Library and
Learning Resources

Numerical simulation of one-dimensional three-phase fluid flow in a stratified petroleum reservoir with no cross-flow

Ali Mohammed Akbar

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Petroleum Engineering Commons

Department:

Recommended Citation

Akbar, Ali Mohammed, "Numerical simulation of one-dimensional three-phase fluid flow in a stratified petroleum reservoir with no cross-flow" (1969). Masters Theses. 7074.
https://scholarsmine.mst.edu/masters_theses/7074

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

NUMERICAL SIMULATION OF ONE-DIMENSIONAL THREE-PHASE FLUID FLOW IN A STRATIFIED PETROLEUM RESERVOIR WITH NO CROSS-FLOW

BY
ALI MOHAMMED AKBAR, 1941 -
\qquad

A
THESIS
submitted to the faculty of THE UNIVERSITY OF MISSOURI - ROLLA
in partial fulfillment of the requirements for the
Degree of
MASTER OF SCIENCE IN PETROLEUM ENGINEERING Rolla, Missouri

1969
T2314
115 pages c. I

ABSTRACT

A numerical model for linear, three-phase fluid flow in a stratified petroleum reservoir has been developed for the purpose of studying water-flooding performance characteristics. Gravity forces, capillary pressure and cross-flow were neglected, but the fluids were considered compressible and evaluations of dissolved gas concentrations have been accounted for.

The model was used in evaluating the performance of a water flood project for a hypothetical reservoir which contained the three phases of oil, gas, and water. The results were then compared with those obtained using the DykstraParsons technique. The model produces results which were found to be similar to those obtained by the Dykstra-Parsons method for the displacement of oil by water with no gas present, but poor agreement resulted when free gas saturations were formed. The results obtained using the numerical model are considered to be more realistic than those obtained by the Dykstra-Parsons method in depleted oil sands with a substantial gas saturation since the Dykstra-Parsons model was built on the assumption that only one phase flows at a point and water displace oil in a piston-like manner. When a free gas saturation is formed at the production well, the oil mobility is reduced substantially resulting in a lower oil recovery at water breakthrough than can be predicted by the Dykstra-Parsons technique.

ACKNOWLEDGEMENT

The author wishes to express his appreciation to
Dr. M. D. Arnold, Dr. R. E. Carlile and Professor J. P. Govier of the Petroleum Engineering Department of the University of Missouri - Rolla for their help, suggestions and guidance throughout the development of this thesis. Grateful appreciation is also extended to the Kuwait University under whose scholarship this work was performed.

TABLE OF CONTENTS

Page
ABS'TRAC'I ii
ACKNOWLEDGEMENT iii
LIST OF ILLUSTRATIONS vi
LIST OF TABLES vii
I. INTRODUCTION 1
II. LITERATURE REVIEW 4
III. ASSUMPTIONS 8
IV. THEORY 9
A. PARTIAL DIFFERENTIAL EQUATIONS 9
B. FINITE-DIFEERENCE EQUATION 15
C. STRATIFICATION 22
D. BOUNDARY CONDITIONS 24
E. MATERIAL BALANCE 31
V. RESUI.TS 38
VI. DISCUSSION OF RESULTS 42
VII. CONCLUSIONS 50
VtiI. APPENDICES 51
A. NOMENCLATURE AND LIST OF COMPU'TER SYMBOLS 52

1. NOMENCLATURE 52
2. LIST OF COMPUTER SYMBOLS 55
B. DERIVATION OF MISCELLANEOUS RELATIONSHIFS 59
3. DERIVATION OF HKX 59
4. DERIVATION OF THE RELATIONSHIP $\rho_{r}=\frac{\rho_{S}}{\beta}$ 62
5. LINEAR EXTRAPOLATION 62
C. RESERVOIR DATA 64
D. COMPUTER FLOW DIAGRAMS AND PROGRAMS 70
6. COMPUTER FLOW DIAGRAM FOR NUMERICAL MODEL 70
7. COMPUTER FLOW DIAGRAM FOR DYKSTRA-PARSONS METHOD 79
8. COMPUTER PROGRAM FOR NUMERICAL MODEL • • 82
9. COMPUTER PROGRAM FOR DYKSTRA-PARSONS METHOD 103
REFERENCES . 106
VITA . 108

LIST OF ILLUSTRATIONS

Figure
Page
l. A Typical Reservoir Elemental Block 9
2. Central Grid Point Illustration 16
3. Injection and Production Wells 23
4. Boundary Elements 24
5. Grid System for Material Balance 31
6. Illustration of Series-Averaging Technique for Permeabilities 60
7. Linear Extrapolation 63
8. Permeability Variations with Depth 40
9. Cumulative Oil Production vs. Time for $\frac{\mu_{0}}{\mu_{W}}=$ 1.96
10. Cumulative Oil Produced vs. Water-Oil Ratio for $\frac{\mu_{0}}{\mu_{W}}=1.96$. 46
11. Oil Production Rate vs. Time for $\frac{D}{\mu_{W}}=1.96$ 47
12. Cumulative Oil Produced vs. Cumulative Water Injected for Various $\frac{\mu_{0}}{\mu_{\mathrm{w}}}$ Ratios
13. Percent Recovery of Initial Oil in Place vs. Oil-Water Viscosity Ratio at WOR = 20:1

Table		Page
I.	Summary of Results	41
II.	Rearranged Permeabilities	69

I. INTRODUCTION

Fluid injection methods have been used for many years for secondary and tertiary recovery and have contributed substantially to marked improvements in oil recovery. The number of such projects should increase in the future due to the rising costs of discovering and developing primary reserves.

To evaluate any proposed fluid injection program, it is first necessary to know how much oil can be recovered conomically. This information must include accurate knowledge of oil rates, water-oil ratios, and gas-oil ratios with time or pressure declines. In order to best evaluate these parameters, it is desirable to simulate (by a complete mathematical description) the multi-phase fluid flow in the porous medium, and the complex interaction of natural forces and physical properties of a petroleum reservoir during depletion with various fluid injection programs.

The approach undertaken in this project, to simulate this multi-phase flow, was to sum the three continuity equations for the three mobil phases (oil, water and gas) in one dimension, and to force the sum of saturation derivatives to vanish, thus forming one partial differential equation in pressure, dependent upon the simultaneous multi-phase flow in the reservoir. The differential equation, with pressure as the dependent variable, was then replaced by a finite difference equation to expedite solution. Writing this equation about each discrete point in the system results in
a tridiagonal matrix with coefficients which are hoth prossure and saturation dependent. This tridiagonal matrix is solved for pressure and yields pressure variances at the specific time level at the end of each time step. The method requires knowledge of rock and fluid properties, field seometry, well spacing, and known or proposed fluid injection rates.

The Dykstra-Parsons technique (1) was used as a reference to check the numerical model for cases in which tho DykstraParsons method is applicable and to test tho Dykstra-Parsons technique for its applicability where a third phase, ras, appears and where the assumption of piston-like displacement of oil by water is not accurate.

The Dykstra-Parsons method employs a system of horizontal layers, not connected, except at the wells, in which permeability may vary vertically from layer to layer, with each layer being homogeneous. At any point in a layer only water or oil is flowing, but water is allowed to exist on one side of the front and oil on the other such that the velocity of fluids within a layer is dependent on the position of the front as well as the mobility ratio. No allowance is made for a third phase, gas, to exist in the system and all fluids are considered incompressible. Water-oil ratio is dependent on the fluid velocities in the individual layers and the number of layers which have experienced water breakthrough.
(I) See References.

The Dykstra-Parsons technique was chosen as a reference method to indicate the validity of the mathematical model because it is believed that the Dykstra-Parsons method is very accurate within the limitations of the inherent assumptions.

With this introductory preface, one can say that the purpose of this research is two-fold:
I. To simulate a three-phase, one-dimensional petroleum reservoir, with water being injected at one boundary and oil, water and gas being produced at the other boundary. It can be readily noted that the approach is also useful for estimating vertical coverages.
2. To compare predicted performance of a hypothetical reservoir as evaluated by the numerical model with results obtained by the Dykstra-Parsons method.

The mathematical model and the Dykstra-Parsons method were programmed for an IBM 360 computer in Fortran IV language. The flow diagrams and programs are presented in Appenaix D.

II. IITERATURE REVIEW

In 1856 , the French engineer Henry Darcy (2) empirically formulated that the rate of flow of a single fluid through a porous medium is directly proportional to the potential gradient and the cross-sectional area normal to the direction of flow and inversely proportional to the viscosity of the fluid. This relationship is known today as Darcy's Law and has served as the comerstone for describing fluid flow in porous media. Later it was shown that Darcy's Law is only valid for the viscous flow region usually defined for flow in porous media as that region where Reynolds number is equal to or less than one. Hubbert ${ }^{(3)}$ showed that

Darcy's Law can be deduced from the classical Navier-Stokes hydrodynamics equations. Other investigators found that Darcy's Law can be extended to fluids other than water insofar as Darcy's investigations were confined to water flow. The generalized form of Darcy's Law is written as,

$$
V=-\frac{k}{\mu} \nabla \Phi
$$

where

$$
\Phi=\mathrm{P}-\rho \mathrm{gh}, \mathrm{~h} \text { is taken Dositive downward. }
$$

In 1930, experimental studies were made to investigate the flow of immiscible fluids in porous media. (4) Experiments showed that the presence of a second phase reduces the conductance for both phases. The work of Wyokoff and Botset (5)
*Terms defined in Nomenclature.
made it evident that the relative permeability to Nach whmen of an immiscible two-phase system is a function of thr thance saturation within the porous medium. Leverett (6) i:nvoritigated the effect of fluid viscosity, pressure gradient and interfacial tension on the relative permeability and corcluded that relative permeability is independent of fluid viscosity but is some function of pore size distributior, displacement pressure, pressure gradient and fluid saturation. In his work he introduced the concept of and dofinod the J-function, which relates capillary prossure to porosity and permeability. In 1941 leverett and lewiss ${ }^{(7)}$ reporited the results of steady state flow tests on unconsolidated sands with three phases (oil, water and gas) present. From his work, the concept of three-phase relative permeabilities was established.

For a system containing two or more immiscible phases, a mathematical analysis consists of formulating differential equations obtained by combining Darcy's luaw (with capillary pressure) and an equation of state for each phase with the Continuity Equation for each phase flowing. This results in a non-linear, second-order partial differential equation for each mobile phase. Due to the complexity of the resulting differential equation, a solution cannot be obtained by classical methods.

After the advent of high speed digital computing equipment, serious attempts at numerical solution were made. West, Garvin and Sheldon ${ }^{(8)}$ studied horizontal, linear and radial systems produced under gas drive excluding capillary
effects. Their numerical treatment employed a finite difference grid system and they used implicit methods for solving the resulting system of linear equations.

Hovanessian and Fayers ${ }^{(9)}$ reported a numerical simulation
for one-dimensional, inclined flow of two immiscible, incompressible fluids. They showed that the inclusion of capillary pressure and gravitational forces had a pronounced effect on both phase saturations and pressure distributions. Douglas et al. (10) studied a horizontal, one-dimensional system including capillary pressure and concluded that at high flow rates this model yields results similar to those obtained by the Buckley-Leverett method. (Il)

Two aimensional techniques have also been attempted but these early studies indicated that such models were highly unstable. However, in 1958, Douglas (12) published a paper on the "Alternating Direction Implicit Procedure" (ADIP) which provided a stable method for the treatment of these two dimensional problems. In 1959, Douglas, Peaceman and Rachford ${ }^{(13)}$ used this classic finite difference treatment (ADIP) to successfully simulate two-dimensional flow of immiscible fluids. They reported good agreement between predicted performance for displacement of oil by water and observed values obtained from laboratory experiments.

Thus, in the $1950^{\circ} \mathrm{s}$, digital computing equipment and techniques had been developed sufficiently to allow numerical solution of multi-phase, multi-dimensional flow problems. In 1955, Rapoport (14) combined the three dimensional partial differential equations describing immiscible, incompressible
two-phase flow to obtain a single equation. He investisated the displacement of oil by water in terms of production history before and after water breakthrough.

In 1965, Fagin and Stewart (15) presented a two-dimensional, multi-phase reservoir simulator. This was a general flow model yielding accurate representations of pressure and multi-phase saturation changes with time.

In 1967, Coats, et al $^{(16)}$ presented the concept of vertical equilibrium in a horizontal model and adjusted a two-dimensional, two-phase model to account for saturation variation in the third dimension. Good agreement was reported when compared with three-dimensional calculations for a reservoir having definitive vertical communication. In 1965, Quon, et al ${ }^{(17)}$ reported the applicability of an "Alternating Direction Explicit Procedure" (ADEP) to a two-dimensional reservoir analysis where large time increments can be used to significantly reduce the time involved in solving such models. Their application of the ADEP technique was to simulate a gas reservoir and its flow characteristics and reported good agreement with similar results from an ADIP solution on the same model.

III. ASSUMPTIONS

The following assumptions are made to permit the desired solution;

1. The model simulates a reservoir consisting of horizontal layers of varying vertical thickness. The permeability and thickness are permitted to vary from layer to layer. Each layer consists of blocks of variable length and width adjacent to each other horizontally with the capability of varying permeability from block to block. It is assumed that there is an impermeable barrier between layers thus implying that there is no vertical cross-flow between layers.
2. Rock heterogeneity with respect to permeability (but not porosity) is assumed.
3. Capillarity, gravity and rock compressibility are considered negligible.
4. Water is injected in one end at constant rate, and oil, water and gas are produced at the other end at rates such that reservoir voidage equals water influx at reservoir conditions.
5. It is assumed that the simulation accurately accounts for three-phase flow, fluid compressibilities, and evolution of dissolved gas.

IV. THEORY

A. PARTIAL DIFFERENTIAL EQUATIONS

The basic concept employed in describing fluid flow in a porous media is based on the law of mass conservation and Darcy's Law.

Fig. 1. A Typical Reservoir Elemental Block

If one considers three-phase fluid flow through an elemental block in the x-direction as shown in Figure (I), then one can apply the law of mass conservation on each phase making use of the Darcy's Law in the following manner:

Oil Phase:
a) Mass rate in - mass rate out $=$ rate of mass accumulation
b) Mass rate in $=\overrightarrow{\mathrm{V}} \circ_{\text {in }} A \rho_{o s} / \beta_{o}+Q_{o i n j} \rho_{o s}$
where $Q_{\text {Oinj }}$ is negative if it is production instead of injection and,
$\vec{V}_{\text {in }}$ is the oil velocity entering the elemental block from the left hand side which is defined by Darcy's Law as:

$$
\vec{v}_{0}=-\frac{k_{0}}{\mu_{0}} \frac{\partial \Phi_{0}}{\partial x}
$$

where;

$$
\begin{gathered}
\Phi_{0} \text { is the velocity potential defined as: } \\
\Phi_{0}=P_{0}+\rho_{0} g h .
\end{gathered}
$$

c) The mass rate out can be expressed as;

$$
\text { Mass rate out }=\vec{V}_{\text {out }} A A_{\text {os }} / B_{o}
$$

where \vec{V}_{0} out is the velocity of oil leaving the elemental block through the right hand side and face of the elemental volume and is equal to

$$
\begin{equation*}
\vec{V}_{O_{i n}}+\frac{\partial \vec{V}_{O}}{\partial x} \Delta x \tag{3}
\end{equation*}
$$

The mass accumulation rate can be defined as;
d) Rate of mass accumulation $=\frac{\partial M_{o}}{\partial t}=$

$$
\begin{equation*}
h \Delta x \Delta y \phi \rho_{O S} \frac{\partial}{\partial t}\left(\frac{S_{O}}{\beta_{0}}\right) \tag{4}
\end{equation*}
$$

where h, ϕ and $\rho_{o s}$ are constant factors.

Substituting Equations (2), (3) and (4) into Equation (1) and defining. V as defined by Darcy's Law yields:
$h \Delta x \Delta y \rho_{O S} \frac{\partial}{\partial x}\left(\frac{k_{O}}{\mu_{O} \beta_{O}} \frac{\partial \Phi O_{O}}{\partial x}\right)+\rho_{o S}^{Q_{O i n j}}=\phi h \Delta x \Delta y \rho_{O S} \frac{\partial}{\partial t}\left(\frac{S_{O}}{\beta_{0}}\right)$.

Dividing both sides of Equation (5) by h $\Delta x \Delta y \rho$ os yiclds:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{k_{0}}{\mu_{0} \beta_{0}} \frac{\partial \Phi_{0}}{\partial x}\right)+\frac{Q_{0 i n j}}{h \Delta x \Delta y}=\phi \frac{\partial}{\partial t}\left(\frac{S_{0}}{\beta_{0}}\right) . \tag{6}
\end{equation*}
$$

Expanding the time derivative (the right hand side of lquation (6)), and multiplying both sides by β_{o} yields:

$$
\beta_{0} \frac{\partial}{\partial x}\left(\frac{k_{0}}{\mu_{0} \beta_{0}} \frac{\partial \Phi}{\partial x}\right)+\beta_{0} \frac{Q_{0} i_{0} j}{h \Delta x \Delta y}=\phi\left[\frac{\partial S_{0}}{\partial t}-\frac{S_{0}}{\beta_{0}} \frac{\partial \beta_{0}}{\partial P_{0}} \frac{\partial P_{0}}{\partial t}\right] . \quad(P-1)
$$

Equation (P-I) is the partial differential equation describing the flow of oil in one dimension (x-direction) in a porous medium.

