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ABSTRACT 

A numerical model for linear, three-phase fluid flow 1n 

a stratified petroleum reservoir has been developed for the 

purpose of studying water-flooding performance characteris­

tics. Gravity forces, capillary pressure and cross-flow were 

neglected, but the fluids were considered compressible and 

evaluations of dissolved gas concentrations have been 

accounted for. 

The model was used 1n evaluating the performance of a 

water flood project for a hypothetical reservoir which con­

tained the three phases of oil, gas, and water. The results 

were then compared with those obtained using the Dykstra­

Parsons technique. The model produces results which were 

found to be similar to those obtained by the Dykstra-Parsons 

method for the displacement of oil by water with no gas pre­

sent, but poor agreement resulted when free gas saturations 

were formed. The results obtained using the numerical model 

are considered to be more realistic than those obtained by 

the Dykstra-Parsons method in depleted oil sands with a sub­

stantial gas saturation s1nce the Dykstra-Parsons model was 

built on the assumption that only one phase flows at a point 

and water displace oil in a piston-like manner. When a free 

gas saturation is formed at the production well, the oil 

mobility lS reduced substantially resulting in a lower oil 

recovery at water breakthrough than can be predicted by the 

Dykstra-Parsons technique. 
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I. INTRODUCTION 

Fluid injection methods have been used for many years 

for secondary and tertiary recovery and have contributed 

substantially to marked improvements in oil recovery. The 

number of such projects should increase in the future due to 

the rising costs of discovering and developing prlmary 

reserves. 

To evaluate any proposed fluid injection program, it lS 

first necessary to know how much oil can be recovered eco­

nomically. This information must include accurate knowledp,e 

of oil rates, water-oil ratios, and gas-oil ratios with time 

or pressure declines. In order to best evaluate these 

parameters, it is desirable to simulate (by a complete mathe­

matical description) the multi-phase fluid flow in the porous 

medium, and the complex interaction of natural forces and 

physical properties of a petroleum reservoir during depletion 

with various fluid injection programs. 

The approach undertaken in this project, to simulate 

this multi-phase flow, was to sum the three continuity 

equations for the three mobil phases Coil, water and gas) ln 

one dimension, and to force the sum of saturation derivatives 

to vanish, thus forming one partial differential equation in 

pressure, dependent upon the simultaneous multi-phase flow 

ln the reservolr. The differential equation, with pressure 

as the dependent variable, was then replaced by a finite 

difference equation to expedite solution. Writing this 

equation about each discrete point in the system results ln 



a tridiagonal matrix with coefficients whic1l arc J;o th rrr'~3-

sure and saturation dependent. This tridiaponal matrix lS 

solved for pressure and yields pressure varlance:c_o at the 

specific time level at the end of each time step. The method 

requ1res knowledge of rock and fluid properties, field peo­

metry, well spacing, and known or proposed fluid injection 

rates. 

The Dykstra-Parsons technique(l) was used as a reference 

to check the numerical model for cases ln which the Dykstra­

Parsons method is applicable and to test the Dykstra-Par~:;ons 

technique for its applicability where a third phase, i'as, 

appears and where the assumption of piston-like displacement 

of oil by water is not accurate. 

The Dykstra-Parsons method employs a system of hori~on­

tal layers, not connected, except at the wells, in which 

permeability may vary vertically from layer to layer, with 

each layer being homogeneous. At any point 1n a layPr only 

water or oil is flowing, but water is allowed to exist on 

one side of the front and oil on the other such that the 

velocity of fluids within a layer is dependent on the posi-

tion of the front as well as the mobility ratio. ~To allo\-J-

ance lS made for a third phase, gas, to exist in the system 

and all fluids are considered incompressible. ~'later-oil 

ratio is dependent on the fluid velocities ln the individual 

layers and the number of layers which have experienced water 

breakthrough. 

(l) See References. 



The Dykstra-Parsons technique was chosen as a reference 

method to indicate the validity of the mathematical model 

because it is believed that the Dykstra-Parsons method is 

very accurate within the limitations of the inherent assump­

tions. 

With this introductory preface, one can say that the 

purpose of this research is two-fold: 

l. To simulate a three-phase, one-dimensional petro­

leum reservoir, with water being injected at one 

boundary and oil, water and gas being produced at 

the other boundary. It can be readily noted that 

the approach is also useful for estimatin~ verti­

cal coverages. 

2. To compare predicted performance of a hypothetical 

reservoir as evaluated by the numerical model with 

results obtained by the Dykstra-Parsons method. 

The mathematical model and the Dykstra-Parsons method 

were programmed for an IBM 360 computer in Fortran IV 

language. The flow diagrams and programs are presented ln 

Appendix D. 

3 



I I. LITERATURE REVIl:'vJ 

I 1856 h F 
. (2) 

n , t e rench englneer Henry Darcy · empirically 

formulated that the rate of flow of a single fluid throuph a 

porous medium is directly proportional to the potential 

gradient and the cross-sectional area normal to the direc-

tion of flow and inversely proportional to the viscosity of 

the fluid. This relationship is known today as Darcy's Law 

and has served as the cornerstone for describing fluid flow 

in porous media. Later it was shown that Darcy's Law is 

only valid for the viscous flow region usually definP(~ fo:r 

flow ln porous media as that region where Reynolds numbc:r 

lS equal to or less than one. Hubbert( 3 ) showed that 

Darcy's Law can be deduced from the cJassical Navier-Stokes 

hydrodynamics equations. Other investigators found that 

Darcy's Law can be extended to fluids other than water inso-

far as Darcy's investigations were confined to wate:r flow. 

The generalized form of Darcy's Law is written as, 

where 

v == 
k ... 
-V <P 
lJ 

¢ = P-pgh, h lS taken Dositive downward. 

In 1930, experimental studies were made to investigate 

• ( l+ ) 
the flow of immiscible fluids ln po:rous medla. Experi-

ments showed that the presence of a second phase reduces the 

lj 

conductance for both phases. The work of Wyckoff and Botset(S) 

-:,": 
Terms defined ln Nomenclature. 



made it e vident tha t the rela Li v e perm('di>j l j L v tc .• '. H::t !d . .t:: · ' 

of an immiscible two - p h ase system is a f unc 1 jon c i 1:i1' 1 hd:-:c• 

saturation wi t hi n t h e por ous medium . 

g a ted t h e eff ect of flui d v iscosity , prP.nsur(! P-r>acion:. and 

interfac i a l t e n s i o n on t h e r elat ive perJTlcab il i ty <! r,cJ cor:-

c l u ded t h a t r elative permeab ili t y is indcpr.!ndAnt of fJ u i cl 

vi s c os i t y but is some function of pore s i %E> rJi ~~ t. r i l.> u i i n n , 

d isplaceme n t pressure , pre s s ure ,r-radient a n d fJ u id satura -

t i o n . I n hi s wo rk he introduced t h e conc0pt. of tlnd dr·f ill ' '" 

t h e J - f unct i o n, which rela tes capillury pr·r-:-;~;ur·t~ tn poror;i ty 

and permeability . I n 1 9 4 1 Le v erct-L .wd 
. ( ·; ) 

l.C'Wl r: I l1 r 

results of steady state flow tests on 1mconsolid.=-tU~c! saHd ::; ·~n t. h 

three phases ( oil , water and gas ) prPs0nL . rrc' J': hi s '.·:ork ' 

the concept of t h ree - phase relative permeabilitins was e~tab-

l i shed . 

For a s y stem containi ng two or more immiscihle p h ases , 

a math e mat i cal analysis con s i sts of fc.,rrqulai in;r differ<?ni i a·J 

e quat i o n s obtained by combininf Darcy ' s Law ( wj t·h caFilJ. ary 

press u re ) a n d a n e quation of s·ta·t<"' for r'ach l'hasc with U1f~ 

Co n tinui ty Eq uat i o n f or each phase flowin~ . This results in 

a non - lin ear , secon d - o r der partial dif~erential equation for 

each mobile p h ase . Due to the complexity of the resulT i nr 

d i ffere n tial equat i on , a solution cannot be ob~ain~~ bv 

classical methods . 

After the ad vent of hiph speed dipital computinr equ i p -

ment , seri o u s at~empts at numerical solution we r e made . 

West , Garvin and Sheldon(S ) studied h o ri zon t a l , linear and 

radial s y s t e ms produced und e r gas d rive e x c Judinf capillary 
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effects. Their numerical treatment employed a finite dif~er-

ence grid system and they used implicit methods for soJvinp 

the resulting system of linear equations. 

u · F (9) 11ovanesslan and ayers reported a numerical simulation 

for one-dimensional, incline~ flow of two immiscible, lncom-

pressible fluids. They showed that the inclusion of capillary 

pr2ssure and gravitational forces had a pronounced effect on 

both phase saturations and pressure distributions. Douglas 

(lO) . . 1 d" . l . et al. studled a horlzonta , one- lmenslona system lnclud-

ing capillary pressure and concluded that at hi~h flow rates 

this model yields results similar to those obtained by the 

(ll) 
Buckley-Leverett method. 

Two dimensional techniques have also been attempted but 

these early studies 

unstable. However, 

indicated that such models were highly 

( 12) 
in 1958, Douglas published a paper 

on the "Alternating Direction Implicit Procedure" (ADIP) 

which provided a stable method for the treatment of these 

two dimensional problems. In 1959, Douglas, Peaceman and 

Rachford(l 3 ) used this classic finite difference treatment 

(ADIP) to successfull~ simulate two-dimensional flow of 

immiscible fluids. They reported good agreement between 

predicted performance for displacement of oil by water and 

observed values obtained from laboratory experiments. 

Thus, in the 1950's, digital computine equipment and 

techniques had been developed sufficiently to allow numerl-

cal solution of multi-phase, multi-dimensional flow problems. 

In 1955, 
(14) 

Rapoport combined the three dimensional partial 

differential equations describing immiscible, incompressible 



two-phase flow to obtain a single equation. lle investi.f'Jtccl 

the displacement of oil by water in terms of production his-

tory before and after water breakthrough. 

In 1955, Fagl·n and S+ewar+(lS) + d t 1· L L presenLe a wo-c1men-

sional, multi-phase reservoir simulator. This was a General 

flow model yielding accurate representations of pressure and 

multi-phase saturation changes with time. 

In 1957, Coats, et al(l 5 ) presented the concept of 

vertical equilibrium ln a horizontal model and adjusted a 

two-dimensional, two-phase model to account for saturation 

variation in the third dimension. Good aGreement was 

reported when compared with three-dimensional calculations 

for a reservoir having definitive vertical communication. 

In 1965, Quon, 
( l 7) 

et al reported the applicability of 

an "Alternating Direction Explicit Procedure" (ADEP) to a 

two-dimensional reservolr analysis where large time incre-

ments can be used to significantly reduce the time involved 

in solving such models. Their application of the ADEP 

technique was to simulate a gas reservoir and its flow 

characteristics and reported good agreement with similar 

results from an ADIP solution on the same model. 



H 

III. ASSUMPTIONS 

The following assumptions are made to permit the desired 

solution; 

l. The model simulates a reservoir consisting of hori­

zontal layers of varying vertical thickness. The permeabil­

ity and thickness are permitted to vary from layer to layer. 

Each layer consists of blocks of variable length and width 

adjacent to each other horizontally with the capability of 

varying permeability from block to block. It is assumed 

that there is an impermeable barrier between layers thus 

implying that there is no vertical cross-flow between layers. 

2. Rock heterogeneity with respect to permeability 

(but not porosity) is assumed. 

3. Capillarity, gravity and rock compressibility are 

considered negligible. 

4. Water is injected ln one end at constant rate, and 

oil, water and gas are produced at the other end at rates 

such that reservoir voidage equals water influx at reservoir 

conditions. 

5. It lS assumed that the simulation accurately 

accounts for three-phase flow, fluid compressibilities, and 

evolution of dissolved gas. 



IV. THEORY 

A. PARTIAL DIFFERENTIAL EQUATIONS 

The basic concept employed in describing fluid flow ln 

a porous media is based on the law of mass conservation and 

Darcy's Law. 

v. ln 

Fig. l. 

!::.x 

:L 
h 

T 

v out 

A Typical Reservoir Elemental Block 

If one considers three-phase fluid flow through an ele-

mental block in the x-direction as shown in Figure (1), then 

one can apply the law of mass conservation on each phase 

making use of the Darcy's Law in the following manner: 

Oil Phase: 

a) Mass rate ln - mass rate out = rate of mass accumu-

9 

lation ( l) 

-+ 
b) Mass rate ln = V o . Ap I B + Q • . p ln OS 0 OlD] OS ( 2) 

where Q .. lS negative if it lS production instead of injec­
OlnJ 

tion and, 
-+ 

Vo. is the oil velocity entering the elemental block from ln 

the left hand side which is defined by Darcy's Law as: 



where; 

-+ 
Vo 

k d ¢ 
0 0 = - 110 3)"{ 

¢ lS the velocity potential defined as: 
0 

¢ = p + p gh 
o o o-

c) The mass rate out can be expressed as; 
-+ 

Mass rate out = Vo Ap /B out os o 

-+ 

10 

where Vo +- ls the velocity of oil leavinp the elementctl block 
OUL 

through the right hand side and face of the elemen-tal volume 

and is equal to 

-+ 
Vo. ln 

-+ 
3V 

0 
+ 3)"{ l:lx. 

The mass accumulation rate can be defined as; 

d) 

where h, 

Rate of mass accumulation = 

s 
D. D. "' d (~) h x Y't'Pos '\+- B 

OL O 

3M 
0 

3t 

¢ and p are constant factors. os 

= 

( 3) 

( L! ) 

Substituting Equations (2), (3) and (L!) into Equation (l) and 

defininB Vas defined by Darcy's Law yields: 

hD.xD.yp 
OS 

k 
~( 0 

dX 11 B 
0 0 

3¢ 
__Q_) 
dX 

"'hD.x6yp 't' - OS 

DividinB both sides of Equation (5) by h6xl:lyp
0

s yields: 

( 5) 



I j 

aw Q 
-~) + oinj ;::; 
ax hLlxL'Iy 

( G) 

Expanding the time derivative (the ripht hand side cf Lqua-

tion (6)), and multiplying both sides by S
0 

yields: 

k 
Q ~( 0 
JJO ax ]J f3 

0 0 

aw Q 
~) S oinj 
ax + . 0 hL'IxL'Iy 

3s s 3S C!P-~ 
0 0 0 0 

= cp ~- S
0 

3P
0 
~,· 

Equation (P-l) lS the partial differential equation 

(P-l) 

describing the flow of oil in one dimension (x-directiort) 1n 

a porous medium. 

