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ABSTRACT

A numerical model for linear, three-phase fluid flow in
a stratified petroleum reservoir has been developed for the
purpose of studying water-flooding performance characteris-
tics. Gravity forces, capillary pressure and cross-flow were
neglected, but the fluids were considered compressible and
evaluations of dissolved gas concentrations have been
accounted for.

The model was used in evaluating the performance of a
water flood project for a hypothetical reservoir which con-
tained the three phases of 0il, gas., and water. The results
were then compared with those obtained using the Dykstra-
Parsons technique. The model produces results which were
found to be similar to those obtained by the Dyvkstra-Parsons
method for the displacement of 0il by water with no gas pre-
sent, but poor agreement resulted when free gas saturations
were Tformed. The results cobtained using the numerical model
are considered to be more realistic than those obtained by
the Dykstra-Parsons method in depleted o1l sands with a sub-
stantial gas saturation since the Dykstra-Parsons model was
built on the assumption that only one phase flows at a point
and water displace o0il in a piston-like manner. When a free
gas saturation is formed at the production well, the oil
mobility is reduced substantially resulting in a lower oil
recovery at water breakthrough than can be predicted by the

Dykstra-Parsons technique.



iiid
ACKNOWLEDGEMENT

The author wishes to express his appreciation to
Dr. M. D. Arnold, Dr. R. E. Carlile and Professor J. P.
Govier of the Petroleum Engineering Department of the Univer-
sity of Missouri - Rolla for their help, suggestions and
guidance throughout the development of this thesis. Grate-
ful appreciation is also extended to the Kuwait University

under whose scholarship this work was performed.



ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENT e e

LIST OF ILLUSTRATIONS ..

LIST OF TABLES . .
T.
IT.
TTT.

Iv.

V1.
vIii.

VIIT.

INTRODUCTION e e e e

LITERATURE REVIEW . . . . .

ASSUMPTIONS . . . . . . .« .+ .+ . .

THEORY e e e e e e e e e e e

PARTIAL DIFFERENTIAL EQUATIONS

B. FINITE-DIFFERENCE EQUATION e e e
C. STRATIFTICATION

D. BOUNDARY CONDITIONS . .

E. MATERIAL BALANCE

RESULTS . . . + « « « « « .

DISCUSSION OF RESULTS o« o o o o« o .

CONCLUSIONS . + v v v v v e o o o o o .

APPLNDICES e e e e e e e e e e e

A

@

NOMENCLATURE AND LIST O COMPUTER SYMBOLS
1. NOMENCLATURE e e e e

2. LIST OF COMPUTER SYMBOLS e e e ..
DERIVATION OF MISCELLANEOUS RELATIONSHIFS
1. DERIVATION OF HKX

7. DERIVATION OF THE RELATIONSHIP SN S
3. LINEAR EXTRAPOLATION . .

RESERVOCIR DATA e e e e e

iv

15
22
20
31
38

yo

672
62

By



D. COMPUTER FLOW DIAGRAMS AND PROGRAMS

1.

2.

i,

REFTERENCES

VITA

COMPUTER TFLOW DIAGRAM FOR NUMERICAL MODEL

COMPUTER TLOW DIAGRAM FOR DYKSTRA-PARSONS

METHOD

COMPUTER PROGRAM TOR NUMERICAL MODEL

COMPUTER PROGRAM FOR DYKSTRA-PARSONS

METHOD

Page
70

70

79

872

103
106

108



LIST OF ILLUSTRATIONS

Figure Pape
5 1 A Typical Reservoir Elemental Block . . . . . . q
2 ; Central Grid Point Illustration . . . . . . . . 16
3 . Injection and Production Wells . . . . .« « . . 23
4. Boundary Elements » =« & # 5 s w » § ¥ & & & & % 24
5. Grid System for Material Balance . . . . . . . 31
6. Illustration of Series-Averaging Technique for

Permeabilitie8 3 o w & = & @ % & % 5 % & & & @ 60
7. Liriedsr EXtpapolatien .« » » o = v = 3 = wm « = o 63
8. Permeability Variations with Depth . . . . . . no
9. Cumulative 0il Production vs. Time for io =
1.96 ¢ mi o m w  w  w  twm w m a wm owm om om m ﬁ & B THS)
10. Cumulative 0il Produced vs. Water-0il Ratic
for Eg 2 LeBB » &« m & B 5 3 & & £ § 5 # ¥ ¥ 4 o 46
Hw : Ho
1X . 0il Production Rate vs. Time for — = 1.896 . . 7
12 . Cumulative 0il Produced vs. Cumulaiive Viater
Injected for Various ;i Ratios : i 5 w & 5 % .4 b8
13 ; Percent Recovery of Initial 01l in Place wvs.

0il-Water Viscosity Ratio at WCR = 20:1 . . . . 49



viil

LIST OF TABLES

Table Page
I. Summary of Results 41
63

IT. Rearranged Permeabilities



T. INTRODUCTION

Fluid injection methods have been used for many vears
for secondary and tertiary recovery and have contributed
substantially to marked improvements in oil recovery. The
number of such projects should increase in the future due to
the rising costs of discovering and developing primary
reserves.

To evaluate any proposed fluid injection program, it is
first necessary to know how much o0il can be recovered eco-
nomically. This information must include accurate knowledge
of 01l rates, water-oil ratios, and gas-oil ratios with time
or pressure declines. In order to best evaluate these
parameters, it is desirable to simulate (by a complete mathe-
matical description) the multi-phase fluid flow in the porous
medium, and the complex interaction of natural forces and
physical properties of a petroleum reservoir during depletion
with varicus fluid injection programs.

The approach undertaken in this project, to simulate
this multi-phase flow, was to sum the three continuity
equations for the three mobil phases (0il, water and gas) in
one dimension, and to force the sum of saturation derivatives
to vanish, thus forming one partial differential equation in
pressure, dependent upon the simultaneous multi-phase flow
in the reservoir. The differential equation, with pressure
as the dependent variable, was then replaced by a finite
difference equation to expedite solution. Writing this

equation about each discrete point in the system results in



a tridiagonal matrix with coefficients which arc both pros-
sure and saturation dependent. This tridiasonal matrix is
solved for pressure and yields pressure variances at 1ho
specific time level at the end of each time step. The method
requires knowledge of rock and fluid properties, field geo-
metry, well spacing, and known or proposed fluid injection
rates.,

(1)

The Dykstra-Parsons technique was used as a refercnce
to check the numerical model for cases in which the Dykstra-
Parsons method is applicable and to test the Dykstra-Parsons
technique for its applicability where a third phasc, gas,
appears and where the assumption of piston-like displacement
of 0il by water is not accurate.

The Dykstra-Parsons method employs a system of horizon-
tal layers, not connected, except at the wells, in which
permeability may vary vertically from layer to layer, with
each layer being homogeneous. At any point in a layer only
water or oil is flowing, but water is allowed to exist on
one side of the front and o0il on the other such that the
velocity of fluids within a layer is dependent on the posi-
tion of the front as well as the mobility ratio. No allow-
ance is made for a third phase, gas, to exist in the system
and all fluids are considered incompressible. Water-oil
ratio is dependent on the fluid velocities in the individual

layers and the number of layers which have experienced water

breakthrough.

(l)See References.



The Dykstra-Parsons technique was chosen as a reference
method to indicate the validity of the mathematical model
because it is believed that the Dykstra-Parsons method is
very accurate within the limitations of the inherent assump-
tions.

With this introductory preface, one can say that the
purpose of this research is two-fold:

1. To simulate a three-phase, one-dimensional petro-
leum reservoir, with water being injected at one
boundary and oil, water and gas being produced at
the other boundary. It can be readily noted that
the approach 1s also useful for estimating verti-
cal coverages.

2. To compare predicted performance of a hypothetical
reservoir as evaluated by the numerical model with
results cobtained by the Dykstra-Parsons method.

The mathematical model and the Dykstra-Parsons method

were programmed for an IBM 360 computer in Fortran 1V
language. The flow diagrams and programs are presented in

Appendix D,
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IiT. LITERATURE REVIEW

25

In 1856, the French engineer Henry Darcy empirically
formulated that the rate of flow of a single fluid through a
porous medium is directly proportional to the potential
gradient and the cross-sectional area normal to the direc-
tion of flow and inversely proportional to the viscosity of
the fluid. This relationship is known today as Darcy's Law
and has served as the cornerstone for describing fluid flow
in porous media. Later it was shown that Darcy's Law is
only valid for the viscous flow region usually defined for
flow in porous media as that region where Reynolds number

(3) showed that

is egqual to or less than one. Hubbert
Darcy's Law can be deduced from the classical Navier-Stokes
hydrodynamics equations. Other investigators found that
Darcy's Law can be extended to fluids other than water inso-

far as Darcy's investigations were confined to water flow.

The generalized form of Darcy's Law is written as,

Vo= - Syo©
u
where
® = P-pgh, h is taken positive downward.

Tn 1930, experimental studies were made to investigate

. . . L .
the flow of immiscible fluids in porous med1a.<4> Experi-

ments showed that the presence of a second phase reduces the

conductance for both phases. The work of Wyckoff and Botset(5>

ole

Terms defined 1in Nomenclature.



made it evident that the relative permeabilily to cach pliane

of an immiscible two-phase system is a function of the phane
5 i 3 - £ . ’

saturation within the porous medium. vaﬁrﬂtl( ) inwvensti-

gated the effect of fluid viscosity,; pressure gsradient and

interfacial tension on the relative permeability and corn-
cluded that relative permeability is independent of fluid
viscosity but is some function of pore size distribution,

displacement pressure, pressure gradient and fluid satura-

tion. In his work he introduced the concent of and defdined

the J-function, which relates capillary pressure to porosity
) 1ok . 7

and permeability. In 1941 Leverett and Low1¢( ) rovarted th

results of steady state flow tests on unconsolidated sands with
three phases (0il, water and gas) present. From his work,
the concept of three-phase relative permeabilities was estab-
lished.

For a system containing two or more immiscible phases,
a mathematical analysis consists of fermulating differential
equations obtained by combining Darcy's Law (with capillary
pressure) and an equation of state for each phase with the
Continuity Equation for each phase flowing. This results in
a non-linear, second-order partial differential equation for
each mobile phase. Due to the complexity of the resulting
differential equation, a solution cannot be obtained by
classical methods.

After the advent of high speed digital computing equip-
ment, serious attempts at numerical solution were made.

(8)

West, Garvin and Sheldon studied horizental, linear and

radial systems produced under gas drive excluding capillary



effects. Their numerical treatment employed a finite differ-
ence grid system and they used implicit methods for solving
the resulting system of linear equations.

Hovanessian and Fayers<9) reported a numerical simulation
for one-dimensional, inclinec flow of two immiscible., incom-
pressible fluids. They showed that the inclusion of capillary
pressure and gravitational forces had a pronounced effect on
both phase saturations and pressure distributions. Douglas
et al.(lo) studied & horizontal, one-dimensional system includ-
ing capillary pressure and concluded that at high flow rates
this model yields results similar to those obtained by the
Buckley-Leverett method.(ll)

Two dimensional techniques have also been attempted but
these early studies indicated that such models were highly
unstable. However, in 1958, Douglas(l?) published a paper
on the "Alternating Direction Implicit Procedure" (ADIP)
which provided a stable method for the treatment of these
two dimensional problems. In 1858, Douglas, Peaceman and

(13) used this classic finite difference treatment

Rachford
(ADIP) to successfully simulate two-dimensional flow of
immiscible fluids. They reported good agreement between
predicted performance for displacement of o0i1l by water and
observed values obtained from laboratory experiments.

Thus, in the 1950's, digital computing equipment and
techniques had been developed sufficiently to allow numeri-
cal solution of multi-phase, multi-dimensional flow problems.

(1)

In 1955, Rapoport combined the three dimensional partial

differential equations describing immiscible, incompressible



two-phase flow to obtain a single equation. lle investisated
the displacement of o0il by water in terms of production his-
tory before and after water breakthrough.

In 1965, Fagin and Stewart(15) presented a two-dimen-
sional, multi-phase reservoir simulator. This was a general
flow model yielding accurate representations of pressure and
multi-phase saturation changes with time.

In 1967, Coats, et gl‘lG) presented the concept of
vertical equilibrium in a horizontal model and adjusted a
two-dimensional, two-phase model to account for saturation
variation in the third dimension. Good agreement was
reported when compared with three-dimensional calculations
for a reservoir having definitive vertical communication.

In 1965, Quon, et §£(17)

reported the applicability of
an "Alternating Direction Explicit Procedure"” (ADEP) to a
two-dimensional reservoir analysis where large time incre-
ments can be used to significantly reduce the time involved
in solving such models. Their application of the ADEP
technique was to simulate a gas reservoir and 1its flow

characteristics and reported good agreement with similar

results from an ADIP sclution on the same model.
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ITTI. ASSUMPTIONS

The following assumptions are made to permit the desired

solution;
1. The model simulates a reservoir consisting of hori-
zontal layers of varying vertical thickness. The permeabil-

ity and thickness are permitted to vary from layer to layer.
Each layer consists of blocks of variable length and width
adjacent to each other horizontally with the capability of
varying permeability from block to block. It is assumed
that there is an impermeable barrier between layers thus
implying that there is no vertical cross-flow between layers.