Water Phase:
Applying the logic similar to that employed in deriving the equation for the oil phase, a partial differential equation for the water phase flowing through an elemental block can be developed as follows:

$$
\begin{equation*}
\beta_{W} \frac{\partial}{\partial x}\left(\frac{k_{W}}{\mu_{W} \beta_{W}} \frac{\partial \Phi_{W}}{\partial x}\right)+\frac{\beta_{W} Q_{W i n j}}{h \Delta x \Delta y}=\phi\left[\frac{\partial S_{W}}{\partial t}-\frac{S_{W}}{\beta_{W}} \frac{\partial \beta_{W}}{\partial P_{W}} \frac{\partial P_{W}}{\partial t}\right] \tag{P-2}
\end{equation*}
$$

where $\Phi_{W}=P_{w}+\rho_{w} g h$.

Gas Phase:

The derivation of a partial differential equation for the gas phase differs from that of oil and water phases only in that gas evolved from solution in oil must be accounted for. Therefore, the law of mass conservation may be written in the following manner:

$$
\begin{align*}
& \text { Mass rate in }+ \text { mass rate of gas evolution - mass rate } \\
& \text { out }=\text { rate of mass accumulation. } \tag{7}
\end{align*}
$$

Mathematically, Equation (7) is defined as

$$
\begin{equation*}
-n \Delta x \Delta y \rho_{g s} \frac{\partial}{\partial x}\left(\frac{\vec{V}_{i n}}{\beta_{g}}\right)+\rho_{g s} Q_{g i n j}=-\frac{\partial M_{F G}}{\partial t}+\frac{\partial M_{g}}{\partial t} \tag{8}
\end{equation*}
$$

where $\frac{\partial M_{F G}}{\partial t}$ is the rate of change in the mass of gas evolved, and its derivation is based on the mass rate of gas evolution and is related to the oil phase present, the solution gas oil ratio $\left(R_{s}\right)$, and their rate of change as follows:

$$
\begin{equation*}
\frac{\partial M_{F G}}{\partial t}=-h \Delta x \Delta y \rho_{g S} \phi \frac{\partial}{\partial t}\left(\frac{S_{O}}{\beta_{O}} R_{S}\right) \tag{9}
\end{equation*}
$$

The minus sign in Equation (9) accounts for the fact that a decrease in the solution gas oil ratio is accompanied by an increase in free gas volumes. Also, in the same equation, R_{s} remains inside the derivative because it also varies with time being uniquely a function of pressure which is a function of time.

Substituting the Dancy's Law equivalent of the velocity potential and the results of Equation (9) into Equation (8) and then dividing both sides of the resulting equation by $h \Delta x \Delta y \rho_{g s}$, and multiplying through by β_{g}, yields:

$$
\begin{equation*}
\beta_{g} \frac{\partial}{\partial x}\left(\frac{k_{g}}{\mu_{g} \beta_{g}} \frac{\partial \Phi}{\partial x}\right)+\frac{\beta_{g} Q_{g i n j}}{h \Delta x \Delta y}=\phi \beta_{g} \frac{\partial}{\partial t}\left(\frac{S_{g}}{\beta_{g}}+\frac{S_{o}}{\beta_{O}} R_{S}\right) \tag{10}
\end{equation*}
$$

where $\Phi_{g}=P_{g}+\rho_{g} g h$.

Expanding the time derivativo of the right hanci side of Equation (l0) yields:

$$
\begin{gather*}
\phi \beta_{g}\left[\frac{\partial}{\partial t}\left(\frac{S_{g}}{\beta_{g}}+\frac{S_{O}}{\beta_{O}} R_{S}\right)\right]=\left[\frac{I}{\beta_{g}} \frac{\partial S_{g}}{\partial t}-\frac{S_{g}}{\beta_{g}{ }^{2}} \frac{\partial \beta_{g}}{\partial P_{g}} \frac{\partial P}{\partial t}+\frac{S_{C}}{\beta_{O}} \frac{\partial R_{S}}{\partial P_{g}} \frac{\partial P}{\partial t}\right. \\
\left.+R_{S} \frac{\partial}{\partial t}\left(\frac{S_{O}}{\beta_{O}}\right)\right] \phi \beta_{g} . \tag{11}
\end{gather*}
$$

Substituting the value of $\phi \frac{\partial}{\partial t}\left(\frac{S_{0}}{\beta_{0}}\right)$ as given by Equation (6) into Equation (II) yields:

$$
\begin{align*}
& \phi \frac{\partial S_{g}}{\partial t}+\left(\phi \beta_{g} \frac{S_{O}}{\beta_{0}} \frac{\partial R_{S}}{\partial P_{g}}-\phi \frac{S_{g}}{\beta_{g}} \frac{\partial \beta_{g}}{\partial P_{g}}\right) \frac{\partial P_{g}}{\partial t}+\beta_{g} R_{S} \frac{\partial}{\partial x}\left(\frac{k_{O}}{\mu_{0} \beta_{O}} \frac{\partial \Phi}{\partial x}\right) \\
&+\beta_{g} R_{S} \frac{Q_{O} i n j}{h \Delta x \Delta y}=\phi \beta_{g}\left[\frac{\partial}{\partial t}\left(\frac{S_{g}}{\beta_{g}}+\frac{S_{O}}{\beta_{O}} R_{S}\right)\right] \tag{12}
\end{align*}
$$

Substituting the results shown in Equation (12) for the right hand side of Equation (I0) and rearranging yields: $\beta_{g} \frac{\partial}{\partial x}\left(\frac{k_{g}}{\mu_{g} \beta_{g}} \frac{\partial \Phi}{\partial x}\right)+\phi \frac{S_{g}}{\beta_{g}} \frac{\partial \beta_{g}}{\partial P_{g}} \frac{\partial P_{g}}{\partial t}-\frac{\phi S_{o} \beta_{g}}{\beta_{O}} \frac{\partial R_{S}}{\partial P_{g}} \frac{\partial P_{g}}{\partial t}$ $-\beta_{g} R_{s} \frac{\partial}{\partial x}\left(\frac{k_{0}}{\mu_{0} \beta_{0}} \frac{\partial \Phi_{0}}{\partial x}\right)-\frac{\beta_{g} R_{s} Q_{0 i n j}}{h \Delta x \Delta y}+\frac{\beta_{g} Q_{g i n j}}{h \Delta x \Delta y}=\phi \frac{\partial S_{g}}{\partial t}$.

There is no need to account for loss of oil due to the evolution of gas since this loss is totally accounted for by changes in the oil formation volume factor.

Since capillary pressure and gravity are considered negligible in this model, the following potential equivalences are plausible;

$$
\begin{equation*}
\Phi_{O}=\Phi_{W}=\Phi_{g}=P, \tag{13}
\end{equation*}
$$

and individual phase pressures are identical, i.e.,

$$
P_{O}=P_{W}=P_{g}=P .
$$

Recognizing that the potential terms appearing in Equations $(P-1),(P-2)$, and $(P-3)$ are identical as defined by Equation (13), it may be noted that these three partial differential equations are simultaneous equations relating pressure and saturations (four dependent variables) to the independent variables, position and time. This system cannot be solved as there are three equations and four unknowns. This problem is roadily overcome, however, by introducing another equation in the dependent variables. This equation can be based on the definition of saturations as follows:

$$
\begin{equation*}
S_{0}+S_{W}+S_{g}=1.0 \tag{14}
\end{equation*}
$$

It may be further noted that the partial differential equations have bern judiciously arranged so that they may be added to yield one equation in one dependent variable, notably pressure. Note that the three time derivatives of the saturations are isolated such that their only coefficient is a constant, porosity, and that taking the time derivative of Equation (14) yields:

$$
\begin{equation*}
\frac{\partial S_{0}}{\partial t}+\frac{\partial S_{W}}{\partial t}+\frac{\partial S_{g}}{\partial t}=0 \tag{15}
\end{equation*}
$$

Summing Equations $(P-1),(P-2)$, and $(P-3)$, rearranging terms, and simplifying as discussed immediately above based on Equations (13), (14), and (15) yields:
$\beta_{g} \frac{\partial}{\partial x}\left(\frac{k_{g}}{\mu_{g} \beta_{g}} \frac{\partial P}{\partial x}\right)+\left(\beta_{O}-\beta_{g} R_{s}\right) \frac{\partial}{\partial x}\left(\frac{k_{O}}{\mu_{O} \beta_{O}} \frac{\partial P}{\partial x}\right)+\beta_{w} \frac{\partial}{\partial x}\left(\frac{k_{W}}{\mu_{w} \beta_{w}} \frac{\partial P}{\partial x}\right)$
$=-\left[\frac{\beta_{g} Q_{g i n j}}{h \Delta x \Delta y}+\left(\beta_{O}-\beta_{g} R_{s}\right) \frac{Q_{O i n j}}{h \Delta x \Delta y}+\frac{\beta_{W} Q_{w i n j}}{h \Delta x \Delta y}\right]$
$-\phi\left[\frac{S_{g}}{\beta_{g}} \frac{\partial \beta_{g}}{\partial P}+\frac{S_{O}}{\beta_{O}}\left(\frac{\partial \beta_{O}}{\partial P}-\beta_{g} \frac{\partial R_{S}}{\partial P}\right)+\frac{S_{W}}{\beta_{W}} \frac{\partial \beta_{W}}{\partial P} \frac{\partial P}{\partial t}\right]$

Equation (P-4) is a non-homogeneous, second-order nonlinear, partial differential equation and no known technique for solving it by classical means exists. It is non-linear because the coefficients are in themselves pressure and saturation dependent. The equation is solvable, however, by finite difference approximation techniques.

B. FINITE-DIFFERENCE EQUATION

Equation (P-4) is in a form where a difference equation can be written, from which the value of the dependent variable (pressure) at time level $t(n+1)$ can be calculated when the values of all parameters are known at the previous time level $t(n)$. The terms of the left hand side of Equation ($P-4$) can be represented by a finite difference equation if the time-space plane is divided into discrete cells as shown in Figure (2) (for a single time), then expanded about some point (i) in the spatial grid pattern at some fixed time level.

Fig. 2. Central Grid Point Illustration

The point at which all parameters are defined in each block is arbitrarily selected as its mid-point. Thus, the center is the focal point at which the pressure is assumed concentrated and this forms the basis for calculating pressure gradients.

Since there are three phases flowing, it is necessary to use relative permeabilities rather than absolute permeabilities. The former are defined by the following relations:

$$
\begin{aligned}
& k_{g}=k k_{r g} ; \\
& k_{o}=k k_{r o} ; \\
& k_{w}=k k_{r w}
\end{aligned}
$$

Utilizing this fact the following equations may be written:

$$
\begin{align*}
& \beta_{g} \frac{\partial}{\partial x^{\prime}}\left(\frac{k k_{n g}}{\mu_{g}^{\beta} g} \frac{\partial P}{\partial x}\right) \stackrel{\sim}{=} \frac{\beta g_{i}^{n+\frac{1}{2}}}{\Delta x_{i}}\left[\left\{\frac{k k_{n g}}{\mu_{g} g_{g}}\right\}_{i+\frac{1}{2}}^{n+\frac{1}{2}} \frac{\left(P_{i+1}-P_{i}\right)^{n+1}}{\frac{\left(\overline{\Delta x_{i}+1}+\Delta x_{i}\right.}{2}}\right)^{n} \\
& \left.-\left\{\frac{k k_{n g}}{\mu_{g} g_{g}}\right\}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \frac{\left(\frac{\left(P_{i}-P_{i-1}\right.}{\Delta x_{i}+\Delta x_{i-1}}\right)^{n+1}}{2}\right], \tag{I-D}
\end{align*}
$$

$$
\begin{align*}
& \text { and, } \\
& \left(\beta_{0}-\beta_{g} R_{S}\right) \frac{\partial}{\partial x}\left(\frac{k k_{r o}}{\mu \beta} \frac{\partial P}{\partial x}\right) \stackrel{\sim}{=}\left[\frac{\beta_{0}-\beta_{g} R_{S}}{\Delta x_{i}}\right]^{n+\frac{1}{2}}\left[\left\{\begin{array}{l}
k k_{r_{0}} \\
\mu_{0} \beta_{0}
\end{array}\right\}_{i+\frac{7}{2}}^{n+\frac{1}{2}} \frac{\left(P_{i+1}-P_{i}\right)^{n+1}}{\left.\frac{\left(\overline{x_{i}+1}+\Delta x_{i}\right.}{2}\right)}\right. \\
& \left.-\left\{\frac{k_{r_{0}}}{\mu_{0} \beta_{0}}\right\}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \frac{\left(\frac{\left(P_{i}-P_{i-1}\right)^{n+1}}{\Delta x_{i}+\Delta x_{i-1}}\right)}{2}\right] \text {, and, } \tag{2-D}\\
& \beta_{w} \frac{\partial}{\partial x}\left(\frac{k k_{n w}}{\mu_{w} \beta_{w}} \frac{\partial P}{\partial x}\right)=\frac{\beta_{w i}^{n+\frac{1}{2}}}{\Delta x_{i}}\left[\left\{\begin{array}{l}
k k_{r w} \\
\mu_{w} \beta_{w}
\end{array}\right\}_{i+\frac{1}{2}}^{n+\frac{1}{2}} \frac{\left(P_{i+1}-P_{i}\right)^{n+1}}{\left.\frac{\left(x_{i+1}+\Delta x_{i}\right.}{2}\right)}\right. \\
& \left.-\left\{\frac{k k_{r w}}{\mu_{w} \beta_{w}}\right\}_{i-\frac{1}{2}}^{n+\frac{1}{2}} \frac{\left(\frac{\left(P_{i}-P_{i-1}\right)^{n+1}}{\Delta x_{i}+\Delta x_{i-1}}\right)}{2}\right]^{2} . \tag{3-D}
\end{align*}
$$

where the superscript $n+\frac{1}{2}$ represents the midpoint representation of the time level.

It is noted from Equations ($1-\mathrm{D}$), (2-D), and (3-D), that a time average of the pressure and saturation dependent variables has been employed. Therefore, the pressure dependent variables should be evaluated at $\left(\frac{\mathrm{p}^{\mathrm{n}+1}+\mathrm{P}^{\mathrm{n}}}{2}\right)$ and the relative permeabilities should be evaluated at $\left(\frac{S^{n+1}+S^{n}}{2}\right)$ where the saturations have not been shown with subscript
depending on the phase under evaluation. The parametors describing rock properties and model configuration are not time-dependent and can be isolated, formine a term, likX, which may be defined as follows:

$$
\begin{equation*}
H K X_{i}=\frac{2 k_{i+\frac{1}{2}}}{\Delta x_{i+1}+\Delta x_{i}}=\frac{2 k_{i}^{k} i+1}{\Delta x_{i} k_{i+1}+\Delta x_{i+1} k_{i}} \tag{16}
\end{equation*}
$$

for the ith spatial point, and

$$
\begin{equation*}
H K X_{i-1}=\frac{2 k_{i-1 / 2}}{\Delta x_{i-1}+\Delta x_{i}}=\frac{2 k_{i-1} k_{i}}{\Delta x_{i-1} k_{i}+\Delta x_{i} k_{i-1}} \tag{17}
\end{equation*}
$$

for the $i-1$ spatial point.
$K_{i+\frac{1}{2}}$ and $K_{i-\frac{1}{2}}$ are series averaged values for rock permeability, evaluated at the interfaces bounding the ith block. Equations (16) and (17) are derived in Appendix.

