

Scholars' Mine

Masters Theses

Student Theses and Dissertations

1970

A digital computer program for studying elasto-plastic structural behavior due to cyclic loading

Rameshchandra Chandulal Hazariwala

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Mechanical Engineering Commons Department:

Recommended Citation

Hazariwala, Rameshchandra Chandulal, "A digital computer program for studying elasto-plastic structural behavior due to cyclic loading" (1970). *Masters Theses*. 7189. https://scholarsmine.mst.edu/masters_theses/7189

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A DIGITAL COMPUTER PROGRAM FOR STUDYING

ELASTOPLASTIC STRUCTURAL BEHAVIOR DUE TO CYCLIC LOADING

by

RAMESHCHANDRA CHANDULAL HAZARIWALA, 1942 -

А

Thesis

submitted to the faculty of

THE UNIVERSITY OF MISSOURI-ROLLA

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Rolla, Missouri

Jerry J. Liknhoff Robert L. Davis (advisor) Zandel Dean Keith

ABSTRACT

A computer program has been developed to study the behavior of plane stress structures under cyclic loading. Such phenomena as thermal ratcheting, alternate plasticity, shake-down and the Bauschinger effect may be considered. The incremental theory of plasticity has been used. The program deals with realistic conditions such as nonlinear strain hardening, nonlinear temperature distribution and occurrence of both compressive and tensile plastic flow. The concept of an average material property has been used.

Thermal ratcheting of a beam subjected to a constant bending moment and a temperature cycle, has been studied in detail. The analysis shows analytically that the rate of plastic strain growth reduces with an increase in the number of loading cycles. Applications of the computer program have been discussed.

Further, the thermal ratcheting of a two bar model has been discussed considering the simplifying assumptions of linear strain hardening and the absence of compressive plastic flow. ii

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. Terry F. Lehnhoff for his continuous advice and encouragement throughout this work.

Thanks are also due to Dr. Robert L. Davis and Dr. Harold D. Keith for reviewing this thesis and for making many helpful suggestions.

The author finally wishes to express his thanks to Mrs. Rosemary Smith for typing this thesis.

TABLE OF CONTENTS

ABSTRACT	r	ii
ACKNOWLI	EDGEMENTS	iii
LIST OF	FIGURES	vii
LIST OF	SYMBOLS	x
LIST OF	TABLES	xiv
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	5
III.	UNIAXIAL AND MULTIAXIAL STRESS-STRAIN	
	CURVE FOR STRAIN HARDENING MATERIALS	9
	A. Stress-Strain Curve for Strain	
	Hardening Materials	9
	B. Behavior of Materials Under	
	Uniaxial Stress	12
	C. Behavior of Materials Under	
	Multiaxial Stress	13
IV.	THE CONCEPT OF AN AVERAGE STRESS-STRAIN	
	CURVE	14
V.	GENERAL RELATIONS FOR PLANE ELASTOPLASTIC	
	PROBLEMS	15
	A. The Equilibrium, Compatibility and	
	Stress-Strain Relations for	
	the Plane Stress Problems	15

	B. Relationship Between Equivalent	
	Strain Increment $\Delta \varepsilon_{ep}$,	
	Equivalent Stress σ_{e} and	
	Equivalent Modified Total	
	Strain ϵ'_{et}	18
VI.	GENERAL EQUATIONS FOR SYMMETRICAL BEAMS	20
VII.	THEORIES OF PLASTICITY	30
	A. Total Deformation Theory of	
	Plasticity	30
	B. The Incremental Theory of Plasticity	31
VIII.	DETERMINATION OF THE MAGNITUDE OF THE	
	PLASTIC STRAIN INCREMENT $\Delta \epsilon$ ep	33
IX.	ONE DIMENSIONAL TRANSIENT HEAT CONDUCTION	36
Х.	EXPLANATION OF PROCEDURE AND FLOW LIST	37
XI.	DETERMINATION OF THE LIMIT STRESS AND LIMIT	
	STRAIN FOR THE NEXT INCREMENT OF LOADING	42
XII.	DISCUSSION AND CONCLUSIONS	55
	A. The Influence of the Bauschinger	
	Effect on the Cyclic Life of	
	the Material	55
	B. The Phenomena of Thermal Ratcheting	
	and Alternate Plasticity	56
XIII.	APPENDICES	60
	A. Thermal Ratcheting of a Two Bar Model	
	Under Steady External Load	61

	B. Statement of an Example Problem	
	and the Program	74
XIV.	FIGURES	92
XV.	BIBLIOGRAPHY	121
XVI.	VITA	123

LIST OF FIGURES

Figure		Page
1.	Conventional stress-strain curve	93
2.	Stress-strain curve described by	
	three parameters	93
3.	Behavior of materials under uniaxial stress	94
4.	Variation of mechanical properties with	
	changes in temperature	95
5.	Relation between ε'_{et} , σ_{e} and $\Delta \varepsilon_{ep}$	96
6.	Beam with rectangular section	96
7.	et versus ε curve	97
8.	Flow diagram for a rapidly convergent	
	successive approximation scheme	98
9.	Determination of magnitude of a plastic	
	strain increment $\Delta \varepsilon_{ep}$	99
10.	A model for one dimensional transient	
	temperature distribution	100
11.	A model of the rectangular section with	
	21 stations	100
12.	Effect of istropic strain hardening	101
13.	Limit stress for the next loading cycle	102
14.	The simplified stress-strain curve for	
	cyclic loading	103
15.	The size of the load increment and possible	
	limit stresses	104
16.	Importance of direction of plastic flow	105

Ρ	а	g	е
---	---	---	---

17.	Determination of a limit stress for the	
	next load increment	106
18.	Preliminary flow diagram to determine a	
	limit stress for the next increment	
	of load	107
19.	Structural behavior at different stations	
	of the section due to cyclic thermal	
	load	110
	(a) Structural behavior at	
	station (11)	111
	(b) Structural behavior at	
	station (10)	112
	(c) Structural behavior at	
	station (20)	113
	(d) Structural behavior at	
	station (21)	114
20.	Stress distribution in a rectangular	
	section due to cyclic thermal loading	115
21.	Stresses in an I section due to cyclic	
	thermal load	117
22.	Error in the computation procedure	118
23.	Two bar model	119
24.	State of stress and strain in bars A and B	
	at the end of the first cycle	119

25.	Relation between stresses $\sigma_{A_{\frac{1}{2}}}$ and $\sigma_{B_{\frac{1}{2}}}$	120
26.	Growth of plastic strain in a two bar	
	model	120

Page

LIST OF SYMBOLS

σ	Stress, psi.
3	Strain, inch/inch.
ε _T	Total mechanical strain in uniaxial
	case, inch/inch.
^ε e	Elastic component of total mechanical
	strain $\epsilon_{\rm T}$, inch/inch.
ε _p	Plastic component of total mechanical
L	strain ϵ_{T} , inch/inch.
E	Modulus of elasticity, psi.
n	Shape parameter for the strain harden-
	ing characteristics of a stress-
	strain curve.
σ.7, σ.85, etc.	Stresses determined from the intersection
	of the stress-strain curve by the
	lines of slopes 0.7E and 0.85E,
	respectively, drawn from the origin,
	psi.
σ _e	Equivalent stress, psi.
^ɛ et	Equivalent total mechanical strain,
	inch/inch.
aΔg	Increment of plastic strain in uniaxial
-	case, inch/inch.
ε _p	Summation of increments of plastic
-	strain in uniaxial case, inch/inch.

Stress in 'x' direction on an 'x' $\sigma_{xx}, \sigma_{77}, \text{etc.}$ face, etc., psi. Strain in 'x' direction on an 'x' ε_{xx} , ε_{zz} , etc. face, etc., inch/inch. Poisson's ratio. μ Coefficient of thermal expansion, α in./in.°F. Temperature above the reference Т temperature, °F. $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$, etc. Increment of plastic strain in 'x' cirection on an 'x' face, etc., inch/inch. ε_{xx}^{p} , ε_{zz}^{p} , etc. Summation of plastic strain increments in 'x' direction on an 'x' face, etc., inch/inch. G Modulus of rigidity, psi. $\Delta \epsilon$ ep Equivalent plastic strain increment, inch/inch. ε'_{xx} , ε'_{zz} , etc. Modified total strain in an 'x' direction on an 'x' face, etc., inch/inch. εí Equivalent modified total strain, inch/inch. ^{Δσ}e Increment of an equivalent stress σ_, psi. h Half of the total height of the section, inch.

i.

xi

b	Half of the total width of the
	section, inch.
т _о	Reference temperature, °F.
σ _o	Yield stress at the reference temper-
	ature T _o , psi.
s ₁ , s ₂ , etc.	$\sigma_{xx}/\sigma_{o}, \sigma_{zz}/\sigma_{o}, \text{ etc.}$
Eo	Modulus of elasticity at the refer-
	ence temperature T _o , psi.
ε _o	Yield strain at the reference temper-
	ature $T_0, \sigma_0/E_0$, inch/inch.
Н	Dimensionless quantity, E/E_{o} .
τ	Dimensionless quantity, $\alpha T/\epsilon_{o}$.
η _x , η _z	Dimensionless quantities indicating
	X/b and Z/h respectively.
e _{xx} , e _{zz} , etc.	Dimensionless strain in 'x' direction
	on an 'x' face, $\epsilon_{xx}^{\prime}/\epsilon_{o}$, etc.
Δe_{xx}^{p} , Δe_{zz}^{p} , etc.	Dimensionless increment of plastic
	strain in an 'x' direction on an
	'x' face, etc.
e_{xx}^{p} , e_{zz}^{p} , etc.	Summation of Δe_{xx}^{p} , etc.
Р	Axial load, psi.
Μ	Bending moment, lb. inch.
t	Time, hr.
К	Thermal conductivity, btu/hr.ft.°F.

xii

k	Specific conductivity, ft/hr.
С	Specific heat, btu/lb.°F.
ρ	Density, lbs/ft ³ .
^o act,i	Actual stress at the end of the current
	load increment, psi.
А, В	Areas of the cross sections of the
	bars A and B, in ²
σm	Mean stress, psi.
$\sigma_{B_{2}^{1}}, \sigma_{A_{2}^{1}}, \text{ etc.}$	Stress in the bar B at the end of
	half of the temperature cycle,
	etc., psi.
°у	Yield stress, psi.
n ₁	$\sigma_{A_{2}^{1}}/\sigma_{y}$.
ⁿ 2	$\sigma_{B_{1_2}}/\sigma_y$.
ε _g	Plastic strain growth, inch/inch.
$\varepsilon_{A_{2}^{1}}^{1}$, $\varepsilon_{B_{2}^{1}}^{1}$, etc.	Strain in the bar A at the end of
	half of the temperature cycle, etc.,
	inch/inch.
Es	Tangent modulus of elasticity, psi.
θ	tan ⁻¹ E.
φ	tan ⁻¹ E _s .
^ε TK	Total mechanical strain at the end
	of the K th cycle, inch/inch.
€gK	Total plas tic strain growth at the
	end of the k th cycle, inch/inch.

