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Abstract 

In this thesis existence and uniqueness of solutions 

to certain second and third order boundary value problems 

for delay differential equations is established. Sequences 

of upper and lower solutions similar to those used by Kova~ 

and Sav~enko are defined by means of an integral operator, 

and conditions are given under which these sequences con

verge monotonically from above and below to the unique 

solution of the problem. Some numerical examples for the 

second order case are presented. Existence and uniqueness 

is also proved for the case where the delay is a function 

of the solution as well as the independent variable. 
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I. Introduction 

The study of delay differential equations has expanded 

rapidly in recent years due to numerous applications which 

have developed in engineering and the applied sciences. 

Some of the areas of application are automatic control 

theory [10], kinetics of biochemical reactions [1], and 

population growth [3]. 

Grimm and Schmitt [5], [6] have obtained results for 

boundary value problems for differential equations with 

deviating arguments in which the solution was contained in 

the region between upper and lower solutions satisfying 

certain differential inequalities. Similar results for 

equations of order 4k and 4k + 1, where k is a positive 

integer, were obtained by Kovat and Savcenk~ [9] who also 

presented a method for iteratively improving the upper and 

lower solutions. 

Analagous results for boundary value problems for 

ordinary differential equations. have been obtained by 
....,. 

Jackson and Schrader [7], Kovac [8], and Werner [12], who 

considered first order systems of ordinary differential 

equations. 

This thesis presents a further application of differ-

entia! inequalities to second and third order delay 

differential equations, and develops an iterative procedure 

which yields numerical estimates for the unique solution of 

1 



the boundary value problem considered. 

Some other numerical methods for differential equa

tions with deviating arguments have been developed recently 

by Castleton and Grimm [2] for initial value problems, and 

by de Nevers and Schmitt [4] for boundary value problems. 

2 
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II. Notation, Definitions, and Preliminaries 

A delay differential equation (ODE) is a special type 

of differential equation with deviating arguments (DEDA). 

A DEDA is an equation of the form 

I 

y = f(x,y(x),y(h(x,y)),y (h(x,y))). ( 2 • 1) 

If f is independent of y and if h(x,y) ~ x, then the equa-

tion is of retarded type, or a ODE. For higher order 

equations a DEDA is a DOE if h(x,y) ~ x and f is independent 

of the highest order derivative. 

The basic initial value problem for DOE's consists of 

determining a solution y(x) of equation (2.1) for x ~ x 0 . 

Such that y(x) = <j>(x) on the interval E = (-"'• x 0 ), where 

<j>(x) is a given continuous function called the initial 

function. In case h(x,y) is bounded below, the interval E 

may be finite. 

The theory of initial value problems for DOE's where 

h = x-T(x) has been well developed, and a number of results 

have also been obtained for other types of DEDA. 

In this paper two point boundary value problems (BVP's) 

for the following second and third order scalar equations 

will be considered: 

I I 

)' (x) = f(X,)'lX),y(h(x,y(x)))), 0 ~ x ~a (2.2) 

and 
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I I I 

y (x) = f(x,y(x),y(h(x,y(x)))), 0 ~ x ~a. (2.3) 

A solution to (2.2) or (2.3) is defined as a function 

y(x) such that y(x) = ~(x) on E, y(x) £ c2 or c3 respectively 

on (x 0 ,x 1 ], and y(x) satisfies the boundary conditions given 

Existence and uniqueness of solutions will 

be shown, and in the case where h is independent of y, a 

method will be given in which the solution can be approx-

imated by "upper" and "lower" solutions. A "lower solution" 

to the BVP for (2.2) is a function Z(x) satisfying the 

given boundary conditions and satisfying the differential 

inequality: 

I I 

Z (x) - f(x,Z(x),Z(h(x,Z(x)))) > 0. 

An "upper solution" to the BVP for (2.2) is a function V(x) 

satisfying the given BC 1 s and satisfying the differential 

inequality: 

I I 

V (x) - f(x,V(x),V(h(x,V(x)))) ~ 0. 

The following results will be used repeatedly through-

out this paper. 

Lemma 1. Let y(x) £ c 2 , y(a) 
I I 

y(b) = 0 and y (x) ~ 0 

on [a, b] • Then y(x) ? 0 on [a,b]. 

Proof. Assume the contrary, i.e., y(x) ~ 0 for some 
I I 

x £ (a,b). Since y (x) ~ 0, y (x) is non-increasing. But 

this means that if there exists ~ E (a,b) such that y(~) ~ 0 
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then y(x) < 0 for all x > £,;. In particular y(b) < 0, a 

contradiction. 

A similar result will hold if the inequalities in 

Lemma 1 are reversed. 

c3. I 

Lemma 2. Let y(x) £ y (a) = y (b) = o. y (a) = 0 • 
I I I 

and y (x) ...:; 0 on [a,b]. Then y(x) ~ 0 on [a,b]. 

I 

Proof. By Lemma 1 y (x) ~ 0 on [a,b]. Assume that 
I 

y(x) < 0 on (a,b). But since the slope (y (x)) is non-

negative it is impossible for y(O) = 0, a contradiction. 

As in Lemma 1, the inequalities in Lemma 2 can be 

reversed. 