At this point a difference equation for the left hand side of Equation ($\mathrm{P}-4$) has been written. On the right hand side of Equation ($\mathrm{P}-4$), the only term to be written as a difference is $\frac{\partial P}{\partial t}$ which may be expressed as follows;

$$
\begin{equation*}
\frac{\partial P}{\partial t} \cong \frac{P_{i}^{n+1}-P_{i}^{n}}{\Delta t} . \tag{4-D}
\end{equation*}
$$

Now substituting Equations (1-D), (2-D), (3-D), (16), (I7) and (4-D) in Equation (P-4) yields:

$$
\begin{align*}
& \left\{\frac{\beta}{\Delta x_{i}}\right\}^{n+\frac{1}{2}}\left[H K X_{i} \gamma_{g i+\frac{1}{2}}^{n+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)^{n+1}-H K X_{i-1} \gamma_{g i-\frac{1}{2}}^{n+\frac{1}{2}}\left(P_{i}-P_{i-1}\right)^{n+j}\right] \\
& +\left\{\frac{\beta_{0}-\beta_{g}^{R}}{\Delta X_{i}}\right\}^{n+\frac{1}{2}}\left[H K X_{i} \gamma_{O i+\frac{1}{2}}^{n+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)^{n+1}-H K X_{i-1} \gamma_{O i+\frac{1}{2}}^{n+\frac{1}{2}}\left(P_{i}-P_{i-1}\right)^{n+1}\right] \\
& +\left\{\frac{\beta_{W i}}{\Delta x_{i}}\right\}^{n+\frac{1}{2}}\left[H K X_{i} \gamma_{w i+\frac{1}{2}}^{n+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)^{n+I}-H K X_{i-I} \gamma_{W i+\frac{1}{2}}^{n+\frac{1}{2}}\left(P_{i}-P_{i-1}\right)^{n+1}\right] \\
& =-\frac{1}{h \Delta x_{i} \Delta y}\left[\left(\beta_{g} Q_{g i n j}\right)_{i}+\left(\beta_{o}-\beta_{g} R_{s}\right)_{i}\left(Q_{o i n j}\right)_{i}+\left(\beta_{w} Q_{w i n j}\right)_{i}\right]^{n+\frac{1}{2}} \\
& -\phi\left[\frac{S_{g i}}{\beta_{g i}} \beta_{g i}^{\prime}+\frac{S_{o i}}{\beta_{o i}}\left(\beta_{o}^{\prime}-\beta_{g} R_{S}^{\prime}\right)_{i}-C_{w} S_{w i}\right]^{n+\frac{1}{2}} \frac{P_{i}^{n+1}-P_{i}^{n}}{\Delta t} \tag{5-D}
\end{align*}
$$

where

$$
\begin{aligned}
& \gamma_{g}=\frac{k_{r g}}{\mu_{g} \beta_{g}}, \gamma_{O}=\frac{k_{0}}{\mu_{O} \beta_{O}}, \gamma_{W}=\frac{k_{r w}}{\mu_{w} \beta_{W}} ; \\
& \beta_{G}^{\prime}=\frac{\partial \beta_{g}}{\partial P}, \beta_{O}^{\prime}=\frac{\partial \beta_{O}}{\partial P}, R_{S}^{\prime}=\frac{\partial R_{S}}{\partial P} ; \text { and } \\
& C_{W}=-\frac{1}{\beta_{W}} \frac{\partial \beta_{W}}{\partial P} .
\end{aligned}
$$

Equation (5-D) is a complete solution of the partial differential Equation (P-4) in difference form. For simplicity, Equation (5-D) can be rearranged by collecting all terms associated with $P_{i-1}^{n+1}, P_{i}^{n+1}$, and P_{i+1}^{n+1}, and rewritten in the following form:

$$
\begin{equation*}
A_{i} P_{i-1}^{n+1}+B_{i} P_{i}^{n+1}+c_{i} P_{i+1}^{n+1}=D_{i} \tag{5-D}
\end{equation*}
$$

where,

$$
\begin{align*}
& A_{i}=A O X I+A W X I+A G X I \tag{7-D}\\
& C_{i}=A O X 2+A W X 2+A G X 2 \tag{8-D}\\
& B_{i}=-A_{i}-C_{i}+T R M_{i} \tag{9-D}\\
& D_{i}=Q T E R M_{i}+\operatorname{TRM}_{i} P_{i}^{n} \tag{10-D}\\
& A O X I=\frac{H K X_{i-I}}{\Delta X_{i}}\left[\left(\beta_{O}-\beta_{g} R_{S}\right)_{i} Y_{\circ i-\frac{1}{2}}\right]^{n+\frac{1}{2}} \tag{11-D}\\
& A W X I=\frac{H K X_{i-1}}{\Delta X_{i}}\left[\beta_{W i} \gamma_{W i-\frac{1}{2}}\right]^{n+\frac{1}{2}} \tag{12-D}\\
& A G X I=\frac{H K X_{i-I}}{\Delta x_{i}}\left[\beta_{g i} \gamma_{g i-\frac{I}{2}}\right]^{n+\frac{1}{2}} \tag{13-D}\\
& A O X 2=\frac{H K X_{i}}{\Delta X_{i}}\left[\left(\beta_{O}-\beta_{g} R_{S}\right)_{i} \gamma_{O i+\frac{1}{2}}\right]^{n+\frac{1}{2}} \tag{14-D}\\
& A W X 2=\frac{H K X_{i}}{\Delta x_{i}}\left[\beta_{W i} Y_{W i+\frac{1}{2}}\right]^{n+\frac{1}{2}} \tag{15-D}\\
& A G X 2=\frac{H K X_{i}}{\Delta X_{i}}\left[\beta_{g i} Y_{g i+\frac{1}{2}}\right]^{n+\frac{1 / 2}{2}} \tag{16-D}\\
& T R M_{i}=\frac{\phi}{\Delta t}\left[\frac{S_{g i}}{\beta_{g i}} \beta_{g i}^{\prime}+\frac{S_{o i}}{\beta_{O i}}\left(\beta_{o}^{\prime}-\beta_{g} R_{S}^{\prime}\right)_{i}-C_{W} S_{w i}\right]^{n+\frac{1}{2}} \tag{I7-D}
\end{align*}
$$

$$
\begin{align*}
\operatorname{QTERM}_{i}= & -\frac{1}{h \Delta x_{i} \Delta y}\left[\left(\beta_{g} Q_{\operatorname{ginj}}\right)_{i}+\left(\beta_{o}-\beta_{g} R_{s}\right)_{i}\left(Q_{O i n j}\right)_{i}\right. \\
& \left.+\left(\beta_{w} Q_{w i n j}\right)_{i}\right]^{n+\frac{1}{2}} . \tag{18-D}
\end{align*}
$$

Equation (6-D), written about each point in the grid system, forms a set of simultaneous linear equations whose coefficient matrix is tridiagonal. The solution for a tridiagonal system is,

$$
\begin{gathered}
P_{m-1}=\alpha_{m-1} \\
P_{i}=\alpha_{i}-\frac{C_{i} P_{i-1}}{\lambda_{i}},
\end{gathered}
$$

$$
i=m-2, m-3, \ldots, 1
$$

where α 's and λ 's are determined from the recursion formulae,

$$
\begin{aligned}
& \lambda_{1}=B_{1}, \alpha_{1}=\frac{D_{1}}{\lambda_{1}} \\
& \lambda_{i}=B_{i}-\frac{A_{i} C_{i-1}}{\lambda_{i-1}}, i=2,3,4, \ldots, m-1 \\
& \alpha_{i}=\frac{D_{i}-A_{i} \alpha_{i-1}}{\lambda_{i}} . i=2,3,4, \ldots m-1
\end{aligned}
$$

It has been previously mentioned that the coefficients of Equation ($6-D$) are dependent on both pressure and saturation which are unknowns. Thus, the method involves a trial and error procedure. An estimate of future pressures
($P^{n^{+l}}$) and saturations (S^{n+1}) are made by linear extrapolation. Then the fluid properties are evaluated at $P^{n+\frac{1}{2}}=\frac{p^{n+1}+p^{n}}{2}$ while the rock properties (relative permeabilities) are evaluated at $S^{n+\frac{1}{2}}=\frac{S^{n+1}+S^{n}}{2}$. The unknown pressures are then calculated. Using these calculated pressures, an explicit determination for future saturations are made as described in the Material Balance Section. Both calculated pressures and satunations are then compared with the previously assumed values. If agreement is not within a prespecified tolerance, then an iteration is made. Otherwise, the calculations may proceed to the next time step. After the first time loop through, a Iinear extrapolation is made to predict pressures and saturations for the next time step. The extrapolation technique is shown in Appendix B.

C. STRATIFICATION

Since it is assumed that no cross-flow occurs between layers, then the performance of each layer is calculated independently, and the performance of the total reservoir is obtained by summing, the results of each individual layer's performance. This method of treatment represents the approach used by both Stiles and Dykstra.

Injection and production (through wells) occurs through selected sources or sinks, respectively, in the mathematical simulation. The assignment of water injection into the left edge of each layer and the calculation of production of oil, water and gas from the right edge of each layer is the

Fig. 3. Injection and Production Wells
convention assumed in this model and is treated as part of the boundary conditions. This is illustrated in Firure (3).

D. BOUNDARY CONDITIONS

The system simulated by this model is assumed to be closed at all boundaries except for those blocks containing wells, which for this model are those assumed to be at either end. No fluid is permitted to flow across these boundaries except that being produced or injected at the wells. The boundary barrier can be effected by either assigning zero permeability to an imaginary block outside the model or by assigning a pressure gradient of zero at these boundaries. The effect is identical. A schematic drawing of this model follows as Figure (4).

Fig. 4. Boundary Elements

Applying the latter assumption to Equation (6-D) and writing an equation about point $i=1$, (see Figure (3)) with no flow across the left-hand boundary gives:

$$
\begin{equation*}
A_{1} P_{0}^{n+1}+B_{1} P_{1}^{n+1}+C_{1} P_{2}^{n+1}=D_{1} \tag{18}
\end{equation*}
$$

The left hand boundary is closed by setting the pressure gradient to zero $\left[\left(\frac{\partial P}{\partial X}\right)_{1-\frac{1}{2}}=0\right]$, which is equivalent to setting $P_{O}=P_{I}$.

Substituting this result into Equation (18) for $i=1$ yields:

$$
\left(A_{I}+B_{I}\right) P_{I}^{n+1}+C_{I} P_{2}^{n+1}=D_{I}
$$

but, from Equation (9-D),

$$
B_{I}=-A_{1}-C_{I}+\mathrm{TRM}_{1}
$$

then the coefficient of P_{I}^{n+1} becomes

$$
A_{I}+B_{I}=-C_{I}+\mathrm{TRM}_{I}
$$

This result is equivalent to setting $A_{1}=0$, its value when the external block has a permeability of zero as shown below.

Equation (18) for the first block may be written as

$$
\begin{equation*}
\mathrm{B}_{1} \mathrm{P}_{1}^{\mathrm{n+1}}+\mathrm{C}_{1} \mathrm{P}_{2}^{\mathrm{n+1}}=\mathrm{D}_{1} \tag{19}
\end{equation*}
$$

Closing the left hand boundary by assigning a zero permeability at the boundary $\left(k_{0}=0\right)$ gives the following result:

The coefficient A_{1} in Equation (18) is defined as:

$$
\begin{equation*}
\left.A_{I}=\frac{H K X_{O}}{\Delta x_{i}}\left[\beta_{O}-\beta_{g} R_{S}\right)_{I} \gamma_{O i-\frac{1}{2}}+\beta_{w i} \gamma_{w i-\frac{1}{2}}+\beta_{g i} Y_{g i-\frac{1}{2}}\right] \tag{20}
\end{equation*}
$$

where,

$$
H K X_{0}=\frac{2 k_{i} k_{0}}{\Delta x_{0} k_{i}+\Delta x_{i} k_{0}}=\frac{2\left(k_{i}\right)(D)}{\Delta x_{0} k_{i}}=0 .
$$

Substituting this result into Equation (20) gives a value of

$$
A_{1}=0 .
$$

Equation (18) may, then, be written about the first point as shown by Equation (19), both methods giving identical results.

Second, using the same logic about point m (no flow across the right hand boundary), will result in $C_{m}=0$, and an equation about point m, may be written as,

$$
\begin{equation*}
A_{m} P_{m-1}^{n+1}+B_{m} P_{m}^{n+1}=D_{m} \tag{2I}
\end{equation*}
$$

where

$$
B_{m}=-A_{m}+T R M_{m}
$$

1. Injection End (left boundary).

The layer-wise distribution of water injection rate is obtained by first assuming a constant total injection rate in the "well", the left side of the model. A wellbore pressure at the top of the sand face $\left(\mathrm{P}_{\mathrm{wW}}\right)$ is assigned and the wellbore pressure at the middle of each layer may be calculated as follows:

$$
P_{W W_{j}}=P_{W_{j-1}}+\rho_{w}\left(\frac{h_{j}+h_{j-1}}{2}\right)
$$

The horizontal pressure gradient entering element i, j is

$$
\begin{equation*}
\left(\frac{\partial P^{x}}{\partial x}\right)_{i, j}=\frac{2\left(P_{W W}+\frac{\rho_{w}}{2}\left(h_{j-1}+h_{j}\right)-P_{i, j}\right)}{\Delta x_{i}} \tag{22}
\end{equation*}
$$

Replacing the gradient in Darcy's Law by the definition of the gradient as provided by Equation (22) yields:

$$
\begin{equation*}
\left(Q_{w l, j}\right)_{i n j}=\frac{2 k_{I}, j^{k}{ }_{r w l}, j^{h}, \Delta y}{\beta_{w l, j}{ }_{w l, j} x_{l}}\left(P_{w w}+1-\frac{P_{w}}{2}\left(h_{j-I}+h_{j}\right)-P_{I, j}\right) \tag{23}
\end{equation*}
$$

The average pressure for elements $1, j$ (for all layers) may be defined as:

$$
\bar{P}=\frac{\sum_{j=1}^{n} P_{I, j} h_{j}}{h_{T}}
$$

Then the average pressure gradient is:

$$
\begin{equation*}
\left(\frac{\bar{\partial} P}{\partial x}\right)=\frac{2\left(\left(P_{W W}+\frac{\rho_{W_{W}}}{2} h_{T}\right)-\bar{P}\right)}{\Delta x_{I}} . \tag{24}
\end{equation*}
$$

Applying the definition of gradient shown in Equation (24) to Darcy's Law and summing the capacity terms (kA) yields total flow rate to give the following relationship:
$\left(Q_{T W}\right)_{i n j}=\frac{2_{j=1}^{n}\left(k_{I, j} k_{r w I, j} h_{j}\right) \Delta y}{\bar{\beta}_{w} \bar{\mu}_{w} \Delta x_{I}}\left(P_{W W}+\frac{\rho_{W} h_{T}}{T_{T}}-\sum_{j=1}^{n} \frac{P_{I, j} h_{i}}{h_{T}}\right)$.

The fraction of the total injection rate entering tho ith layer is obtained by dividing Equation (23) by Iquation (? 3) as follows:

and the actual injection rate into the l,jth block is given as

Equation (27) is used to calculate the water injection rate into first element of each layer at the injection end. It should be noted that for elements between the "injection end" and. "production end" with no external flows, the QTERM is zero. The application of Equation (27) requires knowledge of the wellbore pressure at the top of the sand. A major difficulty arises from the fact that wellbore pressure is not constant when constant injection is specified. The most realistic approach to solving the problem is to assume a constant wellbore pressure rather than constant injection rate and calculate water injection rate into first element of each layer by using Equation (23). For simplicity, it is assumed that pressure gradient across the first element of each layer is constant; then, Equation (27) can be written as

$$
\begin{equation*}
\left(Q_{I, j}\right)_{i n j}=\left(Q_{T_{W}}\right)_{i n j} \frac{k_{I}, j^{k_{r w l}}, j^{h}}{\sum_{j=1}^{n} k_{1, j} k_{r w l}, j^{h}}, \tag{28}
\end{equation*}
$$

since pressure gradient cancels out under this set of conditions.
2. Production End (right boundary).

The sum of oil, water and gas production rates evaluated at reservoir conditions at the production well from a farticular layer is equal to the water injection rate (at reservoir conditions) into that layer at the injection well. The convention adopted in this model is that injection is positive and production is negative. Thus, the productioninjection balance stated above may be written as follows:
$\left.\left(Q_{W}{ }_{i n j} \beta_{W}\right)_{I, j}=-\left(Q_{O_{p r d}} \beta_{o}\right)_{m, j}-Q_{W, Q_{p r d}} \beta_{W}\right)_{m, j}-\left(Q_{Q_{p r a}} \beta_{m, j}\right)$.

Darcy's Law is used to calculate water-oil ratio at reservoir conditions for each layer at the production well and may be written as follows including simplification:

$$
\frac{\left.\left(Q_{W}^{W_{\text {prd }}}{ }_{W}^{\beta_{W}}\right)_{m, j}^{\beta_{o}}\right)_{m, j}}{\left(Q_{o p d}\right.}=\left(\frac{k_{r w}}{k_{r o}} \frac{\mu_{o}}{\mu_{W}}\right)_{m, j}
$$

and

$$
\begin{equation*}
\left(Q_{W_{\text {prd }}} \beta_{w}\right)_{m, j}=\left(Q_{O_{p r d}} \beta_{o}\right)_{m, j}\left(\frac{k_{r w}}{k_{r o}} \frac{\mu_{o}}{\mu_{W}}\right)_{m, j} \tag{30}
\end{equation*}
$$

Writing an equation for gas-oil ratio in the same manner and solving for the gas production rate at reservoir conditions yields the following relation:

$$
\begin{equation*}
\left(Q_{g_{p r d}} \beta_{g}\right)_{m, j}=\left(Q_{O_{p r d}} \beta_{o}\right)_{m, j}\left(\frac{k_{r g}}{k_{r o}} \frac{\mu_{O}}{\mu_{g}}\right)_{m, j} . \tag{3I}
\end{equation*}
$$

Substituting results shown by Equations (30) and (31) into the reservoir voidage balance given by Equation (29), and then solving for oil production rate at reservoir conditions, yields

$$
\begin{equation*}
\left(Q_{O_{p r d}} \beta_{o}\right)_{m, j}=\frac{-\left(Q_{W_{i n j}} \beta_{W}\right)^{\prime} I, j}{I+\left\{\frac{k_{r w}}{k_{r o}} \frac{\mu_{o}}{\mu_{W}}+\frac{k_{r g}}{k_{r o}} \frac{\mu_{o}}{\mu_{g}}\right\}_{m, j}} . \tag{32}
\end{equation*}
$$

Having available reservoir oil production rates for each layer now allows values of the water and gas rates at reservoir conditions to be calculated by Equations (30) and (31), respectively, for each layer. Then all three rates are converted to stock tank conditions by dividing the reservoir rates calculated (which include volume factors) by the appropriate formation volume factor for each phase.