LIST OF TABLES

Table

Page

I. List of Properties of 2024-T3 Aluminum...... 91

I. INTRODUCTION

The presence of time dependent temperature gradients in structures normally produces complex thermal stress distributions. These stresses combine with the stress due to external mechanical loads. Thus, the design of structures such as those for high speed flight, turbine blades, etc., where large thermal stresses may occur, requires a knowledge of the structural behavior under the combined effects of mechanical and thermal loads. To define the allowable loads and safety factors for design, several types of problems must be studied.

Parkes ^{(1)*} listed the following types of structural behavior as a result of cyclic thermal loading.

Elastic The stresses always lie in the elastic range.

- Shake-down The stresses are inelastic in the first cycle of the loading, but thereafter acquire a prestress which ensures that they remain elastic during the following cycles.
- Alternate There are both positive and negative Plasticity plastic flow in each cycle of zero net value. A stable hysteresis loop is developed.

*Numbers in parenthes is refer to the bibliography.

Incremental There is plastic flow in each cycle Collapse or Thermal of non-zero net value, and therefore, Ratcheting growth of deformation. This growth can result in failure of the structure. Sudden This will occur if the sum of the pro-Collapse duct of the ultimate stress which has been attained and the cross-sectional area fails to balance the applied load. Ablation The member becomes hot enough that it may melt and suffer loss of material.

Further, when cyclic loading is involved, failure may occur by (1) the achievement of a specified amount of distortion, (2) the appearance of a first crack, (3) crack penetration of a specified amount, or (4) fracture of the cross-section. In some cases of cyclic loading, the condition that finally develops is one in which stress and strain alternate about a mean component. For thermal ratcheting, this mean component increases progressively and monotonically even though the magnitude of external loading does not increase in successive cycles. In such cases, the ultimate termination of the useful life of a structure may be due to excessive deformation.

In Appendix A the author has derived the equations for progressive thermal distortion (thermal ratcheting) for a simple two bar model. Even with the simplifying assumptions of linear strain hardening and the absence of plastic flow in the reverse direction, the equations are complex.

The problem is further complicated by the occurrence of nonlinear strain hardening, tensile and compressive plastic flow and nonlinear temperature distribution. In addition, thermal shock which is the result of the transient nature of many thermal problems may occur. Such properties as specific heat and thermal conductivity, which do not enter directly into consideration for thermal stresses under known conditions of temperature, become important in thermal shock applications because these properties determine the temperature, the temperature gradients, and the rate of change of the gradients. ⁽²⁾ Consideration of these factors complicates the problem even more.

The object of this work has been to develop a computer program to study the structural behavior and the pattern of thermal stresses and strains during cyclic thermal loading of two dimensional elastoplastic problems. The mechanical load which may be present may or may not be constant. The stress-strain curve has been assumed to have a nonlinear strain hardening characteristic. Nonlinear transient temperature distributions and hence the possibility of occurrence of thermal shock have been considered. It is noteworthy that in order to take into account the change in stress-strain characteristics with an increase in temperature, the concept of an average property has been used. Also, account has been taken of the fact that a certain portion of the cross-section may undergo strain hardening, while other portions may remain elastic. Hence, the stress-strain states will be different at different locations in the same cross-section. The method of successive approximations and the incremental theory of plasticity have been used.

II. REVIEW OF LITERATURE

Under repeated thermal loading, it has been noted that four types of stress-strain systems may be set up, namely, permanent elasticity, shake-down, alternate plasticity and thermal ratcheting. E.W. Parkes, in 1954, investigated the behavior of simplified aircraft wings under repeated thermal stress.⁽³⁾ He considered an I section for his analysis. He assumed a linearly elastic perfectly plastic stress-strain curve and the absence of temperature gradients in the web and flanges. These assumptions, of course, minimize the algebraic work and tend to simplify the analysis. In cases involving a strain hardening material and the presence of temperature gradients, Parkes' results may be far from reality.

Further, the same author, in 1956, ⁽⁴⁾ derived the expressions for incremental collapse of the I section taking into account the variation of yield stress. In the previous paper ⁽³⁾ the impression was given that incremental collapse was a rather rare phenomenon which could only occur when the initial stresses due to applied mechanical loads were extremely high. He subsequently suggested that incremental collapse might be of much wider concern. The wing was assumed to carry a constant bending moment due to flight loads and to be initially at a zero stress-strain state at a reference temperature taken as zero. It was

then subjected to a prescribed cycle. Parkes, however, did not consider the temperature history and the external load variation. Both assumptions, that is, elastic perfectly plastic material and the absence of temperature gradients, were considered in the discussion.

In another paper⁽¹⁾ in 1958, Parkes discussed a design philosophy for repeated thermal loading. He described conditions and zones using a curve of load versus temperature to describe the various behavior patterns of a two bar model. A conclusion of his investigation was that "Factors applied to stress or load are not satisfactory criteria of safety under repeated thermal loading, and it is possible that a statistical approach to safety, based on the expected life history of the structure, will have to be used."

In 1964, K.B. Ayers⁽⁵⁾ investigated the behavior patterns of I beams carrying pure bending moments and subjected to repeated thermal cycles. These fall into a number of patterns which are basically similar to those obtained by Parkes. Here, also, the basic assumption of a linearly elastic perfectly plastic stress-strain curve was used. The product $E\alpha$ was assumed to remain constant and the rate of change of temperature was not considered.

In 1959, D.R. Miller⁽⁶⁾ investigated the thermal stress ratchet mechanism in pressure vessels. He considered a three bar model assuming linear strain hardening

and also assuming no compressive plastic deformation during the temperature cycle. He derived the equations for thermal ratcheting through a graphical construction.

In 1959, G.H. Sprague and P.C. Huang⁽⁷⁾ considered the fact that structures are subject to nonlinear stress patterns due to the presence of temperature gradients. The significance of such nonlinear stress systems, when combined with external loading, on the inelastic behavior and buckling characteristic of structures was presented. The effect of residual stresses, resulting from inelastic behavior under nonlinear stress systems on subsequent structural behavior was also considered. They remarked,

"In general, any of the four conditions as described by Parkes and discussed previously can occur at random, dependent on the specific loadtemperature conditions. (....) While inelastic behavior appreciably minimizes the problems of thermal stress for single applications of high load level conditions, a detailed analysis of the structural behavior under subsequent loading must be made for design conditions involving a repeated load-temperature spectrum. Thus, in missile design, where relatively few applications of high level loading are encountered, a greater degree of plasticity can be considered than would be permissable in the design of an aircraft with its long life."

In 1966, S.S. Manson⁽²⁾ in his text, <u>Thermal Stress</u> <u>and Low Cycle Fatigue</u>, limited his discussion primarily to fatigue since, in his words, ".... the mechanism of progressive distortion being as yet only poorly analyzed." Though he admits that in dealing with ductile materials

it is to be expected that failure will be due to distortion and/or fatigue rather than to fracture upon the application of a single cycle (see page 307 of reference 2).

As a result of the remarks of Parkes, G.H. Sprague and P.C. Huang on the randomness of occurrence of these four important behaviors, it was decided to devise a computer program which would be capable of taking into account a stress-strain curve with nonlinear strain hardening characteristics, the occurrence of plastic flow in both directions, variation of external loads and the variation of material properties. The incremental method of plasticity was selected because it enables one to trace the history of externally applied loads and temperature variations.

III. UNIAXIAL AND MULTIAXIAL STRESS-STRAIN CURVE FOR STRAIN HARDENING MATERIALS

A. Stress-Strain Curve for Strain Hardening Materials

A conventional stress-strain curve is shown in Fig. 1. The linear part of the curve extends to point A, which is called the proportional limit. It is in this range that the linear theory of elasticity is valid. Upon further increase of the load, the strain no longer increases linearly with the stress, but the material still remains elastic, that is, upon removal of the load, the specimen returns to its original length. This condition will prevail until a point B, called the elastic limit or yield point, is reached. In most materials there is very little difference between the proportional limit A and the elastic limit B. In this work, points A and B have been assumed to coincide. Beyond the elastic limit, permanent plastic deformation takes place. As the load is increased beyond the elastic limit, the strain increases at a greater rate than the stress. However, the specimen will not deform further unless the load is increased. This condition is called work hardening or strain hardening. The stress required for further plastic flow is called flow stress. Finally, a point C is reached where the load is a maximum. Beyond this point, called the ultimate or tensile strength, a complicated triaxial state of stress

exists in ductile materials.

If at any point between the elastic limit B and the maximum load point C the load is removed, unloading will take place along a line parallel to the elastic line, OB (see Fig. 1). Only a portion of the strain is thus recovered. The total mechanical strain is therefore considered as being made up of two parts, $\varepsilon_{\rm e}$, the elastic component, and $\varepsilon_{\rm p}$, the plastic component. That is,

$$\varepsilon_{\rm T} = \varepsilon_{\rm e} + \varepsilon_{\rm p} \tag{1}$$

In terms of stress, the total mechanical strain may be approximated as,

$$\varepsilon_{\rm T} = \frac{\sigma}{\rm E} + \left(\frac{\sigma}{\rm B}\right) \, {\rm n} \tag{2}$$

where n is a shape parameter of the strain hardening portion of the stress-strain curve and B is a constant. This expression is only intended to provide a convenient method of representing the stress-strain curve for later numerical work. The determination of these two quantities is explained in the discussion that follows.

Ramburg and Osgood⁽⁸⁾ suggested a formula for describing the stress-strain curve in terms of Young's modulus E, a secant yield stress $\sigma_{.7}$ ($\sigma_{.7}$ is taken as the stress determined from the intersection of the stress-strain curve by a line of slope 0.7E drawn from the origin (see Fig. 2)), and a parameter n which describes the shape of a stress-strain curve in the yield region. In order to determine n,another stress $\sigma_{.85}$ is used. The value of $\sigma_{.85}$ is determined from the intersection of the curve by a line of slope 0.85E drawn through the origin. The suggested relation is

$$\frac{E\varepsilon_{T}}{\sigma.7} = \frac{\sigma}{\sigma.7} + \left(\frac{\sigma}{\sigma.7}\right)^{n}$$
(3)

The equation for the shape parameter n is

$$n = 1 + \frac{\log_{e} (17/7)}{\log_{e} (\sigma_{.7}/\sigma_{.85})}$$
(4)

Dividing both sides of Eq. (3) by $E/\sigma_{,7}$ gives

$$\varepsilon_{\mathrm{T}} = \frac{\sigma}{\mathrm{E}} + \left(\frac{\sigma}{\frac{n-1}{2} + \frac{1}{n}}\right)^{\mathrm{n}}$$
(5)

Equating Eqs. (2) and (5) gives

$$B = \sigma \cdot 7 \frac{n-1}{n} E^{\frac{1}{n}}$$
(6)

From Eqs. (4) and (6), it can be concluded that a knowledge of σ .7, σ .85, and E is necessary if the Ramburg-Osgood equation is to be used to define the stress-strain curve.

