of them, were used to calculate the PCT coefficients. The PCT was then used on the R, G 

and B planes of the selected set of points and the PCT coefficient were calculated. The 
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largest first three eigenvalues of the correlation matrix of the selected pixels set were 

considered as PCT coefficients. These PCT coefficients are normalized, such that their 

summation is equal to one. 

After calculating the PCT transform of the image, the algorithm looked for a drop in 

the gray level of the pixels around each center point. The threshold used for finding the 

drop is 15 gray level points in the luminance plane. The algorithm searches in eight 

directions from each center point outwards for this drop. The points that met the 

threshold were considered to be the annular border points. Figure 2.6 shows the PCT 

transform of the image and the identified border and center points. The yellow plus signs 

are the border of the annular areas and the red plus signs are the centers of the annular–

granular regions. 

 

 

 

 

a) 

 
Figure 2.6: Output Images  a) Original image  b) PCT transform image c) Detection                 

algorithm result 
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b) 

 
c) 

 

Figure 2.6: Output Images  a) Original image  b) PCT transform image c) 

Detection algorithm result.(cont.) 
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 STATISTICAL STUDY OF THE ALGORITHM RESULT 3.

 

 

 

3.1 OVERVIEW 

 

The proposed algorithm has been tested on a set of twenty melanoma in situ 

lesions in dermoscopy images to detect annular granular regions. Annular granular 

regions were defined manually for six images in this set, then a list of features has been 

considered for statistical testing.  The features measured in these six images are as 

follows: 

1) Average values of the red, green, and blue planes of the lesion area (features c1—c3) 

2) Variance of the red plane within the lesion area, since red plane has more variation 

within the lesion area compared to the blue and green planes, making it more useful 

for annular granular detection (feature c4) 

3) Red, green and blue values of the automatically determined annular granular 

melanoma centers (red-cross points) determined by the algorithm. (Features c5—c7) 

4) Number of yellow border points found for each center (red-cross point). (Feature c8) 

5) Red, green and blue values of each automatically determined yellow border point. 

(Features c9—c32) 

6) Shortest distance between yellow border point and corresponding red center point. 

(Feature c33) 

7) Average of the distance between yellow border points and corresponding red center 

point. (Feature c34) 

8) Standard deviations of the distance between yellow border points and corresponding 

red center point. (Feature c35) 
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9) Computed new radii for annular granular regions. (Feature c36) 

10) Means of red, green and blue values in the annular areas. (Features c37-c39). 

11) Standard deviations of red, green and blue values in the annular areas. (Feature c40-

c42) 

12) Means of red, green and blue values in the granular areas. (Features c43-c45)  

13) Standard deviations of red, green and blue values in the granular areas. (Features 

c46-48) 

14) Whether or not the red-cross center point is defined manually as annular granular by 

a dermatologist 

 

These features for each of the six selected images were analyzed by the Statistical 

Analysis Software (SAS) using a logistic regression model. 

 Logistic regression, also called a logit model, is a statistical method used for 

prediction of the probability of occurrence of an event based on the fitting of the data to 

the logistic function. There are many cases when that a binary or ordinal response is 

needed based on the observed variables. In this kind of problem, logistic regression 

analysis is a useful tool to investigate the relationship between the discrete response and a 

set of variables. 

The binary response can get two values: zero or one. The response probability of 

output Y=1 can be written as p=P(Y=1|x) condition on the explanatory data. In other 

words, predicting the likelihood that Y=1 given certain values of x can be estimated by 

logistic regression. Logistic regression is used to transform an S-shape curve into an 

approximately straight line, thus changing the range from zero to one to -∞ to +∞. The 

linear logistic model has the following equation:    
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logit( ) log( )
1

p
p x

p
                                          (3-1) 

 

Where  is the intercept parameter and  is the vector of slope parameter. So 

the logit function is defined as the natural logarithm of the odds of event A, where p is 

the probability of event A. The odds of event is defined by 
1

p
odds

p
. 

The logistic regression model is part of a category called generalized linear 

models, where a function )(gg of the mean of the response variable is assumed to be 

linearly related to explanatory variables [11, 12]. The mean value depends on the 

stochastic behavior of the response and the observation variables are assumed to be fixed, 

thus the function g provides the link between the random stochastic component and the 

systematic component of the binary or ordinal response. For this reason, )(g  is known 

as the link function. 

The LOGISTIC procedure of SAS software has been used to fit the linear logistic 

model for binary response data by the method of maximum likelihood. The maximum 

likelihood estimation is carried out with the Fisher scoring algorithm. This procedure 

provides four variable selection methods: forward selection, backward elimination, 

stepwise selection and best subset selection. The method used in our logistic regression 

model is the forward stepwise selection [11, 12]. 