In the rest of this paper the interval [0,1] will be 

denoted by I. 
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I I I . The Second Order Boundary Value Problem 

A. Existence and Uniqueness. Consider the non-linear, 

second order BVP: 

I I 

y (x) = f(x,y(x) ,y(x-T(x))) = f(x,y,y ) = f[y], (3.1) 
T 

where T(x) ~ 0, T(x) £ C on I with boundary conditions 

y(x) = ¢(x) if x £ E = {x I x < 0}, 
( 3. 2) 

¢(0) = 0, y(O) = y(l) = 0, 

where ¢(x) £ c 2 is a given initial function on E. 

Theorem 1. Let f be continuous and have bounded deriv-

atives, I ~ ~ I ~ N and I a f I · -ay- ~ N, on some compact region 
T 

o1 containing 

where 

IT= {(x,y,z) 0 ~X~ 1, IYI ~ ~. 

B = sup I f(x ,y(x) ,y(x-T (x))) I 
u1 

B I z I < s}, 

Then if N < 4 in D, there exists a unique continuous solu-

tion of the problem (3.1)-(3.2). 

Proof. Let z1 (x) be a function such that z1 (x) 

on E, z1 (x) is in the region D, z1 (x) £ c 2 on I, and 

z1 (0) = z1 (1) = 0. Also define a 1 (x) on I by 

¢(x) 

( 3. 3) 



Now define the sequence of functions {Zn(x)} by the rule: 

where 

I I 

o (x) = a (x) on I 
n n 

under the hypotheses 

and 

o (x) = 0 for x E E, 
n 

0 (0) = 0 (1) = 0 n n 

From (3.5) and (3.6) it follows that 

where 

1 
o (x) = -J G(x,t)a (t)dt 

n o n 

G(x,t) {
t ( 1-x) , 0 

x(l-t), x ~ t 4. 1 • 

It will now be shown that every function in the 

sequence {Z (x)} is in the region D. 
n 

hypothesis. Assume Z (x) E D. Then n 

Differentiate (3.4) twice to get 

t I t t I I 

zn+l(x) = Zn (x)- on (x), 

Z 1 (x) is in D by 

(3. 4) 

(3.5) 

( 3. 6) 

( 3. 7) 

(3. 8) 

7 



but, from (3.7) and (3.5), this becomes 

I I 

Z 1 (x) n+ ex (x) + f[Z ] 
n n 

= f [ z ] 
n 

I I 

a (x) 
n 

This result combined with (3.8) gives 

zn+1(x) 
1 

= -I G(x,t)f[Z ]dt • o n 

1 

(3.9) 

(3.10) 

Since G(x,t) ? 0 on I and max I G(x,t)dt = 
X£I O 

1 
8 (see Appen-

dix I), it follows that 

which implies that Z 1 (x) ED. n+ 

To show that lim Z (x) exists and is a solution of 
n n -roo 

(3.1)-(3.2) it is necessary to obtain bounds 

a ( x) • 
n 

Use equations (3.4) and (3.7) to get 

ex 1 (x) n+ 
I I 

Z 1 (x) - f[Z 1 J 
n+ n+ 

I I 

Z (x) 
n 

' ' o (x) - f[Z 1 ] n n+ 

' ' 

on a (x) and 
n 

= a (x) + f[Z ] - o (x) - f[Z 1 1 
n n n n+ 

= f[Z ] - f[Z 1 ] 
n n+ 

Now apply the mean value theorem to obtain 

f[Z ] 
11 

- f[Z 1 ] n+ 
+ 

a f 
,--.[Z lX-t(x))- Z 1 (x-T(X))) 
·"" n n+ • T 

8 



In the above equation ~ is the value of the partial deriv-
7 y 

9 

. af .. h . D d~f . h 1 
at~ve 3-- at some po~nt ~n t e reg~on , an a--- 1s t e va ue 

' y YT 
of 'l__f_ at some point in the region D. Hence 

a Y 
T 

3 f a f =a-- o (x) +a--- o (x--r{x)) 
y n YT n 

(3.11) 

Let M c:: max \ a1(x) \. Then it follows from (3.8) with n = 1 
xe:I 

that 

Using this in equation (3.11) one obtains 

Repeating the process for n = 2, 

o 2 (x) 

a 3 (x) 

By induction one obtains the following inequalities: 

o (x) 
n 

\ a (x) 
n 

(3.12) 

Note that lim Z (x) is equivalent to the sum of the 
n 

n-+"" 

series z1 (x) + [Z 2 (x) - z1 (x)) + [Z 3 (x) - z2 (x)) + ••. and 
I f 

that lim Z (x) is equivalent to the sum of the series 
n n-+oo 

I f f I t I f I f f 

z1 (x) + [Z 2 (x) - z1 (x)) + [Z 3 (x) - z2 (x)) + • • • • Also, 
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I I 

zn (x) = -an (x). 

Therefore, for N < 4, the series 

+ ••• + [Z 1 (x) - Z (X)]+ •.• , n+ n 

II '' '' '' II z 1 (x) + [Z 2 (x) - z 1 (x)] + ..• + [Zn+ 1 (x) - Zn (x)] + ... 

converge absolutely and uniformly, their sums y(x) and 
- I I 

y (x) exist, are continuous and y(x) satisfies the boundary 
- I I 

conditions (3.2). To see that y (x) is the second deriv-

ative of y(x), note that by uniform convergence the second 

series above can be integrated term by term twice to obtain 

the first series. 