B. Behavior of Materials Under Uniaxial Stress

Figure 3 shows the stress-strain curve as the line OABC. If the material is continuously loaded until the stress at B is reached and is then unloaded, unloading proceeds along BDE. If the stress is reduced to D and then again increased, the path will be DBC and the material acts as a new material having a yield point B and a stress-strain curve EDBC. Also it is assumed, for this discussion, that the material has the same stress-strain curve in compression and tension. Thus GFEBC represents a new stress-strain curve after the material has once been subjected to tensile or compressive stresses which bring the stress state to point D where D can be any point on the elastic line BF (see page 111 of reference 2).

Thus, for a uniaxially loaded material that has once been subjected to a plastic flow $\varepsilon_{\rm p}$, the strain at any subsequent stress σ , whether loaded further (for example, $\sigma_{\rm c}$) or unloaded (for example, $\sigma_{\rm p}$) is

$$\varepsilon_{\rm T} = \frac{\omega_{\rm B}}{\rm E} + \varepsilon_{\rm p} + \Delta \varepsilon_{\rm pl}$$

where $\Delta \varepsilon_{\rm pl}$ is any new plastic flow. In case of unloading from B, $\Delta \varepsilon_{\rm pl}$ is obviously zero. Whether new plastic flow takes place depends on the final stress and a consideration of the new stress-strain curve CBDEFG. If the stress reaches the value $\sigma_{\rm c}$, the increment in plastic strain is

 $\Delta \varepsilon_{pl}$. If the stress reaches σ_{p} , there is no further plastic strain even though σ_{p} may be high enough to have caused plastic strain in the initial condition of the material prior to the plastic strain ε_{p} . If the stress goes to G, the strain becomes

$$\varepsilon_{\rm T} = \frac{\sigma_{\rm G}}{\rm E} + \varepsilon_{\rm p} - \Delta \varepsilon_{\rm p2}$$

C. Behavior of Materials Under Multiaxial Stress

When multiaxial stresses are present, the criterion for further plastic flow is whether the equivalent stress exceeds a specified value. If for example, plastic flow has already occurred in a body and the equivalent stress is $\boldsymbol{\sigma}_{\mathbf{B}}$, as shown in Fig. 3, the material at that point must be regarded as having the relation between "equivalent stress, σ_{e} " and "equivalent total mechanical strain, ε_{e} " given by the curve FEBC. If the stress components are changed so that the equivalent stress is reduced, no further plastic flow takes place and the material unloads along the line BDE. For such loading, elastic strains are determined by Hooke's law. If, however, the stress components are changed so that the equivalent stress is increased to $\sigma_{_{\rm C}}$, further plastic flow takes place. Since the stress-strain curve is EDBC, the increased equivalent plastic strain is $\Delta \varepsilon_{epl}$. The relation between uniaxial stress-strain curve and the multiaxial stress-strain curve has been discussed in article V.

IV. THE CONCEPT OF AN AVERAGE STRESS-STRAIN CURVE

The stress-strain characteristics of materials change with changes in temperature. These changes depend upon the sensitivity of Young's modulus E, and the stresses $\sigma_{0.7}$ and $\sigma_{.85}$, to the changes in temperature. In reality, the stress-strain curve would be different at different locations in a structure and would vary with the temperature variations during the cycle. Further, the rate of change of the mechanical properties increases with an increase in temperature (Fig. 4). It is proposed that as an adequate compromise a single stress-strain curve at each location be chosen such that it represents the average properties for the temperature range experienced by the station. Hence, if each location experiences a different maximum temperature, each location will have a different stress-strain curve. Therefore, with prior knowledge of maximum temperature, temperature range and with curves such as shown in Fig. 4, the average values of E, σ_{17} and σ_{185} can be calculated in order to define the stress-strain curve as

 $\varepsilon = \frac{\sigma}{E} + (\frac{\sigma}{B})^n$

for each station.

A. <u>The Equilibrium, Compatibility and Stress-Strain Re</u>lations for the Plane Stress Problems

$$\frac{\partial \sigma}{\partial \mathbf{x}} + \frac{\partial \sigma}{\partial z} = 0$$

$$\frac{\partial \sigma}{\partial z} \frac{zz}{\partial z} + \frac{\partial \sigma}{\partial x} \frac{zz}{\partial x} = 0$$
(7)

$$\frac{\partial^2 \varepsilon}{\partial z^2} + \frac{\partial^2 \varepsilon}{\partial x^2} - 2 \quad \frac{\partial^2 \varepsilon}{\partial x \partial z} = 0 \tag{8}$$

and

$$\varepsilon_{\mathbf{X}\mathbf{X}} = \frac{1}{E} \left\{ \left(1 + \mu \right) \sigma_{\mathbf{X}\mathbf{X}} - \mu \left(\sigma_{\mathbf{X}\mathbf{X}} + \sigma_{\mathbf{Z}\mathbf{Z}} \right) \right\} + \alpha \mathbf{T} + \varepsilon_{\mathbf{X}\mathbf{X}}^{\mathbf{p}} + \Delta \varepsilon_{\mathbf{X}\mathbf{X}}^{\mathbf{p}} \right\}$$

$$\varepsilon_{\mathbf{Z}\mathbf{Z}} = \frac{1}{E} \left\{ \left(1 + \mu \right) \sigma_{\mathbf{Z}\mathbf{Z}} - \mu \left(\sigma_{\mathbf{X}\mathbf{X}} + \sigma_{\mathbf{Z}\mathbf{Z}} \right) \right\} + \alpha \mathbf{T} + \varepsilon_{\mathbf{Z}\mathbf{Z}}^{\mathbf{p}} + \Delta \varepsilon_{\mathbf{Z}\mathbf{Z}}^{\mathbf{p}} \right\}$$

$$\varepsilon_{\mathbf{Y}\mathbf{Y}} = \frac{1}{E} \left\{ -\mu \left(\sigma_{\mathbf{X}\mathbf{X}} + \sigma_{\mathbf{Z}\mathbf{Z}} \right) \right\} + \alpha \mathbf{T} + \varepsilon_{\mathbf{Y}\mathbf{Y}}^{\mathbf{p}} + \Delta \varepsilon_{\mathbf{Y}\mathbf{Y}}^{\mathbf{p}} \right\}$$

$$\varepsilon_{\mathbf{X}\mathbf{Z}} = \frac{\sigma_{\mathbf{X}\mathbf{Z}}}{2\mathbf{G}} + \varepsilon_{\mathbf{X}\mathbf{Z}}^{\mathbf{p}} + \Delta \varepsilon_{\mathbf{X}\mathbf{Z}}^{\mathbf{p}}$$

$$(9)$$

where,

$$\sigma_{xx}$$
 is the stress in 'X' direction on an 'X' face,
 ε_{xx} is the strain in 'X' direction on an 'X' face,

 μ is the Poisson's ratio,

 α is the coefficient of thermal expansion,

T is the temperature above the reference temperature, $\Delta \varepsilon_{xx}^{p}$ is the unknown plastic strain increment occurring during the current increment of loading,

$$\varepsilon_{xx}^{p} = \sum_{k=1}^{i-1} \Delta \varepsilon_{xx,k}^{p}$$
 is the plastic strain accumulated
during the first i - 1 increments
of loading (i is the current
increment of load).

and

G is the shear modulus.

The Prandtl - Reuss relations are

$$\Delta \varepsilon_{\mathbf{xx}}^{\mathbf{p}} = \frac{\Delta \varepsilon}{2\sigma_{\mathbf{e}}} \exp\left(2\sigma_{\mathbf{xx}} - \sigma_{\mathbf{zz}}\right)$$

$$\Delta \varepsilon_{\mathbf{zz}}^{\mathbf{p}} = \frac{\Delta \varepsilon_{\mathbf{ep}}}{2\sigma_{\mathbf{e}}} \left(2\sigma_{\mathbf{zz}} - \sigma_{\mathbf{xx}}\right)$$

$$\Delta \varepsilon_{\mathbf{xz}}^{\mathbf{p}} = \frac{3\Delta \varepsilon_{\mathbf{ep}}}{2\sigma_{\mathbf{e}}} \sigma_{\mathbf{xz}}$$
(10-a)

and assuming volume constancy, we have

$$\Delta \varepsilon_{yy}^{p} = -\Delta \varepsilon_{xx}^{p} - \Delta \varepsilon_{zz}^{p}$$
(10-b)

The corresponding plastic strain-total strain relations are

$$\Delta \varepsilon_{xx}^{p} = \frac{\Delta \varepsilon_{ep}}{3\varepsilon_{et}^{\prime}} (2\varepsilon_{xx}^{\prime} - \varepsilon_{yy}^{\prime} - \varepsilon_{zz}^{\prime})$$

$$\Delta \varepsilon_{zz}^{p} = \frac{\Delta \varepsilon_{ep}}{3\varepsilon_{et}^{\prime}} (2\varepsilon_{zz}^{\prime} - \varepsilon_{yy}^{\prime} - \varepsilon_{xx}^{\prime})$$

$$\Delta \varepsilon_{xz}^{p} = \frac{\Delta \varepsilon_{ep}}{\varepsilon_{et}^{\prime}} \varepsilon_{xz}^{\prime} \qquad (11)$$

where the primed quantities are the modified total strains

$$\varepsilon'_{xx} = \varepsilon_{xx} - \varepsilon^{p}_{xx}$$

$$\varepsilon'_{yy} = \varepsilon_{yy} - \varepsilon^{p}_{yy}$$

$$\varepsilon'_{zz} = \varepsilon_{zz} - \varepsilon^{p}_{zz} \quad \text{etc.,}$$

and

$$\Delta \varepsilon_{ep} = \frac{2}{\sqrt{3}} \left[\left(\Delta \varepsilon_{xx}^{p} \right)^{2} + \left(\Delta \varepsilon_{zz}^{p} \right)^{2} + \Delta \varepsilon_{xx}^{p} \Delta \varepsilon_{zz}^{p} + \left(\Delta \varepsilon_{xz}^{p} \right)^{\frac{1}{2}} \right]$$
(12)

$$\varepsilon_{et} = \frac{\sqrt{2}}{3} \left[(\varepsilon_{xx} - \varepsilon_{zz})^{2} + (\varepsilon_{zz} - \varepsilon_{yy})^{2} + (\varepsilon_{yy} - \varepsilon_{xx})^{2} + 6(\varepsilon_{yz})^{2} \right]^{\frac{1}{2}}$$
$$+ 6(\varepsilon_{xz})^{2} \right]^{\frac{1}{2}}$$
$$\sigma_{e} = (\sigma_{xx}^{2} + \sigma_{zz}^{2} - \sigma_{xx}\sigma_{zz} + 3\sigma_{xz}^{2})^{\frac{1}{2}}$$
(13)

where $\Delta \varepsilon_{ep}$ denotes the equivalent plastic strain increment,

 ϵ'_{et} denotes the equivalent modified total strain, and σ_{c} is the equivalent stress.