2. Rock heterogeneity with respect to permeability
(but not porosity) is assumed.

3. Capillarity, gravity and rock compressibility are
considered negligible.

4. Water is injected in one end at constant rate, and
0il, water and gas are produced at the other end at rates
such that reservoir voidage equals water influx at reservoir
conditions.

5. It is assumed that the simulation accurately
accounts for three-phase flow, fluid compressibilities, and

evolution of dissolved gas.



Iv. THEORY

A, PARTTAL DIFFERENTIAL EQUATIONS
The basic concept employed in describing fluid flow in
a porous media is based on the law of mass conservation and

Darcy's Law.

in

Fig. 1. A Typical Reservoir Elemental Block

If one considers three-phase fluid flow through an ele-
mental block in the x-direction as shown in Figure (1), then
one can apply the law of mass conservaticn on each phase

making use of the Darcy's Law in the following manner:

0il Phase:

a) Mass rate in - mass rate out = rate of mass accumu-

lation (1

Vo. Ap_ /B8 + Q (2)

b)) Mass rate 1n in o8 o oinjoos

where Q is negative if it 1s production instead of injec-

oinj

tion and,

>

Vo. is the oil velocity entering the elemental block from
in

the left hand side which is defined by Darcy's Law as:



10

=
Q

¢
9

X

<

O

1
@

__o©
Ho
where;

@O is the velocity potential defined as:

= +
@O PO oogh

c) The mass rate out can be expressed as;

>
Mass rate out = Voout AQOS/BO

>
where voout is the velocity of o0il leaving the elemental block
through the right hand side and face of the elemental volume

and is equal to

The mass accumulation rate can be defined as;

oM
d) Rate of mass accumulation = 5?9 =
3 So
hAxAy¢pOS 5T (=) (u)
)

where h, ¢ and PLg are constant Tactors.

Substituting Equations (2), (3) and (4) into Equation (1) and
defining V as defined by Darcy's Law yields:

k 0d S

3 o o) _ . e
§§(UOBO §§_) * posQoinj - ¢hAXAypos at(BO) ) (5)

hAXAyQOS

Dividing both sides of Equation (5) by hAXAyOOS viclds:



w

_ o
hixdy ~ ¢ at(B;) ' €6)

Expanding the time derivative (the right hand side of ILqua-

tion (6)), and multiplying both sides by BO vields:

Xk 0o Q . . s S 88 B8P _
g8 Ji(__Q.A_ Oy + g 2l - 412 - 2 © o (P-1)
O 9x pOBO ox "o hAxAy ot BO BPO ot }'

Equation (P-1) is the partial differential eguation
describing the flow of o0il in one dimension (x-direction) 1in

a porous medium.

Water Phase:

Applying the logic similar to that employed in deriving
the equation for the o1l phase, a partial differential equa-
tion for the water phase flowing through an elemental block

can be developed as follows:

.. S P
8 ii( kw a@w) + Bwa1n1 S 88w B _E_aew 9 w (P-2)
W 9x uwa 90X hAxAyY ot Bw BPW 9t -

= +
where @w PW pwgh

Gas Phase:

The derivation of a partial differential equation for
the gas phase differs from that of 01l and water phases only
in that gas evolved from solution in oil must be accounted
for. Therefore, the law of mass conservation may be written

in the following manner:



Mass rate in + mass rate of gas evo

out

rate of mass accumulation.

Mathematically, Equation (7) is defined
_)
Vg .
9 in -
~hixdy Pos §§(_E;w) pgSQginj -
SMFG
where —§¥—-is the rate of change in the

and its derivation is based on the mass

lution - mass rate

7>

as
BMFG SMET .
ot 3t

mass of gas evolved,

rate of gas evolu-

tion and is related to the o0il phase present,

the solution

gas oil ratio (RS), and their rate of change as follows:

0

)
S

(38)

] o)
~haxby oo ¢ 5rlgo R
o
The minus sign in Equation (9) accounts for the fact
that a decrease in the solution gas oil ratio 1is accompanied
Also,

by an increase in free gas volumes. in the same equa-

tion, RS remains inside the derivative because it also
varies with time being uniquely a function of pressure which
is a function of time.

Substituting the Darcy's Law equivalent of the velocity
potential and the results of Equation (9) into Equation (8)
and then dividing both sides of the resulting equation by

hAxAy Pogo and multiplying through by Bg’ yields:

90 B Q . . ., 8 s
0 _£ 1n) 2 (& + 2 k) (10)
=~ ) o8 (
Bg ox ung Ox hAxAy g ot Bg B, s
where ¢ = Pg + Dggh



Expanding the time derivative of the rishti hand side of

Equation (10) yields:

S S 95 S a8 oF S aR ol
68 _Q(_g + _© R )| = g g & g ;. _© S 2
g 9t R B s B ot B 2 9P ot B aP gt
g o g g g O o3
3 So
+ RS a—t—( 'é’*-) (ng . 11y
o
3 So
Substituting the value of ¢ §¥(§~) as given by Equation
O
(6) into Equation (11) yields:
35 SO BRS EE 3B oP 5 }O u@o
éa + - g é —_
¢ ot CoB oP ¢ B oP ) ot * BgRS BY(H B o x )
®) g £ 123
Q S S
“oinj _ o, & e .
+ B)RS NAxhy - ¢Bg St(By + - R D) (12

Substituting the results shown in Equation (12) for the

right hand side of Equation (10) and rearranging vyvields:

5k 5 S 88 _ 9P $S B _ BR_ 3P
B 2(_ 8 gy, 482 __8_g _ _oFg 5 _g
g Bx U _B_ Ox B 3P ot g 3P _ ot
g 2 o g
K 50 B R .. B O . . 38
B R 22 9y _ & sloinj , Pplging _ b . (P-3)
g s 9x UOBO ox haxAy hAxAy 3t :

There is no need to account for loss of 0il due to the
evolution of gas since this loss is totally accounted for by
changes in the o0il formation volume factor.

Since capillary pressure and gravity are considered
negligible in this model, the following potential equiva-

lences are plausible;



® = ¢ =90 =P , (13)

Recognizing Lhat the potential terms appearing in Equa-
tions (P-1), (P-2), and (P-3) are identical as defined by
Equation (13), it may be noted that these three partial
differential equations are simultaneous equations relating
pressure and saturations (four dependent variables) to the
independent variables, position and time. This system can-
not be solved as there are three equations and four unknowns.
This problem is readily overcome, however, by introducing
another equation in the dependent variables. This eqguation

can be based on the definition of saturations as follows:
S + 5 + S = 1.0 . (1)

It may be further noted that the partial differential
equations have been judiciously arranged so that they may be
added to yield ono equation in one dependent variable, nota-
bly pressure. Nolte that the three time derivatives of the
saturations are inolated such that their only coefficient is

a constant, porosity, and that taking the time derivative of

Equation (14) yields:

— = 0 . (15)
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Summing Equations (P-1), (P-2), and (P-3), rearranging
terms, and simplifying as discussed immediately above based

on Equations (13), (14), and (15) yields:

k k k
B g 2P _ B o P 3 (_“w_ P

Bg BX(prg 5t (B, BgRs) ax(uoso 5% T B §§(pw8w 7%

'8 .. . -
- glenj + (B -8 R ) Q01nj + 6wa1n]

i hAxAy o Tg s’ hAxAy hAxAy
- ¢ f&ie_g+_s~o(§_8_9_8 ilii) Sw Py ap (P-1)

Bg oP Bo aP g 9P Bw oP ot

Equation (P-4) is a non-homogeneous, second-order non-
linear, partial differential equation and no known technique
for solving it by classical means exists. It is non-linear
because the coefficients are in themselves pressure and
saturation dependent. The equation is solvable, however, by

finite difference approximation techniques.

B. FPINITE-DIFFERENCE EQUATION

Equation (P-4) 1s in a form where a difference equation
can be written., from which the value of the dependent varia-
ble (pressure) at time level t(n+l) can be calculated when
the values of all parameters are known at the previous time
level t(n). The terms of the left hand side of Equation
(P-4) can be represented by a finite difference equation if
the time-space plane is divided into discrete cells as shown
in Figure (2) (for a single time), then expanded about some
point (i) in the spatial grid pattern at some fixed time

level.



X . X X .
| 1-1 | i +1
———ﬂl
i-1 i i+1
Pia Ps Pii
—+ -+ —+ .
1
h\Z}\\H
H————“——*—————h’
Ax. +Ax. Ax.+Ax !
1i-1 1 1 1+1
2 Vs

Fig. 2. Central Grid Point Illustration

The point at which all parameters are defined in each
block is arbitrarily selected as its mid-point. Thus, the
center is the focal point at which the pressure is assumed
concentrated and this forms the basis for calculating pres-

sure gradients.

Since there are three phases flowing, it is necessary

~

to use relative permeabilities rather than absolute permea-

P

bilities. The formér are defined by the following relations:
k = k k 5
g rg
k = k k 3
o) jgle)
k = k k
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Utilizing this fact the following equationsmay be written:

+% +L  (P. _p_)n+1
k k LB Mk nTs +1
by TR ) ¢ TRl (EE D)
- g g i ung i+ = % I
n+k (P.-p l)n+l
- 28823 (Ax.+Ax )
) . . (1-D>
Ung iy i - i-1 ,
and,
n+1
g K K - T8 -8 R B2 [k 105 Fiea7Fs)
( -8 R 9 ro 9P, _ o "g's rol
Bo Bg S) 8X(u S BX) Axi u B J. ) (AXi+1+AXi)
ﬁ o © 1+>5 5
1 _ n+1
17 B (A +Ax, 1) » and, (2-D)
oT o 1-% —
2
— +
Kk g DFE N Dt Py, -P O
8 A rw BP) wi W (R AR
W 9X UWBW ox Axl prw P4k l+% i
+
n+y (p.-p. Dt
W EN (3-D)
- L (AXi+AXi_l)
wow  ji-% 5

where the superscript n+k represents the midpoint represen-
tation of the time level.

Tt is noted from Equations (1-D), (2-D), and (3-D), that
a time average of the pressure and saturation dependent

variables has been employed. Therefore, the pressure depen-

pn+l+Pn
dent variables should be evaluated at (——~§-—J and the
: Sn+l+8n
relative permeabilities should be evaluated at (——_?_-)

where the saturations have not been shown with subscript



depending on the phase under evaluation. The paramcters
describing rock properties and model confipuration are not
time-dependent and can be isolated, forming a term, KX,

which may be defined as follows:

2ki+% i Qkiki+l ey
1o tOxg 0 Axgky AR gk

AKX = k%

for the ith spatial point, and

. 2k. k.
12 - e (17)

] +Ax. T Ax. _k.+hx.k.

1-1 1 1-1 1 1 1-1

for the i-1 spatial point.

K and K. , are series averaged values for rock per-
l_

i+ 5

meability, evaluated at the interfaces bounding the 1th
block. Equations (16) and (17) are derived in Appendix

At this point a difference equation for the left hand
side of Equation (P-4) has been written. On the right hand
side of Equation (P-u4), the only term to be written as a

difference is 32 uhich may be expressed as follows;

ot
n+tl n
P -P.
oP 2 1 (4-D)
ot At

Now substituting Equations (1-D), (2-D), (3-D), (16),

(17) and (4-D) in Equation (P-4) yields:
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B _.ntk n+1 +
g1 HKX, v DYZ - s .
{Ax.} [_ iYgi+u FPie17Fy) - HKX; 955 o (Py-Py )

B_ -B_R_Intk n+1 n+7
+ O g S 2 _ _ n+1/ +
{» A } ‘%KXiY 1+1( +1 Pi) HKX _1Y 2(Pi—Pi_l)

1

B . nt n+1 +1
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FEquation (5-D) is a complete solution of the partial
differential Equation (P-4) in difference form. For simpli-

city, Equation (5-D) can be rearranged by collecting all

+ +
terms associated with Pn %, P? l, nd Pn+%, and rewritten

in the following form:



where,

AOXL =

AWX1 =

AGX1 =

AOX?2 =

AWX2 =
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1
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(6-D)

(7-D)

(8-D)

(8-D)

(10-D)

(11-D

(12-D)

(13-D)

(14-D)

(15-D)

(16-D)

(17-D)
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* (Bwa1nj i ) (18-D)

Equation (6-D), written about each point in the grid
system, forms a set of simultaneous linear equations whose
coefficient matrix is tridiagonal. The solution for a tri-

diagonal system is,

Pl © %m-1
CiPia
Pl = oy Ai 5 1 = m—-2,m~35 ... s 1

where o's and A's are determined from the recursion formulae,

D
_ 1
Ap 7 By oo o5
1
A.C 1
A; o= By - i - iz 2,3, 4,..... ,m-1
1-1
D.-A.qa
i Tivi-1 a
a. = i 2,3,4,..... m-1
1 Ai

It has been previously mentioned that the coefficients
of Equation (6-D) are dependent on both pressure and satura-
tion which are unknowns. Thus, the method involves a trial

and error procedure. An estimate of future pressures
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nt+l . +
(P ) and saturations (8" l) are made by linear extrapolation.