There are several steps in evaluating the appropriateness, adequacy and usefulness 

of the model. First, the importance of each explanatory variable can be determined by 

statistical tests of the significance of the coefficients. Then, the overall goodness of fit of 
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the model is evaluated, as well as the ability of the model to discriminate between the two 

output responses. 

 

 

 

3.2  CONVERGENCE CRITERION 

 

Convergence criterion was calculated by the likelihood ratio test. The likelihood 

ratio test is a statistical test used to compare the fit of two models, one of which is the 

special case of the other. This test shows how likely the data under one model than the 

other are closer to the output response. It compares the likelihood ratio when the output is 

zero, 0L , with the likelihood ratio of the output when it is one, 1L . The likelihood ratio can 

be used to decide whether to keep the model or reject it in favor of the alternative one. 

The statistics test is calculated as follows: 

 

             

0
0 1

1

2 ln 2 ln 2 ln ln
L

likelihoodratio L L
L

                        

(3-2) 

 

 

If the distribution of likelihood ratio can be determined, then it can be directly used 

for decision making and choosing the better one compared to the alternative model. 

However in most cases, determining the likelihood distribution corresponding to a specific 

hypothesis is not that easy. Large sample distribution of likelihood ratio states that the 

likelihood ratio distribution will be an asymptotically chi-squared distribution with 

degrees of freedom equal to the difference in dimensionality of 1L and 0L [13, 14]. In the 

stepwise method of the regression model, there is one difference in dimensionality of 1L
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and 0L likelihood ratio. Thus, the result is compared with a chi-square distribution X
2
 with 

one degree of freedom. 

3.3 MODEL FITNESS 

 

Logistic regression procedure uses some criterion to choose the best features for 

creating the most fitted statistical modeling. These criterions are discussed as follows. 

3.3.1 AIC Criterion. The Akaike Information Criterion is a measure of relative 

goodness of fit of a statistical model [15,16]. Developed by Akaike around 1974 under 

the name of ‘an information criterion’ (AIC), it is grounded in information theory and 

measures the information lost when a given model is used to describe reality [17]. It can 

return a tradeoff between bias and variance in the model and loosely evaluate accuracy 

versus complexity of a model. AIC values provide a means for model selection based on 

the statistical likelihood function. 

The Kullback-Leibler distance is the amount of information lost when model i is 

used, thus the best model in a set is the one which has the minimum losses in the amount 

of information, the one which has minimum Kullback-Leibler distance [18]. Since AIC is 

the estimate of the amount of information loss, minimizing AIC means finding the 

optimal model, the model that maximizes the information extracted from data. The K-L 

distance provided by AIC criterion has an unknown bias so one cannot figure out how far 

the model is from the true one. But it can be a good criterion to rank the models and find 

the best one. In the general case AIC is  

 

                                       2 2ln( )AIC k L                                                             

(3-3) 
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Where k is the number of parameters in the statistical model and L is the 

maximum value of the likelihood function of the estimated model. Thus in a set of 

extracted models for the data, the preferred model is the one with minimum AIC value. 

3.3.2 SC Criterion.The Bayesian Information Criterion (BIC) or Schwartz  

criterion (SBC or SC) is a criterion for model selection among a finite set of models 

.Based on the likelihood function, BIC is an asymptotic result derived under the 

assumption that observation distribution belongs to an exponential family. It can be 

formulized as: 

 

 ln( ) 2ln( )BIC k n L                   

(3-4) 
 

Where k is the number of parameters in the statistical model and L is the 

maximum value of the likelihood function of the estimated model and n is the number of 

observed data. 

 

 

3.4 RESULT 

 

The selected features of the image set were analyzed by the SAS software and the 

logistic regression procedure performed on this data set. The final result of the procedure 

is as follows:    

X
2
            Pr > X

2
            Feature 

16.9463  <.0001     Var Red 

3.5161    .0608      R of 3rd RGB 

11.7402  .0006       Red value of red cross 

3.4100    .0648       Average Distance 

8.9708    .0027      G of 5
th

 RGB 

Highest Percent Correct is 92.5% (7.7% Sensitivity, 100% Specificity)
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 ALGORITHM RESULT 4.

 

 

 

4.1 SIMULATION RESULT 

 

Output images from analysis based on the algorithm and their PCT transforms are 

rendered. The red-cross points in the images are the center of annular-granular regions 

defined by the algorithm and the yellow points are border points related to each center 

point. Figure 4.1 shows an image where the red-crosses depict the points determined by 

the algorithm as annular-granular region centers. Figure 4.2 shows the PCT transform of 

the image from Figure 4.1. 