B. Relationship Between Equivalent Plastic Strain Increment $\Delta \varepsilon_{ep}$, Equivalent Stress σ_e and Equivalent Modified Total Strain ε'_{et}

The relation between ε'_{et} , $\Delta \varepsilon_{ep}$ and σ_{e} is given by

$$\varepsilon'_{et} = \frac{2}{3} (1 + \mu) \frac{\sigma'_{e}}{E} + \Delta \varepsilon_{ep}$$
(14)

Referring to the uniaxial stress-strain curve (see Fig. 5), let $\Delta \sigma_{e}$ be the increment in stress to which corresponds a plastic strain increment $\Delta \varepsilon_{ep}$. Let σ_{e} be the stress at the end of the current load increment. Then ε_{et} is the sum of the plastic strain increments plus the total elastic strain multiplied by $\frac{2}{3}(1 + \mu)$. Solving Eq. (14) for $\Delta \varepsilon_{ep}$ results in

$$\Delta \varepsilon_{ep} = \varepsilon'_{et} - \frac{2}{3} (1 + \mu) \frac{\sigma_e}{E}$$
(15)

The equivalent stress σ_{e} can now be eliminated from Eqs. (14) and (15). Let the stress preceding the current load increment be $\sigma_{e,i-1}$, that is,

$$\sigma_{e,i} = \sigma_{e,i-1} + \Delta \sigma_{e}$$

Then expanding $\sigma_{e,i}$ in a Taylor series about $\sigma_{e,i-1}$ gives

$$\sigma_{e,i} = \sigma_{e,i-1} + \left(\frac{d\sigma_{e}}{d\varepsilon_{ep}}\right) \stackrel{\Delta\varepsilon}{=} ep \qquad (16)$$

The higher order terms in $\Delta \epsilon_{ep}$ have been neglected. Substituting for $\sigma_{e,i}$ into Eq. (15) and solving for $\Delta \epsilon_{ep}$ gives

$$\Delta \varepsilon_{ep} = \frac{\varepsilon_{et}^{*} - \frac{2}{3} \left[(1 + \mu) / E \right] \sigma_{e,i-1}}{1 + \frac{2}{3} \left[(1 + \mu) / E \right] \left(\frac{d\sigma_{e}}{d\varepsilon_{ep}} \right)_{i-1}}$$
(17)

This equation is useful in determining the magnitude of the increment of plastic strain. For linear strain hardening, Eq. (17) is exact (see page 127 of ref. 10). Consider a beam of depth '2h' and width '2b' as shown in Fig. 6.

The stress-strain relations are given by equation (9). In order to give Eq. (9) a non-dimensional form (10) let

$$S_1 = \frac{\sigma_{xx}}{\sigma_0}$$
, $S_2 = \frac{\sigma_{zz}}{\sigma_0}$, $S_3 = \frac{\sigma_{xz}}{\sigma_0}$ (18)

$$S = S_1 + S_2$$
 (19)

$$H = \frac{E}{E_{o}}, \quad \tau = \frac{\alpha T}{\varepsilon_{o}}, \quad \eta_{z} = \frac{Z}{h}, \quad \eta_{x} = \frac{X}{b} \quad (20)$$

$$e_{xx} = \frac{\varepsilon_{xx}}{\varepsilon_{o}}, \quad e_{xx}^{p} = \frac{\varepsilon_{xx}^{p}}{\varepsilon_{o}}, \quad \Delta e_{xx}^{p} = \frac{\Delta e_{xx}^{p}}{\varepsilon_{o}},$$
$$e_{zz} = \frac{\varepsilon_{zz}}{\varepsilon_{o}}, \quad e_{zz}^{p} = \frac{\varepsilon_{zz}^{p}}{\varepsilon_{o}}, \quad \Delta e_{zz}^{p} = \frac{\Delta \varepsilon_{zz}^{p}}{\varepsilon_{o}},$$

$$e_{xz} = \frac{\varepsilon_{xz}}{\varepsilon_0}$$
, $e_{xz}^p = \frac{\varepsilon_{xz}^P}{\varepsilon_0}$, $\Delta e_{xz}^p = \frac{\Delta \varepsilon_{xz}^D}{\varepsilon_0}$ (21)

where σ_0 is the yield stress at a reference temperature, T_0 , $\varepsilon_0 = \sigma_0/E_0$ is the yield strain at the reference temperature, and E_0 is the modulus of elasticity at the reference temperature.

Equation (9) can be written as,

$$e_{xx} = (1 + \mu) \frac{S_1}{H} - \mu \frac{S}{H} + \tau + e_{xx}^p + \Delta e_{xx}^p$$
 (22)

$$e_{yy} = -\mu \frac{S}{H} + \tau + e_{yy}^{P} + \Delta e_{yy}^{P}$$
(23)

anđ

$$e_{zz} = (1 + \mu) \frac{S_2}{H} - \mu \frac{S}{H} + \tau + e_{zz}^p + \Delta e_{zz}^p$$
 (24)

Also,

$$\varepsilon_{\mathbf{x}\mathbf{z}} = \frac{\sigma_{\mathbf{x}\mathbf{z}}}{2\mathsf{G}} + \varepsilon_{\mathbf{x}\mathbf{z}}^{\mathsf{p}} + \Delta\varepsilon_{\mathbf{x}\mathbf{z}}^{\mathsf{p}}$$
(25)

where

$$G = \frac{E}{2(1 + \mu)}$$
(26)

Substituting Eq. (26) into Eq. (25) and then writing the result in non-dimensional form yields

$$e_{xz} = (1 + \mu) \frac{S_3}{H} + e_{xz}^p + \Delta e_{xz}^p$$
 (27)

The compatibility equation for plane stress is

$$\frac{\partial^2 \varepsilon_{xx}}{\partial z^2} + \frac{\partial^2 \varepsilon_{zz}}{\partial x^2} = 2 \frac{\partial^2 \varepsilon_{xz}}{\partial x \partial z}$$

In non-dimensional form, the compatibility equation can be written as

$$\frac{\partial^2 e_{xx}}{\partial \eta_z} + \frac{\partial^2 e_{zz}}{\partial \eta_x} = 2 \frac{\partial^2 e_{xz}}{\partial \eta_x \partial \eta_z}$$
(28)

Now substituting Eqs. (22), (23), and (27) into Eq. (28) yields

$$\frac{\partial^{2}}{\partial \eta_{z}^{2}} (1 + \mu) (\frac{S_{1}}{H}) - \mu \quad \frac{\partial^{2}}{\partial \eta_{z}^{2}} (\frac{S}{H}) + \frac{\partial^{2}\tau}{\partial \eta_{z}^{2}} + \frac{\partial^{2}e_{xx}^{p}}{\partial \eta_{z}^{2}} + \frac{\partial^{2}e_{xx}^{p}}{\partial \eta_{z}^{2}} + \frac{\partial^{2}}{\partial \eta_{z}^{2}} (1 + \mu) \frac{S_{2}}{H} - \mu \frac{S}{H} + \tau + e_{zz}^{p} + \Delta e_{zz}^{p}]$$

$$= 2 \left(\frac{\partial^{2}}{\partial \eta_{x}^{\partial} \eta_{x}} (1 + \mu) (\frac{S_{3}}{H}) + \frac{\partial^{2}e_{xz}^{p}}{\partial \eta_{x}^{\partial} \eta_{z}} + \frac{\partial^{2}\Delta e_{xz}^{p}}{\partial \eta_{x}^{\partial} \eta_{z}} \right)$$
(29)

The equilibrium equations are

$$\frac{\partial \sigma_{\mathbf{X}\mathbf{Z}}}{\partial \mathbf{z}} = -\frac{\partial \sigma_{\mathbf{X}\mathbf{X}}}{\partial \mathbf{x}}$$
(30)

$$\frac{\partial \sigma}{\partial \mathbf{x}} = - \frac{\partial \sigma}{\partial z}$$
(31)

In non-dimensional form, Eqs. (30) and (31) can be rewritten as

$$\frac{\partial}{\partial n_{z}} \left(\frac{S_{3}}{H} \right) = - \frac{\partial}{\partial n_{x}} \left(\frac{S_{1}}{H} \right)$$
(32)

$$\frac{\partial}{\partial n_{x}} \left(\frac{S_{3}}{H} \right) = - \frac{\partial}{\partial n_{z}} \left(\frac{S_{2}}{H} \right)$$
(33)

respectively. Differentiating Eq. (32) with respect to $n_{\rm x}$ and Eq. (33) with respect to $n_{\rm z},$ and then adding, results in

$$2 \frac{\partial^2}{\partial \eta_x \partial \eta_z} \left(\frac{s_3}{H}\right) = - \frac{\partial^2}{\partial^2 \eta_x} \left(\frac{s_1}{H}\right) - \frac{\partial^2}{\partial^2 \eta_z} \left(\frac{s_2}{H}\right)$$
(34)

Substitution of Eq. (34) into Eq. (29) gives

$$(1 + \mu) \left[\nabla^{2} \frac{(s_{1} + s_{2})}{H}\right] - \mu \nabla^{2} \left(\frac{s}{H}\right) + \nabla^{2}(\tau)$$

$$= -\frac{\partial^{2}}{\partial \eta_{z}^{2}} \left(e_{xx}^{p} + \Delta e_{xx}^{p}\right) - \frac{\partial^{2}}{\partial \eta_{x}^{2}} \left(e_{zz}^{p} + \Delta e_{zz}^{p}\right)$$

$$+ 2\frac{\partial^{2} \left(e_{xz}^{p} + \Delta e_{xz}^{p}\right)}{\partial \eta_{x}^{\partial \eta_{z}}}$$
(35)

.

where
$$\nabla^2 = \left(\frac{\partial^2}{\partial \eta_x^2} + \frac{\partial^2}{\partial \eta_z^2} \right)$$

Simplifying Eq. (35) yields

$$\nabla^2 \quad \frac{(s_1 + s_2)}{H} \quad - \quad \nabla^2 \tau = - \frac{\partial^2}{\partial \eta_z^2} (e_{xx}^p + e_{xx}^p) \quad - \quad \frac{\partial^2}{\partial \eta_x^2}$$

$$(e_{zz}^{p} + \Delta e_{zz}^{p}) + \frac{2 \partial^{2}}{\partial \eta_{x} \partial \eta_{z}} (e_{xz}^{p} + \Delta e_{xz}^{p})$$
(36)

Eq. (36) is the general equation governing plane elastoplastic problems.