To show that y(x) satisfies (3.1), rewrite equation 

(3.7) as follows: 

1 
Z (x) =- J G(x,t)(a (t) + f[Z ])dt. 

n 0 n n (3.13) 

Taking the limit as n~~ and using uniform convergence and 

continuity properties one obtains 

y(x) 
1 -

=- J G(x,t)f[y]dt 
0 

But this is equivalent to 

- I I 

y (x) = f[y] 

so y (x) satisfies (3 .1) and the sequence {Zn (x)} converges 

to a solution of (3.1)-(3.2). 

To prove uniqueness assume that. in addition to y(x), 



there is another function Y(x) satisfying (3.1)-(3.2) such 

that F(x) = ly(x) - Y(x) I is not identically zero on I. 

11 

Let x = ~ be the point on I where F(x) takes on its maximum 

value, (max F(x) = e > 0). Since y(x) and Y(x) satisfy 

(3.1) it is clear that 

Hence 

I I I I 

y (x) Y (x) = f[y] - f[Y]. 

y(x)- Y(x) = -J 1G(x,t)[f[y]- f[Y]]dt 
0 

and the following estimate will hold: 

ly(x) - Y(x) I ~ f 1 G(x,t) [l~fl Cly(t) - Y(t) I) + 
0 y 

af 
1-a-ICiy(t-T(t))- Y(t-T(t))lldt 

YT 

(3.14) 

f 1 1 N e 
< 2N8 max G(x,t)dt = 2N8(8) = ~ 

X£1 0 

So F(x) < ~e and in particular F(~) = 8 < ~e which gives 

N > 4. But this contradicts the hypothesis of the theorem 

that N < 4, so the solution is unique. 

B. Inclusion Theorems. The next theorems give a 

method for approximating the solution of (3.1)-(3.2) by 

upper and lower solutions. Two cases will be considered. 

1. Non-positive Derivatives. Assume that 

af 4 0 and af 4 0. ay 3y 
1 

(3.15) 
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Assume there exist z1 (x) and V1 (x) in D and in class c2 

which satisfy the BC's (3.2), such that 

I I 

Z 1 (x) f[Z 1 ] = a 1 (x)? 0 (lower solution), 

(3.16) 
I I 

v 1 (x) - f[V 1 J = 8 1 (x) 4:. 0 (upper solution). 

Construct the sequences of functions {Z (x)} and {V (x)} 
n n 

by the rules: 

where 

zn+1(x) Z (x) n cr (x), 
n 

I I I I 

cr (x) =a (x), w (x) = 8n(x), n n n 

with boundary conditions 

cr (x) = w (x) = 0 for x £ E, n n 

(J (0) = (J (1) = w (0) = w (1) = 0, n n n n 

and 

I I 

a (x) = Z (x) 
n n 

f [ z ] , 
n 

(3.17) 

(3.18) 

(3.19) 

Theorem 2. If for x £ I (3.15) is satisfied and there 

exist functions Z1 (x) and V1 (x) satisfying (3.2) which are 

lower and upper solutions, respectively, as in (3.16), and 

if y(x) is the solution of (3.1)-(3.2), then 
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(3.20) 

Proof. The mean value theorem will again give 

a. 1 (x) 
a£ a (x) 

()£ 
a (x-T(x)) = ay + 

ayT n+ n n 
(3.21) 

Bn+1(x) 
()£ 

w (x) 
()£ 

w (x-T(x)). = ay 
+ ay n n T 

It is clear from Lemma 1 and equation (3.18) that on I 

Using (3.21) for n = 1, 

which gives 

By induction, the following inequalities hold: 

a. (x) 
n 

lll' 0, a (x) .c. 0, 
n 

B (x) .:.. 0, w (x) ~ 0. n n 

(3. 22) 

(3. 23) 

By Theorem 1, for N < 4, the sequences of functions 

{Zn(x)} and {Vn(x)} converge to the solution of (3.1)-(3.2). 

F u thermo r e , by ( 3 . 2 2) and ( 3 • 2 3) it is c 1 ear that 

since z 1 (x) = Z (x)- a (x) and V +l(x) = Vn(x)- wn(x). n+ · n n n 



The conclusion of the theorem follows from the fact 

that {Zn(x)} is a monotonic non-decreasing sequence and 

{V (x)} is a monotonic non-increasing sequence. 
n 

Corollary 1. If the hypotheses of Theorem 2 are 

satisfied and if the sequences {Z (x)} and {V (x)} are n n 

determined by (3.17), (3.18), and (3.19) then 

14 

(3.25) 

Proof. It is evident from (3.19), (3.22), and (3.23) 

that Z (x) is a lower solution and that V (x) is an upper n n 

solution. Also, every Z (x) and V (x) satisfy (3.2), so n n 

the corollary follows from Theorem 2. 

Corollary 2. If V1 (x) (Z 1 (x)) is an upper (lower) 

solution to (3.1)-(3.2) then the sequence {Vn(x)} ({Zn(x)}) 

defined as in Theorem 2 converges monotonically from above 

(below) to y(x). In particular, if the function identically 

equal to zero on I is an upper (lower) solution to (3.1)-

( 3 . 2 ) t h en y ( x ) ~ 0 (~ 0 ) on I . 