 

Figure 4.1:   Red-cross center points detected in an annular granular region  
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In Figure 4.3, annular-granular center points determined by the algorithm are 

illustrated by red–cross points and the border by yellow points. Figure 4.4 shows the PCT 

transform of  Figure 4.3. 

In Figure 4.5, the annular-granular areas have been detected by red-cross points 

and the image PCT transform is shown in Figure 4.6. 

 

 

 

 

 

Figure 4.2:   PCT  image  of Figure 4-1 
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 Figure 4.3: Red-crosses are center points detected in a melanoma  

 

 
Figure 4.4: PCT  image  of  Figure 4.3 
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Figure 4.5:   Red-crosses are center points detected in a melanoma  

 
Figure 4.6: PCT  image  of Figure 4-5 
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4.2  SAS ANALYSIS 

 

Annular-granular areas were defined in the following the six images manually and 

a set of features mentioned in section 3-1 were measured and analyzed by the SAS 

software. The six images analyzed were: 

 " bb082107rol196", " bm021108rab555" ,"dm041309rab1034", 

  "ev060507rol117", " hm031708rab605" , " wt022007tre6" 

Then the measured features were populated into a spreadsheet file analyzed by the 

SAS software and the logistic regression procedure with forward stepwise selection was 

run on this set of features. There were 483 observations in the spreadsheet of which 39 

observations were true annular granular regions and 444 were false annular-granular 

regions.  

 A Receiver Operating Characteristic curve, or ROC curve, plots sensitivity 

versus one minus specificity as a function of threshold. Sensitivity relates to the test’s 

ability to identify positive results and is defined as 

number of true positives

number of true positives + number of false negatives
Sensitivity .  Specificity relates to the 

test’s ability to identify negative results and is defined as 

number of true negatives

number of true negatives + number of false positives
Specificity .  For the features 

defined above, SAS analysis (forward stepwise logistic regression) produces an area 

under the ROC curve of 84.7%. 

The classification table produced by this same SAS procedure is shown in Table 

4.1.Because the data contain so many more false annular-granular regions (444) than true 

regions (39), the highest percent correct (92.5%) occurs at probability levels of 0.620 
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through 0.720 where sensitivities are quite low (10.3% to 7.7%) and specificities are high 

(99.8% to 100%).  At a probability level of 0.620, for example, only 10.3% of the true 

annular-granular regions would be detected, but 99.8% of the undetected regions are 

actually not annular granular-regions.  Since malignant melanomas generally do not have 

annular-granular regions, this threshold could be chosen so the user could be fairly 

certain that melanomas were not being incorrectly eliminated. 

The sensitivity and specificity are approximately equal at a probability level of 

0.060 (sensitivity of 69.2% and specificity of 69.6%).  At this threshold, the percent 

correct is 69.6%. 

Table 4.2 shows the features SAS selected by forward stepwise logistic regression 

to be the best model for the data.  The linear logistic coefficients α and β were estimated 

by the SAS software and are indicated in Table 4.2.In this table c1 through c44 are the 

features extracted from images mentioned in Section 3.  The Estimate column in Table 

4.2 represents β values related to each feature and the α intercept value. 
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             Table 4.1 Logistic Procedure –Classification Table 

 

Prob      Correct  Sensi- Speci- False   False 

Level                    tivity   ficity  POS    NEG 

 

0.000     8.1      100.0     0.0     91.9     . 

0.020     47.6    89.7    43.9   87.7    2.0 

0.040     61.7    82.1    59.9   84.8    2.6 

0.060     69.6    69.2    69.6   83.3    3.7 

0.080     74.7    66.7    75.5   80.7    3.7 

0.100     76.4    56.4    78.2   81.5    4.7 

0.120     78.5    51.3    80.9   81.0    5.0 

0.140     81.2    51.3    83.8   78.3    4.9 

0.160     82.8    48.7    85.8   76.8    5.0 

0.180     84.7    48.7    87.8   74.0    4.9 

0.200     85.9    43.6    89.6   73.0    5.2 

0.220     86.3    38.5    90.5   73.7    5.6 

0.240     87.0    33.3    91.7   74.0    6.0 

0.260     88.2    33.3    93.0   70.5   5.9 

0.280     88.6    33.3    93.5   69.0    5.9 

0.300     89.0    30.8    94.1   68.4    6.1 

0.320     89.2    25.6    94.8   69.7    6.4 

0.340     90.1    25.6    95.7   65.5   6.4 

0.360     91.5    25.6    97.3   54.5    6.3 

0.380     91.5    25.6    97.3   54.5     6.3 
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Prob      Correct  Sensi- Speci- False   False 