4 n+l n
Then the fluid properties are evaluated at P77 - P 2+P
while the rock properties (relative permeabilities) are eval-
uated at Sn“/2 = §Ei;i§i . The unknown pressures are then
calculated. Using these calculated pressures, an explicit

determination for future saturations are made as described in
the Material Balance Section. Both calculated pressures and
saturations are then compared with the previously assumed
values. If agreement is not within a prespecified tolerance,
then an iteration is made. Otherwise, the calculations may
prcocceed to the next time step. After the first time loop
through, a linear extrapolation is made to predict pressures
and saturations for the next time step. The extrapolation

technique is shown in Appendix B.

C. STRATIFICATION

Since it is assumed that no cross-flow occurs between
layers, then the performance of each layer is calculated
independently, and the performance of the total reservoir is
obtained by summing the results of each individual laver's
performance. This method of treatment represents the approach
used by both Stiles and Dykstra.

Injection and production (through wells) occurs through
selected sources or sinks, respectively, in the mathematical
simulation. The assignment of water injection into the left
edge of each layer and the calculation of production of oil,

water and gas from the right edge of each layer is the
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convention assumed in this model and is treated as part of

the boundary conditions. This is illustrated in Fiecure (23).

D. BOUNDARY CONDITIONS

The system simulated by this model is assumed to be
closed at all boundaries except for those blocks containing
wells, which for this model are those assumed to be at
either end. No fluid is permitted to flow across these
boundaries except that being produced or injected at the
wells. The boundary barrier can be effected by either
assigning zero permeability to an imaginary block outside
the model or by assigning a pressure gradient of zero at
these boundaries. The effect is identical. A schematic

drawing of this model follows as Figure ().

'!\‘\\ 0 1 2 M-1 M W}_‘:_\“:‘
| o v
1 m e ———— - 1 |
! PP Pl Fo ] " m;l '
1 1 l
! L+ + + - + + :
‘\\\\ : ;
S N N T I T A SR ,
[ S,

A SRS S .
X X4 sz X1 < B

Fig. 4 RBoundary Llements

Applying the latter assumption to Equation (6-D) and
writing an equation about point 1 = 1, (see Figure (3))with

no flow across the left-hand boundary gives:
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n+1 n+1 n+l _
Alpo + Blpl + ClPZ = Dl . (18>

The left hand boundary is closed by setting the pres-

sure gradient to zero [}%g&l . = é}, which is equivalent to
~%

setting PO = Pl.
Substituting this result into Equation (18) for i = 1

vields:

n+l ntl _
(A1+Bl) Pl + ClP2 = Dy

but, from Equation (9-D),

Bl = - Al - Cl + TRM1

.. +
then the coefficient of P? 1 becomes

Al + Bl = - C1 + TRMl

This result is equivalent to setting Al = 0, its value when
the external block has a permeability of zero as shown below.

Equation (18) for the first block may be written as

n+l n+l (19)
BlPl + CIPQ = Dl .

Closing the left hand boundary by assigning a zero

permeability at the boundary (ko = 0) gives the following

result:

The coefficient Al in Equation (18) is defined as:

HKX -
= o - + Y. + Y .
Ay 7 Ax. (Bo BgRs)lYoi—% Bw1Yw1—% Bleg1~%J

(20)



where,

2k .k 2(k.) (D)
i o i

BKX S = Ik F A © Aw 1 =0
[N 1 O o 1

Substituting this result into Equation (20) gives a value of

Equation (18) may, then, be written about the first
point as shown by Equation (19), both methods giving identi-
cal results.

Second, using the same logic about point m (no flow

across the right hand boundary), will result in C_ = 0, and

m

an equation about point m, may be written as,

A pRFtL o g Pt C g (21)
m m-1 m m m
where
B = - A + TRM
m m m

1. Injection End (Jeft boundary).

The layer-wise distribution of water injection rate is
obtained by first assuming a constant total injection rate
in the "well", the left side of the model. A wellbore
pressure at the top of the sand face (wa) is assigned and
the wellbore pressure at the middle of each layer may be

calculated as follows:
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The horizontal pressure gradient entering element 1,7 is

OW

Q(wa +—§—(h._l+h.)—P. D)

o P _ j.—l ] J 1,

BX)i i A
’j Xi

( (22)

Replacing the gradient in Darcy's Law by the definition of

the gradient as provided by Equation (22) yields:

2K Lk .h.Ay 0
_ 1,3 rwl,3 3 w

( ) = > (P +—(h.

Q B 7 (hy

wl,3 1inj] wl,j“wl,ijl wwj_1

+hi>_P ) (23D

1 1,3

The average pressure for elements 1,7 (for all layers)

may be defined as:

Then the average pressure gradient 1s:

oL, _
Ip 2<(wa+77hT)—P)

1

Applying the definition of gradient shown in Equation
(24) to Darcy's Law and summing the capacity terms (kA)

yvields total flow rate to give the following relationship:

n
2 % (k, -k .h.J)Ay
. 1,7 rwl,] 3 o n SRR
3=1 — (P +Th, - % _1]713_3_,1) . (25)

(QTw)inj



The fraction of the total injection rate entering the jth
layer is obtained by dividing Equation (23) by Iquation (25L)

as follows:

[}

( k (P +-A(n.+h P, .

(21,3 iny _ 1,3 PWl,j_lr WWy-1 2 lﬁﬁl:l) l,j) (26)
. n o) n P .h. :
Tw ™ in] (5 (k. .k shCP SO E NN S S B B

so1 1.3 rwl, ww 2L Dy TR

and the actual injection rate into the 1,3th block is given as

P
Q1 357in5 7 Qpying klglkrwlaj 5 Py 1+~"(hp e Ji’il,i;
(jzl(kl J rwl h (P w+ yhT_iil lﬁi -
27
Equation (27) 1s used to calculate the water injection
rate into first element of each layer at the injection end.
It should be noted that for elements between the "Injccticon
end" and- "production end'" with no external flows, the OTLRM
is zero. The application of Equation (27) requires knowleadge

of the wellbore pressure at the top of the sand. A major
difficulty arises from the fact that wellbore pressure is
not constant when constant injection is specified. The
most realistic approach to solving the problem is to assume
a constant wellbore pressure rather than constant injection
rate and calculate water injection rate into first element
of each layer by using Equation (23). For simplicity, it 1is
ssumed that pressure gradient across the first element of

cach layer is constant; then, Equation (27) can be written as



) =

5 =K -h.
C Qe D s 1o) rwl,j 3
inj Tw’ 1n7]

(Qy 5 (28)
k

1

nm~MmBl A&

; 1,3 w1,

ey

since pressure gradient cancels out under this set of condi-

tions.

2. Production End (right boundary).

The sum of o0il, water and gas production rates evaluated
at reservolir conditions at the production well from a partic-
ular layer is equal to the water injection rate (at reservoir
conditions) into that layer at the injection well. The
convention adopted in this model is that injection is posi-
tive and production is negative. Thus, the production-

injection balance stated above may be written as follows:

Q B_.)D . = - (Q g ) . - (Q B ) . - Q] B ) )
winj Wl oprd © msJ] wprd W, J “prad g om, 7

(29)
Darcy's Law is used to calculate water-oil ratio at
reservoir conditions for each layer at the production well

and may be written as follows including simplification:

(Q 8. .

wprd W' m,J } (krw EQ) ’
(Qo dﬁo)m,j kro Hy, s

P
and
k M
O
o=« g ) . (2 .. (30)
(prrdew)m,j Qoprd ©o'm,] kro W, msJ
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Writing an equation for gas-oil ratio in the same
manner and solving for the gas production rate at reservoir

conditions yields the following relation:

k M
(Q ) = (Q B ) . (X8 =y (31)

gprd g'm,] Oprd o'm,J] "k n_m,]

Substituting results shown by Equations (30) and (31) into
the reservoir voidage balance given by Equation (29), and

then solving for oil production rate at reservoir conditions,

yields
- Y.,
gy (329
Q B ) . = % .
®pra ™I fw Yo | Fpg Mol
kro Hy, kro Ug ms

Having available reservoir oil production rates for
each layer now allows values of the water and gas rates at
reservoir conditions to be calculated by Equations (30) and
(31), respectively, for each layer. Then all three rates
are converted to stock tank conditions by dividing the
reservoir rates calculated (which include volume factors)
by the appropriate formation volume factor for each phase.

The total production rates for the well for each phase

are now obtained by adding the respective rates from each

layer. The water-oil ratio and gas-oil ratio from the well

for the time period under consideration are computed as

fellows:



n
) = X .
QTO m,prd j=1 Qom,j)prd >
n
) = I .
QTw m,prd 5=1 (QWJ,j)de ?
n
) = z .
QTg m,prd (j:lc(ng,j)prd)+(Qom,j prd
WOR =

(QTw)m,prd/(QTo)m,prd i

and

GOR

{1

(QTg)m,prd/(QTo)m,prd

E. MATERIAL BALANCE

( sm,j? sm,j)>).

(33)

(31)

(35)

(36)

Material balance calculations were made on each block

in deriving the pressure equation and are also used to up-

date saturations across each time step.
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1-1 1 i+1
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Fig. 5. Grid System for Material Balance
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Referring to Figure (5), the saturation in block (i) at
a new time level t(n+l) can be stated as the saturation at
the beginning of the time step (0ld time level t(n)) plus
the change in saturation during the time increment (At)

(from n to n+l time level), may be mathematically defined as,

UL o 8T 4 as,
i 1 i

ASi for a phase is the change in volume of that phase in

block (i) during the time increment, divided by that block's

pore volume.

However, in allowing for the compressibility of phases
in this model, the accuracy of the calculation will be
enhanced by making a mass balance rather than a volumetric
balance and then converting the change in mass in the block
to an equivalent change in saturation.

Thus, the following relation will be applicable for oil

and water phases,

(mass in)i—(mass out)i+(mass injected) .

AS. = —_—— (1-M)
i pri(PV)i

Darcy's Law is used at the (i-%) and (i+%) interfaces to

evaluate the (mass in)i and (mass out)i terms, respectively,

in Equation (1-M). The following combination of terms are
applicable:
e ok kA
At S = - S—x bt . (38)




Recognizing that the mass entering block (i) comes

from

block (i-1) as indicated in Figure (5), and taking the con-

vention that flow is from left to right, it concluded

the following relations apply for the (mass in)i term:

- C 1
1-% i-%

that

(9P/3x). , = (P.-P. Y/ (Ax.+Ax. _)/2). (39)
1-% i 1-1 i 1-1
and similarly for the (mass out)i term:
B = Bi’ kK = ki+%’ S Mi+%>
(3P/3x%) PR (Pi+1—Pi)/((Axi+1+Axi)/2). (ho)
0il Phase:
Introducing the results shown immediately above into
Fquation (37) gives the followling relations:
(M ) _ poski—%Y01—%A(Pi i~ 1 o)
8 i-1
oi-1 {
D . B 1A(P P YAt
(Mass out). = - =2 l+1 Xl+ +A (3-M)
1 8 i+l Xi
oi 2
ind = (4=-M)
(Mass injected); = (Qoinj)i POt
Pos
Pop (PVI; = Mx:A 3 ¢ (5-M)
v t ol
) : _ Pos 1 sumed applicable and is
The equality o, ~ B 1s ass DD -

shown in detail in Appendix B.
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Substituting the results shown in Equations (2-M),
(3-M), (4-M) and (5-M) iInto Equation (1-M) and introducine
the terms HKXi and HKXi—l as defined by Equations (16) and

(17), yields:

AS = - BoiA_t_ MKt 1Y61-5P57P5 o)
o A $ Boi-1
n+i
HRXY o143, (P 417F5) _ Sggiaiii (6-M)
- Boi hAy

where A = hdy. It is well to note that all rock and fluids
properties are evaluated at an average time, namely the

(n+%) time level.

Water Phase:

Following a similar development as that shown for the
01l phase, an equation for the change of water saturation

during time increment At may be written as,

- . .-P. )
BwiAt [%Kxi—lyw1~%(P1 Pl—l
B

AS = -
W Axi wi-~-1
nti
p. Q. ).
KXY Py P _SE%%%ﬂi , C7-M
Bt

Gas Phase:

For the gas phase, an additilonal term should be incor-

porated into Equation (1-M) to account for the gas evolution

as defined by Equation (8). With this additional term, the

following equation describes the gas saturation incremental

change :



ASgi = (mass 1n)i+(mass of gas evolved)i—(mass out)i

+(mass ianCted)i/pgri(Pv)i .

An explanation of the term accounting for solution gas
was given previously and the term is listed as Equation (9).