Assume now that the quantities 2b and 2h are small compared to the length L and that the temperature varies in the 'Z' direction only, that is, T = T(Z). Because of the thinness of the beam, the plane stress assumption that $\sigma_{yy} = \sigma_{yz} = \sigma_{xy} = 0$ is made (see page 279 of ref. 12). The resulting two dimensional problem can be reduced to a one dimensional problem for the example discussed in Appendix B by making the assumption that

$$\sigma_{zz} = \sigma_{xz} = 0$$

and

$$\sigma_{XX} = \sigma_{XX}(Z) \tag{37}$$

Now Eq. (36) can be written as,

$$\nabla^{2} \left(\frac{S_{1}}{H}\right) + \nabla^{2} \tau = \frac{\partial^{2}}{\partial \eta_{z}^{2}} \left(e_{xx}^{p} + \Delta e_{xx}^{p}\right)$$
(38)

Note that from the above assumptions, stress varies only in the 'Z' direction and hence Eq. (38) becomes

$$\frac{\partial^2}{\partial \eta_z^2} \left(\frac{S_1}{H} + \tau + e_{xx}^p + \Delta e_{xx}^p \right) = 0$$
(39)

Integrating Eq. (39) twice gives

$$\frac{S_{1}}{H} + \tau + e_{xx}^{p} + \Delta e_{xx}^{p} = C_{1}\eta_{z} + C_{2}$$
(40)

or

$$e_{xx} = C_1 \eta_z + C_2$$
 (41)

From Eqs. (40) and (41)

$$S_1 = H (e_{xx} - \tau - e_{xx}^p - \Delta e_{xx}^p)$$
 (42)

is obtained. The constants C_1 and C_2 can be evaluated from the boundary conditions

$$\int_{-h_{1}}^{+h_{1}} \sigma_{xx} dA = p$$
(43)

$$\int_{-h_{1}}^{+h_{1}} \sigma_{xx} Z dA = M$$
(44)

In nondimensional form, Eqs. (43) and (44) can be written as

$$\int_{-1}^{1} S_1 d\eta_z = \frac{P}{h\sigma_o} = P^*$$
(45)

and

$$\int_{-1}^{1} S_{1} \eta_{z} d\eta_{z} = \frac{M}{h^{2} \sigma_{0} 2b} = M^{*}$$
(46)

respectively.

Substituting for S_1 into Eqs. (45) and (46) yields

and

$$\int_{-1}^{1} H (C_1 n_z + C_2) n_z dn_z - \int_{-1}^{1} (\tau + e_{xx}^p + \Delta e_{xx}^p) n_z dn_z = M^*$$
(48)

(10) Solving Eqs. (47) and (48), for constants C_1 and C_2 yields

$$C_1 = B_1(M^* + D) - B_2(P^* + F)$$
 (49)

and

$$C_2 = B_3(P^* + F) - B_2(M^* + D)$$
 (50)

where

$$B_{1} = \frac{\int_{-1}^{1} Hdn_{z}}{\int_{-1}^{1} Hdn_{z} \int_{-1}^{1} Hn_{z} dn_{z} - \left(\int_{-1}^{1} Hn_{z} dn_{z}\right)^{2}}$$

$$B_{2} = \frac{\int_{-1}^{1} H\eta_{z} d\eta_{z}}{\int_{-1}^{1} H\eta_{z} \int_{-1}^{1} H\eta_{z}^{2} d\eta_{z} - \left(\int_{-1}^{1} H\eta_{z} d\eta_{z}\right)^{2}}$$

and

$$B_{3} = \frac{\int_{-1}^{1} Hn_{z}^{2} dn_{z}}{\int_{-1}^{1} Hn_{z}^{2} dn_{z} \int_{-1}^{1} Hdn_{z} - \left(\int_{-1}^{1} Hn_{z} dn_{z}\right)^{2}}$$

Equation (41) can now be written as

$$e_{xx} = (B_1 \eta_z - B_2) (M^* + D) + (B_3 - B_2 \eta_z) (P^* + F)$$
(51)

where

$$D = \int_{-1}^{1} H(\tau + e_{xx}^{p} + \Delta e_{xx}^{p}) \eta_{z} d\eta_{z}$$

and

$$F = \int_{-1}^{1} H(\tau + e_{xx}^{p} + \Delta e_{xx}^{p}) d\eta_{z}$$

Equations (23) and (24) can also be written as

$$e_{yy} = -\mu (C_1 \eta_z + C_2) + (1 + \mu)_{\tau} + (\mu - 1) (e_{xx}^p + \Delta e_{xx}^p)$$
$$- (e_{zz}^p + \Delta e_{zz}^p)$$
(52)

and

$$e_{zz} = -\mu (C_1 \eta_z + C_2) + (1 + \mu) \tau + (e_{zz}^p + \Delta e_{zz}^p) + \mu (e_{xx}^p + \Delta e_{xx}^p)$$
(53)

Note that the relation $\Delta e_{yy}^p = -\Delta e_{xx}^p - \Delta e_{zz}^p$ has been used in deriving Eq. (52).

From Eq. (40)

$$\sigma_{xx} = \sigma_{0} \quad H \quad (C_{1}\eta_{z} + C_{2} - \tau - e_{xx}^{p} - \Delta e_{xx}^{p})$$
(54)

is obtained.

The strains ε_{xx} , ε_{yy} , ε_{zz} and stress σ_{xx} can now be calculated by Eqs. (51), (52), (53) and (54), respectively.

VII. THEORIES OF PLASTICITY

A. Total Deformation Theory of Plasticity

This theory establishes a relation between the stresses and the total strains so that if the stresses are known, the strains can be directly calculated. The path by which a given stress distribution is reached, presumably, does not influence the strains. This cannot be generally correct. However, it is a useful concept in certain cases. If the deformation theory is used, all the previous equations with Δ 's and primes removed are valid.⁽¹⁰⁾

Consider now the equation

$$\varepsilon_{ep} = \varepsilon_{et} - 2/3 (1 + \mu) \frac{\sigma_e}{E}$$
(55)

The relation between ε_{et} and σ_{e} is contained in the uniaxial stress-strain curve. For any selected value of ε_{ep} , the value of σ_{e} can be determined. Thus, Eq. (55) represents a direct relationship between ε_{et} and ε_{ep} which can be determined from the stress-strain curve (see Fig. 7). This curve can then be used in place of the original stress-strain curve. It can be seen that a plot of ε_{et} versus ε_{ep} will have a slope of approximately unity. A small error in ε_{et} will, therefore, produce the same order-of-magnitude error in ε_{ep} without any magnification.

B. The Incremental Theory of Plasticity

In this theory, each step consists of obtaining the increment in the plastic strain as the material passes from one stress state to the next stress state. Consider the equation

$$\varepsilon_{\mathbf{X}\mathbf{X}} = \frac{1}{\mathbf{E}} \{ \sigma_{\mathbf{X}\mathbf{X}} - \mu (\sigma_{\mathbf{X}\mathbf{X}} + \sigma_{\mathbf{Z}\mathbf{Z}}) \} + \alpha \mathbf{T} + \sum \Delta \varepsilon_{\mathbf{X}\mathbf{X}}^{\mathbf{p}} + \Delta \varepsilon_{\mathbf{X}\mathbf{X}}^{\mathbf{p}}$$
(56)

If the summation term is transposed to the left hand side of the equation, it will be seen that this equation becomes

$$\varepsilon'_{\mathbf{X}\mathbf{X}} = \frac{1}{\mathbf{E}} \{ \sigma_{\mathbf{X}\mathbf{X}} - \mu (\sigma_{\mathbf{Y}\mathbf{Y}} + \sigma_{\mathbf{Z}\mathbf{Z}}) \} + \alpha \mathbf{T} + \Delta \varepsilon^{\mathbf{p}}_{\mathbf{X}\mathbf{X}}$$
(57)

where $\varepsilon'_{xx} = \varepsilon_{xx} - \sum \Delta \varepsilon^p_{xx}$.

The expression $e_{xx} - \sum \Delta e_{xx}^p$ is the total strain component in the X direction due to the thermal and mechanical stresses. It takes into account the fact that the free length of the element has been changed by the plastic flow (see page 113 of reference 2). Denoting this term as the "modified total strain component" it is evident that an equivalent modified total strain can be computed from the components in a manner analagous to that of Eq. (13). This strain will be related to the increment in the plastic strain by Eq. (11). This observation makes it possible to perform any one computation in the same manner as in a deformation theory computation.

The solutions of problems by the incremental theory is desirable whenever unloading is possible and whenever a nonproportional loading condition exists. It consists thus, of several individual computations each representing a stage actually encountered by the body during its mechanical or thermal load history.

VIII. DETERMINATION OF THE MAGNITUDE OF THE PLASTIC STRAIN INCREMENT $\Delta \varepsilon_{PD}$

During the first increment of loading, there are two possibilities regarding the state of stress which may exist at the end of computation, (1) the stress may lie in the elastic range, and (2) the stress may exceed the elastic limit.

In the first case, the equivalent total mechanical strain will not exceed the limiting equivalent mechanical strain. This suggests that a condition during the computation should be imposed which will set $\Delta \varepsilon_{ep}$ and, hence, $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$, etc., to zero. The elastic solution may thus be obtained.

In the second case, there are two possibilities, (a) the stress may lie near the yield or limit stress (A_1') or (b) the stress may be far from the yield point (A_1'') .

These two cases have been illustrated in Fig. (9-a). Consider Eq. (17), that is,

$$\Delta \varepsilon_{ep} = \frac{\varepsilon'_{et} - 2/3[(1 + \mu)/E] \sigma_{e,i-1}}{1 + 2/3[(1 + \mu)/E] (\frac{d\sigma_{e}}{d\varepsilon_{ep}})}$$

Obviously, the stress $\sigma_{e,i-1}$ and the slope $(\frac{d\sigma_e}{d\epsilon})$ ep i-1

should be taken as the stress and slope of the stressstrain curve at the current yield point. When the loading is such that the actual stress state is at A_1 , then the plastic strain increment may be satisfactory. Eq. (17) shows that the strain hardening characteristic is linear with the slope ($\frac{d\sigma_e}{d\varepsilon_{ep}}$) . If the actual stress state is to be at $A_1^{"}$, then the plastic strain increment will be inaccurate. The alternative in such a case will be to use the expression

$$\varepsilon_{ep} = \left(\frac{\sigma_{e}}{B}\right)^{n}$$

and to calculate corresponding plastic strains for selected stress values. The least square method can then be used to find a straight line relationship between the stress σ_{e} and the plastic strain ε_{ep} . The slope of this line can be substituted into Eq. (17) in place of the term $(\frac{d\sigma e}{d\varepsilon_{ep}})$. Equation (17) in a sense limits the size of the load increment. For better results, it is necessary that smaller load increments be chosen in the area of the yield point.