The total production rates for the well for each phase are now obtained by adding the respective rates from each layer. The water-oil ratio and gas-oil ratio from the well for the time period under consideration are computed as follows:

$$
\begin{align*}
& \left(Q_{T o}\right)_{m, p r d}=\sum_{j=I}^{n}\left(Q_{o m}, j\right)_{\text {prd }}, \tag{33}\\
& \left(Q_{T w}\right)_{m, p r d}=\sum_{j=I}^{n}\left(Q_{w j}, j\right)_{p r d}, \tag{34}\\
& \left(Q_{T g}\right)_{m, p r d}=\left(\sum_{j=I}^{n}\left(\left(Q_{g m}, j_{p r d}\right)+\left(Q_{o m, j}\right)_{p r d}\left(\frac{R_{s m, j}^{n+R_{s m}^{n}, j}}{2}\right)\right) .\right. \tag{35}\\
& W O R=\left(Q_{T w}\right)_{m, p r d} /\left(Q_{T o}\right)_{m, p r d}, \tag{36}
\end{align*}
$$

and

$$
\begin{equation*}
\text { GOR }=\left(Q_{T g}\right)_{\mathrm{m}, \mathrm{prd}} /\left(\mathrm{Q}_{\mathrm{TO}}\right)_{\mathrm{m}, \mathrm{prd}} . \tag{37}
\end{equation*}
$$

E. MATERIAL BALANCE

Material balance calculations were made on each block in deriving the pressure equation and are also used to update saturations across each time step.

Fig. 5. Grid System for Material Balance

Referring to Figure (5), the saturation in block (i) at a new time level $t(n+I)$ can be stated as the saturation at the beginning of the time step (old time level $t(n)$) plus the change in saturation during the time increment (Δt) (from n to $n+l$ time level), may be mathematically defined as,

$$
s_{i}^{n+1}=s_{i}^{n}+\Delta s_{i}
$$

ΔS_{i} for a phase is the change in volume of that phase in block (i) during the time increment, divided by that block's pore volume.

However, in allowing for the compressibility of phases in this model, the accuracy of the calculation will be enhanced by making a mass balance rather than a volumetric balance and then converting the change in mass in the block to an equivalent change in saturation.

Thus, the following relation will be applicable for oil and water phases,

$$
\begin{equation*}
\Delta S_{i}=\frac{(\text { mass in })_{i}-(\text { mass out })_{i}+(\text { mass injected })_{i}}{\rho_{r i}(\mathrm{PV})_{i}} \tag{I-M}
\end{equation*}
$$

Dercy's Law is used at the ($i-\frac{1}{2}$) and ($i+\frac{1}{2}$) interfaces to evaluate the (mass in) ${ }_{i}$ and (mass out) ${ }_{i}$ terms, respectively, in Equation (I-M). The following combination of terms are applicable:

$$
\begin{equation*}
\Delta t \frac{\rho_{s} Q}{\beta}=-\frac{\rho_{s}^{k} k_{r} A\left(\frac{\partial P}{\partial x}\right)}{\beta \mu} \Delta t \tag{38}
\end{equation*}
$$

Recognizing that the mass entering block (i) comes from block (i-l) as indicated in Figure (5), and taking the convention that flow is from left to right, it concluded that the following relations apply for the (mass in) ${ }_{i}$ term:

$$
\begin{align*}
& \beta=\beta_{i-1}, k=k_{i-\frac{1}{2}}, \mu=\mu_{i-\frac{1}{2}}, \\
& \left(\partial P / \partial x_{i-\frac{1}{2}}=\left(P_{i}-P_{i-1}\right) /\left(\left(\Delta x_{i}+\Delta x_{i-1}\right) / \partial\right)\right. \tag{39}
\end{align*}
$$

and similarly for the (mass out) ${ }_{i}$ term:

$$
\begin{aligned}
\beta=\beta_{i}, k= & k_{i+\frac{1}{2}}, \mu=\mu_{i+\frac{1}{2}} \\
(\partial P / \partial x)_{i+\frac{1}{2}} & \stackrel{\sim}{=}\left(P_{i+1}-P_{i}\right) /\left(\left(\Delta x_{i+1}+\Delta x_{i}\right) / 2\right)
\end{aligned}
$$

Oil Phase:

Introducing the results shown immediately above into Equation (37) gives the following relations:

$$
\begin{align*}
& (\text { Mass in })_{i}=-\frac{\rho_{o s} k_{i-\frac{1}{2}} \gamma_{o i-\frac{1}{2}} A\left(P_{i}-P_{i-1}\right) \Delta t}{\beta_{o i-1}\left\{\frac{\Delta x_{i}+\Delta x_{i-1}}{2}\right\}} \tag{2-11}\\
& (\text { Mass out })_{i}=-\frac{\rho_{o s} k_{i+\frac{1}{2}} \beta_{o i+\frac{1}{2}} A\left(P_{i+1}-P_{i}\right) \Delta t}{\beta_{o i}\left\{\frac{\Delta x_{i+1}+\Delta x_{i}}{2}\right\}} \tag{3-M}
\end{align*}
$$

$(\text { Mass injected })_{i}=\left(Q_{\text {oinj }}\right)_{i} \rho_{o s} \Delta t$
$\rho_{o r}(P V)_{i}=\Delta x_{i} A \frac{\rho_{O S}}{\beta_{O i}} \phi$.
The equality $\rho_{o n}=\frac{\rho_{o s}}{\beta_{O}}$ is assumed applicable and is shown in detail in Appendix B.

Substituting the results shown in Equations (2-M), $(3-M),(4-M)$ and $(5-M)$ into Equation (1-M) and introducins the terms $H K X_{i}$ and $H K X_{i-1}$ as defined by Equations (IG) and (17), yields:

$$
\begin{align*}
\Delta S_{O}= & -\frac{\beta_{O i} \Delta t}{\Delta X_{i j} \phi}\left[\frac{H K X_{i-1} \gamma_{O i-\frac{1}{2}}\left(P_{i}-P_{i-1}\right)}{\beta_{O i-1}}\right. \\
& \left.-\frac{H K X_{i} \gamma_{O i+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)}{\beta_{O i}}-\frac{\left(Q_{o i n j}\right)_{i}}{h \Delta y}\right]^{n+\frac{1}{2}} \tag{6-M}
\end{align*}
$$

where $A=h \Delta y$. It is well to note that all rock and fluids properties are evaluated at an average time, namely the ($n+\frac{1}{2}$) time level.

Water Phase:

Following a similar development as that shown for the oil phase, an equation for the change of water saturation during time increment Δt may be written as,

$$
\begin{align*}
\Delta S_{w}= & -\frac{\beta_{w i} \Delta t}{\Delta x_{i}}\left[\frac{H K X_{i-1} \gamma_{w i-\frac{1}{2}}\left(P_{i}-P_{i-1}\right)}{\beta_{w i-1}}\right. \\
& \left.-\frac{H K X_{i} \gamma_{w i+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)}{\beta_{w i}}-\frac{\left(Q_{w i n j}\right){ }_{i}}{h \Delta y}\right]^{n+\frac{1}{2}} \tag{7-M}
\end{align*}
$$

Gas Phase:
For the gas phase, an additional term should be incorporated into Equation ($1-M$) to account for the gas evolution as defined by Equation (9). With this additional term, the following equation describes the gas saturation incremental change:

$$
\begin{aligned}
\Delta S_{g i}=(\text { mass in })_{i} & +(\text { mass of gas evolved })_{i}-(\text { mass out })_{i} \\
& +(\text { mass injected })_{i} / \rho_{g r i}(P V)_{i} .
\end{aligned}
$$

An explanation of the term accounting for solution gas was given previously and the term is listed as Equation (9). The present handling of this term is identical except that the ratio ($\frac{S_{o}}{\beta_{O}}$) will be factored out of the derivation as a constant at the average time over the increment. This is a realistic assumption since permitting $\left(\frac{S_{0}}{\beta_{0}}\right)$ to vary may give rise to a situation in which all the gas in solution in the ΔS_{0} increment would be released during the time stap. Thus, the "gas evolved term" in difference form will be,

$$
\begin{equation*}
\frac{\partial M_{F G}}{\partial t} \Delta t=-\Delta x_{i} A \phi \rho_{g s}\left(\frac{S_{o}^{n+1 / 2}}{\beta_{0}}\right)^{\left(R_{S}^{n+1}-R_{S}^{n}\right)_{i} ~} \tag{9-M}
\end{equation*}
$$

Applying logic like that used to derive ΔS_{i} for the oil and water phases and incorporating the gas evolution term, an equation may be written for the change in gas saturation in block (i) during time increment (Δt) as follows:

$$
\begin{align*}
\Delta S_{g i}= & -\frac{\beta_{g i} \Delta t}{\Delta x_{i} \phi}\left[\frac{H K X_{i-1} \gamma_{g i-1_{2}}\left(P_{i}-P_{i-1}\right)}{\beta_{g i-1}}\right. \\
& \left.-H K X_{i} \gamma_{g i+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)-\frac{\left(Q_{g i n j}\right)}{n \Delta y}\right]^{n+\frac{1}{2}} \\
& -\left\{\frac{S_{0}}{\beta_{0}}\right\}_{i}^{n+\frac{1}{2}}\left(R_{S}^{n+1}-R_{S}^{n}\right)_{i} \beta_{g i}^{n+\frac{1}{2}} . \tag{10-M}
\end{align*}
$$

For simplicity, Equations ($6-M$), ($7-M$) and (IO-M) may be written as follows:

$$
\begin{align*}
& \Delta S_{O i}=Z Z(A M O X I-A M O X 2-Q O T E R M) \tag{1I-M}\\
& \Delta S_{W i}=Z Z(A M W X I-A M W X 2-Q W T E R M) \tag{1?-14}\\
& \Delta S_{g i}=Z Z(A M G X I-A M G X 2-Q G T E R M)-\text { RSTERM } \tag{13-M}
\end{align*}
$$

where,

$$
\begin{aligned}
& Z Z \quad=-\Delta t / \phi \Delta x_{i} \\
& A M O X 1=H K X_{i-1}\left[\gamma_{O i-\frac{1}{2}}\left(P_{i}-P_{i-1}\right)\left(\frac{\beta_{O i}}{\beta_{O i-1}}\right)\right]^{n+\frac{1}{2}} \\
& A M W X I=H K X_{i-1}\left[\gamma_{W i-\frac{1}{2}}\left(P_{i}-P_{i-1}\right)\left(\frac{B_{w i}}{\beta_{W i-1}}\right)\right]^{n+\frac{1}{2}} \\
& \text { AMGXI }=H K X_{i-1}\left[\gamma_{g i-\frac{1}{2}}\left(P_{i}-P_{i-1}\right)\left(\frac{\beta_{g i}}{\beta_{g i-1}}\right)\right]^{n+\frac{1}{2}} \\
& A M O X 2=H K X_{i}\left[\gamma_{O i+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)\right]^{n+\frac{1}{2}} \\
& \operatorname{AMWX2}=H K X_{i}\left[\gamma_{W i+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)\right]^{n+\frac{1}{2}} \\
& \text { AMGX2 }=H K X_{i}\left[\gamma_{g i+\frac{1}{2}}\left(P_{i+1}-P_{i}\right)\right]^{n+\frac{1}{2}} \\
& \text { QOTERM }=\frac{\beta_{o i}\left(Q_{\text {winj }}\right)_{i}}{h \Delta y}
\end{aligned}
$$

$$
\begin{aligned}
\text { QWTERM } & =\frac{\beta_{w i}\left(Q_{W i n j}\right)_{i}}{n \Delta y} \\
\text { QGTERM } & =\frac{\beta_{g i}\left(Q_{\text {gin }}\right)_{i}}{n \Delta y} \\
\operatorname{RSTERM} & =\left(\frac{S_{O}}{\beta_{O}}\right)^{n+\frac{1}{2}}\left(R_{S}^{n+1}-R_{S}^{n}\right) \beta_{g i} .
\end{aligned}
$$

The equations for updating oil, water and gas saturations are,

$$
\begin{aligned}
& S_{o i}^{n+1}=s_{o i}^{n}+\Delta s_{o i} ; \\
& s_{w i}^{n+1}=s_{w i}^{n}+\Delta s_{w i} ;
\end{aligned}
$$

and,

$$
S_{g i}^{n+1}=S_{g i}^{n}+\Delta S_{g i}
$$

V. RESULTS

Computational procedures for each of the analyses were developed and programmed in Fortran IV and the calculations were made by an IBM 360-50 computer. Flow diagrams and digital computer programs are presented in Appendix D.

Results of seventeen studies using four basic models are shown graphically by Figures 9, lo, ll, 12 and 13 , and a summary of study runs with results are shown in Table I. Reservoir configuration and computational data are presented in Appendix C. Of the four basic models used in the study, two were numerical models, and two were computer-programmed versions of the Dykstra'-Parsons' technique.

Variable permeability in the vertical direction was simulated numerically by combining four linear models such that it simulates four vertical layers of different permeabilities. The fixst of these models included horizontal variations in permeability and is referred to as the "heterogeneous layered model". The results from a single run for an oil-water viscosity ratio of 1.96 using this model are presented in Figures 9,10 , and 11 as curve Number 4 in each, and as indicated on the graph in Figures 12 and 13.

The second of the numerical models used is layered in four vertical zones just as in the first model; however, each layer is homogeneous and the value of permeability for a layer was computed as a series average of the heterogeneous permeabilities in the first model. This second model is
referred to as the "homogeneous layered model" and rosult: of six runs obtained using this model are presented. The results for an oil-water viscosity ratio of 1.96 are shown for comparison purposes in Figures 9,10 and 11 , and referred to as curve Number I. The results for oil-water viscosity ratios of $0.5,1.96,5.0,10.0,20.0$ and 40.0 are shown in Figures 12 and 13.

The first Dykstra-Parsons model is layered in four vertical zones, and the value for permeability of a layor is the same as in the second version of the numerical modol. The results of five runs are presented. The results for an oil-water viscosity ratio of 1.96 are shown in Fisures 3, 10 and 11 and referred to as curve Number 2 and results using Oil-water viscosity ratios of .5, I.96, 5.0, 10.0 and 20.0 are shown in Figures 12 and 13 .

The second Dykstra-Parsons model is layered in twentyfive vertical zones with an equal thickness of one foot in each of the layers. The permeability of each layer was read from Figure 8 , which was obtained by plottins the series-averaged value for permeability of each of the four layers used previously as a function of cumulative thickness. Results of five runs using this model are presented. The results for an oil-water viscosity ratio of 1.96 are shown in Figures 9, 10 and 11 , and referred to as curve Number 3 and results for oil-water viscosity ratios of $0.5,1.96$, $5.0,10.0$ and 20.0 are shown in Figures 12 and 13.