The present handling of this term is identical except that
S
the ratio (EQJ will be factored out of the derivation as a

o]

constant at the average time over the incgement. This is
a realistic assumption since permitting (Ei) to vary may
give rise to a situation in which all the gas in solution in
the ASO increment would be released during the time step.

Thus, the '"gas evolved term'" in difference form will be,

3
oM S n+l

FG _ e N M
At = - AXiA¢pgS( ) (R R ). . (9-M)

ot
Applying logic like that used to derive AS. for the oil

and water phases and incorporating the gas evolution term,
an equation may be written for the change in gas saturation

in block (i) during time increment (At) as follows:

B _.At HKXi_lY . L(P'_Pi—l)

_ g1 gl—-"% 1
AS . = -~
gi AXlQb Bgl—-l
]’]'!‘;5
<Qginj)i
HKZ i+%(Pl+l_P1) - hAy
n+1§

S 1
_{ o (le—Rn).Bgmz . (10-M)



For simplicity, Equations (6-M), (7-M) and (10-M) may

be written as follows:

AS .
ol

where,
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AMOX1

AMWX1

AMGX1

AMOX?2

AMWX?2

AMGX?2

QOTERM

7.7 ( AMOX1-AMOX2-QOTERM) (11-M)
77 ( AMWX1-AMWX2 -QWTERM) (12-1)
7.7, ( AMGX1 -AMGX2-QGTERM) —-RSTERM (13-M)
= - At/¢Axi
n+?2
= HKX Y (P.-P )(w591~)
= X ., (P.-P. :
i-1 oi-% "1 "i-1""8_. 4
n+i
- B (P._p. (v,
= AKXy g | Yei-utTiTTi-17 N L]
n+i

I

B . '
. P, (_iia)
HKX; 4 [Ygl—%(Pl P. ) Bgi—lj




. wi “winj’i
QWTERM = A
QGTERM = giQging’i
- hAy
5 nts
- e} n+t+l _n
RSTERM = (ESJ (RS —RS) Bgi

The equations for updating oil, water and gas satura-

tions are,

SOLT T Syt 88,5 s

Shil = Spg * AS.; s
and,

Snfl = s+ AS

gi B gi A gi



V. RESULTS

Computational procedures for each of the analyses werec
developed and programmed in Fortran IV and the calculations
were made by an IBM 360-50 computer. Flow diagrams and
digital computer programs are presented in Appendix D.

Results of seventeen studies using four basic models
are shown graphically by Figures 9, 10, 11, 12 and 13, and
a summary of study runs with results are shown in Table T.
Reservoir configuration and computational data are presented
in Appendix C. Of the four basic models used in the study,
two were numerical models, and two were computer-programmed
versions of the Dykstra'-Parsons' technique.

Variable permeability in the vertical direction was
simulated numerically by combining four linear models such
that it simulates four vertical layers of different permea-
bilities. The first of these models included horizontal
variations in permeability and is referred to as the
"heterogeneous layered model". The results from a single
run for an oil-water viscosity ratio of 1.96 using this
model are presented in Figures 9, 10, and 1l as curve
Number 4 in each, and as indicated on the graph in Figures
12 and 13.

The second of the numerical models used is layered in
four vertical zones just as in the first model; however,
each layer is homogeneous and the value of permeability for

a layer was computed as a series average of the heterogeneous

permeabilities in the first model. This second model is
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referred to as the "homogeneous layered model'" and result:s

of six runs obtained using this model are presented. The
results for an olil-water viscosity ratio of 1.96 are shown
for comparison purposes in Figures 9, 10 and 11, and referred
to as curve Number 1. The results for oil-water viscosity
ratios of 0.5, 1.96, 5.0, 10.0, 20.0 and 40.0 are shown 1in
Figures 12 and 13.

The first Dykstra-Parsons model is layered in four
vertical zones, and the value for permeability of a layer is
the same as in the second version of the numerical model.

The results of five runs are presented. The results for an
oil-water viscosity ratio of 1.96 are shown in Figures 9,

10 and 11 and referred to as curve Number 2 and results using
oil-water viscosity ratios of .5, 1.86, 5.0, 10.0 anag 20.0
are shown in TFigures 12 and 13.

The second Dykstra-Parsons model is lavered 1n twenty-
five vertical zones with an equal thickness of one foot in
each of the layers. The permeability of each layer was
read from Figure 8, which was obtained by plotting the
series-averaged value for permeability of each of the four

layers used previously as & function of cumulative thickness.

Results of five runs using this model are presented. The

results for an oil-water viscosity ratio of 1.96 are shown

in Figures 9, 10 and 11, and referred to as curve HNumber 3

and results for olil-water viscosity ratios of 0.5, 1.96,

5.0 10.0 and 20.0 are shown 1in Figures 172 and 13.

2
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TABLE T.

Summary of Results

Model

Recovery at WOR

10 for 0Oil-Water Viscosity Ratio of

1.

96

10

20

40

Numerical
(Heterogeneous
Layered)

51.

Numerical
(Homogeneous
Layered)

79.5

79

7.05

.18

Dykstra-
Parsons
(25 Layers)

4.6

73.

6

68.

9

62.3

56

Dykstra-
Parsons
(4 Layers)

72.7

71.

70.

68.1

61.5




VI. DISCUSSION OF RESULTS

Figure (9) illustrates cumulative o0il produced as a
function of time for an oil-water viscosity ratio of 1.96
based on results from the four basic models described pre-—
viously. Water breakthrough in all models occurred at
approximately the same time (120-130 days). Curve 1 (numer-
ical-homogeneous layers) and Curves 2 and 3 (Dykstra-Parsons,
4 layers and 25 layers, respectively) showed close agreement
until water breakthrough occurs and slight deviation there-
after. Curve 2 was in closer agreement with Curve 1 than
Curve 3 as expected, since the models of Curves 1 and 2 are
in closer agreement, theoretically. However, final recovery
was the same for both Dykstra-Parson models. Curve 4 (the
numerical-heterogeneous layered model) showed a great reduc-
tion in recovery compared to Curves 1, 2 and 3. This was
primarily due to the formation of free gas resulting from
the heterogeneity in the fourth layer, which in turn caused
the reservoir pressure to decline below the bubble point

pressure. Although the other layers in this model were also

heterogeneous, there was less variation in the permeabilities

in these blocks prchibiting notable gas formation.
Figure (10), illustrates cumulative oil produced as a
function of water-oil ratio. Curves 1 and 4 show that
water-oil ratio changes gradually over most of the region
except for regions with periodic rapid increases. This 1is

explained by the fact that when any layer breaks through,

the composite water-oil ratio increases significantly.
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Thereafter, the water-oil ratio increases were gradual due
to continually changing saturations until another layer
breaks through resulting in another sudden increase. This
face is not as pronounced in Curves 2 and 3 (Dykstra-
Parsons), even though the results show some gradual changes
in water-oil ratio. Because of the assumption of piston-
like displacement in the Dykstra-Parsons method, only water
is flowing in any layer after water breakthrough. The
gradual change in water-oil ratio is due to changing velo-

cities within the layers due to the front continually advanc-

ing in layers of different permeabilities. The changes are
not due to saturation changes at the production face. In
fact, Curves 2 and 3 are very nearly step-functions. It is

also of interest to note that areal non-uniformity in

permeability increased the life of the reservoir but resulted
in less o0il recovery and consistently higher water-oil

ratios.

Figure (11) illustrates oil production rate as a func-
tion of time. Curve 1 shows fluctuations at the beginning
of water injection which is due to the unsteady state nature

of the model. A sudden decrease in oil production rate

occurs when water breaks through in the most permeable

layer. Curve L4 shows a sudden decrease in o0il production

rate until water breakthrough, and this is due to the forma-

tion of free gas.

Figure (12) illustrates the relationship between cumula-

tive 0il produced and cumulative water injected for various

ocil-water viscosity ratios. As expected, the recovery
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decreased as oil-water viscosity ratio increased for a par-
ticular model. This is also shown in Figure (13) by results
from both numerical and Dykstra-Parson models. The devia-
tion and reduction in o0il recovery as compared by results
from the numerical model from Dykstra-Parsons for oil-water
viscosity ratios of 5.0, 20.0, and 40.0, results from the
fact that the Dykstra-Parsons approach 1s not adapted for
conditions where free gas is formed or is present as occurs
in depleted oil sands. The model assumes only two-phase
fluid flow (oil and water), and the method is not suitable
for gas flow due to the assumption of piston-like displace-
ment. It is also of interest to note that an increase in
oil-water viscosity ratio results in a decline of reservoir
pressure and an increase in the life of the reservoir by pro-

ducing less oil at a higher water-oil ratio.
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VII. CONCLUSIONS

Prediction of reservoir performance under a water drive
by a three-phase numerical simulation model is shown to
be feasible due to the favorable comparison of results
with the Dykstra-Parsons method for those cases where
the Dykstra-Parsons assumptions are satisfied.

The numerical method is valid for more general use than
the Dykstra-Parsons method since the latter does not
account for changes in fluid properties as a function of
Pressure, reservoir geometry, rock heterogeneity, and
three-phase flow.

Results show that the prediction of performance of a
water flood project by the Dykstra-Parsons method will
not be valid when a mobile gas is present. The gas
phase reduces o0il mobility to such an extent that
considerably less oil may be produced at water break-
through than predicted by the Dykstra-Parsons technique.
Areal rock heterogeneity is not adequately accounted
for by series-averaging individual permeabilities within

a layer. Thus, a numerical simulator is needed for

predictions where areal heterogeneity is obvious.
The Dykstra-Parsons calculations are faster than those

by the numerical model and should be used in preference

where conditions fit the assumptions of the Dykstra-

Parsons method.
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APPENDIX A

1. NOMENCLATURE

cross sectional area normal to the flow direction,
A = Ayh - sg-cm

compressibility - atm +
acceleration of gravity - cm/sg-sec
layer thickness - cm

total reservoir thickness - cm

absolute permeability - Darcy

phase effective permeability

relative permeability
mass of accumulation - gm
number of elemental blocks in each layer

mass of free gas evolved from solution gas for
time period Tt to t oy

number of layers

pressure - tam

pressure at the interface between blocks - atm
pore volume - ccC

pressure at top of the sand - atm

production or injection rate - cc/sec

solution gas-oil ratio cc of gas/cc of oil

oR

=

oP

saturation - fraction

equilibrium gas saturation - fraction

residual oil saturation - fraction



SWC = connate water saturation - fraction

t = time -~ sec
Y = Darcy's veloclity potential - cm/sec
v = volume - cc

Greek Letters and Derivatives:

B = formation volume factor - res cc/std cc
'

kr

Y T TB

¢ = porosity - fraction

U = viscosity - cp

¢ = pressure potential - atm

p = density - gm/cc

Ax = length of elemental block - cm

AP = pressure drop

AS = change in saturation to the ith elemental block
from time t to tn+l fraction

At = time increment - sec

Ay = width of elemental block - cm

%% = mass rate of accumulation - gm/sec

BMFG i as from

3F = mass rate of gas evolved from solution g o

time t_ to t_,q

Subscripts;

b = bubble point

g = gas phase

1 indicating ith elemental block 1in x-direction



inj = injection

j = indicating jth layer in Z-direction

max = maximum

prd = production

s = standard conditions of pressure and temperature

(1 atm and 60°F)

T = total

Superscript:

n = indicating nth time level
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FORTRAN
SYMBOL

AX

BGPRM

BOPRM
BTA

BTAG

BTAO

BTAW

BTOBP

BTWBP

BX

cov
CUMOP
CUMWIN
CX
DELT

DELTP

DELX
DELY

DELZ

DX
GMA
GOR

2.

LIST OF COMPUTER SYMBOLS

ALBEGRAIC SYMBOLS
OR DEFINITION

g at bubble point

B at bubble point

B

C = coverage

cumulative oil produced
cumulative water injected
C

At

ANP

Ax

Ay
Z:-Z:

gas-oil ratio
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OILPR

PB
PERM

PERMAX

PHT
PIN
PM
PN1
PN2
PRTOL
QOR

RECOV

RKG

RKO

RKw

RSPRM

SATOL

SGI

SOT

STOIP
SUBROUTINE BETA

SUBROUTINE BETPRM

56

number of elemental blocks
number of layers

cumulative oil production - NP

bPressure at n time level
bubble point pressure
permeability - k

k
max

porosity - ¢

initial pressure

M

trial pressure for n+l time level
pressure at n+l time level
prespecified pressure tolerance check

0il production rate

cumulative oil production 100
initial oil in place

recovery

k
rg

k
ro

k
rw

?