\tJater Phase: 

Applying the logic similar to that employed 1n derivinp 

the equation for the oil phase, a partial differential equa-

tion for the water phase flowing through an elemental block 

can be developed as follows: 

k ()¢ 6wQwinj ts s C!B dPwl 
sw ~( w ~) cp C!tw 

w w (P-2) + = -
Clx ]J S dX hL'IxL\y sw ~ 3t 

w w vJ 

where ¢ = p + p gh . 
w w w 

Gas Phase: 

The derivation of a partial differential equation for 

the gas phase differs from that of oil and water phases only 

in that gas evolved from solution in oil must be accounted 

for. Therefore, the law of mass conservation may be written 

in the following manner: 



J) 

Mass rate ln + mass rate of gas evolution - mass rate 

out = rate of mass accumulation. ( 7) 

Mathematically, Equation ( 7) lS defined as 
-+ 

3 Vg. 3MFG 31'1 
-hllxlly Pgs 

-( 1n) + pgsQginj = + __g_ ( 8) 
dX f3 3t 3t g 

3MFG . 
where (jt lS the rate of change in the mass of gas evolved, 

and its derivation is based on the mass rate of gas evolu-

tion and is related to the oil phase present, the solution 

gas oil ratio (R ), and their rate of change as follows: 
s 

The m1nus Slgn ln Equation (9) accounts for the fact 

( 9 ) 

that a decrease in the solution gas oil ratio lS accompanied 

by an increase in free gas volumes. Also, in the same equa-

tion, R remalns inside the derivative because it also 
s 

varies with time being uniquely a function of pressure which 

lS a function of time. 

Substituting the Darcy's Law equivalent of the velocity 

potential and the results of Equation (9) into Equation (8) 

and then dividing both sides of the resulting equation by 

hllxlly p and multiplying through by S , yields: 
gs' g 

s 
+ o R ) so s 

(10) 



Expanding the time derivative of the rivh t h<incl ,~ i (j(' ui 

Equation (10) yields: 

+ R s 

CJS 
__g 
CJt 

S CJB CJP 
_____g_ p: __g_ + 
B 2 ~ CJt 

F p: 

s ()}( dr' 
c s ____R 

s CJP dt 
0 F 

( l l ) 

d so 
Substituting the value of ¢ 3t(S) as glven by 1:quat:ion 

0 

(6) into Equation (ll) yields: 

'dS s 3R C' 36 3P d }0 
d cjl c) 

¢ ____g + C¢6 0 s ¢ _g ___L_) ____g_ + 6 R __ u) - -(--at g B CJP B CJP dt p: s dX ]J B dX 
0 g g g 0 0 

Qoinj [ c 

(' 

d ,) ~J. ,:J 

+ Bg R ¢Sf:'" + 0 R )] ( 1 /') 
h/l..xfly = 3tc6 Bo s s 

p 

Substituting the results shown in Equation (12) for the 

right hand side of Equation ( l 0) and rearranglng yields: 

k 31> s 36 CJP cpS B 3R CJP 
B 2c g __g_) + ¢ _g __g_ __g_ 0 g s __g_ 

g 3x ]J B 3x B 3P ()t so 3P ()t 
g g g p; p: 

k 31> B R Q . . B 0 . . de '~) 

B R 2c o ~) g S OlnJ + g'gln] = ¢ __g_ CP-3) 
g s dX ]J f3 dX hl'lx/l..y hl'lxL\y Clt 

0 0 

There lS no need to account for loss of oil due to the 

evolution of gas since this loss lS totally accounted for by 

changes in the oil formation volume factor. 

Since capillary pressure and gravity are considered 

negligible in this model, the following potential equiva-

lences are plausible; 



<I> ==<P :::<J> =P 
0 w g 

and individual pht.1Se pressures are identical, 1.e. 

p = p . 
g 

( 13) 

Recognizing lhat the potential terms appearing 1n Equa­

tions (P-1), (P-2), ond (P-3) are identical as defined by 

Equation (13), it may be noted that these three partial 

differential equatiops a~e si~ultaneous equations relating 

pressure and saturations (fou~ dependent variables) to the 

independent variables, position and time. This system can-

not be solved as the~e a~e th~ee equations and four unknowns. 

This problem is r•cadily overcome, however, by introducing 

another equation Ln the dependent variables. This equation 

can be based on tile definition of saturations as follows: 

= 1.0 (14) 

It may be furthe~ noted that the partial differential 

equations have be•cn judiciously a~ranged so that they may be 

added to yield ont; equation in one dependent variable, nota-

bly pressure. Note that the three time derivatives of the 

saturations are i:;olgted such that their only coefficisnt lS 

a constant, porosity, and that taking the time derivative of 

Equation (14) yields: 

(15) 



Summing Equations (P-l), (P-2), and (P-3), rearranging 

terms, and simplifying as discussed immediately above based 

on Equations (13), (14), and (15) yields: 

k 
sg ~c g 

8x Jl S 
g g 

8P) + 
ax 

k 
c s -s R ) ~c o 

0 g s ax ]l s 
0 0 

k 
ap) + sw _l__( w 
ax ax ]l S w w 

[
s Q • . 

g glnJ 
h~x~y 

+ CS -S R ) Qoinj 
o g s h~x~y 

+ w wlnJ s Q . ·] 
h~x~y 

s as 8R s as 

8P) 
dX 

15 

[
s 8S 

- ¢ __g_ ___g_ + 
S 8P 

o ( o 0 __ s_) + w w 
s~- f-J ap s~ 

0 g w 
~] at (P-4) 

g 

Equation (P-4) lS a non-homogeneous, second-order non-

linear, partial differential equation and no known technique 

for solving it by classical means exists. It is non-linear 

because the coefficients are in themselves pressure and 

saturation dependent. The equation is solvable, however, by 

finite difference approximation techniques. 

B. FINITE-DIFFERENCE EQUATION 

Equation (P-4) is in a form where a difference equation 

can be written, from which the value of the dependent varla-

ble (pressure) at time level t(n+l) can be calculated when 

the values of all parameters are known at the previous time 

level t(n). The terms of the left hand side of Equation 

(P-4) can be represented by a finite difference equation if 

the time-space plane is divided into discrete cells as shown 

in Figure (2) (for a single time), then expanded about some 

point (i) in the spatial grid pattern at some fixed time 

level. 



Fig. 2. 
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Central Grid Point Illustration 

The point at which all parameters are defined ln each 

block is arbitrarily selected as its mid-point. Thus, the 

center is the focal point at which the pressure is assumed 

concentrated and this forms the basis for calculating pres-

sure gradients. 

Since there are three phases flowing, it lS necessary 

to use relative permeabilities rather than absolute permea-
I 

JG 

bilities. The former are defined by the following relations: 

k = k k 
g rg 

k = k k 
0 ro 

kw = k k rw 
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Utilizing this fact the following equatio~may be written: 

k k 
S 2c- rg ;;JP_) 

g ax J.l S 3x 
g g 

= 

{

k. k }n+~ - rg 
J.1 B • 1 g g l-";2 

S r;+~ ~k k }n+~ g1 rg 
6x. J.l S . 1 l g g l+";i 

(P.-P. )n+l 
l l-l 

(6x.+6x. 1 ) J l l-

2 

(l-D) 

ancl, 

( () k kro 3P) ~ .,_l_'B - B R n + ~ [{k k ln + 1;; 

CP. -P.)n+l 
l+l l 

B - 0 R ) (--=~ 
0 ~-'g s dX ].1 B dX 

_ o g sl ro 
- 6x. B . 

l - ].10 0 Jl+~ 
(l'lxi+l+6xi) 
____ 2 __ _ 

k k 
B 2c rw 3P) 

w ax ].1 B 3x w w 

n+l 
l l-

Cf'lx.+l'lx. 
1

) 
l l-

(P.-P. l) ] 

2 

1 ( )n+l1 

{

k krw }:n+ "2 pi-P i-l 
- B (f'lx.+f'lx. l) 

].1 • l l l-
w w l-";? 2 -

, and, (2-D) 

(3-D) 

where the superscript n+~ represents the midpoint represen-

tation of the time level. 

It is noted from Equations (1-D), (2-D), and (3-D), that 

a time average of the pressure and saturation dependent 

variables has been employed. Therefore, the pressure depen­
pn+l+Pn 

dent variables should be evaluated at ( 2 ) and the 

3 n+l+Sn 
relative permeabilities should be evaluated at ( 2 ) 

where the saturations have not been shown with subscript 



depending on the phase under evaluation. The pdranlct<·r~; 

describing rock properties and model confipuration are not 

time-dependent and can be isolated, forminr a term, l1KX, 

which may be defined as follows: 

HKX. 
l = 

2k.k. l 
l l+ 

6 x. k. + 1+Z\ x. lk. 
l l l+ l 

for the ith spatial point, and 

2k. l 
l-';2 

HKX. l = 6 ~ 
l- x. 1+ x. 

l- l 

= 

for the i-1 spatial point. 

2k. lk. 
l- l 

/i x. lk. +LS x . k . l 
l- l l l- -

( l 6) 

( 1 7) 

K.+l and K. l are series averaged values for rock DPr-
l ':2 l-';2 

meability, evaluated at the interfaces boundinp the ith 

block. Equations (16) and (17) are derived in Appendi;,.c 

At this point a difference equation for the left hand 

side of Equation (P-4) has been written. On the right hand 

side of Equation (P-4), the only term to be written as a 

difference is ~~ which may be expressed as follovJs; 

pl}+l_pl} 
(Jp :;; l l ( 4 -D) 
(Jt 6t 

Now substituting Equations ( 1-D), ( 2-D), (3-D), ( 16), 

(17) and (4-D) in Equation (P-4) yields: 



{
{3 .}n+"!;z ~ n+l +] gl n+~ +l n ~-
~x HKXl.ygl·+~(Pl.+l-Pl.) - HKX. 1 y ~ {CP.-P. 1 ) i 2 l- gl->;2 l l-

+ 

{

{3 .}n+"!;z ~ n+l + Wl n+"!;z 
-A-- HKX.y .+l (P.+ 1 -P.) 
uX. l Wl "2 l l 

l 

+"'] +l n _, 
n "2 - HKX. 1 y .+l (P.-P. l) l- Wl "2 l l-
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l 
[< SQ .. ) + CS -S R) CQ .. ) CB )Jn+\2 

g glnJ i 0 g S . OlD] . + Q . . l . l W Wln] i 
= 

r
s • 1 8 • r I 

~ ~ o + Oleo _o R ) 
- '!' 0 f.' • f.' f.' 

~-'gl· gl s . 0 g s . 
Ol l J 

n+:!:2 
- c s . 

W Wl 

pJ?+l_p~ 
l l 

D.t ( 5-D) 

where 

k k k 
rg ro rw 

Yg = yo = Yw = 
1lgf3g 

~ 

1-loSo 
~ 

1-lw 13 w 

r ClS I Clf3
0 

ClR 

se 
_____g 

so R 
s and = = 3P = ars-ClP s 

l ClS 
c w = -

sw -w--w 

Equation (5-D) lS a complete solution of the partial 

differential Equation (P-4) in difference form. For simpli-

city, Equation (5-D) can be rearranged by collecting all 

. . n+l Pn.+l, terms assoclated Wlth P. 1 , 
l- l 

n+l 
and Pi+l~ and rewritten 

in the following form: 



where~ 

A. 
l 

c. 
l 

B. 
l 

D. 
l 

= AOXl + AWXl + AGXl 

= AOX2 + AWX2 + AGX2 

= A. 
l 

C. + TRM. 
l l 

= QTERM. + TRM. P~ 
l l l 

AOXl = 
HKX. 1 l-

/';x. 
l 

AWXl = 
HKX. 

1 l-

/j,X. 
l 

AGXl 

AOX2 
HKX. 

l = ---
fix. 

l 

AWX2 = 
HKX. 

l 

/';x. 
l 

TRM. 
l 

rf.. [s . , s . , , = ~ ~ S .+a 0
l(S -S R ). 

6t s . gl fJ • 0 g s l 
gl Ol 

70 

(6-D) 

(7-D) 

( 8-D) 

(9-D) 

(10-D) 

(11-D) 

(12-D) 

(13-D) 

( 14 -D) 

(15-D) 

(16-D) 

~
n+~ 

- c s . 
W Wl 

( 17 -D) 



QTERM. = 
l 

l 
ht.x.L.y 

l 

lcs o .. ). + cs -s R ).CQ .. ). L g'glnJ l o g s l olnJ 2 
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+ CS Q •. ).ln+=l:2 
W WlDJ ij (18-D) 

Equation (6-D), written about each point ln the grid 

system, forms a set of simultaneous linear equations whose 

coefficient matrix is tridiagonal. The solution for a tri-

diagonal system is, 

P. 
l 

pm-1 = am-l 

c.P. 1 l l­
= ai - ),. 

l 

l = m-2,m-3, ..... ,l 

where a's and A.'s are determined from the recurslon formulae, 

A.. = B. 
l l 

A.C. l 
l l-

A. l l-

D.-A.a. l l l l­
a. = 

l A.. 
l 

l = 2,3,4, ..... ,m-l 

l = 2,3,4, ..... m-1 

It has been previously mentioned that the coefficients 

of Equation (6-D) are dependent on both pressure and satura-

tion which are unknowns. Thus, the method involves a trial 

and error procedure. An estimate of future pressures 
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Then the fluid properties are 

are made by linear extrapolation. 
n+~ pn+l+Pn 

evaluated at P 2 = ----
2
-=----

while the rock 

n+~ 
uated at S 2 = 

properties 
Sn+l+Sn 

2 

(relative permeabilities) are eval-

The unknown pressures are then 

calculated. Using these calculated pressures, an explicit 

determination for future saturations are made as described ln 

the Material Balance Section. Both calculated pressures and 

saturations are then compared with the previously assumed 

values. If agreement is not within a prespecified tolerance, 

then an iteration is made. Otherwise, the calculations may 

proceed to the next time step. After the first time loop 

through~ a linear extrapolation is made to predict pressures 

and saturations for the next time step. The extrapolation 

technique lS shown in Appendix B. 