Fig. 8. Permeability Variations with Depth

TABLE I. Summary of Results

Model	\% Recovery at WOR = 10 for Oil-Water Viscosity Ratio of					
	. 5	1.96	5	10	20	40
```Numerical (Heterogeneous Layered)```	--	51.4	--	--	--	--
Numerical (Homogeneous Layered)	79.5	79	9.2	7.05	5.3	3.18
Dykstra-   Parsons   (25 Layers)	74.6	73.6	68.9	62.3	56	--
DykstraParsons (4 Layers)	72.7	71.7	70.9	68.1	61.5	--

## VI. DISCUSSION OF RESULTS

Figure (9) illustrates cumulative oil produced as a function of time for an oil-water viscosity ratio of 1.96 based on results from the four basic models described previously. Water breakthrough in all models occurred at approximately the same time (120-130 days). Curve 1 (numer-ical-homogeneous layers) and Curves 2 and 3 (Dykstra-Parsons, 4 layers and 25 layers, respectively) showed close agreement until water breakthrough occurs and slight deviation thereafter. Curve 2 was in closer agreement with Curve 1 than Curve 3 as expected, since the models of Curves 1 and 2 are in closer agreement, theoretically. However, final recovery was the same for both Dykstra-Parson models. Curve 4 (the numerical-heterogeneous layered model) showed a great reduction in recovery compared to Curves 1,2 and 3 . This was primarily due to the formation of free gas resulting from the heterogeneity in the fourth layer, which in turn caused the reservoir pressure to decline below the bubble point pressure. Although the other layers in this model were also heterogeneous, there was less variation in the permeabilities in these blocks prohibiting notable gas formation.

Figure (l0), illustrates cumulative oil produced as a function of water-oil ratio. Curves 1 and 4 show that water-oil ratio changes gradually over most of the region except for regions with periodic rapid increases. This is explained by the fact that when any layer breaks through, the composite water-oil ratio increases significantly.

Thereafter, the water-oil ratio increases were gradual due to continually changing saturations until another layer breaks through resulting in another sudden increase. This face is not as pronounced in Curves 2 and 3 (DykstraParsons), even though the results show some gradual changes in water-oil ratio. Because of the assumption of pistonlike displacement in the Dykstra-Parsons method, only water is flowing in any layer after water breakthrough. The gradual change in water-oil ratio is due to changing velocities within the layers due to the front continually advancing in layers of different permeabilities. The changes are not due to saturation changes at the production face. In fact, Curves 2 and 3 are very nearly step-functions. It is also of interest to note that areal non-uniformity in permeability increased the life of the reservoir but resulted in less oil recovery and consistently higher water-oil ratios.

Figure (11) illustrates oil production rate as a function of time. Curve $I$ shows fluctuations at the beginning of water injection which is due to the unsteady state nature of the model. A sudden decrease in oil production rate occurs when water breaks through in the most permeable layer. Curve 4 shows a sudden decrease in oil production rate until water breakthrough, and this is due to the formation of free gas.

Figure (12) illustrates the relationship between cumulative oil produced and cumulative water injected for various oil-water viscosity ratios. As expected, the recovery
decreased as oil-water viscosity ratio increased for a particular model. This is also shown in Figure (13) by results from both numerical and Dykstra-Parson models. The deviation and reduction in oil recovery as compared by results from the numerical model from Dykstra-Parsons for oil-water viscosity ratios of $5.0,20.0$, and 40.0 , results from the fact that the Dykstra-Parsons approach is not adapted for conditions where free gas is formed or is present as occurs in depleted oil sands. The model assumes only two-phase fluid flow (oil and water), and the method is not suitable for gas flow due to the assumption of piston-like displacement. It is also of interest to note that an increase in oil-water viscosity ratio results in a decline of reservoir pressure and an increase in the life of the reservoir by producing less oil at a higher water-oil ratio.



Fig. 10. Cumulative 0il Produced vs. Water-0il Ratio for $\frac{\mu_{0}}{\mu_{w}}=1.96$



Fig. 12. Cumulative 0 il Produced vs. Cumulative Water Injected for Various $\frac{\mu_{0}}{\mu_{\mathrm{w}}}$ Ratios


Fig. 13. Percent Recovery of Initial Oil in Place vs. OilWater Viscosity Ratio at WOR = 20:1

## VII. CONCLUSIONS

1. Prediction of reservoir performance under a water drive by a three-phase numerical simulation model is shown to be feasible due to the favorable comparison of results with the Dykstra-Parsons method for those cases where the Dykstra-Parsons assumptions are satisfied.
2. The numerical method is valid for more general use than the Dykstra-Parsons method since the latter does not account for changes in fluid properties as a function of pressure, reservoir geometry, rock heterogeneity, and three-phase flow.
3. Results show that the prediction of performance of a water flood project by the Dykstra-Parsons method will not be valid when a mobile gas is present. The gas phase reduces oil mobility to such an extent that considerably less oil may be produced at water breakthrough than predicted by the Dykstra-Parsons technique.
4. Areal rock heterogeneity is not adequately accounted for by series-averaging individual permeabilities within a layer. Thus, a numerical simulator is needed for predictions where areal heterogeneity is obvious.
5. The Dykstra-Parsons calculations are faster than those by the numerical model and should be used in preference where conditions fit the assumptions of the DykstraParsons method.
VIII. APPENDICES

## APPENDIX A

## 1. NOMENCLATURE

A	$\begin{aligned} &= \text { cross sectional area normal to the flow direction, } \\ & A=\Delta y h-s q-c m \end{aligned}$
C	$=$ compressibility $-\mathrm{atm}^{-1}$
g	$=$ acceleration of gravity - cm/sq-sec
h	= layer thickness - cm
$h_{T}$	$=$ total reservoir thickness - cm
k	= absolute permeability - Darcy
$k_{g}, k_{o}, k_{w}$	= phase effective permeability
$\mathrm{k}_{\mathrm{r}}$	= relative permeability
M	$=$ mass of accumulation - gm
m	= number of elemental blocks in each layer
$M_{F G}$	$=$ mass of free gas evolved from solution gas for time period $t_{n}$ to $t_{n+1}$
n	= number of layers
P	$=$ pressure - tam
$P_{\mathrm{md}}$	$=$ pressure at the interface between blocks - atm
PV	$=$ pore volume - cc
$P_{\text {ww }}$	$=$ pressure at top of the sand - atm
Q	= production or injection rate - cc/sec
$\mathrm{R}_{S}$	$=$ solution gas-oil ratio cc of gas/cc of oil
$\mathrm{R}_{S}^{\prime}$	$=\frac{\partial R_{S}}{\partial P}$
S	= saturation - fraction
SGC	$=$ equilibrium gas saturation - fraction
SOR	$=$ residual oil saturation - fraction


SWC	$=$ connate water saturation - fraction
t	= time - sec
V	$=$ Darcy's velocity potential - cm/sec
v	$=$ volume - cc
Gree	ters and Derivatives:
$\beta$	$=$ formation volume factor - res cc/std co
$\beta^{\prime}$	$=\frac{\partial \beta}{\partial \mathrm{P}}$
$\gamma$	$=\frac{k_{r}}{\mu \beta}$
$\phi$	= porosity - fraction
$\mu$	$=$ viscosity - cp
$\Phi$	= pressure potential - atm
$\rho$	$=$ density - gm/co
$\Delta x$	$=$ length of elemental block - cm
$\Delta \mathrm{P}$	= pressure drop
$\Delta S_{i}$	$=$ change in saturation to the ith elemental block from time $t_{n}$ to $t_{n+1}$ - fraction
$\Delta t$	$=$ time increment - sec
$\Delta y$	$=$ width of elemental block - cm
$\frac{\partial M}{\partial t}$	$=$ mass rate of accumulation - gm/sec
$\frac{\partial M_{F G}}{\partial t}$	mass rate of gas evolved from solution gas from time $t_{n}$ to $t_{n+1}$

Subscripts:
b

$$
\begin{array}{ll}
\mathrm{b} & \text { bubble point } \\
\mathrm{g} & \text { gas phase } \\
\text { i } \quad \text { indicating ith elemental block in x-direction }
\end{array}
$$

```
inj \(\quad\) injection
j \(\quad=\) indicating jth layer in Z-direction
\(\max \quad=\quad \operatorname{maximum}\)
prd \(\quad=\) production
s \(\quad=\) standard conditions of pressure and temperature
 (1 atm and \(60^{\circ} \mathrm{F}\))
T = total
```

Superscript:
n

$$
=\text { indicating nth time level }
$$

## 2. LIST OF COMPUTER SYMBOLS

FORTRAN SYMBOL

AX
BGPRM

BOPRM
BTA
BTAG

BTAO

BTAW

BTOBP

BTWBP

BX
cov
CUMOP
CUMWIN
CX
DELT
DELTP

DELX
DELY
DELZ
DX
GMA
GOR

ALBEGRAIC SYMBOLS OR DEFINITION

A
$\beta_{g}^{\prime}$
$\beta_{0}^{\prime}$
$\lambda$
$\beta_{g}$
$\beta_{0}$
$\beta_{W}$
$\beta_{o}$ at bubble point
$\beta_{w}$ at bubble point

B

C = coverage
cumulative oil produced
cumulative water injected

C
$\Delta t$
$\Delta N_{P}$
$\Delta x$
$\Delta y$
$Z_{i}{ }^{-Z}{ }_{i-1}$

D
$\alpha$
gas-oil ratio



WOR	water oil ratio
WP	cumulative water produced
XMUG	$\mu_{g}$
XMUO	$\mu_{O}$
XMUW	$\mu_{W}$
XMUOBP	$\mu_{O}$ at bubble point
	$\mu_{W}$ at bubble point

APPENDIX B.
DERIVATION OF MISCELLANEOUS RELATIONSHIPS

1. Derivation of HKX
$k_{i+\frac{1}{2}}$ and $k_{i-\frac{1}{2}}$ are the series averaged values of permeability evaluated downstream and upstream, respectively, for the ith block. Each evaluation is based on the length and permeability of the two blocks bounding each respective interface horizontally. (18) The derivation of this parameter for the downstream interface is given below and is based on the geometric configuration shown in Figure (6).

Consider only that portion of the elemental block (i) and (i+l) between their mid points, an average permeability ( $\bar{k}$ ) can be derived by Darcy's Law evaluated separately between the two blocks.

$$
\begin{equation*}
Q_{i}=\frac{k_{i} A_{i} \Delta P_{i}}{\mu \frac{\Delta X_{i}}{2}} \tag{1-A}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{i+1}=\frac{k_{i+1} A_{i+1} \Delta P_{i+1}}{\mu \frac{\Delta x_{i+1}}{2}} \tag{2-A}
\end{equation*}
$$

Note that pressures are evaluated at the mid point of each elemental block, therefore $\Delta x$ 's are divided by 2 .

$$
\begin{aligned}
& \Delta P_{i}=P_{m d}-P_{i} \\
& \Delta P_{i+1}=P_{i+1}-P_{m d}
\end{aligned}
$$



Fig. 6. Illustration of Series-Averaging Technique for Permeabilities

The total flow rate through both blocks in series is:

$$
\begin{equation*}
Q_{T}=\frac{\bar{k} A\left(P_{i+1}-P_{i}\right)}{\frac{\Delta x_{i+1}+\Delta x_{i}}{2}} \quad, \bar{k}=k_{i+\frac{1}{2}} \tag{3-A}
\end{equation*}
$$

Considering the flow rate constant through a series of elemental blocks yields:

$$
\begin{equation*}
Q_{T}=Q_{i}=Q_{i+I} \tag{4-A}
\end{equation*}
$$

Further noting that,

$$
\begin{equation*}
\Delta P_{i}+\Delta P_{i+1}=\left(P_{m}-P_{i}\right)+\left(P_{i+1}-P_{m}\right)=P_{i+1}-P_{i} \tag{5-A}
\end{equation*}
$$

Equations (I-A), (2-A) and (3-A) are solved for their respective $\Delta P^{\prime} s$ and these results are substituted into Equation (5-A) to yield:

$$
\frac{Q \mu}{A}\left(\frac{\Delta x_{i+1}+\Delta x_{i}}{2 \bar{k}}\right)=\frac{Q \mu}{A}\left(\frac{\Delta x_{i}}{2 k_{i}}+\frac{\Delta x_{i+1}}{2 k_{i+1}}\right)
$$

or

$$
\begin{equation*}
\bar{k}=k_{i+\frac{1}{2}}=\frac{\Delta x_{i+1}+\Delta x_{i}}{\frac{\Delta x_{i}}{k_{i}} \frac{\Delta x_{i+1}}{k_{i+1}}}=\frac{k_{i+1} k_{i}\left(\Delta x_{i+1}+\Delta x_{i}\right)}{\Delta x_{i} k_{i+1}+\Delta x_{i+1} k_{i}} \tag{6-A}
\end{equation*}
$$

$H K X_{i}$ is defined as,

$$
\begin{equation*}
H K X_{i}=\frac{2 k_{i+\frac{1}{2}}}{\Delta x_{i}+\Delta x_{i+1}} \tag{7-A}
\end{equation*}
$$

Substituting Equation (6-A) into Equation (7-A) yields:

$$
H K X_{i}=\frac{2 k_{i} k_{i+1}}{\Delta x_{i} k_{i+1}+\Delta x_{i+1} k_{i}}
$$

( $8-\mathrm{A}$ )
and in the same manner:

$$
\begin{equation*}
\operatorname{HKX}_{i-1}=\frac{2 k_{i-1} k_{i}}{\Delta x_{i-1} k_{i}+\Delta x_{i} k_{i-1}} \tag{9-A}
\end{equation*}
$$

2. Derivation of the Relationship $\rho_{r}=\frac{\rho_{S}}{\beta}$

$$
\begin{aligned}
& \rho_{r}=\frac{\operatorname{mass}}{\bar{V}_{r}}, \rho_{s}=\frac{\operatorname{mass}}{V_{s}} \\
& \frac{\rho_{r}}{\rho_{s}}=\frac{\operatorname{mass}}{V_{r}} \times \frac{V_{r}}{\operatorname{mass}}=\frac{V_{s}}{V_{r}}=\frac{I}{\beta}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\rho_{r}=\frac{\rho_{s}}{\beta} \tag{10-A}
\end{equation*}
$$

3. Linear Extrapolation

Assume a linear relationship between time and pressure
Figure (7), then,

$$
\begin{equation*}
\frac{p^{n}-p^{n+1}}{t^{n+1}-t^{n}}=\frac{p^{n+1}-p^{n+2}}{t^{n+2}-t^{n+1}} \tag{II-A}
\end{equation*}
$$

Letting

$$
\begin{aligned}
& \Delta t_{I}=t^{n+1}-t^{n} \\
& \Delta t=t^{n+2}-t^{n+1} \text { and }
\end{aligned}
$$

Then solving Equation (Il-A) for $\mathrm{P}^{\mathrm{n+2}}$, gives,

$$
\begin{equation*}
\mathrm{P}^{\mathrm{n}+2}=\mathrm{P}^{\mathrm{n}+1}+\left(\mathrm{P}^{\mathrm{n}+1}-\mathrm{P}^{\mathrm{n}}\right) \frac{\Delta t}{\Delta t_{1}} \tag{12-A}
\end{equation*}
$$

In the same manner the extrapolated saturation is defined as:

$$
\begin{equation*}
s^{n+2}=s^{n+1}+\left(s^{n+1}-s^{n}\right) \frac{\Delta t}{\Delta t_{1}} \tag{13-A}
\end{equation*}
$$



Fig. 7. Linear Extrapolation

## APPENDIX C.

## RESERVOIR DATA

A reservoir to be water flooded will be considered to have the following geometry, rock and fluid properties,* Numerical Method (Heterogeneous Layered Case):

x direction

The number in each block in the above diagram is an absolute permeability value.

Total reservoir length $=1400$ feet
Total reservoir thickness $=25$ feet
Reservoir width $\Delta y=200$ feet
Total water injection rate $=1000$ barrels/day
*The data should be input in the computer program using field units. Conversion of field units to cgs units is made within the computer program.

Bubble point pressure $\mathrm{P}_{\mathrm{b}}=3487 \mathrm{psi}$
Oil compressibility $C O=.003 \mathrm{~atm}^{-1}$
Water compressibility $C W=.0000045 \mathrm{~atm}^{-1}$
Porosity $\phi=.20$
Connate water saturation $S W C=.2$
Residual oil saturation $S O R=.2$
Initial oil saturation $S O I=.8$
Initial water saturation $S W I=.2$
Initial gas saturation $S G I=0.0$
Equilibrium gas saturation SGC $=.05$
Oil formation volume factor at bubble point $\beta_{o b}=1.65$
Water formation volume factor at bubble point $\beta_{w b}=.95$
Initial pressures in all the blocks of the first layer

$$
=3487 \mathrm{psi}
$$

Initial pressures in the blocks of other layers are calculated by:

$$
P_{i, j}=P_{i, j-1}+.433\left(\frac{h_{j}^{+h} j-1}{2}\right)
$$

The fluid properties were suitably curve-fitted with the following empirical equations (using the least squares technique).
$\left.\begin{array}{l}\beta_{O}=1.09816+1.3487 \times 10^{-4} \mathrm{P}+6.8235 \times 10^{-9} P^{2} \\ \frac{\partial \beta_{O}}{\partial \mathrm{P}}=1.3487 \times 10^{-4}+2(6.82357) \times 10^{-9} \mathrm{P}\end{array}\right\} \mathrm{P}<\mathrm{P}_{\mathrm{b}}$
$\left.\begin{array}{l}\beta_{o}=\beta_{o b} e^{-C_{o}\left(P-P_{b}\right)} \\ \frac{\partial \beta_{o}}{\partial P}=-C_{o} \beta_{o}\end{array}\right\} \quad P>P_{b}$

$$
\begin{aligned}
& \beta_{W}=\beta_{W b} e^{-C_{W}}\left(P-P_{b}\right) \\
& \beta_{g}=1 . /\left(-19.937+9.126 \times 10^{-2} \mathrm{P}-2.1086 \times 10^{-6} \mathrm{P}^{2}\right) \\
& \frac{\partial \beta_{g}}{\partial \mathrm{P}}=-\beta_{\mathrm{g}}{ }^{2}(.09126-2(2.1086) \mathrm{P}) \\
& R_{S}=44.2725+.266273 P+7.7775 \times 10^{-6} \mathrm{P}^{2} \quad \mathrm{P} \leq \mathrm{P}_{\mathrm{b}} \\
& R_{S}=R_{S_{b}} \quad P>P_{b} \\
& \frac{\partial R_{S}}{\partial P}=.266273+2\left(7.7775 \times 10^{-6} \mathrm{P}\right) \quad \mathrm{P}<\mathrm{P}_{\mathrm{b}} \\
& \frac{\partial R_{S}}{\partial \mathrm{P}}=0 \\
& P>P_{b} \\
& \mu_{0}=3.98117-1.992 \times 10^{-2} \mathrm{P}+8.0314 \times 10^{-7} \mathrm{P}^{2}-1.9869 \times 10^{-10} \mathrm{P}^{3} \quad \mathrm{P} \leq \mathrm{P}_{\mathrm{b}} \\
& \mu_{o}=\mu_{O_{b}}+.0001\left(P-P_{b}\right) \quad P>P_{b} \\
& \mu_{w}=\mu_{W_{b}}+.00001\left(P-P_{b}\right) \\
& \mu_{g}=.002474+9.244 \times 10^{-6} \mathrm{P}-7.6556 \times 10^{-10} \mathrm{P}^{2}
\end{aligned}
$$

Relative Permeabilities (19)

$$
\begin{aligned}
& k_{r g}=\frac{S_{g}^{3}\left(2-S_{g}-2 S W C\right)}{(1-S W C)^{4}}, S_{W}>S W C \\
& k_{r g}=\frac{S_{g}^{3}\left(2-S_{g}-2 S W\right)}{(1-S W)^{4}}, \quad S_{W} \leq S W C
\end{aligned}
$$

$$
\begin{aligned}
& k_{r W}=\left[\frac{S_{W}-S W C}{I-S W C}\right]^{4}, \quad S_{W}>S W C \\
& k_{r W}=0, \quad S_{W} \leq S W C \\
& k_{r o}=\frac{\left(I-S_{g}-S W\right)^{3}\left(I-S_{g}+S W-2 S W C\right)}{(I-S W C)^{4}}, S_{W}>S W C \\
& k_{r o}=\left[\frac{I-S_{g}-S_{W}}{I-S W C}\right]^{4}, S_{W} \leq S W C
\end{aligned}
$$

Numerical Method (Homogeneou's Layered Case):
These data are the same as those for the heterogeneous case except that the layers are homogeneous. A seriesaveraged value of permeability was calculated for each heterogeneous layer and was assigned to that same layer in this model. These values are:

Layer	Permeability-Darcy
1	.18
2	.25
3	.38
4	.34

Dykstra-Parsons Method:
Initial gas saturation $=0.0$
Initial oil saturation $=.8$
Initial water saturation $=.2$
Residual oil saturation $=.2$
Connate water saturation $=.2$

Reservoir length $=1400$ feet
Reservoir thickness $=25$ feet
Reservoir width $=200$ feet
$\beta_{0}=1.65$
$\mu_{W}=.75$
$\mu_{0}=2.47$
$\mu_{w}=1.0$
$k_{\text {rw }}$ at the residual oil saturation $=.316$
$k_{r o}$ at the connate water saturation $=.75$

Layer's Thickness	Permeability
$\frac{\text { feet }}{4}$	$\underline{\text { md }}$
6	180
5	250
10	380
4	340

These permeability variations were plotted versus cumulative thickness as in Figure (8) and rearranged for equal intervals of one foot as shown in Table II.

TABLE II. Rearranged Permeabilities

Cumulative Thickness feet	$\begin{gathered} \text { Permeability From } \\ \text { Fig. } 8 \\ \text { md. } \end{gathered}$	Rearranged Permeability md.
1	170	398
2	172	398
3	175	397
4	180	395
5	183	388
6	289	385
7	200	380
8	212	376
9	230	365
10	250	358
11	272	350
12	298	340
13	327	327
14	358	298
15	380	272
16	395	250
17	398	230
18	398	212
19	397	200
20	388	189
21	385	183
22	376	180
23	365	175
24	350	172
25	340	170

## APPENDIX D

1. COMPUTER FLOW DIAGRAM FOR NUMERICAL MODEL

## MAIN PROGRAM





SUBROUTINE COFF



SUBROUTINE MEAL

+

D
CALL BETA $\left(P_{i, j}\right)^{n+\frac{7}{2}}$
CALL SOLGAS $\left(P_{i, j}\right)^{n+\frac{1}{2}}$




2. COMPUTER FLOW DIAGRAM FOR DYKSTRA-PARSONS METHOD



3. COMPUTER PROGRAM FOR NUMERICAL MODEL