R
s

prespecified saturation tolerance check
initial gas saturation

initial oil saturation

initial oil in place

formation volume factors calculation

4 t -
3', B RS calculation

g’ "o’



SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUMH

SUMKH

SUMQG
SUMQO
SUMQW

SUMQWI

SW

SWI
SW1
SW2

TEMP1

TEMP 2

TEMP3

TEMPy

TEMPS

TEMP6

WI

WIR

COFF
MBAL
RPERM
SOLGAS
TRIDAG

VISC

calculation of coefficients A, B, C and D

material balance calculation
relative permeabilities calculation
solution gas-o0il ratio calculation
tri-diagonal solution

viscosity calculation

total thickness
N

x .
- (kh)j

J=1

cumulative gas produced
cumulative oil produced

cumulative water produced
N
L QWin3,1,3

=1

saturation at n+l time level
initial water saturation
saturation at n time level

+pial saturation for n+l +ime level

n+%
(Bo=BgRs)i, ]
B n+i
153
B _n+
1,3
Axi_l/Axi
B n+is
€i,]
n+
(Bo—BgRs)i—l,j

cumulative water injected

water injection rate
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WOR
WP

XMUG

XMUO

XMUW

XMUOBP

XMUWBP

58

water oil ratio

cumulative water produced

1 _ at bubble point

Mo at bubble point
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APPENDIX B.

DERIVATION OF MISCELLANEOUS RELATIONSHIPS

1. Derivation of HKX

K.

. and k. are the series averaged values of permea-
1+ i-%

5
bility evaluated downstream and upstream, respectively, for
the ith block. Each evaluation is based on the length and
pPermeability of the two blocks bounding each respective
interface horizontally.(l8) The derivation of this parameter
for the downstream interface is given below and 1is based on
the geometric configuration shown in Figure (6).

Consider only that portion of the elemental block (i)
and (i+1) between their mid points, an average permeability

(k) can be derived by Darcy's Law evaluated separately

between the two blocks.

_A.AP.
Q _ klAl 1 (1-A)
1 T TmEr
5
and
Ck54185418F 54 (2-A)
Civ1 * Bxi41
.

. 3 h
Note that pressures are evaluated at the mid point of eac

elemental block, therefore Ax's are divided by 2.



+1
2
AN
N TN
i i+l
%3 Ki+1
3 Pi+1
h.
. + + 3
Pmd
aa te >
AP AP +1
Fig. 6. TIllustration of Series-Averaging Technique

for Permeabilities

60
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The total flow rate through both blocks in series is:

KA(P. _-P.) _
Up = T > K 7 iy
T Axi+l+Axi 1+

2

(3-A)

Considering the flow rate constant through a series of ele-

mental blocks yields:

QT = Qi = Ql+l (L"“A)
Further noting that,
ARfAPi+l = (Pm~Pi) + (Pi+l~Pm) = Pi+l—Pi (5-A)

Equations (1-A), (2-A) and (3-A) are solved for their
respective AP's and these results are substituted into

Equation (5-A) to yield:

. + . . Ax.
QH (AX1+1 Axl) i} QE (Axl . Xl+l)
A R 2 S S
or
. . . +AX.
i . _ Axi+l+AXi . k1+1k1(AX1+l Xl) o)
i+% Ax. Axs g AXiki+1+AXi+1ki
ks ki1
HKX, is defined as,
Pl (7-A)

HKX. =
i Axi+AXi+1

Substituting Equation (6-A) into Equation (7-A) yields:
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Zk.k.

HKX. = 1 1%l (8-A)
i Z\Xiki+1+Axi+lki
and in the same manner:
2k;_1Ks
HKX: 1 7 Fx. Tk A% K. (9-A)
~-171 171-1
. . Ps
2. Derivation of the Relationship P, = 5
_ mass _ mass
Pr = Ty 2 Pg T 7F
r s
P V., mass v, B
Thus,
Ps
o = 2 (10-A)
r 8
3. Linear Extrapolation

Assume a linear relationship between time and pressure

Figure (7), then,

+
ph_pntl Eﬁii:ﬁﬁ_z (11-A)
= + nt+l
tn+1_tn tn 2_JC
Letting
+1 n
Aty = +0T ot



63

Then solving Equation (11-A) for Pn+2,_gives,

n+2 n+l

p - p + (phtl

_phy At (12-A)
5t

In the same manner the extrapolated saturation is defined as:

shTZ = gh*l 4 (gntl_gny At

(13-4)
Atl
P
ph
|
{
|
| \\\\\
a
Pn+l _______ } _____ _;
} ,'\
| |
I
Pn+2 ______ % _____ ’_____,i
: | .
| | |
| | ;
! ]
Aty At
té tn+l tn+2 — > TIME
Fig. 7. Linear Extrapolation



APPENDIX C,.

RESERVOIR DATA

A reservoir to be water flooded will be considered to

&

have the following geometry, rock and fluid properties,

Numerical Method (Heterogeneous Layered Case):

3 Ax Ax Ax Ax Ax Ax Ax A

1 .15 .18 .17 .16 . 2 .19 .18 .20 t h

2 .25 .23 .27 .22 .25 .27 .26 .25 t'h

3 .35 .38 .37 .38 .40 L42 .39 .38 h

b .38 .36 .35 .32 .30 .38 .35 .30 I h
ft.

100 150 200 250 250 200 150 100

% direction

6 ft.

10 f£t.

6L

The number in each block in the above diagram is an absolute

permeability value.

Total reservoir length = 1400 feet
Total reservoir thickness = 25 feet
Reservoir width Ay = 200 feet

Total water injection rate = 1000 barrels/day

*The data should be input in the computer program using field

units. Conversion of field units to cgs uni
the computer program.

ts is made within
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Bubble point pressure Pb = 3487 psi

0i1 compressibility CO = .003 atm ~+

Water compressibility CW = .0000045 atm™t
Porosity ¢ = .20
Connate water saturation SWC = .2

Residual oil saturation SOR = .2

Initial o0il saturation SOI = .8

11
N

Initial water saturation SWI

Initial gas saturation SGI = 0.0

Equilibrium gas saturation SGC = .05

01l formation volume factor at bubble point Bob = 1.65

Water formation volume factor at bubble point Bwb = .95

Initial pressures in all the blocks of the first layer
= 3487 psi

Initial pressures in the blocks of other layers are calcula-

ted by:

h.+h, .
P. . = P. . + .u33(—1—17=)
1,7 l)]'—l 2

The fluid properties were suitably curve-fitted with

the following empirical equations (using the least squares

technique) .

2
- -3
8 = 1.09816 + 1.3u487x10 " P+6.8235x10 P
(@]
P < P
o8 ~y -9
559 = 1.3487%10 + 2(6.82357)x10° °P
& - g o-Co(P=Pp)
o ob
P > Py
38
——— = -— C B



_ -C _(P-P,.)
8w B 8wb e v b

1./(-19.937+9.126x10°% P-2.1086x10"° p?)

b
08, ,
35 = -8,  (.09126-2(2.1086)P)
R, = 4W.2725+,266273P+7.7775x10"° p? P < P
R. = R P>P
S
Sy b
aR_
5p- = .266273+2(7.7775x10°° P) P < P,
SR
— = 0
3P = P > Pb
M, = 3.98117-1.992x107 2P+8.031ux10"/P°-1.9869x10 %3
Mg = uob + .0001(P-P.) P > P
My = M, + .00001(P-P.)
b
Hg = L002474+9.244x10" ®p-7.6556x1070p?

Relative Permeabilities(lg)

3
S 2-S _-2SWC)
= _£ ( g

rg (1-swe)?

s 3(2-5 -25W)
_ g g , S < SWC

k., n
rg (1-SW)




5,,~SHWC
“pw = | ITEwe—| 0 8, > SUWC
K, =0 , S, < SWC
(1-S_-SW)>(1-S_+SW-2SWC)
kg = g gu , S, > SWC
(1-SWC)
1-5 -5 *
Ko = L , S, < SWC

Numerical Method (Homogeneous Layered Case):

These data are the same as those for the heterogeneous
case except that the layers are homogeneous. A series-
averaged value of permeability was calculated for each

heterogeneous layer and was assigned to that same layer in

this model. These values are:
Layer Permeability-Darcy
1 .18
2 .25
3 | .38
L . 3L

Dykstra-Parsons Method:

Initial gas saturation = 0.0
Initial oil saturation = .8

Initial water saturation = .2
Residual oil saturation = .2

Connate water saturation = .2
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Reservoir length = 1400 feet

Reservoir thickness = 25 feet
Reservoir width = 200 feet
BO = 1.865
W, = .75
My = 1.47
pw = 1.0
krw at the residual oil saturation = .316
kro at the connate water saturation = .75
Layer's Thickness Permeability
feet md
I 180
6 250
5 380
10 340

These permeability variations were plotted versus cumulative

thickness as in Figure (8) and rearranged for equal inter-

vals of one foot as shown in Table II.



TABLE IT.

Rearranged Permeabilities

69

Cumulative Thickness Permeability From Rearranged
feet Fig. 8 Permeability

md . md.

1 170 398
2 172 398
3 175 397
L 180 395
5 183 388
B 189 385
7 200 380
8 212 376
9 230 365
10 250 358
i1 2772 350
1?2 298 340
13 327 327
14 358 298
15 380 272
16 395 250
17 398 230
18 398 212
19 397 200
20 388 189
21 385 183
29 376 180
23 365 175
oy 350 172
340 170

N
(ea]




APPENDIX D

COMPUTER FLOW DIAGRAM FOR NUMERICAL MODEL

" MAIN PROGRAM

START

|

Initialization
N,M,¢,SWI,SGI,SOT,
PIN,SOR,SWC,SGC

INPUT
AX; 5Ky 55Hs,AY.QT

,

SET UP INITIAL SATURATIONS AND7

PRESSURES
SW. . = SWl. . = SW2.,.= SWI
1,3 1,3 173
SO, . = 801. . = S02. = SOI
1,3 1,7 1,573
SG., - = 8Gl. . = S8G2. . = SGT
1,3 1,3 1,7
Pi 1 = PNli 1 = PNQi 1 % PIN
s ) s s +H= _
P, . = P, . . + .433 (—3*0i-1,
1.3 l>j—l 2
PN1. . = PN2. . = P. .
1,3 1,7 1,53 }

[bALL BETA(P. .U
i,

CALCULATE INITTIAL OIL IN PLACE
N
M Ax; AyH.¢SOI
STOIP = 3 =51 %
i=1 . oi,
j=1
v
CALCULATE HKX, EQ. (16)‘
2
¥

|READ At AND N TIME |

®

70
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P

CALCULATE WATER INJECTION INTO
THE FIRST BLOCK OTF EACH LAYER

EQ. (28)
NORMALIZE QW, .
s3]
QW s
le,j - QT N
W
jElQ laj
SET
0 . = . = 0.0
< 1,7 0.0, QGZL,]
: ©
J = 1
CALCULATE
(SW SG so. .)tE ><
i,3°774,377 71,3
N

VA
=
)
e
1

]
]
N
e
#

CALL COFF J

.

CALL MBAL

CALCULATE CUMULATIVE OIL, WATER, GAS
PRODUCTIONS, WOR AND GOR EQS. (33),
(34), (35), (36) and (37)




OUTPUT
CALCULATED PRESSURES, SATURATIONS,
CUMULATIVE PRODUCTIONS AND RATES

[ RESET OR READ NEW TIME STEP |

L

LINEAR EXTRAPOLATE PRESSURES AND
SATURATIONS FOR NEW TIME STEP

©
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SUBROUTINE C

Orr

.

O
AOX1 = 0.0
AWX1 = 0.0 YES 1S
AGX1 = 0.0 [ ' I =1
NO
CALL BETA (P, yntis
3
!CALL SOLGAS (P} yntis
b
TEMP1, TEMP 2
TEMP3 | TEMP5
YES
1
CALL BETA (P, j)"7?
e .
CALL SOLGAS (P, ,)"772
2
TEMP4, TEMP6
AOX1 = AOX2*TEMP1*TEMPY4/TEMP6
AWX1 = AWX2*TEMP2XTEMP4/B . T °
.
AGX1 = AGX2*TEMP3*TEMP4/E e ,
~% (®)
AWXZ = 0.0
YES AOX?2 = o.oJ
AGX2 = 0.0
NO
r 1
{ CALL BETA (P,,,)""72
z 3
CALL RPERM (S..,)07"%
1+
)Pt

CALL VISC (P.,

1
3

®
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0

AOX2 ,AWX2 ,AGX?2

T

‘ CALL BETPRM (p. .)n*%
i3

CALL
CALL
CALL
CALL
CALL

BETA (Pl
BETA (P_ .)
m,
RPERM (S
m
visc (P
m,J
SOLGAS (P_ .)
m,J

3

] n+]72

Q6,5 EQS-

W, 50
2
31) and (32)

m
(

} CALIL TRIDAG

!

RETURN TO
MAIN PROGRAM
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SUBROUTINE MBAL

INITIALTZATTION
SATOL = .02
PRTOL =1.0
KEYS =1
T =1
P @
1
CALL BETA (pP. .)0*s
S n+
CALL SOLGAS (P, )72
>
QWTERM
QOTERM YES
QGTERM
QWTERM
QOTERM YES
QGTERM
QWTERM = O.
QOTERM = O.
QGTERM = O.
v -
CALL BETA S
(P yntE = = ted
i-1,73
NO
AMOX1 AMOX1 = O.
AMWX 1 AMWX1 = Q.
AMGX1 AMGX1 = Q.
AMOX2 = 0. ////fg
AMWX?2 = 0. NO M
AMGX?2 = 0.

l YES

(S.