C. STRATIFICATION 

Since it is assumed that no cross-flow occurs between 

layers, then the performance of each layer is calculated 

independently, and the performance of the total reservoir lS 

olJtained by summin~ the results of each individual layer's 

performance. This method of treatment represents the approach 

used by both Stiles and Dykstra. 

Injection and production (through wells) occurs through 

selected sources or sinks, respectively, in the mathematical 

simulation. The assignment of water injection into the left 

eri~e of each layer and the calculation of production of oil, 

water and gas from the right edge of each layer is the 
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convention assumed ln this model and lS ·tr•ea ted as p,n•L c: f 

the boundary conditions. This is illustrated in Fi,0ure ( :~) 

D. BOUNDARY CONDITIONS 

The system simulated by this model is assumed to be 

closed at all boundaries except for those blocks containinl' 

wells, which for this model are those assumed to be at 

either end. No fluid is permitted to flow across these 

boundaries except that being produced or injected at the 

wells. The boundary barrier can be effected by eithr:r 

assigning zero permeability to an imaginary block outside 

the model or by assigning a pressure gradient of ~ero at 

these boundaries. The effect lS identical. 

drawing of this model follows as Figure (4) 

:'-,-==----0 
I 
I 
I 

' I 
I 
I 
I 
I 

.... 
', 

Fig. 4. 

2 
1.,. /J.x 

m-l 

Boundary Flements 

A schematic 

p 
r:. 
+ 

!J.x 
m 

Applying the latter assumption to Equation (6-D) and 

writing an equation about point i = l, (see Figure (3))with 

no flow across the left-hand boundary gives: 

')• 
• t 
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( 18) 

The left hand boundary is 

gradient to zero lc ap) 

closed by setting the pres-

sure L ax 1-~ = o] , which is equivalent to 

setting P
0 

= P 1 . 

Substituting this result into Equation (18) for l = l 

yields: 

(Al+Bl) pn+l + C pn+l = 
l l 2 

but, from Equation (9-D), 

then the coefficient of P~+l becomes 

This result lS equivalent to setting A1 = 0, its value when 

the external block has a permeability of zero as shown below. 

Equation (18) for the first block may be written as 

B pn+l + C pn+l = 
l l l 2 

(19) 

Closing the left hand boundary by assigning a zero 

permeability at the boundary (k
0 

= 0) gives the following 

result: 

The coefficient A1 ln Equation (18) lS defined as: 

( 2 0) 



where, 

HKX 
0 

= 
2k.k 

l 0 
/';x. k.+/';x.k 

0 l l 0 
= 

2(k.) (D) 
l 

/';x. k. 
0 l 

= 0 

Substituting this result into Equation (20) glves a value of 

Equation (18) may,then, be written about the first 

point as shown by Equation (19), both methods giving identi-

cal results. 

Second, using the same logic about point m (no flow 

across the right hand boundary), will result inC = 0, and m 

an equation about point m, may be written as, 

where 

A pn+l + B pn+l _ D 
m m-1 m m m 

B = m 
A + TRM m m 

l. I~jection End (left boundary). 

(21) 

The layer-wise distribution of water injection rate ls 

obtained by first assuming a constant total injection rate 

in the "well", the left side of the model. A wellbore 

pressure at the top of the sand face (Pww) lS assigned and 

the wellbore pressure at the middle of each layer may be 

calculated as follows: 



p 
ww. 

J 

h .+h. l = p + ( J J-p 2 ) ww. l w 
]-

The horizontal pressure gradient entering element l,J lS 

Pw 
2 ( p + -2 (h. l+ h. ) - p. . ) 

3P 
(~) .. 

oX l,J = 
wwj-l J- J l,J 

6x. 
l 

( 2 2) 

Replacing the gradient in Darcy's Law by the definition of 

the gradient as provided by Equation (22) yields: 

( Q l . ) . . 
w ,J lnJ = 

2k .k l .h.6y p 
l , J rw -~l_J_- ( p + ~ ( h . + h ) p ) 

Q A 2 l ,-1, 
1-' l · ]J l . u X] WW • l J - J ,l w ,] w ,] - ]-

( ? 3) 

The average pressure for elements l,j (for all layers) 

may be defined as: n 
z: pl .h. 

p = j=l ,] J 

hT 

Then the average pressure gradient ls: 

-
(3P) = 

Clx 

pw -
2((P +-h )-P) 

ww 2 T ( 7 4) 

Applying the definition of gradient shown in Equation 

(24) to Darcy's Law and summing the capacity terms (kA) 

yields total flow rate to give the following relationship: 

( Q,1, ) . . 
w lflJ 

= 

n 
2 z: ( k . k l . h. ) 6y p h 

l l rw l J Pw n 1 · · j =l L - '- (P + h - \" ,] -J) 

S ]J 6x1 w w 

--r;- 'f u h 
vJW L j = 1 T 

( 2 5) 



The fraci: ion of the total inj eci:ion rate en terirw th c' ·1 u 1 

layer is obtained by dividing Equation ( 2 3) by I:quat ion (? ';) 

as follows: 

( Ql . ) . . 
, J ln] 

c Q,r >. . 
W ln] 

0 

= k l , j k rw l ' j h j ( p ww j - l + T ( h . + h . ~ 1 ) - P1 ~ j ) 
n p n P """.-h-.-

( L (k .k .h.))(P +~h-I l,J J) 
j = 1 l, J rwl, J J ww 2 T j = 1 hT 

( ) 6) 

and the actual injection rate into the l,jth block lS f'Lvcn CJ.'; 

( Ql . ) . . 
, J ln] 

= ( QT ) . . 
W ln] 

Pw 
k l . k l . h . ( Pww . l + -2 ( h . + h . .I ) - p .I . ) 

, J rw , J J J - . J J - :__ . , 1 
n 0 n l' . rt. 

w l ' "1 
( z:: ( kl . k l _.h.)) ( p +-;;-h,l,- 1-: (' ' ) 

j = 1 , J rw , J J wvJ / l = 1 1 T 

c:n) 

Equation (27) lS used to calculate the water in~cction 

rate into first element of each layer at the injection end. 

It should be noted thai: for elements between the ''inj~ction 

end" and· "product ion end" with no external flows , the Q TT::R~1 

is zero. The application of Equation ( 2 7) requires knO'd lccl~,t:' 

of the wellbore pressure at the top of the sand. 

difficul·ty arises from the fact thai: wcllbore pressure ic:; 

not constant when constant injection is specified. The 

most realistic approach to solving the problem is to assume 

a constant wcllbore pressure rather i:h~n constant injection 

rate and calculate water injection rate into first element 

of each layer by using Equation (23). For simplicity, it 1s 

assumed thai: pressure gradient across i:he first element of 

each layer is constant; then, Equation (27) can be written as 



.· 'l 

(Ql .) .. 
, ] ln] 

= ( QT ) . . 
W ln] 

kl . k l . h . . L, J rw , J J 
n ( ) 8) 

I: k 1 . k l . h. 
j = 1 , J rw , J J 

Slnce pressure gradient cancels out under this set of condi-

tions. 

2. Production End (right boundary). 

The sum of oil, water and gas production rates evaluated 

at reservoir conditions at the production well from a par~ic-

ular layer is equal to the water injection rate Cat reservoir 

conditions) into that layer at the injection well. The 

convention adopted in this model is that injection is posi-

tive and production is negative. Thus, the production-

injection balance stated above may be written as follows: 

( Qw . . 8w) l , j = 
ln] 

( Q 8 ) . C Q B ) . 
w w m J 

- CO B ) . 
·qprd P: m,J o o m J prd ' prd ' 

( 2 9 ) 

Darcy's Law is used to calculate water-oil ratio at 

reservoir conditions for each layer at the production well 

and may be written as follows including simplification: 

and 

CQ B ) . 
o d o m,J pr 

= 

= 

k ]Jo 
( rw -) . 
kro ]Jw m' J 

( 3 0) 



Writing an equation for gas-oil ratio ln the same 

manner and solving for the gas production rate at reservoir 

conditions yields the following relation: 

(Q s ) . = 
gprd g m~J 

CQ S ) . 
o d o m~J pr 

k JJo 
( ____£g_ -) • 
kro ]Jg m' J 

( 31) 

Substituting results shown by Equations (30) and (31) into 

the reservoir voidage balance given by Equation (29), and 

then solving for oil production rate at reservoir conditions, 

yields 

( Q s ) . 
o o m J prd ' 

= 

- (Q s ) . 
w .. w l,] ln 

k 
l+{krw 

ro 

]Jo + krg ]Jo} 
k . 

]Jw ro JJo- m,J 
b 

Having available reservolr oil production rates for 

( 3 2) 

each layer now allows values of the water and gas rates at 

reservoir conditions to be calculated by Equations (30) and 

(31), respectively, for each layer. Then all three rates 

are converted to stock tank conditions by dividing the 

reservoir rates calculated (which include volume factors) 

by the appropriate formation volume factor for each Dhase. 

The total production rates for the well for each phase 

are now obtained by adding the respective rates from each 

layer. The water-oil ratio and gas-oil ratio from the well 

for the time period under consideration are computed as 

follows: 



.; l 

n 
(QTo ) = L: ( Q . ) m,prd om,J prd ' j=l ( 3 3) 

n 
(Q ) = L: ( Q . . ) Tw m,prd WJ ,J prd ' j=l 

( 3 5) 

HOR 
( 3 () ) 

and 

GOR = (QT ) d/CQT ) d g m,pr o m,pr ( 3 7) 

E. MATERIAL BALANCE 

Material balance calculations were made on each block 

ln deriving the pressure equation and are also used to up-

date saturations across each time step. 

6x. 
1 l-

i-1 

6x. 
l 

l i+l 

_/ 0. . 
~ 'lnJ 

Fig. 5. Grid System for Material Balance 
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Referring to Figure (5), the saturation in block (i) at 

a new time level t(n+l) can be stated as the saturation at 

the beginning of the time step (old time level t(n)) plus 

the change ln saturation during the time increment (6t) 

(from n to n+l time level), may be mathematically defined as, 

0 n+l n 
u. ::: S. + 6S. 

l l l 

6S. for a phase lS the change ln volume of that phase in 
l 

block (i) during the time increment, divided by that block's 

pore volume. 

However, in allowing for the compressibility of phases 

ln this model, the accuracy of the calculation will be 

enhanced by making a mass balance rather than a volumetric 

balance and then converting the change in mass in the block 

to an equivalent change in saturation. 

Thus, the following relation will be applicable for oil 

and water phases, 

b.S . = 
l 

(mass in) .-(mass out).+(mass injected). 
l l l 

----------------- p .(PV). 
rl l 

Darcy's Law lS used at the (i-~) and Ci+~) interfaces to 

(1-M) 

evaluate the (mass in). and (mass out). terms, respectively, 
l l 

in Equation (1-M). 

applicable: 

The following combination of terms are 

p k k A(.z£_) 
s r 8x 

SJJ 
( 3 8) 



Recognizing t:ha t the mass en terinr; block ( i) come~; f r (_q:, 

block C i-1) as indicated in Figure ( 5), and takinp i lw c<Jn-

vention that: flow is from left: t:o right:, it conc1udcd that 

the following relations apply for the (mass in). term: 
l 

s = sl. -1, k = k. 1 , w = ]J. 1 , l-";2 l-";2 

(8P/3x). 1 = (P.-P. 
1

)/((llx.+/'c,x. 
1

)/?). 
l-";2 l l- l l-

and similarly for the (mass out). term: 
l 

~ 

(ClP/Clx). 1 = (P.+
1
-P.)/((l1x.+

1
+Ax.)//). l+'2 l l l l 

Oil Phase: 

( 3 g) 

( I l ll ) 

Introducing the results shown immediately above into 

Equation (37) gives the following relations: 

(Mass in). 
l 

(Mass out:). 
l 

= 

p k. 1 y. 1 A(P.-P. 
1

)l1t 
OS l-'2 Ol-'2 l l-

(Mass inJ·ected)l. = CQ •. ) • P 6t 
OlD] l OS 

P ( PV) . 
or l 

c ? - r-n 

( ::3-l"l) 

(4-M) 

(5-M) 

Pos 
The equality P0 r = ~ lS assumed applicable and lS 

shown in detail in Appendix B. 



Substituting the results shown in Equations (7-M), 

(3-M), (4-M) and (5-M) into Equation (1-M) and introducinP 

the terms HKX. 
l 

and HKXi-l as defined by Equations (16) ~nd 

(17), yields: 

liS 
0 

S . lit [HKX. 1 y . l ( P. -P. ) Ol l- Ol-~ l l-1 
fix.¢-- B . 

l Ol-1 

H KX . y . + l ( P . , - P . ) 
l Ol ~ l+..L l 

s . 
Ol 

CQ •. ).jn+:!::; 
OlD] l 

- hliy (6-M) 

where A = hliy. It is well to note that all rock and fluids 

properties are evaluated at an average time, namely the 

(n+~) time level. 