Level                   tivity   ficity  POS    NEG 

0.400      91.3    20.5    97.5   57.9    6.7 

0.420      91.3    17.9    97.7   58.8    6.9 

0.440      90.9    12.8    97.7   66.7    7.3 

0. 460      90.7    10.3    97.7   71.4    7.5 

0.480      90.9    10.3    98.0   69.2    7.4 

0.500      91.1    10.3    98.2   66.7    7.4 

0.520      91.1    10.3    98.2   66.7    7.4 

0.540      91.5    10.3    98.6   60.0    7.4 

0.560      91.7    10.3    98.9   55.6    7.4 

0.580      92.1    10.3    99.3   42.9    7.4 

0.600      92.1    10.3    99.3   42.9    7.4 

0.620      92.5    10.3    99.8   20.0     7.3 

0.640      92.5     7.7   100.0    0.0      7.5 

0.660      92.5     7.7   100.0    0.0     7.5 

0.680      92.5     7.7   100.0    0.0      7.5 

0.700      92.5     7.7   100.0    0.0      7.5 

0.720      92.5     7.7   100.0    0.0      7.5 

0.740      92.1     2.6   100.0    0.0     7.9 

0.760      92.1     2.6   100.0    0.0     7.9 

0.780      92.1     2.6   100.0    0.0     7.9 

0.800      92.1     2.6   100.0    0.0    7.9 

 

 

Table 4.1 Logistic Procedure –Classification Table.(cont.) 
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Prob      Correct  Sensi- Speci- False   False 

Level                     tivity   ficity  POS    NEG 

0.820      92.1     2.6   100.0    0.0       7.9 

0.840      92.1     2.6   100.0    0.0       7.9 

0.860      92.1     2.6   100.0    0.0       7.9 

0.880      92.1     2.6   100.0    0.0       7.9 

0.900      91.9     0.0   100.0     .          8.1 

 

 

 

 

 

   

 

Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 

Intercept      1       4.7857       3.3062         2.0952          0.1478 

c1                 1      -0.0817       0.0424        3.7168          0.0539 

c3                 1      0.0892      0.0403          4.8901           0.0270 

c5                 1     -0.00305     0.00183        2.7701           0.0960 

c7                 1       0.0783      0.0222         12.4859          0.0004 

c10               1      -0.4931      0.1798          7.5236           0.0061 

c11               1      0.00234     0.00238        0.9648           0.3260 

c17               1      0.00413     0.00229        3.2499           0.0714 

c23               1      0.1226      0.0436          7.9120            0.0049 

c24               1     -0.2710      0.1253          4.6758            0.0306 

c25               1      0.1398      0.0872          2.5687            0.1090 

c26               1      0.00292     0.00242        1.4577           0.2273 

c29               1     -0.1117      0.0560           3. 0                 .0461 

Table 4.1 Logistic Procedure –Classification Table.(cont.) 

Table 4.2 Analysis of Maximum Likelihood Estimates 
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c30             1      0.2198      0.1307        2.8280          0.0926 

c31             1     -0.1020      0.0846        1.4530          0.2280 

c32             1     -0.0506      0.0378        1.7884          0.1811 

c33             1      0.2141      0.1101        3.7822          0.0518 

c34             1     -0.1650      0.0800        4.2603          0.0390 

c36             1      0.0280      0.0131        4.5546          0.0328 

c38             1     -0.0462      0.0355        1.6920          0.1933 

c39             1     -0.0774      0.0261        8.8127          0.0030 

c41             1     -0.0353      0.0217        2.6436          0.1040 

c42             1     -0.0800      0.0542        2.1804          0.1398 

c44             1      0.1561      0.0592        6.9607         0.0083 

 

 

Table 4.2 Analysis of Maximum Likelihood Estimates 
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 CONCLUSION 5.

 

 

 

In this method, the detection of annular-granular regions within lentigo maligna 

melanoma in situ are based on the luminance difference between the annular area and the 

granular area. Thus, higher contrast images can lead to more accurate results. The better 

the image contrast, the more reliable result in detection of melanoma in situ. 

Detecting blotch and very dark areas in the lesion can aid in determining the most 

useful darkest percent of lesion. Using proper thresholding according to the image helps 

us to remove more false positive points. SAS analysis result shows that the highest 

percent correct in detection annular granular melanoma feature by this algorithm is 

92.5%. 
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