Proof. The proof follows directly from Theorem 1 and 

the proof of Theorem 2. 

2. Derivatives Bounded Above. Assume that there 

exist arbitrary constants M0 and K0 such that, in the region~ 

(lf 
Mo.,-3y • K "' a£ o = ay't (3. 26) 

(Notice that if M0 , K0 ~ 0, this reduces to the case just 



considered.) 

Suppose that in the region D there exist functions 

zl (x) and vl (x) 

(3.2) such that 

2 in class C for x £ I and which satisfy 

I I 

zl (x) f[Z 1 J A1 (x) = a 1 (x) ~ 0' 

15 

(3.27) 
I I 

vi (x) - f[V 1 J + A1 (x) = 13 1 (X) " 0' 

where 

A 1 (x) [-!M 0 1 M0 ][Z 1 (x)- V1 (x)] + 

[-!K 0 ! - K0 ] [Z 1 (x-T(x))- V1 (x--r(x))]. 

Construct the sequences of functions {Z (x)} and {V (x)} 
n n 

by (3.17) and (3.18) where 

and 

a ( x) 
n 

B (X) 
n 

A (X) 
n 

' ' Z (X) 
n 

' ' 

f [ z ] 
n 

A ( x) , 
n 

V (x) - f[V ] + A (x), n n n 

M0 J [Z (x) - v (x)] + 
n n 

- K 0 ] [Z (x-T(x)) - V (x--r(x))] 
n n 

(3.28) 

(3.29) 

Theorem 3. If there exist functions z1 (x) and v1 (x) 

on I in class c 2 satisfying (3.2) and (3.27), and if the 

sequences {Z (x)} and {V (x)} are determined by (3 .17), 
n n 

(3.18), and (3.28) then 

zn ( x) ~ V n ( x) , 



Zn+l(x) ~ Zn(x), 

V 1 (x)..c.V (x). n+ n 

16 

Proof. Let Wn(x) = Zn(x) - Vn(x). Then from equation 

(3.27) 

I I 

w1 (x) = a. 1 (x) - S1 (x) + f[Z 1 ] - f[V 1 J + 2A 1 (x). 

Application of the mean value theorem to f[Z 1 ] - f[V 1 ] 

yields 

1 1 af af 
Wl (X) = a. 1 (x) - 13 1 (X) + ay Wl (x) + oyT Wl (x-T(X)) + 

2A 1 (x), 

which is equivalent to 

af K ] W1 (x-T(x)) 13 1 (x) + 
ayT 

- + 
0 

But (3.30) is of the form 

I I 

wl (x) - g(x,W 1 (X) ,W 1 (X-T(X))) 

- a.l(x) 

= 0 , 

= 0. 

- K 
0 

(3.30) 

and Corollary 2 of Theorem 2 can be applied. U(x) = 0 

satisfies (3.2) and is an upper solution of (3.30), since 

I I 

U (x) - g[U] = S1 (x) - a. 1 (x) ~ 0. 

Therefore by Corollary 2 of Theorem 2 W1 (x) ~ 0 and 

The rules (3.17), (3.18), and (3.28) for constructing 
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{Z (x)} and {V (x)} are equivalent to the following: n n 

(3.31) 

Since w1 (x) <. 0, for n = 1 (3.31) gives 

I I 

[-21Mol 
()f 

[-21 K0 1 w2 (x) = - Mo + ay - M0 J w1 (x) + - Ko 

+ 
()f 
ay-r - Kol W1 (x-T(x)) - ~l(x) > 0, 

it follows from Lemma 1 that W2 (x) "' 0 and z 2 (x) ~ v 2 (x). 

Since ~ 1 (x) r 0 and S1 (x) ~ 0, it also follows from 

Lemma 1 that cr 1 (x) <. 0 and w1 (x) r 0, which implies 

z 2 (x) > z1 (x) and v2 (x) ~ V1 (x). 

By applying (3. 31) to (3. 28) one gets 

which is equivalent to 

(3.32) 

Similarly, 



18 

(3.33) 

For n = 1 these equations give 

Therefore cr 2 (x) ~ 0 and w2 (x) ~ 0, and so z3 (x) ~ z 2 (x) 

and v3 (x) ~ v2 (x). 

Continuing, by induction one obtains the desired 

inequalities using (3.32), (3.33), and 

, , I a f 
wn+ 1 (x) = [-2 M0 1 - M0 + a-y- M0 ] Wn(x) + [-2IK 0 1 - K0 

+ !!'.__- K] W (x-T(x)) - 1jJ (x). 
dYT 0 n n 

Theorem 4. Let 

P =max (sup 1[-IM0 1 
o1 

sup I [-IK 0 1 - K0 + !!'.__- K0 ll), 
D1 ayT 

(3.34) 

and let {Z (x)} and {V (x)} be defined by (3.17), (3.18), 
n n 

and (3.28). lf P < 2, then lim Zn(x) and lim Vn(x) exist, 
n~oo n~oo 

lim Z (x) is a lower solution to (3.1)-(3.2), and lim V (x) 
n n 

n~oo n~oo 

is an upper solution to (3.1)-(3.2). 