Water Phase: 

Following a similar development as that shown for the 

oil phase, an equation for the change of water saturation 

during time increment lit may be written as, 

6. s = 
w 

Gas Phase: 

S • 6 t [HKX. 1 y . 1 C P · -P · l) Wl l- Wl-~ l l-
fix. B · 1 l Wl-

HKX.y .+ 1 (P.+ 1 -P.) l Wl ~ l l 

n+:!,; 

( Q . . ) •J ~ Wln] l 

hliy 
C 7 -M) 

For the gas phase, an additional term should be lncor-

porated into Equation (1-M) to account for the gas evolution 

as defined by Equation (9). With this additional term, the 

following equation describes the gas saturation incremental 

change: 



~S . = (mass in).+(mass of gas evolved).-(mass out). gl l l l 

+(mass injected)./p .(PV). 
l grl l 

An explanation of the term accounting for solution gas 

was given previously and the term ls listed as Equation (9) 

The present handling of this term lS identical except that 
s 

the ratio c
6
°) will be factored out of the derivation as a 
0 

constant at the average time over the increment. This is 
s 

a realistic assumption since permitting C6°) to vary may 
0 

give rise to a situation in which all the gas in solution ln 

the ~S increment would be released durinp, the time st0p. 
0 

Thus, the "gas evolved term'1 in difference form 'iJiJ l be, 

n+~2 
s + l 

~x-A¢ (~) (Rn ~-Rn). 
l 0 gs S s s l - 0 

(9-M) 

Applying logic like that used to derive ~Si for the oil 

and water phases and incorporating the gas evolution term, 

an equation may be written for the change in gas saturation 

ln block (i) during time increment (~t) as follows: 

6.S . 
gl = 

~x.¢ 
l 

[

HKX. 1y . 1 ( P · -P · l) l- gl--2 l l-

HKX.y . 1 (P.+ 1 -P.) l gl +'2 l l 

( Q . . ) ·j _ __:__&lnJ l 
h~y 

n+:r,;; 

(10-M) 



. I 

For simplicity, Equations (6-M), (7-M) and (10-M) may 

be written as follows: 

~Soi = ZZCAMOXl-AMOX2-QOTERM) 

~S . = ZZ(AMWXl-AffiNX2-QWTERM) Wl 

~S . = ZZ(AMGXl-AMGX2-QGTERM)-RSTERM 
gl 

where, 

zz = 

AMOXl = HKX. l [y . 1 (P.-P. l)(SBoi )J 
l- Ol-~ l l- oi-l 

AMHXl 

AMGXl = HKXi-l [ 
s . j gl 

y . 1 ( p. -P. l) ( S ) 
gl-~ l l- . l - p:l-

AMOX2 = H KX . [y · 1 ( P · + l- p · ;1 n + "!..:2 
l ol+~ l l J 

AMWX2 

AMGX2 

QOTERM = 
Q • ( Q . . ) . 
f..'Ol WlDJ l 

h~y 

( 11-!1) 

( 17 -11) 

( 13 -lvJ) 

n+J.:; 

n+~ 



f3 . ( Q • • ) • 
QWTERM = Wl WlDJ l 

hily 

f3 . ( Q . . ) . 
QGTERM = g1 g1nJ 1 

hLy 

s n+~ 

RSTERM = (~) (Rn+l_Rn) s . 
so s s gl 

The equations for updating oil, water and gas satura-

tions are, 

8n:l = sn. + LS 
Ol Ol Ol 

8n:l = sn. + LS 
Wl Wl Wl 

and, 

8 n:l = sn. + LS 
gl gl gl 



V. RESULTS 

Computational procedures for each of the analyses were 

developed and programmed in Fortran IV and the calculation::; 

were made by an IBM 360-50 computer. Flow diagrams and 

digital computer programs are presented ln Appendix D. 

Results of seventeen studies using four basic models 

are shown graphically by Figures 9, 10, 11, 12 and 13, and 

a summary of study runs with results are shown in Table I. 

Reservoir configuration and computational data are presented 

in Appendix C. Of the four basic models used in the study, 

two were numerical models, and two were computer-programmed 

versions of the Dykstra'-Parsons' technique. 

Variable permeability in the vertical direction was 

simulated numerically by combining four linear models such 

that it simulates four vertical layers of different permea­

bilities. The first of these models included horizontal 

variations in permeability and is referred to as the 

"heterogeneous layered model". The results from a sin£Yle 

run for an oil-water viscosity ratio of 1.96 using this 

model are presented in Figures 9, 10, and ll as curve 

Number 4 ln each, and as indicated on the graph ln Fifures 

12 and 13. 

The second of the numerical models used lS layered ln 

four vertical zones just as in the first model; however, 

each layer is homogeneous and the value of permeability for 

a layer was computed as a series average of the heterogeneous 

permeabilities in the first model. This second model is 
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referred to as the "homogeneous layered modeln an(! rc:c>u1 t :· 

of six runs obtained using this model are presentc:cl. Tl1c 

results for an oil-water viscosity ratio of 1.95 arC' :_;huvn1 

for comparison purposes 1n Figures 9, 10 and 11, and rcferreJ 

to as curve Number 1. The results for oil-water viscosity 

ratios of 0.5, 1.96, 5.0, 10.0, 20.0 and 40.0 are shown in 

Figures 12 and 13. 

The first Dykstra-Parsons model is layered 1n four 

vertical zones, and the value for permeability of a L:tyc·r' lc; 

the same as 1n the second version of the numerical rnc'd(:-1. 

The results of five runs are presented. The results for> dil 

oil-water viscosity ratio of 1.96 are shown in Fi,>~urcs 9, 

10 and 11 and referred to as curve Number 2 and results usin~ 

oil-water viscosity ratios of .5, 1.96, 5.0, 10.0 and 20.0 

are shown in Figures 12 and 13. 

The second Dykstra-Parsons model lS layered 1n twenty­

five vertical zones with an equal thickness of one foot lil 

each of the layers. The permeability of each layer was 

read from Figure 8, which was obtained by plotting the 

series-averaged value for permeability of each of the four 

layers used previously as a function of cumulative thickness. 

Results of five runs using this model are presented. The 

results for an oil-water viscosity ratio of 1.96 are shown 

in Figures 9, 10 and 11, and referred to as curve Number 3 

and results for oil-water viscosity ratios of 0.5, 1.96, 

5.0, 10.0 and 20.0 are shown in Figures 12 and 13. 
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TABLE I. Summary of Results 

I % Recovery at WOR = 10 for Oil-Water Viscosity Ratio of 

Model 

. 5 l. 9 6 5 10 20 40 

Numerical 
(Heterogeneous -- 51.4 -- -- -- --
Layered) 

Numerical 
(Homogeneous 

I 
79. 5 79 9 . 2 7. 0 5 5 . 3 3.18 

Layered) 

Dykstra-
Parsons 74.6 73.6 6 8. 9 6 2. 3 56 --
(25 Layers) 

Dykstra-
I Parsons i 72.7 71. 7 70.9 I 68.1 61.5 --

I 

(4 Layers) 
I I I 

I 
-- I i 
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VI. DISCUSSION OF RESULTS 

Figure (9) illustrates cumulative oil produced as a 

function of time for an oil-water viscosity ratio of 1.96 

based on results from the four basic models described pre­

viously. Water breakthrough in all models occurred at 

approximately the same time (120-130 days). Curve 1 (numer­

ical-homogeneous layers) and Curves 2 and 3 (Dykstra-Parsons, 

4 layers and 25 layers, respectively) showed close agreement 

until water breakthrough occurs and slight deviation there­

after. Curve 2 was in closer agreement with Curve 1 than 

Curve 3 as expected, since the models of Curves 1 and 2 are 

in closer agreement, theoretically. However, final recovery 

was the same for both Dykstra-Parson models. Curve 4 (the 

numerical-heterogeneous layered model) showed a great reduc-

tion in recovery compared to Curves 1, 2 and 3. This was 

primarily due to the formation of free gas resulting from 

the heterogeneity in the fourth layer, which in turn caused 

the reservoir pressure to decline below the bubble point 

pressure. Although the other layers in this model were also 

heterogeneous, there was less variation in the permeabilities 

in these blocks prohibiting notable gas formation. 

Figure (10), illustrates cumulative oil produced as a 

function of water-oil ratio. Curves 1 and 4 show that 

water-oil ratio changes gradually over most of the region 

except for regions with periodic rapid increases. This is 

explained by the fact that when any layer breaks through, 

the composite water-oil ratio increases significantly. 



Thereafter, the water-oil ratio increases were gradual due 

to continually changing saturations until another layer 

breaks through resulting in another sudden increase. This 

face is not as pronounced in Curves 2 and 3 (Dykstra­

Parsons), even though the results show some gradual changes 

in water-oil ratio. Because of the assumption of piston-
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like displacement ln the Dykstra-Parsons method, only water 

is flowing in any layer after water breakthrough. The 

gradual change in water-oil ratio is due to changing velo­

cities within the layers due to the front continually advanc-

lng in layers of different permeabilities. The changes are 

not due to saturation changes at the production face. In 

fact, Curves 2 and 3 are very nearly step-functions. It is 

also of interest to note that areal non-uniformity in 

permeability increased the life of the reservoir but resulted 

in less oil recovery and consistently higher water-oil 

ratios. 

Figure (ll) illustrates oil production rate as a func-

tion of time. Curve l shows fluctuations at the beginning 

of water injection which is due to the unsteady state nature 

of the model. A sudden decrease ln oil production rate 

occurs when water breaks through ln the most permeable 

layer. Curve 4 shows a sudden decrease ln oil production 

rate until water breakthrough, and this lS due to the forma­

tion of free gas. 

Figure (12) illustrates the relationship between cumula-

tive oil produced and cumulative water injected for various 

oil-water viscosity ratios. As expected, the recovery 
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decreased as oil-water viscosity ratio increased for a par­

ticular model. This is also show'n in Figure ( 13) by results 

from both numerical and Dykstra-Parson models. The devia-

tion and reduction in oil recovery as compared by results 

from the numerical model from Dykstra-Parsons for oil-water 

viscosity ratios of 5.0, 20.0, and 40.0, results from the 

fact that the Dykstra-Parsons approach lS not adapted for 

conditions where free gas is formed or lS present as occurs 

in depleted oil sands. The model assumes only two-phase 

fluid flow (oil and water), and the method is not suitable 

for gas flow due to the assumption of piston-like displace-

ment. It is also of interest to note that an increase in 

oil-water viscosity ratio results in a decline of reservoir 

pressure and an increase in the life of the reservoir by pro­

ducing less oil at a higher water-oil ratio. 
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VII. CONCLUSIONS 

l. Prediction of reservoir performance under a water drive 

by a three-phase numerical simulation model lS shown to 

be feasible due to the favorable comparison of results 

with the Dykstra-Parsons method for those cases where 

the Dykstra-Parsons assumptions are satisfied. 

2. The numerical method is valid for more general use than 

the Dykstra-Parsons method since the latter does not 

account for changes in fluid properties as a function of 

pressure, reservoir geometry, rock heterogeneity, and 

three-phase flow. 

3. Results show that the prediction of performance of a 

water flood project by the Dykstra-Parsons method will 

not be valid when a mobile gas is present. The gas 

phase reduces oil mobility to such an extent that 

considerably less oil may be produced at water break­

through than predicted by the Dykstra-Parsons technique. 

4. Areal rock heterogeneity is not adequately accounted 

for by series-averaging individual permeabilities within 

a layer. Thus, a numerical simulator is needed for 

predictions where areal heterogeneity lS obvious. 

5. The Dykstra-Parsons calculations are faster than those 

by the numerical model and should be used in preference 

where conditions fit the assumptions of the Dykstra-

Parsons method. 
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VIII. APPENDICES 
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APPENDIX A 

1. NOMENClATURE 

= cross sectional area normal to the flow direction, 
A = t..yh - sq-cm 

= compressibility - atm-l 

= acceleration of gravity - cm/sq-sec 

= layer thickness - em 

= total reservoir thickness - em 

= absolute permeability - Darcy 

= phase effective permeability 

= relative permeability 

= mass of accumulation - gm 

= number of elemental blocks ln each layer 

= mass of free gas evolved from solution gas for 
time period tn to tn+l 

= number of layers 

= pressure - tam 

= pressure at the interface between blocks - atm 

= pore volume - cc 

= pressure at top of the sand - atm 

= production or injection rate - cc/sec 

= solution gas-oil ratio cc of gas/cc of oil 

8R 
s = w--

= saturation - fraction 

= equilibrium gas saturation - fraction 

= residual oil saturation - fraction 



swc :: connate water saturation '. fraction 

t = time - sec 

v :: Darcy's velocity potential - em/sec 

v = volume - cc 

Greek Letters and Derivatives: 

s 
f3 

y 

p 

LlP 

LlS. 
l 

= formation volume factor - res cc/std cc 

= 38 
3P 
k = r 
11B 

= porosity - fraction 

= viscosity - cp 

= pressure potential - atm 

= density - gm/cc 

= length of elemental block - em 

= pressure drop 

= change in saturation to the ith elemental block 
from time tn to tn+l - fraction 

= time increment - sec 

= width of elemental block - ern 

= mass rate of accumulation - grn/sec 

= mass rate of gas evolved from solution gas from 
time tn to tn+l 

Subscripts: 

b = bubble point 

g = gas phase 

i = indicating ith elemental block ln x-direction 
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ln] = injection 

J = indicating jth layer in Z-direction 

max = maxlmum 

prd = production 

s = standard conditions of pressure and temperature 
(l atm and 60°F) 

T = total 

Superscript: 

n = indicating nth time level 



FORTRAN 
SYMBOL 

AX 

BGPRM 

BOPRM 

BTA 

BTAG 

BTAO 

BTAW 

BTOBP 

BTWBP 

BX 

cov 

CUMOP 

CUMWIN 

ex 

DELT 

DELTP 

DELX 

DELY 

DELZ 

DX 

GMA 

GOR 

2 . LIST OF COMPUTER SYMBOLS 

ALBEGRAIC SYMBOLS 
OR DEFINITION 

A 

sw 

so at bubble point 

sw at bubble point 

B 

C = coverage 

cumulative oil produced 

cumulative water injected 

c 

f'..x 

f'..y 

z. -Z. l 
l l-

D 

gas-oil ratio 
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M 

N 

OILPR 

p 

PB 

PERM 

PERMAX 

PHI 

PIN 

PM 

PNl 

PN2 

PRTOL 

QOR 

RECOV 

RKG 

RKO 

RKW 

RSPRM 

SATOL 

SGI 

so I 

STOIP 

SUBROUTINE BETA 

SUBROUTINE BETPRM 

number of elemental blocks 

number of layers 

cumulative oil production - N 
p 

pressure at n time level 

bubble point pressure 

permeability - k 

k max 

porosity - ¢ 

initial pressure 

M 

trial pressure for n+l time level 

pressure at n+l time level 

prespecified pressure tolerance check 

oil production rate 

recovery 

k rg 

k ro 

k rw 

' R s 

= cumulative oil production xlOO 
initial oil in place 

prespecified saturation tolerance check 

initial gas saturation 

initial oil saturation 

initial oil in place 

formation volume factors calculation 
I T T 

(3 (3 R calculation 
g' 0' s 
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SUBROUTINE COFF 

SUBROUTINE MBAL 

SUBROUTINE RPERM 

SUBROUTINE SOLGAS 

SUBROUTINE TRIDAG 

SUBROUTINE VISC 

SUMH 

SUMKH 

SUMQG 

SUMQO 

SUMQW 

SUMQWI 

sw 

SWI 

SWl 

SW2 

TEMPl 

TEMP2 

TEMP3 

TEMP4 

TEMPS 

TEMP6 

WI 

WIR 

calculation of coefficients A, B, C and D 

material balance calculation 

relative permeabilities calculation 

solution gas-oil ratio calculation 

tri-diagonal solution 

viscosity calculation 

total thickness 
N 
L: ( kh) . 

j =l J 

cumulative gas produced 

cumulative oil produced 

cumulative water produced 
N 
L: QW. . l . . 