L. RPER
CA ERM

l+%aj
CALL VI%Q%

(P. . )
i

+3,]

o
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AMOX?2
AMWX?2
AMGX?2

®— "

{

AS05 5> SWi 5>

Asg. ., RSTERM
i,3

2
SOi’j L)

NORMALIZE SATURATIONS
SSUM SG+SW+SO0O
SO SO/SSUM

SW SW/SSUM.
SG SG/SSUM

IS

YES SO > SOR

NO

SO = SOR
|

NO Is
SO >1-SWC

YES

YES

NO

76



®
:

KEYS

i

KEYS

SG = 1-S0-SW
CHK = |SG-38G2| - SATOL
LES CHKIE 0.
NO
CHK = |SW-SW2| - SATOL
YES ,
NO
CHK |SG-SG2| - SATOL

KEYS

L NO

KEYS

CHK |P-PN1| - PRTOL
YES IS _
HK > 0
NO

RETURN TO
MAIN PROGRAM
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SUBROUTINE TRIDAG

{

BTA(1)
GMA(1)

i n

B(1)
D(1)/BTA(1)

BTA(I)

GMA(T) T = I+1J

NO

YES

NO

=

YES

RETURN TO
SUBROUTINE COTF



2.

START

|

COMPUTER FLOW DIAGRAM FOR DYKSTRA-PARSONS METHOD
INITIALIZATION

ma

AHANLPY,AZLB Lk,
kro’“o’ pw,SOI,SOR,WIR,hl
N
READ K. ‘
3.
N
y = sxw Mo
kI’O UW
T = 1
J
N
7. = h./H
ER 1
2
(1-y k.
A. = =
i %
max
S 7
Xy YT Y oAy
%y - Y—-1
NO IS
I = I+1 I =N
YES
N Xi
B, = 5 —
1 520 %

79



I =1
BiAZ
C. = Z. +
1 1 Xl;xl
-1
NP. = T Ci(SOI——SOR)PV
1 @]
RECOVi = (Ci(l-—SOR)/SOI)lOO

NO

YES

i
-
+
=

"

I+1

80



I = TI+1

YES
(o]
WOR. = M. /U.
1 1 1
NO
YES
[ NP, = O [
s
I = 2 J
ANP, = NP_-NP.
WP. = WORANP.+WP.

1 1 1-1
WI, = WPi+BONPi
TIME. = WI./WIR

a1 1

YES

NO

OUTPUT

WP.,WI.,WOR.
1 1 a1

I

I+1

81



3.

FORTRAN IV G LEVEL 1, MOD & MAIN

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
001y
0015

0016
0017
0018
0019
0020

COMPUTER PROGRAM FOR NUMERICAL MODEL

OO0

DATE = 69290 18/06/54

ONE DIMENSIONAL, THREE PHASE, STRATIFID, PETROLEUM RESERVOIR
SIMULATOR VARIABLE LENGTH(DELT X), VARIABLE LAYERS THICKNES
(H), HETROGENOUS PERMEABILITY IN EACH LAYER, NEGLETING GRAVITY
FORCES, CAPILLARY PRESSERS AND ROCK COPERSIBILITY, NO FLOW BETWEEN

LAYERS, INJECTING FROM ONE END AND PRODUCING FROM THE OTHER
END

Yo ot ate Wta oN e ofe ofs T2 oY
wdkud MATN PROGRAM ditdics

DIMENSION DELX(10),PERM(10,10),H(10),S0(10,10),SW(10,10),SG(10,10)
1,501(10,10),S02(10,10),SW1(10,10),SW2(10,10),561(10,10),S62(10,10)
1,P(10,10),PN1(10,10),PN2(10,10) ,HKX(10,10),00(10,10),QW(10,10),
106(10,10),PN3(10,10)

N=1

M=8

TIME=0.0

TTCNT=0

CUMOP=0.0

CUMWP=0.0

SWC= .2

NN=N-1

PHI=.?20

SWI=.?

SGI=0.0

S0I=.80

MM=M-1

KCOUNT=0

READ(1,90)(DELX(I),I=1,M)
READ(1,100)((PERM(I,J),I=1,M),J=1,N)
READ(1,102) (H(I),I=1,N)

DELY=200.

PIN=3487.
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0021
0022
0023
0024
0025
0026
0027
0028
0028
0030
0031

0032
0033
0034
0035
0036
0037
0038
0038
00uo0

ooul
0042
0ou3
o0uy
oous

oo,

OO0

OO0

98

97

96

SET UP INITIAL SATURATIONS

DO 98 I=1,M

DO 98 J=1,N
SW(I,J)=SWI
SG(I,J)=SGI
S0(I,J)=S0I
SW1(I,J)=SW(I,J)
SW2(I,J)=SW(I,J)
S01(I,J)=S0(I,J)
S02(I,J)=(I,J)
SG1(I,J)=SG6(I,J)
SG2(I,J)=SG(I,J)

SW1,5G1,S01 ARE SATURATIONS AT N TIME LEVEL (OLD TIME LEVEL)
SW2,5G2,502 ARE SATURATIONS AT N+1 TIME LEVEL AND K+1 ITERITIVE

SET UP INITIAL PRESSURES

DO 97 I=1,M

P(I,1)=PIN

PN1(I,1)=P(I,1)

PN2(I,1)=P(I,1)

DO 96 J=2,N

DO 96 I=1,M

P(T,J)=P(I,J-1)+.433% (H(J)+H(J-1))/2.
PN1(I,J)=P(I,J)

PN2(I,J)=P(I,J)

P IS PRESSURE AT N TIME LEVEL (OLD TIME LEVEL)
PN1 IS PRESSURE AT N+1 TIME LEVEL AND K ITRITIVE
PN2 IS PRESSURE AT N+1 TIME LEVEL AND K+1 ITERITIVE

OUTPUT INITIAL CONDITIONS
WRITE(3,90)(DELX(I),I=1,M)
WRITE(3,102)(H(I),I=1,N)

WRITE(3,100) ((PERM(I,J),I=1,M),J=1,N)
WRITE(3,121) TIME

WRITE(3,241)

€8



0046 WRITE(&’,QUO)((PNQ(I,J),I=1,M),J=1,N)

0047 WRITE (3,253)
0048 WRITE(3,251) ((SO(I,J),I=1,4),J=1,N)
0049 WRITE(3,254)
0050 WRITE(3,251) ((SW(I,J),I=1,M),J=1,N)
0051 WRITE(3,255)
0052 WRITE(3,251) ((SG(I,J),I=1,M),J=1,N)
0053 DO 92 J=1,N
0054 DO 92 I=1,M
0055 P(I,J)=P(I,J)/14.7
0056 PN1(I,J)=PN1(I,J)/14.7
0057 92 PN2(I,J)=PN2(I,J)/14.7
C
0058 STOIP=0.0
0059 DO 91 J=1,N
0060 DO 91 I=1,M
0061 CALL BETA (P(I,J),BTAO,BTAW,BTAG)
0062 91 STOIP=STOIP+DELX(I)*DELY*H(J) *PHI%*SOT/(5.61%*BTAQ)
0063 WRITE(3,256)STOIP
0064 DO 93 I=1,M
0065 93 DELX(I)=DELX(I)*30.48
0066 DO 94 J=1,N
0067 94 H(J)=H(J)*30,48
0068 DELY=DELY#30.L§
C
C CALCULATE HKX
C
0069 DO 1 J=1,N
0070 DO 2 I=1,MM
0071 ? HKX(I,J):(Q.*PERM(I,J)*PERM(I+1,J))/(DELX(I)*PERM(I+1,J)+DELX(I+1)
1#PERM(I,J))
C
C READ TIME STEP
C
0072 READ(1,108)DELT ,NTIME
0073 TIME=TIME+DELT
0074 DELT=DELT#24 . %3600 .
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0075 ITCNT=ITCNT+1

0076 897 CONTINUE
C
0077 QT=1000.%5.615%30.48%30,48%30.48/(24.%3600.)
0078 SUMKH=0. 0
0079 SUMQWI=0.0
C CALCULATE WATER INJECTION INTO THE FIRST BLOCK OF FACH LAYER
0080 PBIG=0.0
0081 DO 50 J=1,N
0082 IF(PBIG.LT.P(1,J)) PBIG=P(1,J)
0083 50 CONTINUE
0084 PBIG=PBIG+20.
0085 DO 899 J=1,N
0086 899 SUMKH=SUMKH+PERM(1,J)%H(J)*(PBIG-P(1,J))
0087 DO 898 J=1,N
0088 QW(1,J)=QT*PERM(1,J) *H(J)*(PBIG-P(1,J))/SUMKH
0089 SUMQWI=SUMQWI+QW(1,J)
0090 Q0(1,J)=0.0
0091 898 QG(1,J)=0.0
0092 DO 901 J=1,N
0093 DO 901 I=2,MH
009y QW(I,J)=0.0
0095 Q0(I,J)=0.0
0096 901 QG(I,J)=0.0
0097 DO 892 J=1,N
0098 892 QW(1,J)=QT*(SW(1,J)/SUMQWT)
C
0099 53 CONTINUE
0100 J=1
0101 NCOUNT=0
0102 52 CONTINUE
0103 CALL COFF(SWl,SW?,SGl,SGQ,HKX,P,PNl,PNQ,M,MM,DELT,DELY,DELX,QO,le,QG,
PHI,H,J,S0,SW,SG,PN3)
C
0104 CALL MBAL(PHI,DELX,DELY,HKX,QO,QW,QG,SO,SW,SG,PN2,P,DELT,H,SOl,lSOQ,
SW1,5W2,S61,562,M,KEYS,J,PN1)
0105 NCOUNT=NCOUNT+1

58



0106
0107
0108
0109
0110
0111
0112
0113
011y
0115
0116

0117
0118
0119
0120
0121
0122

0123
012y
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138

GO TO (55,59), KEYS
59 CONTINUE
IF(NCOUNT.GT.2) GO TO 55
DO 60 I=1,M
SW2(I,J)=SW(T,J)
SW(I,J)=.5%(SW1(T,J)+SW2(T,J))
S62(I,J)=86(I,J)
S6(I,J)=.5%(S6L(I,J)+SG2(T,J))
SO(I,J)=.5%(S0(I,J)+1.-SW1(I,J)-SG1(I,J))
60 PN1(I,J)=PN2(I,J)
GO TO 52

55 IF(J.EQ.N) GO TO 56
J=J 1
NCOUNT=0
GO TO 52

56 CONTINUE
WRITE(3,121)TIME

CALCULATE OIL,WATER AND GAS PRODUCTIONS,WOR,GOR AND OTL RECOVERY

SUMQ0=0.0
SUMQW=0.0
SUMQG=0.0
DO 63 J=1,N
SUMQO=SUMQO+Q0(M,J)
RQOzSUMQo*zu.*36oo./<3o.u3*3o.u8*30.u8*5.615)
SUMQW= SUMQW+QW (M, J)
RQWzSUMQw*zu.*3600./*3o.u8*30.u8*3o.u8*5.615)
CALL SOLGAS(P(M,J),RS1)
CALL SOLGAS(PN2%M,J),RS?2)

63 SUMQG=SUMQG_QG(M,J)+Q0(M,J)*(RS1+RS2) /2.
TF(SUMQ0.FQ.0.0) GO TO 58
WOR=SUMQW/SUMQO
GOR=5.615%SUMQG/SUMQO
GO TO 54

58 WOR=0.0

98



0139
0140
0141
0142
0143
01y

0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156

0157
0158
0159
0160
0161
0162
0163

0l6u
0165
0166
0167

OO0

TP e X o

Su

57

GOR=0.0
CONTINUE

CUMOP=CUMOP+SUMQO*DELT/ (30.48%30.48%30,48%5,615)
CUMWP=CUMWP+SUMQW*DELT/(30.48%30.,48%30.48%5,615)
RECOV=100.%*CUMOP/STOIP

CUMWIN=QT*TIME*24 .%*3600./(30.48%30.48%30.48%5.615)

WRITE(3,241)
WRITE(3,240) ((PN3(I,J),I=1,M),J=1,N)
WRITE(3,253)
WRITE(3,251)((SO(I,J),I=1,M),J=1,N)
WRITE(3,254)

WRITE(3,251) ((SW(I,J),I=1,M),J=1,N)
WRITE(3,255)
WRITE(3,251)((sG6(1,J),I=1,M),J=1,N)
WRITE(3,257) RQO,RQW

WRITE(3,252)CUMOP,CUMWP ,RECOV,CUMWIN,WOR,GOR
IE(WOR.GT.20,) GO TO 99

KCOUNT=KCOUNT+1

RESET OR READ TIME STEP

DELTN1=DELT

IF(ITCNT.LT.NTIME) GO TO 57
ITCNT=0

READ(1,108 ,END=99) DELT ,NTIME
DELT=DELT*24.%3600.
ITCNT=ITCNT+1
TIME=TIME+DELT/(24.%3600.)