Proof. Let 

M =max (sup la 1 (x)l, sup IB 1 (x)l). 
X£1 X£1 

From (3.8) with n = 1 it follows that lo 1 (x)l ~ M(~) and 
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1 
< M(8), and by using (3.32) and (3.33) one gets 

< M(4P)(i) and lf3 2 (x)l <.M(4P)(i). 

By induction the following hold: 

Ia (x)l c. M(4P)n-1(i)n-l, 
n = 

ISn(x)l ~ M(4P)n-l(i)n-1, 

I o ex) I <. M(4P)n-l(i)n, 
n 

I w Cx) I n ~ M(4P)n-l(i)n. 

Therefore for P < 2 the series 

Z 1 (x) + [Z 2 (x) - z 1 (x)] + ... , 

' ' I I I I 

z1 (x) + [Z2 (x) - zl (x)] + ... , 

V 1 (X) + [V 2 (x) - v 1 (x)] + . . . ' 
I I I I I I 

v1 (x) + [V2 (x) - v1 (X)) + ... , 

-'' converge absolutely and uniformly to y(x), y (x), z(x), 

-' ' and z (x), respectively, as in Theorem 1. Again, Uniform 

....... ' ' ' ' 
convergence guarantees that y (x) and z (x) are the second 

derivatives of y(x) and z(x). Therefore lim Z (x) and lim 
n 

V (x) exist. 
n 

n-+oo 

From Theorem 3 Z (x) - V (x) <. 0 for all n. 
n n = 

from (3.29) An(x) ? 0 for all n and lim An(x) ~ 0. 
n+oo 

I I 

zn+1 (x) f[Z ] + A (x) n n 

n+oo 

Hence 

Since 
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and 

I I 

V 1 Cx) = f[V] -A (x), 
n+ n n 

by taking the limit as n~oo one obtains 

- ' ' y (x) f[y] + lim A (x) n 
n~oo 

and 

- I I 

z (x) = f [ z] - lim A ( x) . n 
n~oo 

But since lim A (x) 7' 0 this is equivalent to n 
n~oo 

-I I 

y (x) - f [ y] 7 0 (3.35) 

and 

-I I 

z (x) - f [ z] " 0 ' (3.36) 

which are the definitions of lower and upper solutions. 

Theorem 5. If the hypotheses of Theorem 4 are satis-

fied, and if, in addition, -af ... o h - , t en ay = 
T 

where y(x) is the solution of (3.1)-(3.2). 

Proof. A result obtained by Grimm and Schmitt [6] 

will be used in the proof. By Theorem 4 y(x) and z(x) are 

lower and upper solutions, respectively, of (3.1)-(3.2), so 

Lemma 5 of Grimm and Schmitt gives 

y(x) ~ y(x) 4 z(x). 



Since Z (x) ~ y(x) monotonically from below and n 

V (x) ~ z(x) monotonically from above, the desired result 
n 

follows. 

21 
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IV. The Third Order Boundary Value Problem 

A. Existence and Uniqueness. Consider the third 

order BVP: 

I I I 

y (x) = f(x,y(x),y(x-T(x))) = f(x,y,y) = f[y] ,(4.1) 
T 

where T(x) ~ 0, T(X) £ C on I with boundary conditions 

y(x) cj>(x) for x £ E = {x I x < 0}, 
( 4. 2) 

I I I 

<j>(O) 0, <1> (0) = 0, y(O) = 0, y (0) = y (1) = 0, 

3 where cj>(x) £ C is a given initial function on E. 

Theorem 6. Let f be continuous and have bounded deriv-

atives, I ~yf 1 0 ~ N and I ~~ I ~ N, on some compact region 
T 

o1 containing 

where 

o2 = {(x,y,z) 

B = sup I f [ Y 1 I 
o1 

I 0 4: X< 1, I Y I lzl ~ ~ 2 }, 

Then if N < 6 in 0 2 , there exists a unique continuous solu-

tion of the problem (4.1)-(4.2). 

Proof. Define the function z1 (x) such that z1 (x) = <j>(x) 

on E, z1 (x) is in the region o2 , z1 (x) £ c3 on I, and 
I I z1 (0) = z1 (O) = z1 (1) = 0. Also define a. 1 (x) on I by 

( 4. 3) 
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Construct the sequence of functions {Z (x)} by the 
n 

rule: 

where 

I I I 

a 
n 

(x) :::a (x), x £I, 
n 

with boundary conditions 

and 

where 

a (x) = 0 if x £ E, 
n 

I 

a (0) = a (0) 
n n 

I 

= a ( 1) 
n 

0 

The solution to (4.5)-(4.6) is given by 

f 1_ 
a (x) =- G(x,t)a (t)dt 

n 0 n 

2 
X - t), 0 <. t <X 

G(x,t) "" 

x<t4t.l. 