1 
1n] , , J 

J= 

saturation at n+l time level 

initial water saturation 

saturation at n time level 

trial saturation for n+l time level 

n+~ 
((3 -(3 R ) .• 

0 g s l,J 

(3 n+~ 
W· • l,J 

(3 n+~ 
g· . l,J 

f...x. 
1

/t...x. 
l- l 

S n+~ 
0. . 
l,J 

n+~ 
( a aR).lz. 

~--' 0 -~--'g s 1- ,] 

cumulative water injected 

water injection rate 
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WOR water oil ratio 

WP cumulative water produced 

XMUG 11g 

XMUO 110 

XMUW 11w 

XMUOBP 110 at bubble point 

XMUWBP 11w at bubble point 
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APPENDIX B. 

DERIVATION OF MISCELLANEOUS RELATIONSHIPS 

1. Derivation of HKX 

K.+ 1 and k. 1 are the series averaged values of permea-
l ~ l-~ 

bility evaluated downstream and upstream~ respectively~ for 

the ith block. Each evaluation is based on the length and 

permeability of the two blocks bounding each respective 

interface horizontally.ClB) The derivation of this parameter 

for the downstream interface is given below and is based on 

the geometric configuration shown in Figure (6). 

Consider only that portion of the elemental block (i) 

and (i+l) between their mid points, an average permeability 
-

(k) can be derived by Darcy's Law evaluated separately 

between the two blocks. 

Q. 
l 

= 

and 

k.A.nP. 
l l ]_ 

ZS:Xi 
]J-2-

ki+lAi+lt:,Pi+l 

6xi+l 
]J 2 

(1-A) 

(2-A) 

No+e +ha+ evaluated at the mid point of each 
L L L pressures are 

elemental block, therefore 6x's are divided by 2 · 

~::,pi = Pmd - Pi 

Ap = P~+l - Pmd u i+l ...... 



/';.,x. 
l 

!J.x.+!J.x. 
1 l l+ 

2 

l 

k. 
l 

P. 
l 

+ 

i+l 

!J.P. 
l 

pmd 

!J.Pi+l 

h. 
J 

Fig. 6. Illustration of Series-Averaging Technique 
for Permeabilities 
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The total flow rate through both blocks in series lS: 

-
kACPi+l-Pi) 

= llx.+ 1 +llx. 
ll l l 

2 

k = k. +1 
l "2 
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(3-A) 

Considering the flow rate constant through a serles of ele-

mental blocks yields: 

Q = . 
l 

(4-A) 

Further noting that, 

(5-A) 

Equations (1-A), (2-A) and (3-A) are solved for their 

respective llP's and these results are substituted into 

Equation (5-A) to yield: 

or 

Q,. /lx.+l+/lx. 
,... ( l l) 

A 2k 

k = k. +1 
l "2 

HKX. is defined as, 
l 

HKX. 
l 

/lx. llx.+l = Q'Jl ( l l ) 

A 2ki + 2ki+l 

= 
k. 

1
k.(/lx.+ 1+/lx.) l+ l l l 

/lx.k. 1 +llx.+1k. l l+ l l 

Substituting Equation (6-A) into Equation (7-A) yields: 

( 6 -A) 

(7-A) 



HKX. 
l 

and ln the same manner: 

HKX .. l = l-

2k' lk. l- l 

t:..x. 1 k.+t:..x.k. 1 ]..- l l ]..-

2 . Derivation of the Relationship Pr = 

Pr = mass mass 
ps = v ' v r s 

Pr v v 
mass r s 

= X = v = 
Ps v mass r r 

Thus, 
ps 

Pr = s 

3. Linear Extrapolation 
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(8-A) 

(9-A) 

Ps 
s 

l 
s 

(10-A) 

Assume a linear relationship between time and pressure 

Figure (7), then, 

(11-A) 

Letting 

!:..tl = 
n+l tn t -

and 

Llt = 
tn+2_tn+l 
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Then solving Equation (11-.A) for Pn+ 2 , gives, 

(12-A) 

In the same manner the extrapolated saturation ls defined as: 

p 

r 

I 

______ _;_ __ ~~ 
I I 
I I 

I 
I I 
I I 

_____ j _____ ~-----

1 ' I I 

: I 
I I 

I fltl I flt 
I I 

n n+l t t n+2 
t 

Fig. 7. Linear Extrapolation 

(13-A) 

-----TIME 



APPENDIX C. 

RESERVOIR DATA 

A reservoir to be water flooded will be considered to 

have the following geometry, rock and fluid properties,;'~ 

Numerical Method (Heterogeneous Layered Case) 

1 2 3 4 5 6 7 8 

j 6x 6x 

1 .15 .18 .17 .16 . 2 .19 .19 . 2 0 h = 4 ft. 

2 . 2 5 . 2 3 .27 . 2 2 . 2 5 .27 .26 .25 h = 6 ft. 

3 . 3 5 . 3 8 . 3 7 . 3 8 .40 .42 • 3 9 • 3 8 h = 5 ft. 

4 . 3 8 .36 . 3 5 . 3 2 . 30 . 3 8 . 3 5 . 3 0 h = 10 ft. 

100 150 200 250 250 200 150 100 ft. 

x direction 

The number in each block ln the above diagram is an absolute 

permeability value. 

Total reservolr length = 1400 feet 

Total reservolr thickness = 25 feet 

Reservoir width 6y = 200 feet 

Total water injection rate = 1000 barrels/day 

64 

*The data should be input in the computer program using field 
units. Conversion of field units to cgs units is made within 
the computer program. 



Bubble point pressure Pb = 3487 psi 

Oil compressibility CO = .003 atm-l 

Water compressibility CW = .0000045 atm-l 

Porosity ¢ = • 20 

Connate water saturation SWC = .2 

Residual oil saturation SOR = .2 

Initial oil saturation SOI = .8 

Initial water saturation SWI = .2 

Initial gas saturation SGI = 0.0 

Equilibrium gas saturation SGC = .05 

Oil formation volume factor at bubble point B
0

b = 1.65 

Water formation volume factor at bubble point Bwb = .95 

Initial pressures in all the blocks of the first layer 

= 3487 psi 

65 

Initial pressures in the blocks of other layers are calcula-

ted by: 

P .. = P .. l + 
l,J l,]-

h .+h. l 
.433( J 2]- ) 

The fluid properties were suitably curve-fitted with 

the following empirical equations (using the least squares 

technique) . 

so = 
as 

0 

aF> 

so = 
as 

0 
ap-

= 

= 

1.09816 + l.3487xl0- 4 P+6.8235xl0- 9
P 

l.3487xl0- 4 + 2(6.82357)xl0-
9 P 

-C (P-P ) 
B

0
b e o b 

- C B 
0 0 

2 



:::: a -C (P-P ) 
Sw ~wb e w b 

Sg :::: l./(-19.937+9.126xl0- 2 P-2.1086xl0- 6 p 2 ) 

as 
g :::: 

3P -s 2 
c.o9126-2C2.1086)P) g 

R8 = 44.2725+.266273P+7.7775xlo- 6 p 2 

aR 
~ = .266273+2(7.7775xlo- 6 P) 

C3R 
s w-:::: 0 

110 = 

~w :::: ~w + .OOOOl(P-Pb) 
b 

Relative . . . ( 19) 
Permeabllltles 

S 3 (2-S -2SWC) 
k = g g 
rg (l-SWC) 4 

S 3 (2-S -2SW) 
k = g g 

rg (l-SW) 4 ' 

s w 

sw 

> swc 

< swc 
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k = rw 

k = rw 

k = ro 

j 
4 

[Sw-SWC s > swc 1-SWC w 

0 s < swc w 

(1-S -SW) 3 (1-S +SW-2SWC) g g 

(l-SWC) 4 

Numerical Method (Homogeneous Layered Case): 

These data are the same as those for the heterogeneous 

case except that the layers are homogeneous. A series-

averaged value of permeability was calculated for each 

heterogeneous layer and was assigned to that same layer ln 

this model. These values are: 

Layer Permeability-Darcy 

l .18 

2 • 2 5 

3 • 3 8 

4 .34 

Dykstra-Parsons Method: 

Initial gas saturation = 0.0 

Initial oil saturation = .8 

Initial water saturation = .2 

Residual oil saturation= .2 

Connate water saturation ; .2 
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Reservoir length = 1400 feet 

Reservoir thickness = 25 feet 

Reservoir width = 200 feet 

llw = . 7 5 

J.l
0 

= 1.47 

krw at the residual oil saturation= .316 

k at the connate water saturation = .75 ro 

Layer's Thickness 

feet 

4 

6 

5 

10 

Permeability 

md 

180 

250 

380 

340 

These permeability variations were plotted versus cumulative 

thickness as in Figure (8) and rearranged for equal inter-

vals of one foot as shown in Table II. 
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TABLE II. Rearranged Permeabilities 

Cumulative Thickness Permeability From Rearranged 
feet Fig. 8 Permeability 

md. md. 

1 170 39 8 

2 172 398 

3 175 39 7 

4 180 39 5 

5 183 388 

6 189 385 

7 200 380 

8 212 376 

9 2 30 365 

10 250 35 8 

11 272 350 

12 29 8 340 

13 327 327 

14 358 29 8 

15 380 272 

16 395 250 

17 39 8 230 

18 39 8 212 

19 39 7 200 

20 388 189 

21 385 183 

22 376 180 

23 36 5 175 

24 350 172 

25 340 170 



APPENDIX D 

l. COMPUTER FLOW DIAGRAM FOR NUMERICAL MODEL 

MAIN PROGRAM 

START 

l 
Initialization 
N,M,¢,SWI,SGI,SOI, 
PIN,SOR,SWC,SGC 

l 
INPUT 

L1X • , K. . , H . , L'IY. Q T 
J... J...' J J 

SET UP 

sw. . 
J... 'J 

so. . 
J...,] 

SG. · 
J...,] 

p. l = 
J..., 

p. . = 
l,] 

PNl. . 
J...,] 

J 
INITIAL SATURATIONS AND 

PRESSURES 
= SWl. . = SW2. , . = SWI 

J...' J J... J 
=SOl ... = S02 . . = SOI 

J... 'J J... 'J 
= SGl. . = SG2 . .. = SGI 

J...' J J... 'J 
PNl. l = PN2. l = PIN 

J..., J..., H·+H· 1 J J-P .. l + .433 ( 
2 

) 
l 'J-

= PN2. . = P. 
J... 'J J...' J 

f CALL BETA( P. . ) I l, J 

CALCULATE INITIAL OIL IN PLACE 
N 
M 

STOIP = L: 
i=l 
j=l 

L1x.L1yH.¢SOI 
J... J 

5.61 s .. 
OJ...,] 

I CALCULATE HKX. . EQ. ( 16 )J 
J...,J 

I READ nt AND N TIME I 

0 
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CALCULATE WATER INJECTION INTO 
THE FIRST BLOCK OF EACH LAYER 

EQ. C 2 8) 

CALCULATE 

1 
NORMALIZE QW 1 . ,J 

QW1 . 
QW

1 
. = QT ,J 

,J N 

QO. . 
l,] 

L: QW1 . 
j = 1 'J 

SET 
= 0 . 0' QG •. = 

l,] 

I J = 1 l 

0.0 

n+1,; , 
C SW. . , S G . . , S 0 . . ) 2 t--~'------------.. 

l,] l,] l,] 

I CALL COFF l 
I CALL MBAL l 

SW2 .. = SW .. KEYS=~ 
l 'J l 'J~----< KEYS 

SG2. = SG. 
l,] l,] 

c 

KEYS=1 I J = J+l l 

IS 
J = N NO------~ 

YES 

' 
CALCULATE CUMULATIVE OIL, WATER, GAS 
PRODUCTIONS, WOR AND GOR EQS. (33), 
(34), (35), (36) and (37) 
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cp 
OUTPUT 

CALCULATED PRESSURES, SATURATIONS, 
CUMULATIVE PRODUCTIONS AND RATES 

~ 
I RESET OR READ NEW TIME STEP I 

LINEAR EXTRAPOLATE PRESSURES AND 
SATURATIONS FOR NEW TIME STEP 

c 



SUBROUTINE COFF 

~------J[i = I+l ~® 
AOXl = 0.0 
AWXl = 0.0 
AGXl = 0.0 

YES 

NO 

CALL BETA (P .. )n+~ 
l,] 1 

CALL SOLGAS (p .. )n+~ 
l,J 

TEMPl, 
TEMP3, 

YES 

TEMP2 
TEMPS 

NO 

CALL BETA (P. 
1 
)n+~ 

l-~ 

CALL SOLGAS (P. 1 )n+~ 
l-~ 

TEMP4, TEMP6 
AOXl = AOX2*TEMPl*TEMP4/TEMP6 +1 

AWXl = AWX2*TEMP2*TEMP4/B . 1 n ~ 
Wl-~ + 1 

AGXl = AGX2*TEMP3*TEMP4/B . 1 n ~ 
gl-~ 

CALL 

CALL 

CALL 

YES 

NO 

n+h 
BETA (P.+ 1 ) 

2 

l ~ n+h 
RPERM ( S. + 1 ) 

2 

l ~n+h 
VIS C C P. +1 ) 

2 

l ~ 

C{) 
AWX2 = 0.0 
AOX2 = 0. 0 
AGX2 = 0. 0 
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NO 

CALL BETPRM (P .. . ) n+~ 
l' J 

TRM 
A., C,, B. 

l l. l 

YES 

CALL BETA (P .)n+~ 
l,] 2 

CALL BETA (P .)n+~ 
m, J 2 

CALL RPERM (S .)n+~ 
m, J 1 

CALL VISC (P .)n+~ 
m' J 2 

CALL SOLGAS (P .)n+~ 
m,] 

QOm J., QW J., QG . EQS. , m, m,J 
(30), (3l) and (32) 

QTERM 

D 
m 

I CALL TRIDAG 

RETURN TO 
MAIN PROGRAM 
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QWTERM 

SUBROUTINE MBAL 

INITIALIZATION 
SATOL = .02 
PRTOL =1.0 
KEYS =l 
I =l 

CALL BETA (P .. )n+~ 
l,J 1 

CALL SOLGAS (P .. )n+~ 
l 'J 

QOTERM ~------------~Y~E~S~< 
QGTERM 

QWTERM 
Q OTERM ~----------------'Y::...:E~S---< 
QGTERM 

QWTERM 
QOTERM 
QGTERM 

= 
= 
= 

0 
0 
0 

CALL BETA YES 
( p. . ) n + ~ ~----::...:=._;__-< 

l-l,] 

AMOXl 
AMWXl 
AMGXl 

AMOX2 = 0. 