LINEAR INTERPOLATION FOR PRESSURES AND SATURATIONS FOR THE NEXT STEP TO
ACCELERATE CONVERGENCE

DO 30 J=1,N
DO 30 I=1,M

SW2(I,J)=SW(I,J)+(SW(I,J)-SW1(I,J))/DELTN1*DELT
SW1(I,J)=SW(I,J)
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0168 SGZ(I,J)=SG(I,J)+(SG(I,J):SG1(I,J))/DELTNI*DELT
0169 SG1(I,J)=SG(I,J)

0170 SW(I,J)=.5%(SW1(I,J)+SW2(I,J))

0171 SG(I,J)=.5%(S61(T,J)+SE2(T,J))

0172 SO(I,J)+1.=SW(I,J)-SG(I,J)

0173 PN1(I,J)=PN2(I,J)+(PN2(I,J)-P(I,J))/DELTN]*DELT
0174 P(I,J)=PN2(I,J)

0175 30 PN2(I,J)=PN1(I,J)

0176 IF(KCOUNT.GT.60) GO TO 500

0177 GO TO 53

0178 500 TIME=TIME-DELT/(24.%3600.)

0179 WRITE(2,502) ((P(I,J),I=1,M),J=1,N)
0180 WRITE(2,502) ((PN1(I,J),T=1,M),J=1,N)
0181 WRITE(2,502) ((PN2(I,J),T=1,M),J=1 N)
0182

WRITE(2,503) TIME,DUMOP,CUMWP
0183 WRITE(?,SO&)((SW(I,J),IZl,M),J=1,N)
0184 WRITE(?,SOM)((SWl(I,J),I=1,M),J=1,N)

0185 WRITE(2,504) ((SW2(I,J),T=1,M),J=1.N)

0186 WRITE(2,504) ((SO(I,J),T=1,M),J-1,N)

0187 WRITE(2,504) ((S02(I,J),I=1,M),J=1,N)

0188 WRITE(2,504) ((SG(I,J),T-1,M),J=1,N)

0189 WRITE(2,504) ((SG1(I,J),T=1,M),J=1,N)

0190 WRITE(2,504) ((5G2(I,J),T=1,M),J=1.N)

0191 99 STOP

0192 90 FORMAT(8F8.2)

0193 100 FORMAT(8F8.?)

019 102 FORMAT(8FS.?2)

0195 108 FORMAT(F10.5,14)

0196 121 FORMAT(/,40X,'*&%&&PTME ELAPSED=",F16.7, 'DAYS##%&%1 _//)

0197 240 FORMAT(20X,8F10.1)

0198 241 FORMAT(60X,'PRESSURE IN PST',//)

0199 251 FORMAT(?20X,8F10.4)

0200 253 FORMAT(//,60X,'0IL SATURATIONS',//)

0201 254 FORMAT(//,60X, 'WATER SATURATIONS',//)

0202 255 FORMAT(//,60X,'GAS SATURATIONS',//)

0203 252 FORMAT(/,5X,'CUMULATIVE OTL PRODUCTION = ',F18.5,'STB',10X, ' CUMLATIVE
IWATER PRODUCTION =

',F18.5,'STB',/,lSX,‘PERCENT RECOVERY = 'F10.4,10X,



0204
0205

0206
0207
0208
0209

1'CUMULATIVE WATER INJECTED = ',F18.5,'STB',/,5X,'WOR=',F10.4,10X,

1'GOR = ',F10.4,//)

256 FORMAT(/,10X,'ORIGINAL OIL IN PLACE',F16.2,'STB',//)
257 FORMAT(/,5X,'0IL PRODUCTION RATE = ',F18.5,'STB/DAY',5X,'WATER

1PRODUCTION RATE
502 FORMAT(8F8.2)
503 FORMAT(3F20.6)
504 FORMAT(8F8.5)
END

', F18.5,'STB/DAY")
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0001

0002

0003
0004
0005

0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023

002y

0025
0026

(o i 2 I o M

O

##%%%%CALCULATION OF COEFFICIENT###ds
SUBROUTINE COFF(SW1,SW2,SG1,S62,HKX,P,PN1,PN2,M,MM,DELT ,DELY ,DELX,QO,
15Q,Q6G,PHI ,H,J,S0,SW,SG,PN3)
DIMENSION SW1(10,10),SW2(10,10),5S61(10,10),562(10,10),HKX(10,10),
1P(10,10) ,PN1(10,10) ,PN2(10,10) ,DELX(10),Q0(10,10),5Q(10,10),Q6(10,120),

1AX(10),BX(10),CX(10),DX(10),s0(10,10),SW(10,10),SG(10,10),H(10) ,PN3
1(10,10)

CW=.00000u45
SOR=.20
SWC-.20

AT THIS POINT SW,SG,SO ARE TIME AVERAGED SATURATIONS BETWEEN N AND N+1
TIME LEVEL

DO 50 I=1,M

IF(I.EQ.1) GOTO 10
PX=.5%(P(I,J)+PN2(I,J))

CALL BETA (PX,BTAO,BTAW,BTAG)
CALL SOLGAS(PX,RS)
TEMP1=BTAO-BTAG*RS
TEMP2=BTAW

TEMP 3=BTAG

TEMP 5=BTAO

IF(I.EQ.1) GO TO 8
PX=.5#(P(I-1,J)+PN2(I,J))
CALL BETA(PX,BTAO,BTAW,BTAG)
CALL SOLGAS(PX,RS)
TEMP6=BTAO-BTAG*RS
TEMPY4=DELX(I-1)/DELX(I)
AOX1=A0X2*TEMP1*TEMPY/TEMP6
AWX1=AWX2*TEMP2*TEMPY /BTAW
AGX1=AGX2*TEMP3*TEMPY /BTAG

IF(I.EQ.M) GO TO 30

PX=,25%(P(I,J)+P(I+1,J)+PN2(I,J) PN2(I+1,J))
SWA= 5% (SW(I,J)+SW(I+1,J))
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0027
0028
0023
0030
0031
0032
0033
0034
0035
0036

0037
0038
0039
0040

0041
0042
0043

004y
oou5
00ub
o0u7
oousg
0049
0050
0051

0062
0053

0054
0055
0056
0057

10

30

11

12

SGA=.5%(SG(I,J)+SG(I+1,J))
SOA=.5%(S0(T,J)+S0(T+1,J))
IF(SO(I,J).LE.SOR) S0A=0.0

CALL BETA(PX,BTAO,BTAW,BTAG)

CALL RPERM(SOA,SWA,SGA,RKO,RKW,RKG)

CALL VISC (PX,XMUO,XMUW,XMUG)
AOX2=HKX(I,J)/DELX(I)*TEMP1/BTAO*RKO/XMUO
AWX?2=HKX(I,J)/DELX(I)*TEMP2/BTAW*RKW/XMUW

AGX2=HKX(I,J)/DELX(I)*TEMP3/BTAG*RKG/XMUG
GO TO 11

A0X1=0.0
AWX1=0.0
AGX1=0.0
GO TO 2

A0X?2=0.0
AWX2-0.0
AGX2=0.0

CONTINUE
PX=(P(I,J)+PN1(I,J))*.5
CALL BETPRM (PX,BOPRM,BGPRM,RSPRM)

TRM=-SW(I,J)*CW+SG(I,J)*BGPRM/TEMP3+S0(I,J)*(BOPRM-RSPRM*TEMP3)/TEMPS
TRM=PHI*TRM/DELT

AX(I)=A0X1+AWX1+AGX1

CX(I)=A0OX2+AWX2+AGX?2

BX(I)=-AX(I)-CX(I)+TRM

IF(I.EQ.M) GO TO 40
IF(I.EQ.1) GO TO 12

QTERM=0.0
GO TO 13

QTERM=QG(I,J)*TEMP3+Q0(I ,J) *TEMP1+QW (I ,J) *TEMP?
QTERM=-QTERM/ (DELX(I)#*DELY*H(J))
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0058
0059

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070

0071
0072
0073
007y
0075
0076
0077
0078

0079

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090

13 DX(I)IQTERM+TRM*P(I,J)

40

41

42
43

GO TO 50

PX=.5%(P(1,J)+PN2(1,J))

CALL BETA(PX,BTAO,BTAW,BTAG)
TEMP 2=BTAW

PX=. 5%(P(M,J)+PN2(M,J))
SOA=S0(M,J)

SWA=SW(M,J)

SGA-SG(M,J)

CALL BETA(PX,BTAO ,BTAW,BTAG)
CALL RPERM(SOA,SWA,SGA,RKO,RKW ,RKG)
CALL VISC(PX,XMUO ,XMUW,XMUG)
CALL SOLGAS(PX,RS)

IF(RKO.LE.0.0) GO TO 41

TEMP1=BTAO-BTAG#RS
QO(M,J):TEMPQ*QW(I,j)/(1.+RKW/RKO*XMUO/XMUW+RKG/RKO*XMUO/XMUG)
QO(M,J)=Q0(M,J)/BTAD

QW (M, J)=Q0(M,J) *RKW*BTAO*XMUO/ (RKO*BTAWSXMUW)

QG(M,J)=Q0(M,J) *RKGHBTAO*XMUO / (RKO*BTAC*XMUG)

QTERM-QG(M,J) *BTAG+QO(M,J) *TEMPL+QW(M,J ) *BTAW
QTERM=QTERM/ (DELX (M) #*DELY*H(J))

DX(M) =QTERM+TRM#*P (M, J)

GO TO 50

Q0(M,J)=0.0

IF(RKG.LE.0.0) GO TO 42

QG(M,J) =TEMP2#QW(1,J) /(1. +RKW/RKG*XMUG/ XMUW)
QG(M,J)=QG(M,J)/BTAG

GO TO 43

0G(M,J)=0.0

QWM,J)=(TEMP2*QW(1,J) -BTAG*QG(M,J) ) /BTAW
QTERM=QG(M,J) *BTAG+QW(M,J ) *RTAY
QTERM-QTERM/ (DELX (M) *DELY#H(.J))
DX(M)=QTERM+TRM*P (M, J)
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0091
0092
0093
009k

50 CONTINUE
CALL TRIDAG(AX,BX,CX,DX,PN2,M,J,PN3)
RETURN
END
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OO

%% %% SMATERIAL BALANCE CALCULATIOQN#®####

0001 SUBROUTINE MBAL(PHI,DELX,DELY,HKX,00,0W,QG,S0,SW,S6,PN2,P,DELT,H,S01,
1802,SW1,SW2,S61,3G2 ,M,KEYS,J ,PN1)

0002 DIMENSION SW1(10,10),SW2(10,10),SW(10,10),SG1(10,10),SG2(10,10),
186(10,10) ,HKX(10,10),P(10,10) ,PN2(10,10),PN1(10,10),DELX(10),Q0(10,10),
1QW(10,10),06(10,10),H(10),S0(10,10),3801(10,10),502(10,10)

C

0003 SWC=.?2

000U SGC=.05

0005 SOR-. 20

0006 SATOL=.02

0007 PRTOL=1.0

0008 KEYS=1

C

0009 DO 100 I=1,M

0010 77=~DELT/ (DELX(I)*PHI)

0011 PX=(P(I,J)+PN2(I,J))%.5

0012 CALL BETA (PX,BTOI,BTWI,BTGI)

0013 CALL SOLGAS(P(I,J),RSN)

001y CALL SOLGAS(PN2(I,J),RSNP1)

C
C CALCULATE QWTERM,QOTERM,QGTERM
C
0015 IF(I.EQ.1) GO TO 90U
0016 TF(I.EQ.M) GO TO 905
C

0017 QWTERM=0.0

0018 QOTERM=0.0

0019 QGTERM=0.0

0020 GO TO 900

0021 904 QWTERM=QW(I,J)*BTWI/(H(J)*DELY)

0022 QOTERM=0.0

0023 QGTERM=0.0

0024 GO TO 900

0025 905 AWTERM=-QW(M,J)*BTWI/(H(J)*DELY)

0026 QOTERM=-QO0(M,J)*BTOI/(H(J)*DELY)

g



0027
0028

0029

0030
0031
0032

0033

003y
0035
0036
0037
0038

0039

0040
o0u1
0042
oou3

O0LY
0045
0046
oou7
0048
0049
0050
0051
0052
0053

0054
0055

900

17

QGTERM=~QG(M,J) *BTGI/(H(J) *DELY)
CONTINUE

IF(I.GT.1) GO TO 5

A0X1=0.0
AWX1=0.0
AGX1=0.0

GO TO 7

PX=(P(I-1,J)+PN2(I-1,J))%.5
CALL BETA(PX,BTAO,BTAW,BTAG)
A0X1=(BTOI/BTAQ) *AQX?2
AWX1= (BTWI/BTAW)*AWX?
AGX1=(BTGI/BTAG) *AGX?