( 4. 4) 

( 4. 5) 

( 4. 6) 

( 4 . 7) 

( 4. 8) 

To show that Zn(x) is in 0 2 for all n note that if 

zn (x) is in 152 then 

By differentiating (4.4) three times one gets 
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I I I 

zn+1(x) f [ z ] . 
n (4.9) 

Hence 

J 1_ 
Z 1 (x) = - G(x,t)f[Z ]dt, n+ 0 n (4.10) 

1_ 1 
and since max J G(x,t)dt = 12 (see Appendix 1), it follows 

X£1 O 

that jz 1 (x)j n+ 

As in Theorem 1 it can be shown that 

(4.11) 

Let M =max !a1 (x) I 
X£1 

Then by using (4.8) and (4.11) the 

following inequalities are obtained by induction: 

Therefore for N < 6 the series 

I I I I I I I I I 

z 1 (x) + [Z 2 (x) - z1 (x)] + 

converge absolutely and uniformly, their sums exist, are 

continuous, and satisfy (4.2) as in Theorem 1. Call the 
_ _I I I 

sums y(x) and y (x) respectively. As before, uniform 
_I I I 

convergence guarantees that y (x) is the third derivative 

of y(x). 
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To show that y(x) is a solution of (4.1)-(4.2) rewrite 

(4.7) as follows: 

J 1_ 
Z (x) =- G(x,t)(a (t) + f[Z ])dt. n 0 n n 

Now take the limit as n ~ oo to get 

_I I I _ _ 

which implies that y (x) = f[y], so y(x) is a solution of 

(4.1)-(4.2). 

To prove uniqueness let z(x) be another solution of 

(4.1)-(4.2) such that the function F(x) = iy(x) - z(x)l is 

not identically zero on I. Let x = ~be the point on I 

where F(x) achieves its maximum value, call it e. (Note 

that e > 0.) Since y(x) and z(x) satisfy (4.1) it is clear 

that 

Hence 

I I I I I I 

y (x) - z (x) f[y] - f[z]. 

1_ 
y(x) - z(x) = -f G(x,t)(f[y] - f[z])dt, 

0 

and the following estimate will hold: 

1_ ()f 
iy(x)- z(x)l ~ J G(x,t)[i-" IIYCt)- z(t)l + 

- 0 oy 

l~f IIYCX-T(x))- z(x-T(x))ildt 
YT 

1_ 1 Ne 
< 2Ne max f G(x,t)dt = 2Ne(12) = ~-

xe::I 0 



So F(x) ~ on I and < 6 in particular for x = ~. one gets 

N8 e < 6 or N > 6. But this contradicts the hypothesis of 

the theorem, so y(x) is the unique solution. 

B. Inclusion Theorems. In this section results 

similar to those of Section III-B will be proved for the 

third order case, provided that the derivatives are non-

positive. Assume that 
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and 
af 
ay-~o. (4.12) 

T 

and assume that there exist z1 (x) and v 1 (x) in class c 3 

which lie in 0 2 and which satisfy the boundary conditions 

(4.2). Define a 1 (x) and 13 1 (x) such that 

I I I 

Z 1 (X) 

(4.13) 
I I I 

V 1 (x) - f[V 1 ] = 13 1 (x) -£. 0. 

(Equation (4.13) can be taken as a definition of lower and 

upper solutions, respectively, for the third order BVP.) 

Construct the sequences of functions {Z (x)} and {V (x)} n n 

by the rules 

where 

Z 1 (x) n+ 
Z (x) 

n 
o (x) , 

n 

V 1 (x) = V (x) - w (x) n+ n n 

I t I I I I 

o (x) =a (x), w (x) 
n n n 

with boundary conditions 

(4 .14) 

(4 .15) 
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o (x) = w (x) = 0 for X e: E, n n 

I I 

0 ( 0) = 0 ( 0) = 0 ( 1) = 0, (4.16) n n n 

I I 

w ( 0) w ( 0) = w ( 1) 0, n n n 

and 

I I I 

a (x) = Z (x) n n f [ z 1 • n 
(4.17) 

Theorem 7. If for x e: I (4.12) is satisfied and 

there exist functions z1 (x) and V1 (x) satisfying (4.2) and 

(4.13), and if y(x) is the solution of (4.1)-(4.2), then 

Proof. Using (4.11), (4.15). and proceeding as in 

Theorem 2 one finds that 

a (x) , 0, o (x) < 0, 
n = n -

(4.18) 

B (X) ~ 0, w (x) > 0, 
n n 

where n := 1 • 2, 3 , .... 

Hence, for N < 6 the sequences {\ex (x) \}, { \ B (x) \}, 
n n 

{ \ o (x) \}, and { \ w (x) \} converge to zero and therefore 
n n 

{Z (x)} and {V (x)} converge to the solution of (4.1)-(4.2). 
n n 

It is ~.·leur from (4.18) and (4.14) that 

(4.19) 
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and so the proof follows as in Theorem 2. 

Corollary 1. If the hypotheses of Theorem 7 are 

satisfied and if the sequence {Z (x)} and {V (x)} are n n 

determined by (4.14), (4.15), and (4.17) then 

(4.20) 

Proof. Same as Corollary 1, Theorem 2. 

Corollary 2. If V 1 (x) (Z 1 (x)) is an upper (lower) 

solution to (4.1)-(4.2) then the sequence {V (x)} ({Z (x)}) n n 

defined as in Theorem 7 converges monotonically from above 

(below) to y (x). In particular, if the function identically 

equal to zero on I is an upper (lower) solution to (4.1)-

( 4 . 2) , then y ( x) $ 0 (~ 0) on I . 

Proof. The proof follows from Theorem 6 and the proof 

of Theorem 7. 
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V. A Generalization 

The results in Theorem 1 and Theorem 6 can be 

obtained for a more general situation, viz., when T is a 

function of both x and y. However, the inclusion theorems 

will no longer necessarily hold when this is the case. 