AMOXl 
AMWXl 
AMGXl 

= 0 . 
= 0 . 
= 0 . 

AMWX 2 = 0 . K----------N~O--< 
AMGX2 = 0. 

CALL RPERt! 
(S. 1 .)n+~ 

l+~, J 
CALL VISC\ 

( ) n.f~ p. +1 . 
l ~ ,] 

NO 

NO 

. 

. 

. 

NO 

YES 
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AMOX2 
AMWX2 
AMGX2 

B)-----~ 

YES 

NO 

YES 

1', s 0 . . ' sw ' . ' l,] l,J 

L1sG .. , RSTERM 
l,J 

SO· ., SW .. , SG· · l,J l,J l,] 

NORMALIZE SATURATIONS 
SSUM = SG+SW+SO 
SO = SO/SSUM 
SW = SW/SSUM. 
SG = SG/SSUM 

NO 

SO = SOR 

YES 

= 1-SWC 

NO 
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SG = 1-SO-SW 

CHK = jSG-SG2j - SATOL 

RETURN TO 
MAIN PROGRAM 

NO 
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I = I+l 



SUBROUTINE TRTDAG 

BTA(l) ::: B(l) 
GMA(l) = D(l)/BTA(l) 

BTA( I) 
GMA(I) 

PN2 . 
m' J 

I K = M-I-l 

PN2K . ,] 

NO 

YES 

NO 

RETURN TO 
SUBROUTINE COFF 
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2. COMPUTER FLOW DIAGRAM FOR DYKSTRA-PARSONS METHOD 

z. 
l 

A. 
l 

x. 
l 

I = I+l 

START 

1 
INITIALIZATION 

= 

= 

= 

Bl 

B. 
l 

READ K. 
l 

I = l 

h. /H 
l 

2 ( l-Y ) k. 
l 

k max 

I 2 y- y -A. 
l 

y-l 

N x. 
L: 

l = -
i=2 xl 

= 2 

B. l = -
l-

YES 

x. 
l 

xl 

YES 
I = I+l 
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NP. = l C.(SOI-SOR)PV 
l ~ l 

RECOV. = (C.(l-SOR)/SOI)lOO 
l l 

M. = k.+M. l 
l l l-

I 2 
G. = k. I ( S y -A.) 

l l 0 l 

YES 

u = 0 
n 

N 

ul = L G. 
l 

NO 

YES 

NO 
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I = I+l 

I = I+l 



I = I+1 

I = I+1 

U. = U. 
1 

G. 
1._ l- l 

NO 

YES 

WOR. = M./U. 

NO 

flNP. = 
l 

WP. = 
l 

WI. = 
l 

TIME. 
l 

l l l 

YES 

I 

NP.-NP. 1 l l-

WOR6NP.+WP. l 
l l-

WP.+S NP. 
l 0 l 

= WI. /WIR 
l 

NO 

OUTPUT 
. , NP . , RE C 0 V • , 
l l l 

WI. , WOR. 
l l 
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3. COMPUTER PROGRAM FOR NUMERICAL MODEL 

FORTRAN IV G LEVEL 1, MOD 4 MAIN DATE = 69290 18/06/54 

0001 

0002 
0 00 3 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 

0016 
0017 
0018 
0019 
0020 

C ONE DIMENSIONAL, THREE PHASE, STRATIFID, PETROLEUM RESERVOIR 
C SIMULATOR VARIABLE LENGTH(DELT X), VARIABLE LAYERS THICKNES 
C (H), HETROGENOUS PERMEABILITY IN EACH LAYER, NEGLETING GRAVITY 
C FORCES, CAPILLARY PRESSERS AND ROCK COPERSIBILITY, NO FLOW BETWEEN 
C LAYERS, INJECTING FROM ONE END AND PRODUCING FROM THE OTHER 
C END 
c 
C ~': ~': }': ;': :': MA I N P R 0 GRAM -:: ~': tJ: ~': ·l: 

c 

c 

c 

DIMENSION DELX ( 10) , PERM ( 10 , 10) , H ( 10) , S 0 ( 10 , 10) , SW ( 10 , 10) , S G ( 10 , 10) 
1,SOlC10 ,10) ,S02(10 ,10) ,SW1(10 ,10) ,SW2(10 ,10) ,SG1(10 ,10) ,SG2(10 ,10) 
1 , P ( 1 0 , 10 ) , PN 1 ( 10 , 10 ) , PN 2 ( 1 0 , 10 ) , HKX ( 10 , 10 ) , Q 0 ( 10 , 10 ) , Q W ( 1 0 , 1 0 ) , 
1QG(10,10),PN3(10,10) 

N=4 
M=8 
TIME=O.O 
ITCNT=O 
CUMOP=O.O 
CUMWP=O.O 
SWC=.2 
NN=N-1 
PHI=.20 
SWI=.2 
SGI=O.O 
SOI=.80 
MM=M-1 
KCOUNT=O 

READ(1,90)(DELX(I),I=1,M) 
READ(1,100)((PERM(I,J) ,I=1,M) ,J=1,N) 
READ ( 1 , 1 0 2 ) ( H ( I) , I= 1 , N) 
DELY=200. 
PIN=3487. co 

N 



0021 
0022 
0023 
00 24 
0025 
0026 
0027 
0028 
0029 
00 30 
0031 

0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 

0041 
0042 
0043 
0044 
0045 

C SET UP INITIAL SATURATIONS 
c 

DO 98 I=1,M 
DO 98 J=1,N 
SW(I,J)=SWI 
SG(I,J)=SGI 
SO(I,J)=SOI 
SW1(I,J)=SW(I,J) 
SW2(I,J)=SW(I,J) 
SOl( I ,J) =SO( I ,J) 
S02(I,J)=(I,J) 
SG1(I,J)=SG(I,J) 

98 SG2(I,J)=SG(I,J) 
C SW1,SG1,S01 ARE SATURATIONS AT N TIME LEVEL (OLD TIME LEVEL) 
C SW2,SG2,S02 ARE SATURATIONS AT N+1 TIME LEVEL AND K+1 ITERITIVE 
c 
C SET UP INITIAL PRESSURES 
c 

DO 97 I=l,M 
P(I,1)=PIN 
PN1(I,1)=P(I,1) 

97 PN2(I,1)=P(I,1) 
DO 96 J=2,N 
DO 96 I=l,M 
P(I,J)=P(I,J-1)+.433* (H(J)+H(J-1))/2. 
PN1(I,J)::P(I,J) 

96 PN2(I,J)=P(I,J) 
C P IS PRESSURE AT N TIME LEVEL (OLD TIME LEVEL) 
C PN1 IS PRESSURE AT N+l TIME LEVEL AND K ITRITIVE 
C PN2 IS PRESSURE AT N+1 TIME LEVEL AND K+1 ITERITIVE 
c 
C OUTPUT INITIAL CONDITIONS 

WRITE(3,90)(DELX(I) ,I=l,M) 
WRITE(3,102)(H(I) ,I=l,N) 
WRITE(3,100)((PERM(I,J) ,I=l,M),J=l,N) 
WRITE(3,12l) TIME 
VJRITE( 3 ,241) OJ 

w 



0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 

0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 

0069 
0070 
0071 

0072 
0073 
0074 

c 

c 
c 
c 

c 
c 
c 

WRITE(3,240)((PN2(I,J),I=l,M),J=l,N) 
WRITE (3,253) 
WRITE(3,25l)((SO(I,J),I=l,M),J=l,N) 
WRIT£(3,254) 
WRITE(3,25l)((SWCI,J),I=l,M),J=l,N) 
WRIT£(3,255) 
WRITE ( 3 , 2 51) ( ( S G ( I , J) , I= 1 , M) , J = 1 , N) 
DO 92 J=1,N 
DO 92 I=1,M 
P(I,J)=P(I,J)/14.7 
PN1CI,J)=PN1(I,J)/14.7 

92 PN2(I,J)=PN2(I,J)/14.7 

STOIP=O.O 
DO 91 J=1,N 
DO 91 I=1,M 
CALL BETA (P(I,J),BTAO,BTAW,BTAG) 

91 STOIP=STOIP+DELX(I)*DELY*H(J) *PHI*SOI/(5.61*BTAO) 
WRITE(3,256)STOIP 
DO 93 I=1,M 

93 DELX(I)=DELX(I)*30.48 
DO 94 J=1,N 

94 H(J)=H(J)*30.48 
DELY= DELY~': 3 0. 4 8 

CALCULATE HKX 

DO 1 J=l,N 
DO 2 I=1,MM 

2 HKX(I,J)=(2.*PERM(I,J)*PERM(I+1,J))/(DELX(I)*PERM(I+1,J)+DELX(I+1) l:':PERM( I ,J)) 

READ TIME STEP 

READ(l,l08)DELT,NTIME 
TIME=TIME+DELT 
DELT=DELT*24.*3600. 

co 
_j:" 



0075 
0076 

0077 
0078 
0079 

0080 
0081 
0082 
0083 
0084 
00 85 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
009 5 
0096 
0097 
0098 

0099 
0100 
0101 
0102 
0103 

0104 

0105 

c 

ITCNT=ITC~T+l 
897 CONTINUE 

QT=l000.*5.615*30.48*30.48*30.48/(24.*3600.) 
SUMKH=O.O 
SUMQHI=O.O 

C CALCULATE WATER INJECTION INTO THE FIRST BLOCK OF EACH LAYER 
PBIG=O.O 

c 

c 

DO 50 J=l,N 
IF(PBIG.LT.P(l,J)) PBIG=P(l,J) 

50 CONTINUE 
PBIG=PBIG+20. 
DO 899 J=1,N 

899 SUMKH=SUMKH+PERMC1,J)*HCJ)*CPBIG-P(1,J)) 
DO 898 J=l,N 
QW(l,J)=QT*PERM(l,J)*H(J)*(PBIG-P(l,J))/SUMKH 
SUMQWI=SUMQWI+QW(l,J) 
Q0(1,J)=O.O 

898 QGC1,J)=O.O 
DO 901 J=1,N 
DO 901 I=2,MI-1 
QWCI,J)=O.O 
QOCI,J)=O.O 

901 QGCI,J)=O.O 
DO 892 J=1,N 

892 QWC1,J)=QT*(SW(1,J)/SUMQWI) 

53 CONTINUE 
J=l 
NCOUNT=O 

52 CONTINUE 
CALL COFF(SW1,SW2,SG1,SG2,HKX,P,PN1,PN2,M,MM,DELT,DELY,DELX,QO,lQW,QG, 

PHI,H,J,SO,SW,SG,PN3) 

CALL MBAL(PHI,DELX,DELY,HKX,QO,QW,QG,SO,SW,SG,PN2,P,DELT,H,S01,1S02, 
SW1,SW2,SG1,SG2,M,KEYS,J,PN1) 

NCOUNT=NCOUNT+l 
co 
en 



0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 

0117 
0118 
0119 
0120 
0121 
0122 

0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 

c 

c 
c 
c 

GO TO (55,59), KEYS 
59 CONTINUE 

IFCNCOUNT.GT.2J GO TO 55 
DO 60 I=1,M 
SW2CI,J)=SWCI,J) 
SWCI,J)=.5*(SW1(I,J)+SW2CI,J)) 
SG2(I,J)=SG(I,J) 
SG(I,J)=.5*(SG1(I,J)+SG2(I,J)) 
SOCI,J)=.5*CSO(I,J)+1.-SW1(I,J)-SG1(I,J)) 

60 PN1(I,J)=PN2(I,J) 
GO TO 52 

55 IF(J.EQ.N) GO TO 56 
J=J 1 
NCOUNT= 0 
GO TO 52 

56 CONTINUE 
WRITE(3,121)TIME 

CALCULATE OIL,WATER AND GAS PRODUCTIONS,WOR,GOR AND OIL RECOVERY 

SUMQO=O.O 
SUMQW= 0. 0 
SUMQG=O.O 
DO 63 J=1,N 
SUMQO=SUMQO+QO(M,J) 
RQO=SUMQ0*24.*3600./(30.43*30.48*30.48*5.615) 
SUMQW=SUMQW+QWCM,J) 
RQW=SUMQW*24.*3600./*30.48*30.48*30.48*5.615) 
CALL SOLGAS(P(M,J),RS1) 
CALL SOLGAS(PN2*M,J),RS2) 

63 SUMQG=SUMQG QGCM,J)+QOCM,J)*(RS1+RS2)/2. 
IF(SUMQO.FQ~O.O) GO TO 58 
WOR=SUMQW/SUMQO 
GOR=5.615*SUMQG/SUMQO 
GO TO 54 

58 WOR=O.O 
(X) 

(J) 



0139 
0140 
0141 
0142 
014 3 
0144 

0145 
0146 
0147 
0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 

0157 
0158 
0159 
0160 
0161 
0162 
0163 

0164 
0165 
0166 
0167 

c 

c 
c 
c 

c 
c 
c 
c 

GOR=O . O 
54 CONTINUE 

CUMOP=CUMOP+SUMQO*DELTI(30.48*30.48*30 . 48 *5 . 615) 
CUMHP= CUMWP+SUMQW~':DELT I ( 30 . 4 8 :': 3 0 . 4 8 ~·: 3 0 . 4 8 ~': 5 . 615) 
RECOV=100 .*CUMOP/STOIP 
C U MW IN= Q T 1~ TIME* 2 4 . 1~ 3 6 0 0 . I ( 3 0 . 4 8 1: 3 0 . 4 91: 3 0 . 4 8 1: 5 . 615 ) 

WRITE( 3 , 241) 
WRITE(3,240)((PN3(I,J) ,I= l ,M) ,J=1,N) 
WRITE ( 3 , 2 53) 
WRITEC3 , 251)((SO(I ,J) , I=1,M) ,J=1,N) 
WRITE(3 , 254) 
WRITE ( 3 , 2 51) ( ( SW (I , J) , I= 1 , M) , J = 1 , N) 
WRITE(3,255) 
WRITE(3 , 251)((SGCI ,J),I=1 , M) , J =1 , N) 
WRITE(3,257) RQO , RQW 
WRITEC3 , 252)CUMOP ,CUMWP,RECOV , CUMWIN,WOR,GOR 
IE(WOR.GT . 20 .) GO TO 99 

57 

KCOUNT=KCOUNT+1 

RESET OR READ TIME STEP 

DELTN1=DELT 
IF(ITCNT . LT .NTIME) GO TO 57 
ITCNT=O 
READ(1,108,END=99) DELT,NTIME 
DELT=DELT*24 . *3600 . 
ITCNT=ITCNT+1 
TIME=TIME+DELTI(24.*3600.) 