Now consider any other increment of loading. At the end of the current load increment, the stress state may be at point B (see Fig. 9-b) if unloading is experienced, or it may be at C if the load is increased. Because of strain hardening, the new stress-strain curve during the current increment of loading is considered to be O'AC.

The equivalent limit stress and equivalent limit strain are $\sigma_{A,i-1}$ and $\sigma_{A,i-1}/E'$, where $E' = E/\frac{2}{3}(1 + \mu)$. The subscript 'i' indicates the current increment of load. The stress $\sigma_{A,i-1}$ is known. When the equivalent modified total strain ε'_{et} does not exceed $\sigma_{A,i-1}/E'$, unloading or loading in the elastic region occurs and the stress state reaches a point B somewhere on the line O'A. Observation of this condition, therefore, automatically ensures that unloading has been done elastically. Further, if the equivalent modified total strain ε'_{et} is greater than the current equivalent limit strain, Eq. (17) can be used to determine the magnitude of the associated plastic strain increment. Point C, which indicates the state of stress at the end of the current load increment in case of further loading, should not lie far from the current stress limit (i.e., a large difference between the stress due to the current load increment and the stress in the plastic region due to next increment of load , should not be permitted). Also, it should be noted that if the magnitude of the stress at the end of the previous load increment is less than that of the limit stress, the value of the actual stress should be considered to be equal to the limit stress, in order to compute the plastic strain increment, $\Delta \epsilon_{ep}$.

IX. ONE DIMENSIONAL TRANSIENT HEAT CONDUCTION

Most of the one dimensional problems can be treated in a manner similar to the flat plate problem (see page 276 of ref. 2). In this problem, the plate is assumed to have its faces and ends insulated so that the temperature varies in the Z direction.

Consider the model shown in Fig. 10. The conduction equation is

$$\frac{\partial^2 T}{\partial_2^2} = \frac{1}{k} \frac{\partial T}{\partial t}$$
(58)

where

$$k = \frac{K}{\rho C} = \text{specific conductivity, ft./hr.}$$

$$K = \text{thermal conductivity, btu/hr. ft. °F.}$$

$$C = \text{specific heat, btu/lb.°F.}$$

$$\rho = \text{density, lbs./ft.}^{3}.$$

Let

$$\phi = T - T_{f}$$

where T_{f} denotes the fluid temperature. The solution of Eq. (58) is ⁽¹¹⁾ $\frac{-n^{2}\pi^{2}kt}{2}$

$$\phi = \sum_{n=1,3,5}^{\alpha} \frac{4(T_0 - T_f)}{n\pi} e \frac{L^2}{L} \sin \frac{n\pi z}{L}$$
(59)

where T_{O} is the initial temperature of the plate.

X. EXPLANATION OF PROCEDURE AND FLOW LIST

The beam section shown in Fig. 10 was divided into a number of stations. An odd number was preferred in order to carry out the numerical integration (see Fig. 11). The stress-strain curve was determined for each station from the maximum temperature and the temperature range as explained previously. Numerical integration may be used or the equations for average properties may be derived by referring to curves such as shown in Fig. 3 (flow list: steps 2 and 3).

The proportional limit stress and strain were determined from the arbitrary condition that at the proportional limit the value of plastic strain ε_p is approximately 0.0001. The equation

$$\sigma = B \quad \varepsilon_{ep} = \frac{1}{n}$$

was used to determine the value of limit stress at a plastic strain ε_{ep} of 0.0001 (flow list: step 4).

Before beginning the application of mechanical and/or thermal load, the summation terms $\sum \varepsilon_{xx}^{p}$, $\sum \varepsilon_{zz}^{p}$, $\sum \varepsilon_{yy}^{p}$, etc., were set to zero. Then the loading cycle was started. To calculate the stresses and strains for any particular increment of loading, the iterative procedure was then started. The plastic strain increments $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$, etc., were set to zero for the first iteration. The total

strains ε_{xx} , ε_{yy} , ε_{zz} etc., were then calculated in order to determine the equivalent total strain. The integrals appearing in the equations for ε_{xx} , ε_{yy} , ε_{zz} (Eqs. (51), (52), (53), respectively) were evaluated by a numerical method. It should be noted that though Simpson's rule was used, any of the Newton-Cote formulae can be used (flow list steps 5 to 7-b).

The equivalent modified total strain ε'_{et} was then calculated by using Eq. (13). If $arepsilon_{ ext{et}}'$ is less than the equivalent limit strain, then the stress and strains are in the elastic range. But if the equivalent modified total strain ϵ_{et} exceeds the equivalent limit strain, then the stress and strains due to the current load increment must be in the plastic range and hence $\Delta \varepsilon_{ep}$ should be calculated as explained earlier. Step 7-g solves for the plastic strain components, $\Delta\epsilon_{xx}^p$, $\Delta\epsilon_{zz}^p$, and $\Delta\epsilon_{yy}^p$ by using the set of Eq. (11). Thus, the plastic strain increments $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$ and $\Delta \varepsilon_{vv}^{p}$ were calculated at each station. At this stage, a check for convergence was carried out as shown by step When convergence was not achieved, the values of the 7-i. plastic strain increments $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$, and $\Delta \varepsilon_{yy}^{p}$, obtained during the current iteration were substituted into the integrals appearing in the equations for total strains. The procedure described by steps 7-b to 7-g was repeated until convergence was obtained.

The stresses were then computed by using Eq. (54) (flow list: step 8).

The next step was to determine a new limit stress and and a limit strain before considering the next loading increment. Setting of the limit stress and strain has been discussed in detail in the following article.

Flow List:

- (1) Data:
 - (a) Geometry of a section.
 - (b) Values of 'n_z' following the selection of a suitable number of stations (preferrably an odd number).
 - (c) Maximum temperature and temperature range for each station.
 - (d) Thermo-physical properties such as specific heat, thermal conductivity and coefficient of thermal expansion.
 - (e) Mechanical properties such as Poisson's ratio, modulus of elasticity, stresses $\sigma_{0.85}$, $\sigma_{0.87}$ suitable for describing a stress-strain curve.
 - (f) Mechanical loads.
 - (g) Thermal loads.
 - (h) Physical property: density
- (2) Calculate average mechanical properties such as $E, \sigma_{.7}$ and $\sigma_{.85}$ which are used to compute an average stress-strain curve.

- (3) Compute the average stress-strain curve mentioned in step 2.
- (4) Calculate the limit stress and strain at each station for $\epsilon_{ep} \simeq 0.0001$ using Eq. (2).
- (5) Set summation terms for plastic strain increment to zero, that is, $\sum \Delta \varepsilon_{xx}^{p} = \sum \Delta \varepsilon_{zz}^{p} = \sum \Delta \varepsilon_{yy}^{p} = 0$.
- (6) Apply mechanical and thermal loads. Thermal loads are calculated by varying the time intervals in Eq. (59).
- (7) Start the iteration procedure:
 - (a) For the first iteration, set the plastic strain increments $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$, and $\Delta \varepsilon_{yy}^{p}$ to zero.
 - (b) Evaluate integrals appearing in Eqs. (51),(52) and (53) by Simpson's rule.
 - (c) Compute total strains ε_{xx} , ε_{zz} , and ε_{yy} using Eqs. (51), (52) and (53).
 - (d) Calculate modified total strains and the equivalent modified total strain usingEqs. (11) and (13).
 - (e) If equivalent modified total strain is less than or equal to equivalent limit strain, then the plastic strain increment is zero. If not, go to (7-f).
 - (f) Compute the equivalent plastic strain increment $\Delta \epsilon_{ep}$ using Eq. (17).

- (g) Compute the components of plastic strain $\Delta \varepsilon_{ep}$, i.e., $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$ and $\Delta \varepsilon_{yy}^{p}$ using Eq. (11).
- (h) Calculate these components at all stations.
- (i) Check for convergence at all stations.

Conditions:
$$|\frac{\Delta \varepsilon_{xx,i,j}^{p} - \Delta \varepsilon_{xx,i,j-1}^{p}|}{\Delta \varepsilon_{xx,i,j}^{p}} \leq .001,$$

etc.

- (j) If convergence is not achieved at one or more stations, substitute the values of $\Delta \varepsilon_{xx}^{p}$, $\Delta \varepsilon_{zz}^{p}$ and $\Delta \varepsilon_{yy}^{p}$ in (7-b) and repeat the procedure. If convergence is achieved at all stations, go to step 8.
- (8) Calculate the stresses using Eq. (54).
- (9) Calculate the equivalent stress σ_{e} and the summation of the plastic strain increments.
- (10) Determine the equivalent limit stress and strain for the next increment of load.*
- (11) Go to step 6.

*See section XI.

XI. DETERMINATION OF THE LIMIT STRESS AND LIMIT STRAIN FOR THE NEXT INCREMENT OF LOADING

When cyclic loading is encountered, it becomes necessary to consider the Bauschinger effect. According to this effect, plastic flow in one direction (say tension) reduces the stress at which yielding will occur in the opposite direction (compression). The stress-strain path which may be, presumably, traveled due to this effect has been shown by a broken line in Fig. 12.⁽¹³⁾

Before considering the Bauschinger effect, let us examine the effect of the usual assumption of isotropic strain hardening. Assume that during an early stage of the loading cycle, the stress-strain state has reached the point A as shown in Fig. 12. Because of the assumption under consideration, during unloading or reversed loading, the limit stress will be considered to be equal to $\boldsymbol{\sigma}_{C}$, where σ_{C} is equal to σ_{λ} . The stress-strain state, therefore, will follow the path ABCD and hence plastic flow The ϵ_{ep2} which could have occurred, will not be computed. stress-strain state which would have been at C' would be calculated as if it were at some point on the line AC. Further, assume that the stress-strain state is at D', somewhere on the path CD, due to reversed loading. Reversed loading is then discontinued and once again loading in the initial direction is resumed. In this case, the

limit stress will be considered to be $\sigma_{\rm F}$ where $\sigma_{\rm F}$ is equal in magnitude to $\sigma_{\rm D}$, . It can be seen that this assumption will lead to incorrect results. To be closer to reality, it is, therefore, necessary to reset the limit stress and strain as per the Bauschinger effect. However, in order to reduce the error introduced due to the assumption of isotropic strain hardening, the limit stress can be calculated from $\sigma = B \ \varepsilon_{\rm P3}^{-\frac{1}{\rm n}}$, where $\varepsilon_{\rm P3}$ is the total plastic strain at the end of a loading cycle (see Fig. 13).

Due to the interaction of the mechanical load and different temperature gradients at different stations in a structure, it becomes quite difficult to predict when plastic flow in the direction opposite to that of previous plastic flow takes place. Thus, setting of the limit stress and limit strain according to the Bauschinger effect becomes difficult. The following discussion assumes simple mathematical models for the Bauschinger effect and describes the method of determination of limit stress and strain accordingly.