IF(I.LT.M) GO TO 8

A0X2-0.0
AWX2=0.0
AGX2=0.0
GO TO 17

SWA=.5%(SW(I,J)+SW(T+1,J))
SOA=.5%(S0(I,J)+S0(T+1,.J))
SGA=.5%(SG(T,J)+SG(I+1,J))

IF(SO(I,J).LE.SOR) SOA=0.0

CALL RPERM(SOA,SWA,SGA,RKO ,RKW ,RKG)
PAV=.25%(P(T,J)+P(T+1,0)+PN2(1,J)+PN2(1+1,))
CALL VISC(PAV,XMJO ,XMUW ,XMUG)

AOX2=HKX(T ,J) * (RKO/XMUO)* (. 5%(P(T+1,J)+PN2(T+1
AGX2=HKX(T,J)* (RKG/XMUG) *(, 5% (P(T+1 .J)+PN2(1+1
AWX2=HKX(T,J)* (RKW/XMUW) #( .5 (P(T+1.J)+PN2(T+]

DELSW=27%(AWX1-AWX2~AWTERM)
DELSO:ZZ*(AOX1~AOX2—QOTERM)

»J)-P(I,J)-PN2(I,J)))
»J)=P(I,J)-PN2(I,J)))
»J)=P(I,J)-PN2(I,J)))

S6



0056

0057
0058
0059
0060

0061
0062
0063
006U
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083

oogu
0085
0086

NS RP]

20

21

22

100

DELSG=ZZ#*(AGX1-AGX2-QGTERM)

RSTERM:SO(I,J)*(RSNPI—RSN)*(BTGI/BTOI)
SG(I,J)=56G1(I,J)+DELSG-RSTERM
SW(I,J)=SW1(I,J)+DELSW
SO(I,J)=1.0—SW1(I,J)—SGl(I,J)+DELSO

SATURATION TOLERANCE CHECK

SSUM:SG(I,J)+SW(I,J)+SO(I,J)
SG(I,J)=SG(I,J)/SSUM
SW(I,J)=SW(I,J)/SSUM
S0(I,J)=S0(I,J)/SSUM
IF(SO(I,J).GT.(1.-8WC)) S0(I,J)=1.-SwWC
IF(S0(I,J).GE.SOR) GO TO 20
SO0(I,J)=S0R

IF(I.EQ.1) GO TO 21
IF(SW(I,J).GT.SW(I-1,J)) SW(I,J)=SW(I-~-1,J)
IF(SW(I,J).GE.SWC) GO TO 22
SW(I,J)=SWC
SG(I,J)=1.0=80(I,J)-SW(I,J)
CHK=ABS(SG(I,J)-SG2(I,J))-SATOL
IF(CHK.GT.0.) KEYS=2
CHK=ABS(SW(I,J)~SW2(I,J))-SATOL
IT(CHK.GT.0.) KEYS=?
CHK=ABS(SO0(I,J)+SG2(I,J)+SW2(T,J)-1.)-SATOL
IF(CHK.GT.0.) KEYS=?
CHK=ABS(PN2(I,J)-PN1(I,J))-PRTOL
TF(CHK.GT.0.) KEYS=?
IF(S6(I,J).6GT.0.0) GO TO 100
S6(I,J)=0.0

SW(I,J)=1.-S0(I,J)

CONTINUE
RETURN
END
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0001
0002

0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

10

20

ESRATRT-DIAGONAL SOLUTION#® %%k
SUBROUTINE TRIDAG(AX,BX,CX,DX,PN2,M,J,PN3)

DIMENSION AX(10),BX(10),CX(10),DX(10),PN2(10,10),BTA(10),GMA(10),PN3
1(10,10)

BTA(1)=BX(1)

GMA(1)=DX(1)/BTA(1)

DO 10 I=2,M
BTA(I)=BX(I)-AX(I)*CX(I-1)/BTA(I-1)
GMA(I)=(DX(I)-AX(I)*GMA(I-1))/BTA(I)
PN2(M,J)=GMA(M)

PN3(M,J)=GMA(M) #14,7

DO 20 I=2,M

K=MOI+1
PN2(K,J)=GMA(K) - (CX(K)*PN2(K+1,J)/BTA(K))
PN3(K,J)=PN2(K,J)*14 .7

RETURN

END

L6



0001
0002
0003
000y
0005
0006
0007
0008
0009
0010
0011
0012
0013
001y
0015
0016
0017
0018
0019
0020
0021

SUBROUTINE BETA(P,BTAO,BTAW,BTAG)
AO0=.1098168E01

Al=.13487E-03

A2=.682357E-08

A3=-19,937

Ab=,9126E-1

A5=-.21086E-5

CW=.00000u45

CO=.0003

PB=3487./14.7

BTWBP=.95

BTOBP=1.650

IF(P.LT.PB) GO TO 4
BTAO:BTOBP*(EXP(—CO*(P—PB)))

GO TO 5
BTAO=AO+A1*(14.7*P)+A2*(1u.7*P)**2
BTAG:A3+AH*14.7*P+A5*(14.7*P)**2
BTAG=1./BTAG
BTAW=BTWBP*(EXP(—CW*(P—PB)))
RETURN

END
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0001 SUBROUTINE VISC(P,XMUO,XMUW ,XMUG)

0002 A0=,397117E01

0003 Al=-,299219E-p>

000U A2=,80314E-06

0005 A3=-.1986839E-09

000% Ab=,21027T-13

0007 A5=.,0024738

0go8 AB= . Q2UuUE-5

aaag AT=-,76556E-9

0010 PB=3487./14.7

0011 CVIS0=.0001

0012 CVISW=.,00001

0013 XMUOBP=1.u47

001y XMUWBP=, 75

0015 IF(P.LT.PB) GO TO &

0016 XMUO=XMUORP+CVISO*(P-PRB)
0017 GO TO 7

0018 6 XMUO=AO+A1*1H.7*P+A2*(lu.7*P)**2+A3*(14.7*P)**3+A4*(14.7*P)**4
0019 7 XMUW=XMUWBP+CVISW#*(P-PB)
0020 XMUG=AS+AB*14 , 7T¥P+A7% (1Y, 74P ) %50
0021 RETURN

0022 END

S62ERT
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0001
0002
0003
o000y
0005
0006
0007
0008

SUBROUTINE SOLGAS(PA,RS)

PX=PA

PB=3487./14.7

IF(PX.GT.PB) PX=PB

RS=44 ., 27252+ .266273%14.7%PX+.000007775651* (14, 7*PX)*#%2
RS=RS/5.615

RETURN

END

00T



0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013

0014
0015

0016
0017
0018
0018
0020
0021
0022
0023
0024
0025
0026
0027
0028

OO

10

20

SUBROUTINE RPERM(SOA ,SWA ,SGA ,RKO ,RKW ,RKG)
SGC=.05

SWC=.20

SOR=.20

IF(SWA.GT.SWC) GO TO 10
RKG:(SGA***3)*(2.—SGA—2.*SWA)/((l.—SWA)**H)
RKW=0.0

RKO=((1.-SGA-SWA)/(1.-SWC))*%y

GO TO 20

CONTINUE
RKG=(SGA**3)*(2.—SGA—2.*SWC)/((l.—SWC)**U
RKW=((SWA-SWC)/(1.-8SWC) ) **y

RKO=((1.-SGA-SWA) #%3) % (1. -SGA+SWA-2 ., #SWC) / ((1.-SWC) ##1)

ADJUST RKO FOR SOR AND RKG FOR SGC
RKO=RKO*(S0A-SOR)/(1.-SOR)
RKG=RKG*(SGA-SGC)/(1.-SGC)

IF(RKO.LT.0.) RK0=0.0
IF(SOA.LE.SOR) RK0=0.0
IF(RKG.LT.0.) RKG=0.0
IF(SGA.LE.SGC) RKG=0.0
TF(RKW.LT.0.) RKW=0.0
RKSUM=RKO+RKW+RKG
IF(RKSUM.LE.1.) GO TO &
RKO=RKO/RKSUM
RKW=RKW/RKSUM
RKG=RKG/RKSUM

CONTINUE

RETURN

END
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0001
0002
0003
000u
0005
0006
0007
0008
0009
0010
0011
0012
0013
001y
0015
0016
0017
0018
06019
0020
0021
0022
0023
0024

SUBROUTINE BETPRM(PX,BOP,BGP,RSP)
Al=.13487E-03

A2=.,682357E-08

A3=-19.,937

Ab=,09126

A5=~,21086E-5

Ab=.266273

AT7=.7775651E-5

BTOBP=1.65

C0=.0003

PB=3487./14.7

IF(PX.LT.PB) GO TO 2
BTAO:BTOBP*(EXP(-CO*(PX—PB)))
BOP=-CO*BTAQ

RSP=0.0

GO TO 3

BOP=Al+2.%A2%PX%1y 7

RSP=AG+2. *A7%PKE1Y 7
RSP=RSP/5,615
BTAG=A3+AH*IH.7*PX+A5*(1H.7*PX)**2
BTAG=1./BTAG
BGPZ—BTAG**2*(AM+2.*AS*PX*IH.7)
RETURN

END

cO0Tl



4. COMPUTER PROGRAM FOR DYKSTRA-PARSONS METHOD

/WAT 4 PT140710,TIME=01,PAGES=010  AKBAR ALI M DEFAULT W JOB 75
/ CLASS=W,PRIORITY=13,READER=2
C MODIFIED DYKSTRA-PARSONS METHOD
1 DIMENSION PERM(50),H(50),Z(50) ,A(50) ,XRATIO(50),B(50),COV(50) ,0ILPR(50),
1PM(50),6(50) ,U(50) ,WOR(50) ,DELTP(50) ,WP(50),WI(50),TIME(50),RECOV(50) |,
1QOR(50)

2 TIME(1)=0.0

3 PERMAX=399.

l SUMH=25.

5 N=25

6 NN=N-1

7 PY=200.%25.%1400.%.2/5.615

8 DELZ=.0Y

g B0O=1.65
10 RKW= . 316
11 RKO= .75
12 XMUW= .75
13 S0I=.8
1y SOR=.?

15 WIR=1000.
16 H(1)=1.

17 DO 4 I=2,N
18 ¥ H(I)=1.+H(I-1)
19 READ(1,100) (PERM(T) ,I=1,N)
20 2 READ(1,400,END=50) XMUO

21 VRATTO=XMUO/ XMUW
22 WRITE(3,410) VRATIO

23 GAMA=RKW/RKO#XMUO / XMUW

24 DO 10 I=1,N
25 7(1)=H(I)/SUMH

26 A(T)=(1.~GAMA%%2)%PERM(I)/PERMAX

27 10 XRATIO(I)=(GAMA-(SQRT(GAMA*#2+A(I))))/(GAMA-1.)
28 RETA=0.0
29 B(N)=0.0

30 DO 11 I=2,N

€0T



31
32
33
34
35
36
37
38
39
40
41
42
43
Lh
45
46
47
48
49
50
51
52
53
Su
55
56
57
58
59
60
61
62
63
64
65

11

12

13

14

15

16

17

18

BETA=BETA+XRATIO(T)

B(1)=BETA

DO 12 I=2,NN
B(I)=B(I-1)-XRATIO(I)

DO 13 I=1,NN
COV(I)=Z(I)+B(I)*DELZ/XRATIO(T)
RECOV(I)=COV(I)*(1.-SOR/SOI)*100,
OILPR(I)=COV(I)*(SOI-SOR)*PV/BO
PM(1)=PERMAX

DO 14 I=2,N

PM(I)=PERM(I)+PM(I-1)
G(T)=PERM(T)/(BO*(SQRT(GAMA*#2+A(I))))
SUMU=0.0

U(N)=SUMU

DO 15 I=2,N

SUMU=SUMU+G(T)

U(1)=SUMU

DO 16 I=2,NN

U(T)=U(I-1)-6(I)

DO 17 I=1,NN

WOR(I)=PM(I)/U(I)

WRITE(3,200)

WP(1)=0.0

DO 18 I=2,NN
DELTP(I)=0ILPR(I)-0ILPR(I-1)
WP(T)=WOR(I)*DELTP(I)+WP(I-1)
WI(I)=WP(I)+BO*0ILPR(I)
TIME(T)=WI(I)/WIR
QOR(I)=DELTP(I)/(TIME(I)-TIME(I-1))
WRITE(3,400)QOR(I)

WRITE(3,300) TIME(I),0ILPR(I),RECOV(I),WP(I),WI(I),WOR(I)
CONTINUE

GO TO 2

100 FORMAT(7F10.3)

200 FORMAT(//,8X,'TIME',8X,'CUMULATIVE OIL PROD',8X,'RECOVERY',7X,
1'CUMULATIVE WATER PROD',5X,CUMULATIVE WATER INJ',15X,'WOR',//,
18X,'DAYS',16X,'STB',19X,"'%",21X,'STB",21X,"'STB',21X,'BRL/STB',//)

hOT



66
67
68
69
70

300
400
410

50

FORMAT (5%,F10.2,1X,F20.2,9%X,F10.5,5%,F20.2,5%,F20.2,5X,F20.5,/)
FORMAT(F10.5)

FORMAT(/,5%,'0IL VISCO RATIO=',F10.3)
STOP

END

SOT
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