LINEAR INTERPOLATION FOR PRESSURES AND SATURATIONS FOR THE NEXT STEP TO 
ACCELERATE CONVERGENCE 

DO 30 J=l,N 
DO 30 I=1 ,M 
SW2(I,J)=SW( I , J) +(SW(I,J)-SW1(I,J) )IDELTNl*DELT 
SW1(I ,J)=SW(I ,J) 00 

....;) 



0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
019 2 
0193 
0194 
0195 
0196 
0197 
0198 
019 9 
0200 
0201 
0202 
0203 

SG2(I,J)=SG(I,J)+(SG(I,J)=SG1(I,J))/DELTN1*DELT 
SG1(I,J)=SG(I,J) 
SW(I,J)=.5*(SW1(I,J)+SW2(I,J)) 
SG(I,J)=.5*(SG1(I,J)+SG2(I,J)) 
SO(I,J)+1.=SW(I,J)-SG(I,J) 
PN1(I,J)=PN2(I,J)+(PN2(I,J)-P(I,J))/DELTN1*DELT 
P(I ,J)=PN2(I ,J) 

30 PN2(I,J)=PN1(I,J) 
IF(KCOUNT.GT.60) GO TO 500 
GO TO 53 

500 TIME=TIME-DELT/(24.*3600.) 
WRITE ( 2 , 50 2) ( ( P ( I , J) , I= 1 , M) , J = 1 , N) 
WRITE(2,502)((PNl(I,J) ,I=1,M) ,J=1,N) 
WRITE(2,502)((PN2(I,J) ,I=1,M) ,J=1,N) 
WRITE(2,503) TIME,DUMOP,CUMWP 
WRITE ( 2 , 50 4) ( ( SW (I , J) , I= 1 , M) , J = 1 , N) 
WRITE(2,504)((SW1(I,J) ,I=1,M) ,J=1,N) 
WRITE(2,504)((SW2(I,J) ,I=l,M),J=1,N) 
WRITE( 2, 504) ( (SO( I ,J) ,I=1 ,M) ,J -1 ,N) 
WRITE(2,504)((S02CI,J) ,I=1,M) ,J=1,N) 
WRITE(2,504)((SG(I,J) ,I-l,M) ,J=1,N) 
WRITE(2,504)((SG1(I,J) ,I=1,M) ,J=l,N) 
WRITE ( 2 , 50 4) ( ( S G 2 (I , J) , I= 1 , M) , J = 1 , N) 

99 STOP 
90 FORMAT(8F8.2) 

100 FORMAT(8F8.2) 
102 FORMAT(8F8.2) 
108 FORMAT(Fl0.5,14) 
121 FORMAT (I, 4 OX, '~·n>n-::'n':TIME ELAPSED= ' , Fl6 . 7, 'DAYS-::-::-::-:::':' , I/) 
240 FORMAT(20X,8F10.1) 
241 FORMAT(60X,'PRESSURE IN PSI',//) 
251 FORMAT(20X,8Fl0.4) 
253 FORMAT(// ,60X, 'OIL SATURATIONS',//) 
254 FORMAT(//,60X,'WATER SATURATIONS',//) 
255 FORMAT(//,60X,'GAS SATURATIONS',//) 
252 FORMAT(/,5X, 'CUMULATIVE OIL PRODUCTION= ',F18.5,'STB' ,lOX, 'CUMLATIVE 

lWATER PRODUCTION= ',Fl8.5, 'STB' ,/,l5X, 'PERCENT RECOVERY= 'F10.4,10X, 
00 
00 



0204 
0205 

0206 
0 20 7 
0208 
0209 

l'CUMULATIVE WATER INJECTED= I ,Fl8.5, 'STB' ,/,SX, 'WOR;' ,Fl0.4,10X, 
l'GOR = ',Fl0.4,//) 

256 FORMAT(/,lOX, 'ORIGINAL OIL IN PLACE' ,Fl6.2, 'STB' ,//) 
257 FORMAT(/,5X,'OIL PRODUCTION RATE= ',Fl8.5, 'STB/DAY' ,SX, 'WATER 

lPRODUCTION RATE= ',Fl8.5, 'STB/DAY') 
502 FORMAT(8F8.2) 
503 FORMAT(3F20.6) 
504 FORMAT(8F8.5) 

END 

00 
(.J) 



c 
0001 

0002 

0003 
0004 
0005 

c 
c 
c 
c 

0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 

0024 

0025 
0026 

c 

c 

*****CALCULATION OF COEFFICIENT***** 
SUBROUTINE COFF(SW1,SW2,SG1,SG2,HKX,P,PN1,PN2,M,MM,DELT,DELY,DELX,QO, 

1SQ,QG ,PHI,H,J ,SO,SW ,SG ,PN3) 
DIMENSION SW1(10,10),SW2(10,10),SG1(10,10) ,SG2 (10,10),HKX(l0, 10) , 

1P(10,10),PN1(10,10),PN2(10,10),DELX(10),QO(l0,10) ,SQ(10 ,10),QG(10,120), 
1AX(lO),BX(10) ,CX( 10) ,DX(10) ,S0(10 , 10) ,SW(10 , 10) , SG(l0,10),H(l0) ,PN3 
1(10,10) 

CW=.0000045 
SOR= . 20 
SWC- . 20 

AT THIS POINT SW,SG,SO ARE TIME AVERAGED SATURATIONS BETWEEN NAND N+1 
TIME LEVEL 

DO 50 I =1 ,M 
IF(I . EQ . l) GOTO 10 

2 PX= . 5*( P(I,J)+PN2(I,J)) 
CALL BETA (PX,BTAO,BTAW, BTAG ) 
CALL SOLGAS(PX,RS) 
TEMP1 =BTAO- BTAG*RS 
TEMP2=BTAW 
TEMP3 ;; BTAG 
TEMP5=BTAO 
IF(I .EQ.l) GO TO 8 

3 PX=.5*CP(I-l ,J) +P N2 ( I ,J)) 
CALL BETA(PX,BTAO,BTAW,BTAG) 
CALL SOLGAS(PX ,RS) 
TEMP6=BTAO-BTAG*RS 
TEMP4 =DELX (l-1)1 DELX(I) 
AOXl=AOX2*TEMPl*TEMP4ITEMP6 
AWXl=At.JX2 1:TEMP2~:TEMP4 I BTAW 
AGX1=AGX2 :':TEMP 31:TEMP4 I BTAG 

IF(I . EQ . M) GO TO 30 

8 PX =. 25~( P (I,J )+P(I+l,J )+PN2 (I,J ) Pf12(I+l ,J) ) 
SWA= . S*( SW(I,J )+ S~ (I+1, J )) - (.!) 

0 



0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 

0037 
0038 
0039 
0040 

0041 
0042 
0043 

0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 

0052 
0053 

00 54 
0055 
0056 
0057 

c 

c 

c 

c 

c 

c 

SGA=.S*(SG(I,J)+SG(I+1,J)) 
SOA=.S*(SO(I,J)+SO(I+1,J)) 
IF(SO(I,J).LE.SOR) SOA=O.O 
CALL BETA(PX,BTAO,BTAW,BTAG) 
CALL RPERM(SOA,SWA,SGA,RKO,RKW,RKG) 
CALL VISC CPX,XMUO,XMUW,XMUG) 
AOX2=HKXCI,J)/DELX(I)*TEMP1/BTAO*RKO/XMUO 
AWX2=HKX(I,J)/DELX(I)*TEMP2/BTAW*RKW/XMUW 
AGX2=HKXCI,J)/DELX(I)*TEMP3/BTAG*RKG/XMUG 
GO TO 11 

10 AOX1=0.0 
AWX1=0.0 
AGX1=0.0 
GO TO 2 

30 AOX2=0.0 
AWX2-0.0 
AGX2=0.0 

11 CONTINUE 
PX=(P(I,J)+PN1CI,J))*.5 
CALL BETPRM (PX,BOPRM,BGPRM,RSPRM) 
TRM=-SW(I,J)*CW+SGCI,J)*BGPRM/TEMP3+SO(I,J)*(BOPRM-RSPRM*TEMP3)/TEMPS 
TRM=PHI*TRM/DELT 
AX(l)=AOX1+AWX1+AGX1 
CX(l)=AOX2+AWX2+AGX2 
BX(I)=-AX(I)-CX(I)+TRM 

IF(I.EQ.M) GO TO 40 
IFCI.EQ.1) GO TO 12 

QTERM=O.O 
GO TO 13 

12 QTERM=QG(I,J)*TEMP3+QO(I,J)*TEMP1+QW(I,J)*TEMP2 
QTERM=-QTERM/(DELX(I)*DELY*H(J)) 

c.o 
f-J 



0058 13 DX(I)=QTERM+TRM*PCI,J) 
0059 GO TO 50 

c 
0060 40 PX=.5*(P(1,J)+PN2(1,J)) 
0061 CALL BETA(PX,BTAO,BTAW,BTAG) 
0062 TEMP2=BTAW 
0063 PX=.5*(P(M,J)+PN2(M,J)) 
0064 SOA=SO(M,J) 
0065 SWA=SW(M,J) 
0066 SGA-SG(M,J) 
0067 CALL BETA(PX,BTAO,BTAW,BTAG) 0068 CALL RPERM(SOA,SWA,SGA,RKO,RKW,RKG) 0069 CALL VISC(PX,XMUO,XMUW,XMUG) 0070 CALL SOLGAS(PX,RS) 

c 
0071 IF(RKO.LE.O.O) GO TO 41 
0072 TEMPl=BTAO-BTAG*RS 0073 

QO ( M ,J) =TEMP 2 :'=QW ( 1, j) I ( l. + RKW IRKO:':XMUOI XMUW+ RKG/RKO:':XMUO/XMUG) 0074 QOCM,J)=QOCM,J)IBTAO 
0075 QW ( M, J) = QO ( M ,J) :':RKW:':BTAO :':XMUO/ ( RKO :'=BTAW:'=XMUW) 0076 QGCM,J)=QOCM,J)*RKG*BTAO*XMUO/(RKO*BTAG*XMUG) 0077 QTERM-QGCM,J)*BTAG+QOCM,J)*TEMPl+QWCM,J)*BTAW 0078 QTERM=QTERM/(DELX(M)*DELY*H(J)) 

c 
0079 DX(M)=QTERM+TRM*PCM,J) 

c 
0080 GO TO 50 
0081 41 QO(M,J)=O.O 
0082 IF(RKG.LE.O.O) GO TO 42 
0083 QG ( M, J) =TEMP2 11 QW (l, J) I Cl. + RKW IRKG:':XMUG/XMUW) 0084 QG(M,J)=QG(M,J)IBTAG 
0085 GO TO 43 
00 86 42 QGCM,J)=O.O 
0087 43 QWCM,J)=(TEMP2*QW(l,J)-BTAG*QG(M,J))/BTAW 0088 QTERM= QG ( M ,J) :':BTAG+QW ( M ,J) :':BTAltl 
0089 QTERM-QTERMI(DELX(M)*DELY*H(J)) 
0090 DX(M)=QTERM+TRM*PCM,J) 
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0001 

0002 

0003 
0004 
0005 
0006 
0007 
0008 

0009 
0010 
0011 
0012 
0013 
0014 

0015 
0016 

0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 

c 
c 

c 

c 

c 
c 
c 

c 

*****MATERIAL BALANCE CALCULATION***** 
SUBROUTINE MBAL(PHI,DELX,DELY,HKX,QO,QW,QG,SO,SW,SG,PN2,P,DELT,H,SOl, 

1S02,SWl,SW2,SG1,SG2,M,KEYS,J,PNl) 
DIMENSION SW1(10,10) ,SW2(10,10) ,SW(lO,lO) ,SGl(l0,10) ,SG2(10,10), 

1 SG ( l 0 , l 0) , HKX ( l 0 , l 0) , P ( l 0, 10 ) , PN 2 ( l 0 , l 0) , PNl ( l 0 , l 0) , DELX ( l 0) , Q 0 ( l 0 , l 0) , 
lQW ( l 0 , l 0 ) , Q G ( l 0 , l 0 ) , H ( l 0 ) , SO ( l 0 , l 0) , S 0 l ( l 0 , l 0) , S 0 2 ( l 0 , l 0) 

SWC=.2 
SGC=.OS 
SOR-.20 
SATOL=.02 
PRTOL=l.O 
KEYS=l 

DO 100 I=l,M 
ZZ=-DELT/(DELX(I)*PHI) 
PX=CPCI,J)+PN2CI,J))*.5 
CALL BETA CPX,BTOI,BTWI,BTGI) 
CALL SOLGAS(P(I,J),RSN) 
CALL SOLGAS(PN2(I,J),RSNP1) 

CALCULATE QWTERM,QOTERM,QGTERM 

IF(I.EQ.1) GO TO 904 
IF(I.EQ.M) GO TO 905 

QWTERM=O.O 
QOTERM=O.O 
QGTERM=O.O 
GO TO 900 

904 QWTERM=QW(I,J)*BTWI/(H(J)*DELY) 
QOTERM=O.O 
QGTERM=O.O 
GO TO 900 

9 0 5 AWTERM= -QW ( M ,J) ~·:BTWI I ( H ( J) ~·:DELY) 
QOTERM=-QO(M,J)*BTOI/(H(J)*DELY) (.{) 