The second order BVP is now 

I I 

y (x) = f(x,y(x),y(x-<(x,y))) = f[y], ( 5. 1) 

T(x,y) ~ 0 and continuous, 

with boundary conditions 

y(x) = ~(x) for x £ E = {x I x < 0}, 
(5.2) 

¢(0) = 0, y(O) = y(l) = 0, 

2 where ¢(x) £ C is a given initial function on E. 

Theorem 8. Let f be continuous and have bounded deriv-

atives, I ~~ I < N and I ~yf I 0 ~ N, on some compact region 

n1 containing 

where 

o = {(x,y,z) 

B = sup I f [ Y l I · 
Dl 

T 

0 ~X < 1, I z I 

Also let I ~; I ~ ~ where m is any positive integer. 

Then if N < m!l in D, there exists a unique continuous 

solution of (5.1)-(5.2). 
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Proof. The proof is identical to the proof of 

Theorem 1 up to the derivation of (3.11). At this point 

the mean value theorem is applied as follows: 

a 1(x) n+ f[Z ) - f[Z 1 ] n n+ 

Z 1 (x-T(X,Z 1 ))] n+ n+ 

- -
a f a f ( -a- a (x) +-a- z (x-T(x,Z 1 )) 

y n Y, n n+ 

Z 1 (x-T(X,Z 1 )) - Z (X-T(x,Z 1 )) + n+ n+ n n+ 

Z (X-T(x,Z ))] 
n n 

~fa (x) + ~f (o (x-r(x,Z 1 )) + 
ay n ay, n n+ 

Z 1 COC•Cx,z 1 )- 1(x,z ))) n n+ n 
-

a£ 
-"- a (x) ay n + ~~ (on(x-~(x,Zn+l)) + 

T 

= ( ~ ~ 
af 
Zly 

T 

- -
a£ 1 a, ] (-Cl-)(Z (1;))(-3-) a (x) + 
'Y, n <Y n 

a (x-T(x,Z 1 )). n n+ 

I 

( 5 . 3) 

Bounds need to be determined for Z ( 0 in order to be able 
n 

to use this equation. 

I I 

From ( 3 . 9) , Z n ( x) f[Zn_ 1 l ~ B. One finds by inte-

gration that 
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' ' + f xf[Z 1 (s)]dsl I z Cx) I = IZn(O) n o n+ 

' j xBds 4: IZn(O)I + 
= 0 

' < IZn(O)I + Bx 

' 4. IZn(O) I + B on I. 

' Assume that there exists o > 0 such that Z (0) > B + o. 
n 

Then 

' 1 Z (x) > B + o - J Bds, n o 

' Z (x) > o for all x £ I. 
n 

Hence 

Z (x) > Z (0) +ox= ox for all x £ (0,1]. 
n n 

I 

But this means Z (1) > 0, a contradiction. n So Z (x) ~ 2B 
n 

for all n. 

Now assume that there exists o > 0 such that 

' Z (0) < -B ·- l5. 
n 

Then 

Hence 

I 1 
Z (x) < -B - o + J Bds, 

n o 

' Z (x) < -o for all x £ I. 
n 

z (x) < -ox for all x £ (0,1]. 
n 

But now : ( 1) 
n 

< 0, a contradiction. 

all n. 

' So Z (x) "> -2B for 
n 



' Therefore IZn(x)l ~ 28. 

Since I :; I ~ ~ by hypothesis, where m is any pos

itive integer, the following inequality will hold: 

32 

a. 1 (x) ~-(2m+ l)N cr (x) +Ncr (x-T(x,Z 1 )). n+ n n n+ ( 5. 4) 

Let max la. 1 (x) I = M. Then by (3.8) lcr 1 (x) I ~ M(!). 
X£1 

Using (3.8) and (5.4) one obtains the following by indue-

tion: 

(5.5) 

4 
So for N < m+l the series 

' ' ' ' ' ' zl (x) + [22 (x)- zl (x)] + ••• , 

' ' converge absolutely and uniformly to y(x) andy (x). 

The remainder of the proof is analogous to the proof of 

Theorem 1. 
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VI. A Numerical Example 

The equation 

I I 

y (x) -y(x) 
1 

- Y (x - 2)' 

with boundary conditions 

y(x) = -x, 

y(O) y(1) = 0, 

together with the functions 

f:: : : 
and 

V 1 (X) [
-X, X ~ 

X - X ' X E I 

satisfy the conditions of Theorem 2 and its corollaries. 