Assume now that during cyclic loading the stressstrain state follows the path shown in Fig. 14. The stresses $\sigma_{y,t}$ and $\sigma_{y,c}$ are the initial yield stresses in tension and compression, respectively. It is assumed that during the cyclic loading plastic flow occurs and a new yield stress σ_A is obtained due to strain hardening. The

yield stress $\sigma_{v,c}$ is assumed here to have a value equal to the stress $\sigma_{y,t}$. (13) Also assume, for simplification, that the ratio of the stress σ_A to the stress $\sigma_{v,t}$ remains constant during the cyclic loading. The last assumption has been made in order to simplify the discussion that follows. If a mathematical model for the Bauschinger effect which relates the number of changes in the direction of plastic flow and the magnitude of plastic flow associated with each change were available, it could be easily employed. From Fig. (15-a) it can be seen that during a typical loading cycle, the path traveled is OYAB;. The point B_i (tensile stress) indicates the actual stressstrain state at the end of the current load increment. The point A indicates the limit stress-strain state for the current load increment. The point C indicates the limit stress-strain state for reverse plastic flow.

It can now be expected that at the end of the next load increment, there may exist three possible states of stress and strain, namely,

(1) The state may be on the elastic line AC (for example, point B'_{i+1}), if unloading occurs or in case of reverse loading which does not cause plastic flow in the opposite direction.

(2) The state may be on the strain hardening portion AH (e.g., point $B_{i+1}^{"}$), if further loading is continued and plastic flow occurs in the same direction.

(3) The state may be on the strain hardening portion CJ (e.g., point $B_{i+1}^{""}$), if the loading condition is such that plastic flow may occur in the opposite direction.

Assume now that the load increment size is small enough so that if the stress at the end of the current load increment is in one direction (tension), the stress that will be produced at the end of the next load increment will not exceed the yield limit C in the opposite direc-The purpose of this assumption will become clear tion. from the discussion that follows. This assumption can be utilized by dividing the loading cycle into a number of load increments. The size of the loading increments must be kept small from other considerations as well. For a particular case such as shown in Fig. (15-a), the third possibility will be ruled out due to the small increment assumption. The actual stress-strain state can, therefore, be somewhere on the path CAH. It is now clear that the limit stress-strain state is at A for the next load increment.

In Fig. (15-b), the point B_i corresponds to the compressive stress σ_{B_i} . From the previous discussion and in view of the assumptions made, the new limit stress-strain state can be determined to be at C ($\sigma_c = \sigma_{y,t}$ for the first loading cycle). In other words, the limit stress state should be selected such that it has the same direction as that of the actual stress state at the end of the current

load increment (for example, if the actual stress is positive, the limit stress should also be positive). Assume that the actual stress is σ_{B_i} . It is compressive and very near to zero. The stress σ_{c} will be selected as a new limit stress. Also, unloading or loading may occur during the next load increment. If loading occurs and the state of the actual stress is as shown by the point B_{i+1} , the stress indicated by point B_{i+1} should not exceed the stress of $\sigma_{\rm F}$ (the magnitude of stress $\sigma_{\rm F}$ is equal to the magnitude of stress σ_c). If care is not taken and loading occurs, then yielding will be shown to occur at $\boldsymbol{\sigma}_{_{\mathbf{F}}}\text{,}$ which is obviously incorrect because in case of loading, the limit stress should be $\sigma_{\mathbf{A}}$. Therefore, the size of the load increment should be kept small enough so that the difference in actual stress due to two consecutive load increments does not exceed the stress σ_{c} (in general, the lower of the two possible limit stresses).

Consider now Fig. (15-c). It is shown in this figure that reverse plastic flow has occurred. It can also be seen that the two possible stress limits will be $\sigma_{\rm K}$ and $\sigma_{\rm L}$. The magnitude of $\sigma_{\rm L}$ is given by

$$\sigma_{\rm L} = B \quad \varepsilon_{\rm ep} \frac{1}{n} \tag{60}$$

Further, the same figure shows five limit stressstrain states for a typical loading cycle. These states are as follows: (1) State Y (at the beginning of the cycle).

(2) State A (plastic flow in one direction has occurred).

(3) State C (unloading or loading in the reverse direction has occurred but not sufficient to cause plastic flow in the reverse direction).

(4) State K (plastic flow in the reverse direction has occurred).

(5) State L (loading or unloading along the elastic line LK).

It should, however, be noted that if plastic flow in the reverse direction does not take place, the point K will coincide with the point C and the point L will coincide with the point A.

From the above discussion, it should now be noted that knowledge of four conditions is required in order to choose the proper limit stress-strain state. These conditions are as follows:

(1) The magnitude and direction of the limit stress for the current load increment.

(2) The magnitude and direction of the actual stress at the end of the current load increment.

(3) The direction of the first plastic flow which occurs during the cycle under consideration.

(4) Occurrence of plastic flow in the reverse direction.

The direction of the first plastic flow is useful in the determination of the occurrence of plastic flow in the opposite direction. In Fig. (16-a), assume that the limit stress during the computation for a particular load increment is $\sigma_{\underset{\mbox{\scriptsize A}}{}}$. The actual stress is $\sigma_{\underset{\mbox{\scriptsize B}_{1}}{}}$. During the next and subsequent load increments the actual stress changes. As long as the actual stress state remains positive and on the elastic line O'A, the limit stress state remains at A. But when the actual stress state becomes negative, the limit stress state will have to be set at C, that is, the yield point in the opposite direction. This limit is obtained by dividing σ_{A} by the constant established during the first cycle (see Fig. 14: $K = \frac{\sigma_{1,t}}{\sigma_{V,C}}$). It should be noted that if a more appropriate mathematical model for the Bauschinger effect were available, the relation between these two limit stresses would be known. Also, if the model incorporates the effect of the number of stress strain cycles (hysteresis loops), then the constant used above may vary with the number of cycles. Now consider a case wherein the actual stress state does not go beyond point C but reaches a point C₁ on the elastic line O'C. Then it returns to a point D₁ on the positive side during the next load increment. It will be seen that as soon as the actual stress-state becomes positive, a need arises to establish the limit stress-state at A. In the absence of knowledge of the direction of plastic flow,

the only known factors are

(1) The magnitude and direction of the yield stress for the current load increment and,

(2) The magnitude and direction of the actual stress at the end of the current load increment.

Reconsider now Fig. (16-a). Assume that during the current load increment, the limit stress was σ_c . This is because the actual stress-state was at C_1 at the end of the previous load increment. It is now observed that at the end of the current load increment the actual stress-state is at σ_A . In the absence of the knowledge of the direction of prior plastic flow, the situation would be as described below:

(1) The yield stress for the current load increment is negative.

(2) The actual stress at the end of the current load increment is positive.

Consider now Fig. (16-b). Two possible situations that may arise have been described by the points C_1D_1 and C_2D_2 on either side of the stress axis. Fig. (16-c) shows the typical paths that are possible in passing through these points during the first cycle. When a loading path passes through the points D_1 and C_1 , tensile plastic flow occurs, whereas in the case of the loading path passing through the points C_2 and D_2 , compressive plastic flow is observed. In the first case, it is necessary to multiply the limit stress σ_c by the constant K, whereas in the second case, division is necessary. The decision regarding multiplication or division can be made only when the direction of plastic flow is known.

Now reconsider Fig. (15-c). When the actual stressstrain state proceeds along the elastic line KL, the possible limit stress-strain states are at L and K. The limit stresses σ_L and σK can be related by a factor (e.g., $K_f = \sigma_L / \sigma_K$). It should be noted that as long as the value of the actual stress lies along the elastic line LK, the value of K_f will remain constant. It may, however, change during subsequent cycles. The direction of plastic flow again helps to decide whether multiplication or division is necessary. Illustration of the procedure has been given below. The particular case shown in Fig. (15-c) has been considered.

S_i is the actual stress state at the end of the current load increment.

 $\sigma_{\rm K}$ is the limit stress for the current load increment since B was the actual stress at the end of the previous load increment.

 $\sigma_{\rm L}$ is another possible limit stress. This stress is obtained by the equation,

$$K_f = \frac{\sigma_L}{\sigma_K}$$

Since stress σ_{s_i} is positive, the positive limit

stress $\sigma^{}_{\rm L}$ is to be selected. The limit stress $\sigma^{}_{\rm L}$ can be obtained by either

$$\sigma_{\rm L} = B \quad \varepsilon_{\rm ep} = \frac{1}{n}$$

or

$$\sigma_{L} = \sigma_{K} K_{f}$$

During the computation, before starting a particular cycle of load, the number indicating the plastic flow for that cycle must be set to zero. In the program, plastic flow is indicated as shown below:

- (1) No plastic flow : 0
- (2) Compressive plastic flow : 1
- (3) Tensile plastic flow : 2

These help to indicate how the loading path is being traced for that particular loading cycle. However, it is necessary that the direction of the plastic flow which occurs for the first time during the previous loading history be retained in the memory of the computer. In order to avoid confusion in the discussion which follows, this plastic flow is termed the 'very first plastic flow'. The reason for retaining the direction of the very first plastic flow has been explained in Fig. 17.

Assume that at a certain station in the section, compressive stress occurs in the early stage of the loading

cycle (see Fig. (17-a)). However, this stress does not reach the yield point. Due to further load increments the stress-strain state travels along the path $OYAC_1$. The point C_1 indicates the actual stress-strain state at the end of the first loading cycle. Similarly, point C_2 indicates the actual stress-strain state at the end of the second loading cycle. The very first plastic flow, in this particular case, is tensile. It is seen that first plastic flow during the second cycle is compressive. Assume now that $\sigma^{}_{\rm L}$ is the limit stress for the current load increment. Due to the loading conditions of the current load increment, unloading or reverse loading occurs and the actual stress becomes σ_{B_i} . The stress σ_{B_i} is compressive, and hence, the new limit stress should also be compressive. The limit stress $\boldsymbol{\sigma}_{K}$, therefore, should be chosen as a new limit stress. This can be obtained by the equation,

 $\sigma_{\rm K} = \sigma_{\rm L}/\kappa_{\rm f} \tag{61}$

Suppose the direction of the very first plastic flow is not considered. Then one may depend only on the knowledge of the first plastic flow which takes place during the cycle. Considering Fig. (17-b), and following

the earlier discussion, the stress $\boldsymbol{\sigma}_{K}$ will be obtained by the equation,

$$\sigma_{\rm K} = \sigma_{\rm L} {\rm K} \tag{62}$$

which is incorrect for this case.