```
FORTRAN IV G LEVEL 1, MOD 4 MAIN DATE = 69290 18/05/54
```

```
 C ONE DIMENSIONAL, THREE PHASE,STRATIFID, PETROLEUM RESERVOIR
```

    C ONE DIMENSIONAL, THREE PHASE,STRATIFID, PETROLEUM RESERVOIR
    C SIMULATOR VARIABLE LENGTH(DELT X), VARIABLE LAYERS THICKNES
    C SIMULATOR VARIABLE LENGTH(DELT X), VARIABLE LAYERS THICKNES
    C (H), HETROGENOUS PERMEABILITY IN EACH LAYER, NEGLETING GRAVITY
    C (H), HETROGENOUS PERMEABILITY IN EACH LAYER, NEGLETING GRAVITY
    C FORCES, CAPILLARY PRESSERS AND ROCK COPERSIBILITY, NO FLOW BETWEEN
    C FORCES, CAPILLARY PRESSERS AND ROCK COPERSIBILITY, NO FLOW BETWEEN
    C LAYERS, INJECTING FROM ONE END AND PRODUCING FROM THE OTHER
    C LAYERS, INJECTING FROM ONE END AND PRODUCING FROM THE OTHER
    C END
    C END
    C
    C
    C ****** MAIN PROGRAM ******
    C ****** MAIN PROGRAM ******
    0001
0001
0002
0002
0003
0003
0 0 0 4
0 0 0 4
0005
0005
0006
0006
0007
0007
0008
0008
0009
0009
0 0 1 0
0 0 1 0
0 0 1 1
0 0 1 1
0012
0012
0 0 1 3
0 0 1 3
0 0 1 4
0 0 1 4
0 0 1 5
0 0 1 5
0016
0016
0017
0017
0 0 1 8
0 0 1 8
0019
0019
0 0 2 0
0 0 2 0
DIMENSION DELX(10),PERM(10,10),H(10),SO(10,10),SW(10,10),SG(10,10)
DIMENSION DELX(10),PERM(10,10),H(10),SO(10,10),SW(10,10),SG(10,10)
DIMENSION DELX(10),PERM(10,10),H(10),SO(10,10),SW(10,10),SG(10,10)
I,SO1(10,10),SO2(10,10),SW1(10,10),SW2(10,10),SGl(10,10),SG2(10,10)
I,SO1(10,10),SO2(10,10),SW1(10,10),SW2(10,10),SGl(10,10),SG2(10,10)
I,SO1(10,10),SO2(10,10),SW1(10,10),SW2(10,10),SGl(10,10),SG2(10,10)
1,P(10,10), PN1(10,10), PN2(10,10), HKX(10,10),Q0(10,10),QW(10,10),
1,P(10,10), PN1(10,10), PN2(10,10), HKX(10,10),Q0(10,10),QW(10,10),
1,P(10,10), PN1(10,10), PN2(10,10), HKX(10,10),Q0(10,10),QW(10,10),
1QG(10,10),PN3(10,10)
1QG(10,10),PN3(10,10)
1QG(10,10),PN3(10,10)
N=4
N=4
N=4
M=8
M=8
M=8
TIME=0.0
TIME=0.0
TIME=0.0
ITCNT=0
ITCNT=0
ITCNT=0
CUMOP=0.0
CUMOP=0.0
CUMOP=0.0
CUMWP=0.0
CUMWP=0.0
CUMWP=0.0
SWC=.2
SWC=.2
SWC=.2
NN=N-1
NN=N-1
NN=N-1
PHI=. 20
PHI=. 20
PHI=. 20
SWI=.2
SWI=.2
SWI=.2
SGI=0.0
SGI=0.0
SGI=0.0
SOI=. }8
SOI=. }8
SOI=. }8
MM=M-1
MM=M-1
MM=M-1
KCOUNT=0
KCOUNT=0
KCOUNT=0
C
C
READ(I,90)(DELX(I),I=I,M)
READ(I,90)(DELX(I),I=I,M)
READ(I,90)(DELX(I),I=I,M)
READ(1,100)((PERM(I,J),I=I,M),J=I,N)
READ(1,100)((PERM(I,J),I=I,M),J=I,N)
READ(1,100)((PERM(I,J),I=I,M),J=I,N)
READ(I,102)(H(I),I=I,N)
READ(I,102)(H(I),I=I,N)
READ(I,102)(H(I),I=I,N)
DELY=200.
DELY=200.
DELY=200.
PIN=3487.

```
 PIN=3487.
```

    PIN=3487.
    ```
```

    SET UP INITIAL SATURATIONS
    D0 98 I=I,M
    DO 98 J=1,N
    SW(I,J)=SWI
    SG(I,J)=SGI
    SO(I,J)=SOI
    SWI(I,J)=SW(I,J)
    SW2(I,J)=SW(I,J)
    SOI(I,J)=SO(I,J)
    SO2(I,J)=(I,J)
    SGI(I,J)=SG(I,J)
    98 SG2(I,J)=SG(I,J)
    SWl,SGl,SOl ARE SATURATIONS AT N TIME LEVEL (OLD TIME LEVEL)
    C SW2,SG2,SO2 ARE SATURATIONS AT N+1 TIME LEVEL AND K+I ITERITIVE
C
C SET UP INITIAL PRESSURES
0032
0 0 3 3
0034
0035
0036
0037
0038
0039
0040

```
SET UP INITIAL SATURATIONS
D0 \(98 \mathrm{I}=\mathrm{I}, \mathrm{M}\)
DO \(98 \mathrm{~J}=1, \mathrm{~N}\)
\(S W(I, J)=S W I\)
\(S G(I, J)=S G I\)
SO \((I, J)=S O I\)
\(\operatorname{SWI}(I, J)=S W(I, J)\)
SW2 \((I, J)=S W(I, J)\)
SOI (I, J) \(=\) SO (I, J \()\)
\(S G I(I, J)=S G(I, J)\)
98 SG2(I,J) \(=\) SG(I,J)
SWI, SGl, SOl ARE SATURATIONS AT N TIME LEVEL (OLD TIME LEVEL)
SW2,SG2,SO2 ARE SATURATIONS AT N+1 TIME LEVEL AND K+1 ITERITIVE
C SET UP INITIAL PRESSURES
c
DO \(97 \mathrm{I}=1, \mathrm{M}\)
\(P(I, I)=P I N\)
\(\operatorname{PN1}(I, I)=P(I, I)\)
\(97 \operatorname{PN} 2(I, I)=P(I, I)\)
DO \(96 \mathrm{~J}=2, \mathrm{~N}\)
DO \(96 \mathrm{I}=1, \mathrm{M}\)
\(P(I, J)=P(I, J-1)+.433 *(H(J)+H(J-I)) / 2\).
\(\operatorname{PNI}(I, J)=P(I, J)\)
\(96 \operatorname{PN} 2(I, J)=P(I, J)\)
P IS PRESSURE AT N TIME LEVEL (OLD TIME LEVEL)
PNI IS PRESSURE AT \(N+1\) TIME LEVEL AND \(K\) ITRITIVE
PN2 IS PRESSURE AT N+I TIME LEVEL AND K+I ITERITIVE
OUTPUT INITTAL CONDITIONS
WRITE \((3,90)(\operatorname{DELX}(I), I=I, M)\)
WRITE \((3,102)(H(I), I=1, N)\)
WRITE(3,100)((PERM(I,J),I=I,M),J=I,N)
\(\operatorname{WRITE}(3,121)\) TIME
WRITE \((3,241)\)
```

0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068

0069
0070
0071
$\operatorname{WRTTE}(3,240)((\operatorname{PN} 2(I, J), I=1, M), J=1, N)$
WRITE $(3,253)$
$\operatorname{WRITE}(3,251)((S O(I, J), I=I, M), J=I, N)$
$\operatorname{WRITE}(3,254)$
$\operatorname{WRITE}(3,251)((S W(I, J), I=I, M), J=I, N)$
$\operatorname{WRITE}(3,255)$
$\operatorname{WRITE}(3,25 I)((S G(I, J), I=I, M), J=I, N)$
DO $92 \mathrm{~J}=1, \mathrm{~N}$
D0 $92 \mathrm{I}=\mathrm{I}, \mathrm{M}$
$P(I, J)=P(I, J) / I 4.7$
$\operatorname{PNI}(I, J)=\operatorname{PNI}(I, J) / 14.7$
$92 \operatorname{PN} 2(I, J)=\operatorname{PN} 2(I, J) / I 4.7$
C
STOIP=0.0
DO $91 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
DO $91 \mathrm{I}=1, \mathrm{M}$
CALL BETA (P(I, J), BTAO, BTAW, BTAG)
91 STOIP=STOIP+DELX(I)*DELY*H(J) *PHI*SOI/(5.61*BTAO)
WRITE(3,256)STOIP
D0 $93 \mathrm{I}=1, \mathrm{M}$
$93 \operatorname{DELX}(I)=\operatorname{DELX}(I) * 30.48$
DO $94 \mathrm{~J}=1, \mathrm{~N}$
$94 \mathrm{H}(\mathrm{J})=\mathrm{H}(\mathrm{J}) * 30.48$
DELY=DELY*30.48
C
CALCULATE HKX
DO $1 \mathrm{~J}=1, \mathrm{~N}$
DO $2 \mathrm{I}=1, \mathrm{MM}$
$2 \operatorname{HKX}(I, J)=(2 \cdot * \operatorname{PERM}(I, J) * \operatorname{PERM}(I+I, J)) /(\operatorname{DELX}(I) * \operatorname{PERM}(I+I, J)+\operatorname{DELX}(I+I)$
$C$
$C$
READ TIME STEP
READ (1,108) DELT,NTIME
TIME $=$ TIME + DELT
DELT $=$ DELT $* 24 . * 3600$.

ITCNT $=\operatorname{ITCNT}+1$
897 CONTINUE
C
$\mathrm{QT}=1000 . * 5.615 * 30.48 * 30.48 * 30.48 /(24 . * 3600$.
SUMKH=0.0
SUMQWI = 0.0
CALCULATE WATER INJECTION INTO THE FIRST BLOCK OF EACH LAYER PBIG=0.0
DO $50 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
IF(PBIG.LT.P(I,J)) PBIG=P(I,J)
50 CONTINUE
PBIG=PBIG+20.
D0 $899 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$899 \operatorname{SUMKH}=\operatorname{SUMKH}+\operatorname{PERM}(1, J) * H(J) *(\operatorname{PBIG}-\operatorname{P}(I, J))$
DO $898 \mathrm{~J}=1, \mathrm{~N}$
$\operatorname{QW}(1, J)=\operatorname{QT} * \operatorname{PERM}(1, J) * H(J) *(\operatorname{PBIG}-P(I, J)) / S U M K H$
SUMQWI = SUMQWI+QW ( $1, \mathrm{~J}$ )
$Q O(I, J)=0.0$
$898 Q G(I, J)=0.0$
DO $901 \mathrm{~J}=1, \mathrm{~N}$
DO $901 \quad I=2, \mathrm{MH}$
$Q W(I, J)=0.0$
$Q O(I, J)=0.0$
$901 \mathrm{Q}(\mathrm{I}, \mathrm{J})=0.0$
DO $892 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
892 QW(I,J) $=$ QT*(SW(I,J)/SUMQWI)
C
53 CONTINUE
$\mathrm{J}=1$
NCOUNT $=0$
52 CONTINUE
CALL COFF(SW1,SW2,SG1,SG2,HKX,P,PN1,PN2,M,MM,DELT, DELY, DELX, QO, $1 Q W, Q G$,
PHI, H, J,SO,SW,SG,PN3)
C
CALL MBAL(PHI, DELX, DELY, HKX,QO,QW,QG,SO,SW,SG,PN2,P,DELT,H,SO1,ISO2, SWI,SW2,SG1,SG2,M,KEYS, J, PNI)
NCOUNT $=$ NCOUNT+1

```
GO TO \((55,59)\), KEYS
59 CONTINUE
IF(NCOUNT.GT.2) GO TO 55
DO 60 I=I, M
\(\operatorname{SW} 2(I, J)=S W(I, J)\)
\(S W(I, J)=.5 *(S W 1(I, J)+S W 2(I, J))\)
\(S G 2(I, J)=S G(I, J)\)
\(S G(I, J)=.5 *(S G 1(I, J)+S G 2(I, J))\)
\(\operatorname{SO}(I, J)=.5 *(S O(I, J)+1 .-S W I(I, J)-S G I(I, J))\)
\(60 \operatorname{PN1}(I, J)=\operatorname{PN} 2(I, J)\)
GO TO 52
C
55 IF (J.EQ.N) GO TO 56
\(\mathrm{J}=\mathrm{J} \quad 1\)
NCOUTNT \(=0\)
GO TO 52
56 CONTINUE
WRITE (3,121)TTME
CALCULATE OIL, WATER AND GAS PRODUCTIONS, WOR,GOR AND OIL RECOVERY SUMQO \(=0.0\)
SUMQW=0.0
SUMQG=0.0
DO \(63 \mathrm{~J}=1, \mathrm{~N}\)
SUMQO \(=\) SUMQO + QO \((M, J)\)
RQO \(=\) SUMQ \(0 * 24 . * 3600 . /(30.43 * 30.48 * 30.48 * 5.615)\)
SUMQW=SUMQW+QW \((M, J)\)
RQW \(=\) SUMQW*24.*3600. \(/ * 30.48 * 30.48 * 30.48 * 5.615\))
CALL SOLGAS (P (M, J), RSI)
CALL SOLGAS (PN2*M,J), RS2)
63 SUMQG=SUMQG_QG(M,J)+QO(M,J)*(RS1+RS2)/2. IF (SUMQO.FQ.O.0) GO TO 58
WOR=SUMQW/SUMQO
GOR=5.615*SUMQG/SUMOO
GO TO 54
\(58 \mathrm{WOR}=0.0\)
```

```
0139
0 1 4 0
0141
0142
0143
0144
0145
0146
0 1 4 7
0148
0 1 4 9
0 1 5 0
0151
0152
0 1 5 3
0154
0 1 5 5
0156
0 1 5 7
0158
0 1 5 9
0 1 6 0
0 1 6 1
0162
0 1 6 3
 5 4 \text { CONTINUE}
 CUMOP = CUMOP+SUMQO*DELT/ (30.48*30.48*30.48*5.615)
 CUMWP = CUMWP+SUMQW*DELT/ (30.48*30.48*30.48*5.615)
 RECOV =100.*CUMOP/STOIP
 CUMWIN=QT*TIME*24.*3600./(30.48*30.48*30.48*5.615)
 C
 WRITE(3,241)
 WRITE(3,240)((PN3(I,J),I=l,M),J=1,N)
 WRITE(3,253)
 WRITE(3,251)((SO(I,J),I=1,M),J=I,N)
 WRITE(3,254)
 WRITE(3,25l)((SW(I,J),I=I,M),J=1,N)
 WRITE(3,255)
 WRITE(3,251)((SG(I,J),I=1,M),J=1,N)
 WRITE(3,257) RQO,RQW
 WRITE(3,252)CUMOP,CUMWP,RECOV,CUMWIN,WOR,GOR
 IE(WOR.GT.20.) GO TO 99
 KCOUNT=KCOUNT+1
 RESET OR READ TIME STEP
 DELTNI=DELT
 IF(ITCNT.LT.NTIME) GO TO 57
 ITCNT=0
 READ(1,108,END=99) DELT,NTIME
 DELT=DELT*24.*3600.
 57 ITCNT=ITCNT+1
 TIME=TIME+DELT/(24.*3600.)
 LINEAR INTERPOLATION FOR PRESSURES AND SATURATIONS FOR THE NEXT STEP TO
 ACCELERATE CONVERGENCE
 0 1 6 4
 DO 30 J=1,N
 DO 30 I=I,M
 SW2(I,J)=SW(I,J)+(SW(I,J)-SWI(I,J))/DELTN1*DELT
 SWI(I,J)=SW(I,J)
```