The iteration scheme is defined by 

l 
Z 1 (x) -J G(x,t)f[Z ]dt 

n+ 0 n 

1 
V 1 Cx) = -J G(x,t)f[V ]dt. 

n+ 0 n 

The results obtained using the IBM 360 model SO digi-

tal computer at the University of Missouri-Rolla are given 

in tables I and 11. As an example of the notation used in 

the tables, 0.45730-03 means 0.4573 x 10- 3 . 
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Table I 

X z 5 (x) v 5 (x) v 5 (x) - z 5 (x) 

0.000 0.00000 00 0.00000 00 0.00000 00 

0.125 0.22570-02 0.22570-02 0.14000-09 

0.250 0.27770-02 0.27770-02 0.27320-08 

0.375 0.17800-02 0.17800-02 0.91020-08 

0.500 0.00000 00 0.13120-07 0.13120-07 

0.625 0.32700-04 0.32710-04 0.17340-07 

0.750 0.32240-04 0.32250-04 0.15450..;.07 

0.875 0.12030-04 0.12040-04 0.81290-08 

1.000 0.00000 00 0.00000 00 0.00000 00 

Tab 1 e I I 

X z20(x) v20(x) v20(x) - z 20 Cx) 

0.000 0.00000 00 o.oooou 00 0.00000 00 

0.125 0.22S70-02 0.22570-02 0.43370-18 

0.250 0.27770-02 0.27770-02 O.OOOOD 00 

0.375 0.1780D-02 0.17800-02 0.00000 00 

0.500 0.00000 00 0.6585D-35 0.65850-35 

0.625 0.32700-04 0.32700-04 0.33880-20 

0.750 0.32240-04 0.32240-04 0.00000 00 

0.875 0.1203D-04 0.12030-04 O.OOOOD 00 

l . 00 0 O.OOOOD 00 O.OOOOD 00 0.00000 00 



Bibliography 

(1] Aris, R., A note on mechanism and memory in the 
kinetics of biochemical reactions, Math. Biosci. 3 
(1968). 421-429. 

35 

[2] Castleton, R.N., and Grimm, L. J., A starting method 
for differential equations of neutral type, sub
mitted. 

[3] Cooke, K. L., Functional differential equations: some 
models and perturbation problems, Differential 
Equations and Dynamical Systems, New York: Academic 
press, 1967, 167-183. 

[4] de Nevers, K., and Schmitt, K., An application of the 
shooting method to boundary value problems for 
second order delay equations, to appear J. Math. 
Anal. Appl. 

[5] Grimm, L. J., and Schmitt, K., Boundary value problems 
for delay differential ~quations, Bull. Amer. Math. 
Soc. 74 (1968), 997-1000. 

[6] Grimm, L. J., and Schmitt, K., Boundary value problems 
for differential equations with deviating arguments, 
Aequationes Math. 4 (1970), 176-190. 

[7] Jackson, L. K., and Schrader, K. W., Comparison 
theorems for nonlinear differential equations, J. 
Differential Equations 3 (1967), 248-255. 

[8] Kova~. Ju. I., On a boundary-value problem for non
linear systems of ordinary differential equations of 
higher order, Mat. Fiz. 6 (1969), 107-122 (Russian). 

[9] Kova~, Ju. I., and Sav'C'"enko, L. I., On a boundary
value problem for nonlinear systems of differential 
equations with retarded arguments, Ukr. Mat. z. 22 
(1970), 12-21 (Russian). 

[10] Norkin, S. B., Differential Equations of Second Order 
with Retarded Argument, Moscow: Nauka, 1965; 
English translation by L. J. Grimm and K. Schmitt, 
to be published by American Mathematical Society. 

[11] Schmitt, K., A nonlinear boundary value problem, J. 
Differential Equations 7 (1970), 527-537. 

[12] Werner, J., Einschliessungssatze bei nichtlinearen 
gewohnlichen Randwertaufgaben und erzwungenen 
Schwingungen, Numer. Math. 13 (1969), 24-38. 



36 

Vita 

Leon Morris Hall, Jr. was born on July 31, 1946 in 

Springfield, Missouri. In 1950 his family moved to Sedalia, 

Missouri where he received his primary and secondary educa

tion. He entered the University of Missouri-Rolla in the 

fall of 1964. He also attended the University of Missouri

Columbia in the summer and fall of 1967 as part of the 

cooperative mathematics-education program. In January 1969 

he received a Bachelor of Science Degree in Education from 

the University of Missouri-Columbia, and in June 1969 he 

received a Bachelor of Science Degree in Applied Mathema

tics from the University of Missouri-Rolla. 

He taught mathematics at Normandy Senior High School 

in St. Louis, Missouri for the 1969-1970 school year, and 

has held teaching assistantships at the University of 

Missouri-Rolla for the 1968-1969 and 1970-1971 school years. 

On December 16, 1967 he was married to Pennye Kaye 

Nichols of Sedalia. 



Appendix I 

Bounds for the Integrals of the Green's Functions 

A. Green's Function for the BVP of Section III. 

G(x,t) be defined by 

{
t (1-x), 

G(x,t) = 
x(1-t), 

O.Ctix 

x~til. 

It is easily verified by integration that 

1 f G(x,t)dt = 
0 

1 2 zCx - X ) • 

Differentiating the above function, one finds that its 

maximum for x in I occurs at x 1 
= z-· Hence 

1 1 1 1 1 
::~ Jo G(x,t)dt = 2(2 - T) = w· 

B. Green's Function for the BVP of Section IV. 

G(x,t) be defined by 

{
.!c 2x - x 2 - t) , o -' t ~ x - 2 G(x,t) = 
~(X - xt), X S t ~ 1. 

Again, one finds by integration that 

1_ 
J G(x,t)dt 

0 

and in this case the maximum occurs at x = 1. 

max 
xe:I 

J 1_ 
G(x,t)dt = 

0 

1 1 
T- 6 

1 
= TI . 

Hence 

Let 

Let 
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