+ 



0027 
0028 

0029 

0030 
0031 
0032 

0033 

0034 
0035 
0036 
0037 
0038 

00 39 

0040 
0041 
0042 
0043 

0044 
0045 
0046 
0047 
004 8 
0049 
0050 
0051 
0052 
0053 

0054 
00 55 

c 

c 

c 

c 

c 

c 

c 

c 

QGTERM=-QGCM,J)*BTGI/(H(J)*DELY) 
900 CONTINUE 

IF(I.GT.l) GO TO 5 

AOXl=O.O 
AWXl=O.O 
AGXl=O.O 

GO TO 7 

5 PX=(P(I-l,J)+PN2(I-l,J))*.5 
CALL BETA(PX,BTAO,BTAW,BTAG) 
AOXl=(BTOI/BTAO)*AOX2 
AWXl=(BTWI/BTAW)*AWX2 
AGXl=(BTGI/BTAG)*AGX2 

7 IF(I.LT.M) GO TO 8 

AOX2-0.0 
AWX2=0.0 
AGX2;;0,0 
GO TO 17 

8 SWA=.5*(SW(I,J)+SW(I+l,J)) 
SOA=.5*(SO(I,J)+SO(I+l,J)) 
SGA=.5*(SGCI,J)+SG(I+l,J)) 
IF(SO(I,J) .LE.SOR) SOA=O.O 
CALL RPERM(SOA,SWA,SGA,RKO,RKW,RKG) 
PAV=.25*(P(I,J)+P(I+l,J)+PN2(I,J)+PN2(I+l,J)) 
CALL VISC(PAV,XMJO,XMUW,XMUG) 
AOX2=HKX(I,J)*(RKO/XMUO)*( .5*(P(I+l,J)+PN2(I+1,J)-P(I,J)-PN2(I,J))) 
AGX2=HKX(I,J)*(RKG/XMUG)*( .5*(P(I+l,J)+PN2(I+l,J)-P(I,J)-PN2(I,J))) 
AWX2=HKX(I,J)*(RKW/XMUW)*( .5 (P(I+l,J)+PN2(I+l,J)-P(I,J)-PN2(I,J))) 

17 DELSW=ZZ*(AWX1-AWX2-AWTERM) 
DELSO=ZZ*(AOX1-AOX2-QOTERM) 

<..o 
c.n 



00 56 
c 

0057 
00 58 
0059 
0060 

c 
c 
c 

0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 

c 
0084 
0085 
0086 

DELSG=ZZ*CAGX1-AGX2-QGTERM) 

RSTERM=SO(I,J)*(RSNPl-RSIJ)*(BTGI/BTOI) 
SG(I,J)=SGl(I,J)+DELSG-RSTERM 
SWCI,J)=SWlCI,J)+DELSW 
SOCI,J)=l.O-SWl(I,J)-SGl(I,J)+DELSO 

SATURATION TOLERANCE CHECK 

SSUM=SGCI,J)+SWCI,J)+SO(I,J) 
SG(I,J)=SG(I,J)/SSUM 
SW(I,J)=SW(I,J)/SSUM 
SO(I,J)=SO(I,J)/SSUM 
IF(SO(I,J) .GT.(l.-SWC)) SO(I,J)=l.-SWC 
IF(SO(I,J).GE.SOR) GO TO 20 
SO(I,J)=SOR 

20 IF(I.EQ.l) GO TO 21 
IF(SW(I,J) .GT.SW(I-1,J)) SW(I ,J)=SW(I-1,J) 

21 IFCSWCI,J) .GE.SWC) GO TO 22 
SW(I,J)=SWC 

22 SGCI,J)=1.0=SO(I,J)-SW(I,J) 
CHK=ABS(SG(I,J)-SG2(I,J))-SATOL 
IF(CHK.GT.O.) KEYS=2 
CHK=ABS(SW(I,J)-SW2(I,J))-SATOL 
IF(CHK.GT.O.) KEYS=2 
CHK=ABS(SO(I,J)+SG2(I,J)+SW2(I,J)-1.)-SATOL 
IF(CHK.GT.O.) KEYS=2 
CHK=ABS(PN2(I,J)-PN1(I,J))-PRTOL 
IF(CHK.GT.O.) KEYS=2 
IF ( S G ( I , J) . GT. 0 . 0) GO TO 10 0 
SG(I,J)=O.O 
SW(I,J)=1.-SO(I,J) 

100 CONTINUE 
RETURN 
END 

(J) 

(j) 



0001 
0002 

0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 

c *****TRI-DIAGONAL SOLUTION***** 
SUBROUTINE TRIDAG(AX,BX,CX,DX,PN2,M,J,PN3) 
DIMENSION AX(lO),BX(lO),CX(lO),DX(10),PN2(10,10),BTA(10),GMA(10),PN3 

1(10,10) 
BTA(l)=BX(1) 
GMA(1)=DX(1)/BTA(1) 
DO 10 I= 2 ,M 
BTA(I)=BX(I)-AX(I)*CX(I-1)/BTA(I-1) 

10 GMA(I)=(DX(I)-AX(I)*GMA(I-1))/BTA(I) 
PN2(M,J)=GMA(M) 
PN3(M,J)=GMA(M)*14.7 
DO 20 I= 2 ,M 
K=MOI+1 
PN2(K,J)=GMA(K)-(CX(K)*PN2(K+1,J)/BTA(K)) 

20 PN3(K,J)=PN2(K,J)*14.7 
RETURN 
END 

CJ.) 

'-J 



0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 

SUBROUTINE BETA(P,BTAO,BTAW,BTAG) 
A0=.1098168E01 
Al=.l3487E-03 
A2=.682357E-08 
A3=-19.937 
A4=.9126E-l 
A5=-.21086E-5 
CW=.0000045 
C0=.0003 
PB=3487./14.7 
BTWBP=.95 
BTOBP= l. 6 50 
IF(P.LT.PB) GO TO 4 
BTAO=BTOBP*(EXP(-CO*(P-PB))) 
GO TO 5 

4 BTAO=AO+Al*(l4.7*P)+A2*(14.7*P)**2 
5 BTAG=A3+A4*14.7*P+A5*(14.7*P)**2 

BTAG=1./BTAG 
BTAW=BTWBP~':(EXP(-CW~':(P-PB))) 
RETURN 
END 

w 
()) 



0001 
0002 
0003 
0004 
DOD'S 
DDD'O 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
00 20 
0021 
0022 

I 

SUBROUTINE VISC(P ,XMUO ,XMU~l ,XMUG) 
A0=.397117E01 
Al=-.199219E-02 
A2=.80314E-06 
A3~-.l9S'OS99t-D9 
A4~.'2lD'2TE-l?J 
AS= .0024738 
A6=.9244E-5 
A7=-.76556E-9 
PB=3487./l4.7 
CVISO=.OOOl 
CVISW=.OOOOl 
XMUOBP=l.47 
XMUWBP=.75 
IF(P.LT.PB) GO TO 6 
XMUO=XMUOBP+CVISO*(P-PB) 
GO TO 7 

6 XMUO=AO+Al*l4.7*P+A2*(14.7*P)**2+A3*(14.7*P)**3+A4*(14.7*P)**4 
7 XMUW=XMUWBP+ CVISW:': ( P-PB) 

XMUG=A5+A6*14.7*P+A7*(14.7*P)**2 
RETURN 
END 

<.o 
<.o 



0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 

SUBROUTINE SOLGAS(PA,RS) 
PX=PA 
PB=3487./l4.7 
IF(PX.GT.PB) PX=PB 
RS=44.27252+.266273*14.7*PX+.000007775651*(14.7*PX)**2 
RS=RS/5.615 
RETURN 
END 

I--' 
0 
0 



0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 

0014 
0015 

0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 

c 
c 

c 

SUBROUTINE RPERM(SOA,SWA,SGA,RKO,RKW,RKG) 
SGC=.05 
SWC=.20 
SOR=.20 
IF(SWA.GT.SWC) GO TO 10 
RKG=(SGA***3)*(2.-SGA-2.*SWA)/((1.-SWA)**4) 
RKW=O.O 
RK0=((1.-SGA-SWA)/(1.-SWC))**4 
GO TO 20 

10 CONTINUE 
RKG=(SGA**3)*(2.-SGA-2.*SWC)/((1.-SWC)**4 
RKW= ( ( SWA-SWC) I ( 1. -SWC)) ~'::':4 
RK0=((1.-SGA-SWA)**3)*(1.-SGA+SWA-2.*SWC)/((1.-SWC)**4) 

ADJUST RKO FOR SOR AND RKG FOR SGC 
20 RKO=RKO*(SOA-SOR)/(1.-SOR) 

RKG=RKG*(SGA-SGC)/(1.-SGC) 

IF(RKO.LT.O.) RKO=O.O 
IF(SOA.LE.SOR) RKO=O.O 
IF(RKG.LT.O.) RKG=O.O 
IF(SGA.LE.SGC) RKG=O.O 
IF(RKW.LT.O.) RKW=O.O 
RKSUM=RKO+RKW+RKG 
IF(RKSUM.LE.1.) GO TO 6 
RKO=RKO/RKSUM 
RKW=RKW/RKSUM 
RKG=RKG/RKSUM 

6 CONTINUE 
RETURN 
END 

1-> 
0 
1-> 



0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 

SUBROUTINE BETPRM(PX,BOP,BGP,RSP) 
Al=.l3487E-03 
A2=.682357E-08 
A3=-l9.937 
A4=.09126 
A5=-.21086E-5 
A6=.266273 
A7=.7775651E-5 
BTOBP= l. 6 5 
C0=.0003 
PB=3487./l4.7 
IF(PX.LT.PB) GO TO 2 
BTAO=BTOBP*CEXP(-CO*(PX-PB))) 
BOP=-CO :':BTAO 
RSP=O.O 
GO TO 3 

2 BOP=Al+2.*A2*PX*l4.7 
RSP=A6+2.*A7*PX*l4.7 
RSP=RSP/5.615 

3 BTAG=A3+A4*14.7*PX+A5*(14.7*PX)**2 
BTAG=l./BTAG 
BGP=-BTAG**2*(A4+2.*A5*PX*l4.7) 
RETURN 
END 

f-J 

0 
'-.; 



4. COMPUTER PROGRAM FOR DYKSTRA-PARSONS METHOD 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

IWAT 4 
I 
c 

PT140710,TIME=01,PAGES=010 AKBAR ALI M DEFAULT W JOB 75 
CLASS=W,PRIORITY=13,READER=2 

MODIFIED DYKSTRA-PARSONS METHOD 
DIMENSION PERM( SO) ,H(50) ,Z(SO) ,A( 50) ,XRATI0(50) ,B(SO) ,COV(50) ,OILPR(SO), 

1PM(50) ,G(50) ,U(50) ,WOR(50) ,DELTP(50) ,WP(50) ,WI( 50) ,TIME( 50) ,RECOV(SO) 
1QOR( 50) 

TIME(1)=0.0 
PERMAX=399. 
SUMH=25. 
N=25 
NN=N-1 
PV=200.*25.*1400.*.215.615 
DELZ=.04 
BO=l.65 
RKW=. 316 
RKO=. 7 5 
XMUW=. 7 5 
SOI=.8 
SOR=.2 
WIR=1000. 
H(1)=1. 
DO 4 I= 2 ,N 

4 H(I)=l.+H(I-1) 
READ(1,100)(PERM(I),I=1,N) 

2 READ(1,400,END=50) XMUO 
VRATIO=XMUO/XMUW 
WRITE(3,410) VRATIO 
GAMA=RKW/RKO*XMUOIXMUW 
DO 10 I=1,N 
Z(I)=H(I)ISUMH 
A(I)=(1.-GAMA**2)*PERM(I)/PERMAX 

10 XRAT I 0 ( I ) = ( GAMA- ( SQ RT ( GAMA ~-n·~ 2 +A (I ) ) ) ) I ( GAMA -1 . ) 
BETA=O.O 
B(N)=O.O 
DO 11 I=2,N f-J 

0 
w 
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33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11 BETA=BETA+XRATIO(l) 
B(1)=BETA 
DO 12 I= 2 ,NN 

12 B(I)=B(I-1)-XRATIO(I) 
DO 13 I=1,NN 
COV(I)=Z(I)+B(I)*DELZ/XRATIO(I) 
RECOV(I)=COV(I)*(l.-SOR/801)*100. 

13 OILPR(I)=COV(I)*(SOI-SOR)*PV/BO 
PM(1)=PERMAX 
DO 14 1=2 ,N 
PM(I)=PERM(I)+PM(I-1) 

14 G(I)=PERM(I)/(BO~':(SQRT(GAMN'n':2+A(I) )) ) 
SUMU=O.O 
U(N)=SUMU 
DO 15 I= 2 ,N 

15 SUMU=SUMU+G(I) 
U(l)=SUMU 
DO 16 I=2,NN 

16 U(I)=U(I-1)-G(I) 
DO 17 I=1,NN 

17 WOR(I)=PM(I)/U(I) 
WRITE(3,200) 
WP(l)=O.O 
DO 18 I=2,NN 
DELTP(I)=OILPR(I)-OILPR(I-1) 
WP(I)=WOR(I)*DELTP(I)+WP(I-1) 
WI(I)=WP(I)+BO*OILPR(I) 
TIME(I)=WI(I)/WIR 
QOR(I)=DELTP(I)/(TIME(I)-TIME(I-1)) 
WRITE(3,400)QOR(I) 
WRITE(3,300) TIME(I),OILPR(I),RECOV(l),WP(I),WI(I),WOR(I) 

18 CONTINUE 
GO TO 2 

100 FORMAT(7Fl0.3) 
200 FORMAT (I I, 8X, 1 TIME 1 

, 8X, 1 CUMULATIVE OIL PROD' , 8X, 1 RECOVERY 1 
, 7X, 

1'CUMULATIVE WATER PROD' ,SX,CUMULATIVE WATER INJ' ,l5X, 1 WOR 1 ,II, 
18X' I DAYS' '16 X' 'STB' '19 X' '%' '21X' 'STB ' '21X' I STB' '21X' 'BBL/ STB ' 'I/) 

1-' 
0 
.;:::-



66 
67 
68 
69 
70 

300 FORMAT(5X,Fl0.2,1X,F20.2,9X,Fl0.5,5X,F20.2,5X,F20.2,5X,F20.5,/) 
400 FORMAT(Fl0.5) 
410 FORMAT(/ ,5X,'OIL VISCO RATIO=' ,Fl0.3) 

50 STOP 
END 

j-J 

0 
(J1 
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