    SG2 \((I, J)=S G(I, J)+(S G(I, J)=S G I(I, J)) / D E L T N 1 * D E L T\)
    \(\operatorname{SGl}(I, J)=S G(I, J)\)
    SW \((I, J)=.5 *(S W 1(I, J)+S W 2(I, J))\)
    \(S G(I, J)=.5 *(S G 1(I, J)+S G 2(I, J))\)
    SO (I, J) +1. \(=S W(I, J)-S G(I, J)\)
    PN1 \((I, J)=\) PN2 \((I, J)+(P N 2(I, J)-P(I, J)) / D E L T N 1 * D E L T\)
    \(P(I, J)=P N 2(I, J)\)
    \(30 \operatorname{PN} 2(I, J)=\operatorname{PNI}(I, J)\)
    IF (KCOUNT.GT.60) GO TO 500
    60 TO 53
    500 TIME $=$ TIME-DELT/ $(24 . * 3600$.
$\operatorname{WRITE}(2,502)((P(I, J), I=I, M), J=I, N)$
$\operatorname{WRITE}(2,502)((\operatorname{PNI}(I, J), I=1, M), J=1, N)$
$\operatorname{WRITE}(2,502)((\operatorname{PN} 2(I, J), I=1, M), J=1, N)$
WRITE 2,503 ) TIME, DUMOP, CUMWP
$\operatorname{WRITE}(2,504)((S W(I, J), I=1, M), J=I, N)$
$\operatorname{WRITE}(2,504)((S W I(I, J), I=1, M), J=1, N)$
$\operatorname{WRITE}(2,504)((S W 2(I, J), I=1, M), J=1, N)$
$\operatorname{WRITE}(2,504)((S O(I, J), I=1, M), J-1, N)$
WRITE (2,504)((SO2(I,J), I=I, M), J=I,N)
$\operatorname{WRITE}(2,504)((S G(I, J), I-1, M), J=1, N)$
WRITE $(2,504)((S G I(I, J), I=1, M), J=1, N)$
$\operatorname{WRITE}(2,504)((S G 2(I, J), I=1, M), J=1, N)$
99 STOP
90 FORMAT(8F8.2)
100 FORMAT (8F8.2)
102 FORMAT (8F8.2)
108 FORMAT(F10.5,14)
121 FORMAT (/, 40X, '*****TIME ELAPSED=',FI6.7, 'DAYS*****',//)
240 FORMAT (20X, 8F10.1)
241 FORMAT(60X,'PRESSURE IN PSI',//)
251 FORMAT(20X,8F10.4)
253 FORMAT(//,60X,'OIL SATURATIONS',//)
254 FORMAT(//,60X,'WATER SATURATIONS',//)
255 FORMAT(//,60X,'GAS SATURATIONS',//)
252 FORMAT ( $/, 5 \mathrm{X}$, 'CUMULATIVE OIL PRODUCTION = ',F18.5,'STB', 10X,'CUMLATIVE
IWATER PRODUCTION $=$ ', F18.5,'STB', $/, 15 \mathrm{X}$, 'PERCENT RECOVERY $=1$ F10.4,10X,

```
 I'CUMULATIVE WATER INUECTED = ',F18.5,'STB',/,5X,'WOR=',FI0.4,IOX,
 I'GOR = ',FlO.4,//)
```

0204
0205
0206
0207
0208
0209

256 FORMAT( $/, 10 X$, 'ORIGINAL OIL IN PLACE', FI6.2, 'STB',//)
257 FORMAT(/,5X, ${ }^{\prime}$ OIL PRODUCTION RATE $=1$, ,FI8.5, 'STB/DAY', 5X,'WATER IPRODUCTION RATE $=$ ',F18.5, 'STB/DAY')
502 FORMAT (8F8.2)
503 FORMAT (3F20.6)
504 FORMAT (8F8.5)
END

```
0 0 0 1
0002
0 0 0 3
0004
0005
0006
0007
0008
0009
0 0 1 0
0 0 1 1
0012
0 0 1 3
0014
0 0 1 5
0016
0017
0018
0 0 1 9
0020
0021
0022
 0 0 2 3
 0 0 2 4
SUBROUTINE COFF(SW1,SW2,SG1,SG2,HKX,P,PN1,PN2,M,MM,DELT, DELY,DELX,QO, 1SQ,QG,PHI,H,J,S0,SW,SG,PN3)
 DIMENSION SWI(10,10),SW2(10,10),SG1(10,10),SG2(10, 10),HKX(10,10),
 1P(10,10),PN1(10,10),PN2(10,10),DELX(10),Q0(10,10),SQ(10,10),QG(10,120),
 1AX(10),BX(10),CX(10),DX(10),S0(10,10),SW(10,10),SG(10,10),H(10),PN3
 I(10,10)
 CW=.00000045
 SOR=. }2
 SWC-. }2
C
C AT THIS POINT SW,SG,SO ARE TIME AVERAGED SATURATIONS BETWEEN \(N\) AND \(N+1\)
C TIME LEVEL
DO \(50 \quad \mathrm{I}=1, \mathrm{M}\)
IF(I.EQ.1) GOTO 10
\(2 P X=.5 *(P(I, J)+P N 2(I, J))\)
CALL BETA (PX, BTAO, BTAW, BTAG)
CALL SOLGAS(PX,RS)
TEMP1 \(=\) BTA \(0-B T A G * R S\)
TEMP \(2=\) BTAW
TEMP \(3=\) BTAG
TEMP \(5=\) BTAO
IF(I.EQ.1) GO TO 8
3 PX=.5*(P(I-1,J)+PN2(I,J))
CALL BETA(PX,BTAO, BTAW, BTAG)
CALL SOLGAS (PX,RS)
TEMP6 = BTAO-BTAG*RS
TEMP4 \(=\operatorname{DELX}(\mathrm{I}-1) / \operatorname{DELX}(\mathrm{I})\)
A0X1=A0X2*TEMP1*TEMP4/TEMP6
AWX1 \(=\) AWX2*TEMP \(2 * T E M P 4 / B T A W\)
AGX1=AGX2*TEMP \(3 * T E M P 4 / B T A G\)
C
IF(I.EQ.M) GO TO 30
C
\(8 P X=.25 *(P(I, J)+P(I+1, J)+P N 2(I, J) \quad P N 2(I+1, J))\)
\(S W A=.5 *(S W(I, J)+S W(I+1, J))\)
```

C
*****CALCULATION OF COEFFICIENT*****

```
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0 0 3 9
0040
0 0 4 1
0 0 4 2
0043
0044
0045
0046
0047
0048
0049
0050
 0051
 0052
 0053
 0054
 0 0 5 5
 0 0 5 6
 0 0 5 7
 SGA=.5*(SG(I,J)+SG(I+I,J))
 SOA=.5*(SO(I,J)+SO(I+I,J))
 IF(SO(I,J).LE.SOR) SOA=0.0
 CALL BETA(PX,BTAO,BTAW,BTAG)
 CALL RPERM(SOA,SWA,SGA,RKO,RKW,RKG)
 CALL VISC (PX,XMUO,XMUW,XMUG)
 AOX2=HKX(I,J)/DELX(I)*TEMPI/BTAO*RKO/XMUO
 AWX2=HKX(I,J)/DELX(I)*TEMP2/BTAW*RKW/XMUW
 AGX2=HKX(I,J)/DELX(I)*TEMP3/BTAG*RKG/XMUG
 GO TO 1I
 C
 10 AOXI=0.0
 AWXI=0.0
 AGXI=0.0
 GO TO 2
 C
 30 AOX2=0.0
 AWX2-0.0
 AGX2=0.0
 C
 11 CONTINUE
 PX=(P(I,J)+PNI(I,J))*.5
 CALL BETPRM (PX,BOPRM,BGPRM,RSPRM)
 TRM=-SW(I,J)*CW+SG(I,J)*BGPRM/TEMP3+SO(I,J)*(BOPRM-RSPRM*TEMP3)/TEMP 5
 TRM=PHI*TRM/DELT
 AX(I) =AOXI +AWXI +AGXI
 CX(I) =AOX2+AWX2+AGX2
 BX(I)=-AX(I)-CX(I)+TRM
 C
 IF(I.EQ.M) GO TO 40
 IF(I.EQ.l) GO TO l2
C
 QTERM=0.0
 GO TO 13
 12 QTERM=QG(I,J)*TEMP3+QO(I,J)*TEMPI+QW(I,J)*TEMP2
 QTERM=-QTERM/(DELX(I)*DELY*H(J))
C
```

```
0058
 l3 DX(I)=QTERM+TRM*P(I,U)
C
 40 PX=.5*(P(I,J)+PN2(I,J))
 CALL BETA(PX,BTAO,BTAW,BTAG)
 TEMP 2=BTAW
 PX=.5*(P(M,J)+PN2(M,J))
 SOA=SO(M,J)
 SWA=SW(M,J)
 SGA-SG(M,J)
 CALL BETA(PX,BTAO,BTAW,BTAG)
 CALL RPERM(SOA,SWA,SGA,RKO,RKW,RKG)
 CALL VISC(PX,XMUO,XMUW,XMUG)
 CALL SOLGAS(PX,RS)
 IF(RKO.LE.O.0) GO TO }4
 TEMPI=BTAO-BTAG*RS
 QO(M,J)=TEMP2*QW(1,j)/(1.+RKW/RKO*XMUO/XMUW+RKG/RKO*XMUO/XMUG)
 QO(M,J)=QO(M,J)/BTAO
 QW (M,J) =QO(M,J)*RKW*BTAO*XMUO/ (RKO*BTAW*XMUW)
 QG(M,J)=QO(M,J)*RKG*BTAO*XMUO/(RKO*BTAG*XMUGG)
 QTERM-QG(M,J)*BTAG+QO(M,J)*TEMPI+QW(M,J)*BTAW
 QTERM=QTERM/(DELX(M)*DELY*H(J))
 DX(M)=QTERM+TRM*P(M,J)
 GO TO 50
 4 1 Q O (M , J) = 0 . 0
 IF(RKG.LE.0.0) GO TO }4
 QG(M,J)=TEMP 2 *QW (1,J)/(1.+RKW/RKG*XMUG/XMUW)
 QG(M,J)=QG(M,J)/BTAG
 GO TO 43
 42 QG(M,J)=0.0
 43 QW(M,J)=(TEMP2*QW(I,J)-BTAG*QG(M,J))/BTAW
 QTERM=QG(M,J)*BTAG+QW(M,J)*BTAW
 QTERM-QTERM/(DELX(M)*DELY*H(J))
 DX(M)=QTERM+TRM*P(M,J)
```

50 CONTINUE
CALL TRIDAG(AX,BX,CX,DX,PN2,M,J,PN3)
RETURN
END

```
 c
 c
 *****MATERIAL BALANCE CALCULATION*****
 SUBROUTINE MBAL(PHI,DELX,DELY,HKX,QO,QW,QG,SO,SW,SG,PN2,P,DELT,H,SOI,
 ISO2,SW1,SW2,SGl,SG2,M,KEYS,J,PN1)
 DIMENSION SW1(10,10),SW2(10,10),SW(10,10),SGI(10,10),SG2(10,10),
 ISG(10,10),HKX(10,10),P(10,10),PN2(10,10),PN1(10,10),DELX(10),Q0(10,10),
 IQW(10,10),QG(10,10),H(10),SO(10,10),SO1(10,10),SO2(10,10)
 c
0 0 0 3
0 0 0 4
0005
0 0 0 6
0007
0 0 0 8
0009
0 0 1 0
0 0 1 1
0012
0 0 1 3
0014
0015
0016
0 0 1 7
0018
0019
0020
0021
0 0 2 2
0 0 2 3
0 0 2 4
0 0 2 5
0026
```

        QGTERM \(=-Q G(M, J) * B T G I /(H(J) * D E L Y)\)
    900 CONTINUE
    C
    C
    IF(I.GT.I) GO TO 5
    \(A O X I=0.0\)
    \(A W X 1=0.0\)
    AGXI \(=0.0\)
    C
C
GO TO 7
$5 \mathrm{PX}=(\mathrm{P}(\mathrm{I}-1, \mathrm{~J})+\mathrm{PN} 2(\mathrm{I}-\mathrm{I}, \mathrm{J})) * .5$
CALL BETA(PX, BTAO, BTAW, BTAG)
AOXI $=(B T O I / B T A O) * A O X 2$
AWXI $=(B T W I / B T A W) * A W X 2$
AGXI $=(B T G I / B T A G) * A G X 2$
$7 \operatorname{IF}(I . L T . M)$ GO TO 8
C
AOX2-0.0
AWX2 $=0.0$
$A G X 2=0.0$
GO TO 17
C
8 SWA $=.5 *(S W(I, J)+S W(I+1, J))$
SOA $=.5 *(S O(I, J)+S O(I+I, J))$
$S G A=.5 *(S G(I, J)+S G(I+1, J))$
$\operatorname{IF}(S O(I, J) . L E . S O R) S O A=0.0$
CALL RPERM (SOA, SWA, SGA, RKO, RKW, RKG)
PAV $=.25 *(P(I, J)+P(I+1, J)+P N 2(I, J)+P N 2(I+1, J))$
CALL VISC(PAV, XMJO, XMUW, XMUG)
AOX2 $=\mathrm{HKX}(I, J) *(R K O / X M U 0) *(.5 *(P(I+I, J)+P N 2(I+I, J)-P(I, J)-P N 2(I, J)))$
AGX2 $=$ HKX $(I, J) *(R K G / X M U G) *(.5 *(P(I+I, J)+$ PN2 $2(I+I, J)-P(I, J)-P N 2(I, J)))$
AWX2 $=\operatorname{HKX}(I, J) *(R K W / X M U W) *(.5(P(I+I, J)+\operatorname{PN} 2(I+I, J)-P(I, J)-P N 2(I, J)))$
17 DELSW $=Z Z *$ (AWX1-AWX2-AWTERM)
DELSO $=2 Z *(A O X 1-A O X 2-Q O T E R M)$

```
0056
0 0 5 7
0058
0 0 5 9
0 0 6 0

SATURATION TOLERANCE CHECK
SSUM \(=\) SG(I, J \()+\) SW \((I, J)+S O(I, J)\)
\(S G(I, J)=S G(I, J) / S S U M\)
\(\operatorname{SW}(I, J)=S W(I, J) / S S U M\)
SO (I, J) \(=\) SO (I, J)/SSUM
\(\operatorname{IF}(S O(I, J) . G T .(1 .-S W C)) S O(I, J)=I .-S W C\)
IF(SO(I,J).GE.SOR) GO TO 20
\(S O(I, J)=S O R\)
20 IF(I.EQ.1) GO TO 21
\(\operatorname{IF}(S W(I, J) \cdot G T \cdot S W(I-I, J)) \quad S W(I, J)=S W(I-I, J)\)
\(21 \operatorname{IF}(S W(I, J) . G E . S W C)\) GO TO 22
\(\operatorname{SW}(I, J)=S W C\)
\(22 S G(I, J)=I .0=S O(I, J)-S W(I, J)\)
\(C H K=A B S(S G(I, J)-S G 2(I, J))-S A T O L\)
IF (CHK.GT.0.) KEYS=2
\(C H K=A B S(S W(I, J)-S W 2(I, J))-S A T O L\)
IF (CHK.GT.0.) KEYS=2
CHK \(=\operatorname{ABS}(S O(I, J)+S G 2(I, J)+S W 2(I, J)-1)-.S A T O L\)
IF (CHK.GT.0.) KEYS=2
CHK=ABS (PN2 (I, J)-PNI (I, J))-PRTOL
IF (CHK.GT.0.) KEYS=2
IF (SG(I,J).GT.O.0) GO TO 100
\(S G(I, J)=0.0\)
\(S W(I, J)=I .-S O(I, J)\)
C
100 CONTINUE
RETURN
END

0001 0002

0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
SUBROUTINE TRIDAG(AX, BX,CX, DX,PN2, \(M, J, P N 3\))
 DIMENSION \(A X(10), B X(10), C X(10), D X(10), \operatorname{PN} 2(10,10), B T A(10), G M A(10), \operatorname{PN} 3\)
 1(10,10)
 \(B T A(1)=B X(1)\)
 \(\operatorname{GMA}(I)=\operatorname{DX}(I) / B T A(I)\)
 DO \(10 \mathrm{I}=2, \mathrm{M}\)
 \(\mathrm{BTA}(I)=\mathrm{BX}(I)-\mathrm{AX}(I) * \mathrm{CX}(I-1) / \mathrm{BTA}(I-1)\)
 \(10 \operatorname{GMA}(I)=(D X(I)-A X(I) * G M A(I-I)) / B T A(I)\)
 \(\operatorname{PN} 2(M, J)=G M A(M)\)
 \(\operatorname{PN} 3(M, J)=G M A(M) * 14.7\)
 DO \(20 \mathrm{I}=2, \mathrm{M}\)
 \(K=\mathrm{MOI}+1\)
 \(\operatorname{PN} 2(K, J)=\operatorname{GMA}(K)-(C X(K) * \operatorname{PN} 2(K+I, J) / B T A(K))\)
 \(20 \operatorname{PN} 3(K, J)=\operatorname{PN} 2(K, J) * 14.7\)
 RETURN
 END

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
```

SUBROUTINE BETA(P,BTAO,BTAW,BTAG)
AO=.1098168E01
Al=.13487E-03
A2=.682357E-08
A3=-19.937
A4=.9126E-1
A5 =-.21086E-5
CW=.0000045
CO=.0003
PB=3487./14.7
BTWBP=.95
BTOBP=1.650
IF(P.LT.PB) GO TO }
BTAO = BTOBP* (EXP (-CO*(P-PB)))
GO TO 5
4 BTAO=AO+AI*(14.7*P)+A2*(14.7*P)**2
5 \mp@code { B T A G = A 3 + A 4 * 1 4 . 7 * P + A 5 * ( 1 4 . 7 * P ) * * 2 }
BTAG=1./BTAG
BTAW=BTWBP*(EXP (-CW*(P-PB)))
RETURN
END

```
```

    SUBROUTINE VISC(P,XMUO,XMUW,XMUG)
    AO=.397117EOI
    Al =-.299219E-02
    A2=.80314E-06
    A3 = -. 1986899E-09
    A4=.21027E-13
    A5=.0024738
    A6=.9244E-5
    A7=-.76556E-9
    PB=3487./14.7
    CVISO=.0001
    CVISW=.00001
    XMUOBP=1.47
    XMUWBP=.75
    IF(P.LT.PB) GO TO 6
    XMUO = XMUOBP+CVISO*(P-PB)
    GO TO 7
    6 XMUO=AO+A1*14.7*P+A2*(14.7*P)**2+A3*(14.7*P)**3+A4*(14.7*P)**4
    7 XMUW=XMUWBP+CVISW*(P-PB)
        XMUG=A5+A6*14.7*P+A7* (14.7*P)**2
        RETURN
    END
    ```

\section*{\(26 \cos 5\)}

0001
0002
0003 0004
0005
0006 0007 0008

SUBROUTINE SOLGAS(PA,RS)
PX=PA
\(P B=3487 . / 14.7\)
IF (PX.GT.PB) \(P X=P B\)
RS \(=44.27252+.266273 * 14.7 * P X+.000007775651 *(14.7 * P X) * * 2\)
\(R S=R S / 5.615\)
RETURN
END

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013

0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
 SUBROUTINE RPERM (SOA, SWA, SGA, RKO, RKW, RKG)
 SGC=. 05
 SWC \(=.20\)
 SOR=. 20
 IF (SWA.GT.SWC) GO TO 10
 RKG \(=(S G A * * * 3) *(2 .-S G A-2 . * S W A) /((1 .-S W A) * * 4)\)
 RKW \(=0.0\)
 RKO \(=((1,-S G A-S W A) /(1,-S W C)) * * 4\)
 GO TO 20
 10 CONTINUE
 RKG \(=(\) SGA**3 \() *(2,-\) SGA \(-2 . * S W C) /((1,-S W C) * * 4\)
 RKW \(=((S W A-S W C) /(1 .-S W C)) * * 4\)
 RKO \(=((1,-\) SGA - SWA \() * * 3) *(1,-S G A+S W A-2, * S W C) /((1,-S W C) * * 4)\)
 C
 ADJUST RKO FOR SOR AND RKG FOR SGC
 20 RKO \(=\) RKO* (SOA-SOR)/(1.-SOR)
 C
 \(R K G=R K G *(S G A-S G C) /(1 .-S G C)\)
 IF (RKO.LT.O.) RKO=0.0
 IF (SOA.LE.SOR) RKO \(=0.0\)
 IF(RKG.LT.0.) RKG=0.0
 IF(SGA.LE.SGC) RKG=0.0
 IF (RKW.LT.0.) \(R K W=0.0\)
 RKSUM \(=\) RKO + RKW + RKG
 IF(RKSUM.LE.I.) GO TO 6
 RKO = RKO/RKSUM
 RKW = RKW / RKSUM
 RKG \(=\) RKG/RKSUM
 6 CONTINUE
 RETURN
 END

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

SUBROUTINE BETPRM(PX,BOP,BGP,RSP)
\(\mathrm{Al}=.13487 \mathrm{E}-03\)
\(A 2=.682357 E-08\)
\(A 3=-19.937\)
\(A 4=.09126\)
\(A 5=-.21086 \mathrm{E}-5\)
\(A 6=.266273\)
A7=. \(7775651 \mathrm{E}-5\)
\(B T O B P=1.65\)
\(C O=.0003\)
\(\mathrm{PB}=3487 . / 14.7\)
IF (PX.LT.PB) GO TO 2
\(\mathrm{BTAO}=\mathrm{BTOBP} *(\operatorname{EXP}(-\mathrm{CO} *(P X-P B)))\)
BOP \(=-\mathrm{CO} * \mathrm{BTAO}\)
\(R S P=0.0\)
GO TO 3
2 BOP=AI \(+2 . * A 2 * P X * 14.7\)
RSP \(=A 6+2 . * A 7 * P X * 14.7\)
\(R S P=R S P / 5.615\)
3 BTAG \(=A 3+A 4 * 14.7 * P X+A 5 *(14.7 * P X) * * 2\)
\(B T A G=1 . / B T A G\)
BGP \(=-\) BTAG**2* \((A 4+2 . * A 5 * P X * 14.7)\)
RETURN
END
4. COMPUTER PROGRAM FOR DYKSTRA-PARSONS METHOD
```

/WAT 4 PTI40710,TIME=01,PAGES=010 AKBAR ALI M DEFAULT W JOB 75
/
C
CLASS=W,PRIORITY=13,READER=2
MODIFIED DYKSTRA-PARSONS METHOD
DIMENSION PERM(50),H(50),Z(50),A(50),XRATIO(50),B(50),COV(50),OILPR(50),
IPM(50),G(50),U(50),WOR(50),DELTP(50),WP(50),WI(50),TIME(50),RECOV(50) ,
IQOR(50)
TIME(1)=0.0
PERMAX=399.
SUMH=25.
N=25
NN=N-1
PV=200.*25.*1400.*.2/5.615
DELZ=.04
BO=1.65
RKW=.316
RKO=.75
XMUW=.75
SOI=.8
SOR=.2
WIR=1000
H(I)=1.
DO 4 I=2,N
4 H(I)=I.+H(I-I)
READ(1,I00)(PERM(I),I=1,N)
2 READ(I,400,END=50) XMUO
VRATIO = XMUO / XMUW
WRITE(3,4l0) VRATIO
GAMA = RKW/RKO *XMUO/XMUW
DO 10 I=I,N
Z(I)=H(I)/SUMH
A(I) =(I.-GAMA**2)*PERM(I)/PERMAX
10 XRATIO(I)=(GAMA-(SQRT(GAMA**2+A(I))))/(GAMA-1.)
BETA=0.0
B(N)=0.0
DO Il I=2,N

```

11 BETA \(=\mathrm{BETA}+\mathrm{XRATIO}(\mathrm{I})\)
\(B(I)=\) BETA
DO \(12 \quad I=2, N N\)
\(12 B(I)=B(I-I)-X R A T I O(I)\)
DO \(13 \quad I=1, N N\)
\(\operatorname{COV}(I)=Z(I)+B(I) * D E L Z / X R A T I O(I)\)
\(\operatorname{RECOV}(I)=\operatorname{COV}(I) *(1 .-S O R / S O I) * 100\).
\(130 \operatorname{ILPR}(I)=\operatorname{COV}(I) *(S O I-S O R) * P V / B O\)
\(P M(I)=P E R M A X\)
DO \(14 I=2, N\)
\(\operatorname{PM}(I)=\operatorname{PERM}(I)+\operatorname{PM}(I-I)\)
\(14 \mathrm{G}(\mathrm{I})=\operatorname{PERM}(\mathrm{I}) /(\mathrm{BO} *(\operatorname{SQRT}(\operatorname{GAMA} * * 2+\mathrm{A}(\mathrm{I}))))\)
SUMU \(=0.0\)
\(U(N)=S U M U\)
DO \(15 \mathrm{I}=2, \mathrm{~N}\)
15 SUMU=SUMU+G(I)
\(U(1)=S U M U\)
DO \(16 \mathrm{I}=2\), NN
\(16 U(I)=U(I-1)-G(I)\)
DO \(17 \mathrm{I}=1\), NN
\(17 \mathrm{WOR}(\mathrm{I})=\mathrm{PM}(\mathrm{I}) / \mathrm{U}(\mathrm{I})\)
WRITE(3,200)
\(W P(1)=0.0\)
DO \(18 \mathrm{I}=2\), NN
\(\operatorname{DELTP}(I)=0 \operatorname{ILPR}(I)-O I \operatorname{LPR}(I-I)\)
\(W P(I)=W O R(I) * \operatorname{DELTP}(I)+W P(I-I)\)
\(W I(I)=W P(I)+B O * O I L P R(I)\)
\(\operatorname{TIME}(I)=W I(I) / W I R\)
QOR(I) \(=\operatorname{DELTP}(I) /(T I M E(I)-T I M E(I-I))\)
WRITE(3,400)QOR(I)
WRITE(3,300) TIME(I),OILPR(I), RECOV(I), WP(I),WI(I),WOR(I)
18 CONTINUE GO TO 2
100 FORMAT(7F10.3)
200 FORMAT(//,8X, 'TIME', 8 X, 'CUMULATIVE OIL PROD', \(8 \mathrm{X},{ }^{\prime}\) RECOVERY', 7 X ,
\(I^{\prime}\) CUMULATIVE WATER PROD', 5X,CUMULATIVE WATER INJ', 15X, 'WOR',//, 18X, 'DAYS', 16X,'STB', 19X,'\%',21X,'STB',21X,'STB', 21X,'BBL/STB',//)
300 FORMAT(5X,F10.2,IX,F20.2,9X,F10.5,5X,F20.2,5X,F20.2,5X,F20.5,/)
400 FORMAT(FIO.5)
40 FORMAT(/,5X,'OIL VISCO RATIO=',F1O.3)
 50 STOP
 END
```


## REFERENCES

I. Dykstra, H. and Parsons, R. L.: The Prediction of Oil Recovery by Water Flood, Secondary Recovery of oil in the United States, API, New York, 2nd ed. (1950) p. I60.
2. Muskat, M.: Physical Principles of Oil Production, McGraw-Hill Book Co., New York, N. Y. (Ig49).
3. Hubbert, M. K.: Darcy's Law and the Fluid Equations of Flow of Underground Fluid, Trans. AIME (1956) 207, P. 222.
4. Cloud, W. F.: Variation of Pressure Gradient with Distance of Rectilinear Flow of Gas Saturated Oil and Unsaturated Oil through Unconsolidated Sands, Trans. AIME (1930) 86, p. 337.
5. Wyckoff, R. D. and Botset, H. G.: Flow of Gas Liquid Mixtures through Sands, Physics (1936) p. 325.
6. Leverett, M. C.: Capillary Behavior in Porous Solids, Trans. AIME (1941) 142, P. 151.
7. Leverett, M. C. and Lewis, W. B.: Steady Flow of Gas-Oil-Water Mixtures through Unconsolidated Sands, Trans. AIME (1941) 142, P. 107.
8. West, W. J., Garvin, W. W. and Sheldon, J. W.: Solution of the Equation of Unsteady State Two-phase Flow in Oil Reservoirs, Trans. AIME (1954) 201.
9. Hovanessian, S. A. and Fayers, F. J.: Pressure Studies in Bounded Reservoirs, Soc. Pet. Eng. Jour. (1961) 32.
lo. Douglas, J., Jr., Blair, P. M. and Wagner, R. J.: Calculation of Linear Water Flood Behavior Including the Effects of Capillary Pressure, Trans. AIME (1958) 213, p. 96 .
ll. Buckley, S. E. and Leverett, M. C.: Mechanism of Fluid Displacement in Sands, Trans. AIME (1942) 146, p. 107.
12. Douglas, J., Jr.: On the Relation Between Stability and Convergence in the Numerical Solution of Parabolic and Hyperbolic Differential Equations, Jour. Soc. Ind. Appl. Math. (1958) 4, p. 20.
13. Douglas, J., Jr., Peaceman, D. W. and Rachford, H. H., Jr.: A Method for Calculating Multi-Dimensional Immiscible Displacement, Trans. AIME (1959) 216, Pp. 297-308.
14. Rapoport, L. A.: Scaling Laws for Use in Design and Operation of Water-Oil Flow Models, Trans. AIME (1955) 204 , P. 143 .
15. Fagin, R. G. and Stewart, C. H., Jr.: A New Approach to the Two-Dimensional, Multi-phase Reservoir Simulator, Soc. Pet. Eng, (June, 1966), 175-182.
16. Coats, K. H., Nielsen, R. H., Terhune, M. H. and Weber, A. G.: Simulation of Three-Dimensional, Two-phase Flow in Oil and Gas Reservoirs, Soc. Pet. Eng., (December, 1967), 377-388.
17. Quon, D., Dranchuk, P. M., Allada, S. R. and Leung, P. K.: Application of the Alternating Direction Explicit Procedure to Two-Dimensional Natural Gas Reservoirs, Soc. Pet. Eng., (June, 1966).
18. Amyx, J. W., Bass, D. M., Jr. and Whiting, R. L.: Petroleum Reservoir Engineering, McGraw-Hill Book Co., New York, 1960.
19. Gottfried, B. S.: A Mathematical Model of Thermal Oil Recovery in Linear Systems, SPE Jour., (September, 1965), 196-210.

VITA

The author, Ali Mohammed Akbar, was born on April 22, 1941 in Kuwait City, Kuwait. He received his primary and secondary education at Shawaikh Secondary School in Kuwait. He received his Bachelor of Science Degree in Petroleum Engineering in January, 1966 from the University of Tulsa, Tulsa, Oklahoma. During his college education he worked during the summer, 1964 , with American Independent Oil Company in Wafra, Neutral Zone. Upon graduation he joined the Kuwait Oil Company as a petroleum engineer in Ahmadi, Kuwait and remained there until September, 1968. He is presently employed at Kuwait University in Kuwait as an assistant professor. He is married to Amira Al-Saigh the daughter of Hussain Al-Saigh of Kuwait. He enrolled at the University of Missouri - Rolla as a graduate student in September, 1968. He is a member of Pi Epsilon Tau and a junior member of AIME.