Further, consider Fig. (17-c). The directions of the very first plastic flow and the first plastic flow for the second cycle are identical. The limit stress $\sigma_{\rm K}$ is obtained by the equation,

$$\sigma_{\rm K} = \sigma_{\rm L}/{\rm K} \tag{63}$$

Compare now Eqs. (61) and (63). It can be seen that a decision regarding multiplication or division solely depends upon the direction of the very first plastic flow. It should be noted that in the absence of reverse plastic flow, the constant K and K_f will have the same value. Note that Fig. (17-c) represents a typical case where the very first plastic flow and the first plastic flow during a particular loading cycle have the same direction.

If no plastic flow is indicated during the particular cycle, it is necessary to consider the direction of the plastic flow in the previous cycle.

The preliminary computation procedure has been illustrated in the flow diagram shown in Fig. 18. This method of resetting the stress limit gives freedom of selection of the stress limit according to available data. Hence, it does not confine one to the limitation of the assumption that the material has the same stress-strain curve in both directions and that alteration of the stress-strain curve is the same in compression and tension. In fact, mathematical models of the Bauschinger effect could be studied.

XII. DISCUSSION AND CONCLUSIONS

A computer program has been developed (see Appendix B) which has the potential to investigate the following phenomena.

A. The Influence of the Bauschinger Effect on the Cyclic Life of the Material

Because the Bauschinger effect is more the rule than the exception in the behavior of engineering alloys, and has the tendency of changing the yield stress with each change in the direction of the plastic flow, it has a very important bearing on the cyclic stress-strain patterns. As the yield point lowers at one station in the section, more load is shared by the portions which have not yielded as well as by those which have yielded but still possess higher yield points than the yield point of the station under consideration. This may cause gradual yielding at more and more stations as the number of cycles It is, therefore, possible that a situation increases. may develop when the entire section may yield causing a sudden collapse by failing to balance the applied load. It should, however, be noted that the life of the structure may be terminated because of excessive deformation or the appearance of cracks before a condition of sudden collapse is reached. It should be of interest to predict analytically when the condition of collapse is reached, that is , to investigate the mechanical and thermal loads and the number of loading cycles required to cause collapse in typical structures.

B. The Phenomena of Thermal Ratcheting and Alternate Plasticity

In case of alternate plasticity, as defined by Parkes⁽¹⁾ there is both positive and negative plastic flow in each cycle of net zero value. This can be true when linearly elastic perfectly plastic material is considered. If strain-hardening characteristics are considered, it is not possible to show steady behavior of alternate plasticity immediately after the formation of the first hysteresis loop due to cyclic loading. The reason for this is that at any station in the section, the magnitude of tensile and compressive yield stresses should become smaller with each change in the direction of plastic flow and this, in turn, affects the stress-strain pattern not only at that particular station, but at other stations also. It should be noted that during an early stage of cyclic loading, the rate of change of the magnitude of the yield stresses due to the Bauschinger effect may be high. This rate would finally become negligible resulting in stationary yield points for the cycles that follow. One may, therefore, expect alternate plasticity to occur at a station when the yield stresses become steady subject to the condition that the stress-strain patterns at other stations do not affect the stress-strain pattern at the station under consideration.

For thermal ratcheting, Aver⁽⁵⁾ observed that "The stress pattern repeats itself after the first cycle and a constant increment of strain is added on each cycle." He considered the linearly elastic perfectly plastic material. Considering the linear strain hardening characteristic, the author has proven analytically that an asymptotic stress-strain condition may exist after a certain number of loading cycles and further strain growth may not occur (see Appendix A). This phenomenon has been observed experimentally (see page 128 of ref. 2). Thus, it is possible that different behavior may be observed at the same station with an increase in the number of loading cycles. Further, different stations in the section may exhibit different patterns of behavior at the same time and these patterns are likely to change. Thermal ratcheting may start at one or more stations and then progressively extend to the neighboring stations.

For design, it is important to investigate the loading conditions which may cause thermal ratcheting or other structural behavior in the section and how rapidly the detrimental effect of thermal ratcheting may spread to other stations. The behavior patterns should also be examined when the applied mechanical load is also varying. For example, the bending moment on the wing of

a bomber aircraft will vary with the variation in the aerodynamic loads. Variation in the mechanical loads may occur with the release of the bombs and consumption of fuel during flight. All of these ideas could be studied with the program which has been developed.

The plots shown in Fig. 19 illustrate structural behavior for cyclic thermal loading at four stations in a rectangular section of aluminum alloy 2024-T3 (see Appendix B). Thermal ratcheting is observed at all four stations. At the end stations (21) and (11), both tensile and compressive plastic flow are observed, whereas at neighboring stations, plastic flow in the opposite direction is not observed. An increase in stress and strain is observed for thermal ratcheting. It should be noted that the rate of increase in stress and strain reduces with an increase in the number of cycles as predicted in Appendix A.

Further, Fig. 20 illustrates the stress distribution along the Z axis of the section under consideration at several temperature conditions as described in the figure. Figure 21 has been reproduced from reference 3 to compare the pattern of the stress distribution while passing from one temperature to another. It can be seen that the stress distribution shown in Fig. 20 has the same tendency as that exhibited in Fig. 21.

The average stress-strain curve which the material

(aluminum 2024-T3) is supposed to follow has been shown by the path OAB in Fig. 22. The curve OYC is the path plotted during the computation procedure. It can be seen that the path OYC does not coincide with the path OAB and hence a cumulative error is observed. Possible reasons for this error are:

(1) The size of the load increments in the region of the yield point may be important. Eq. (17) is exact for linear strain hardening. Convergence takes place on a straight line of slope $(\frac{d^{\sigma}e}{d\epsilon_{ep}})$. A large increment, therefore, will cause a large error (see article IX).

(2) The number of terms retained in the Taylor series used in the development of Eq. (17) can also have an effect.

XIII. APPENDICES

APPENDIX A

Thermal Ratcheting of a Two Bar Model Under Steady External Load

The model shown in Fig. 23 is a two bar assembly having areas A and B, respectively. The ends of the bars are attached to rigid plates, P_1 and P_2 . Bar B is assumed to be heated and cooled in succession. When heated, the bar tends to expand, but the expansion is partially restrained by bar A through attachments P_1 and P_2 . These plates are rigid enough so that the net lengths of both bars are always equal (see page 184 of ref. 2).

In addition to thermal loading resulting from nonuniform heating, there is present the external load P, which must be supported by the bars A and B acting jointly. The fraction of the load carried by each bar shifts, however, during heating and cooling, as a result of plastic flow.

Loading Cycle: Initially, it is considered that the model is at uniform temperature and the load P is uniformly distributed over the entire area A and B. Assume that the temperature of the outer bar is uniformly increased to a temperature T, while bar A is maintained at the reference temperature. Then the temperature of B again returns to the reference value.

This temperature cycle is assumed to be repeated while the external mechanical load P remains constant. Analysis: For simplification of the analysis, the following assumptions are made.

Plastic flow in the reverse direction does not occur.

(2) Strain hardening is linear.

When the model is at a uniform temperature initially, and the external load P is applied, the average stress is

$$\sigma_{\rm m} = \frac{P}{(A+B)} \tag{1-A}$$

When the temperature of the bar B is uniformly increased to a temperature T while the bar A is maintained at the reference temperature, the attempted expansion of bar B will transfer some of the load to A. If the expansion αT is small, the action may be completely in the elastic range, but if αT is large enough, the condition indicated by the points A_{1_2} and B_{1_2} may develop at the end of the first half cycle of heating (see Fig. 24). There is plastic flow in the bar A, while the bar B has unloaded elastically to the point B_{1_2} . The strain at A_{1_2} is greater than the strain at B_{1_2} by an amount αT . At the end of the half cycle, for equilibrium,

$$P = B\sigma_{B_{1}} + A\sigma_{A_{1}}$$
(2-A)

Therefore, with the help of Eq. (1-A), we obtain,

$$\sigma_{B_{2}^{1}} = (1 + \frac{A}{B}) \sigma_{m} - \frac{A}{B} n_{1}\sigma_{y}$$
(3-A)

where

$$n_1 = \sigma_{A_2} / \sigma_y$$

When the temperature of bar B is returned to the reference value, bar A, which has been stretched, unloads along the line $A_{\frac{1}{2}}A_{\frac{1}{2}}$ parallel to the elastic line and bar B assumes a greater portion of the load, straining along the line $B_{\frac{1}{2}}NB_{\frac{1}{2}}$. At the end of the first cycle, therefore, from the condition of equilibrium, we obtain

$$\sigma_{A_{1}} = (1 + \frac{B}{A}) \sigma_{m} - \frac{B}{A} n_{2} \sigma_{y}$$

$$(4-A)$$

where

$$n_2 = \sigma_{B_1} / \sigma_y$$

The overall length of the model is permanently increased by plastic strain $\epsilon_{\rm q}$.

From Fig. 24,

$$\epsilon_g = JK$$

 $= LM - LJ - KM$

$$= \alpha T - \frac{\sigma_{B_1} - \sigma_{B_{1_2}}}{E} - \frac{\sigma_{A_{1_2}} - \sigma_{A_{1_1}}}{E}$$
$$= \alpha T - \frac{n_2 \sigma_y - \sigma_{B_{1_2}}}{E} - \frac{n_1 \sigma_y - \sigma_{A_1}}{E}$$
(5-A)

is obtained.

Substituting Eqs. (3-A) and (4-A) into Eq. (5-A) yields

$$\varepsilon_{g} = \alpha T + \left(2 + \frac{A}{B} + \frac{B}{A}\right) \frac{\sigma_{m}}{E} - \left(1 + \frac{A}{B}\right) \frac{n_{1}\sigma_{y}}{E}$$
$$- \left(1 + \frac{B}{A}\right) \frac{n_{2}\sigma_{y}}{E} \qquad (6-A)$$

Eq. (6-A) can be rewritten as

$$\varepsilon_{g} = \alpha T + K_{1} \sigma_{m} - K_{2} n_{1} - K_{3} n_{2}$$
 (7-A)

where K_1 , K_2 and K_3 are constants.

A relation can be established between n_1 and n_2 . Consider the triangle CHK in Fig. 25. From this triangle we obtain

$$HK = \frac{1}{\tan \theta} \left[\sigma_{A_{\frac{1}{2}}} - \{\sigma_{m}(1 + \frac{B}{A}) - \frac{B}{A}\sigma_{B_{1}}\}\right] \quad (8-A)$$

Also from triangle CPJ we obtain

$$HK = \cot \phi (\sigma_{A_{\frac{1}{2}}} - \sigma_{B_{1}})$$
(9-A)

Equating Eqs. (8-A) and (9-A) gives

$$(\sigma_{A_{1_{2}}} - \sigma_{B_{1}}) \tan \theta \cdot \cot \phi = \sigma_{A_{1_{2}}} - \sigma_{m}(1 + \frac{B}{A}) + \frac{B}{A} \sigma_{B_{1}}$$

$$(10-A)$$

Dividing both sides of Eq. (10-A) by σ_{y} and substituting E and E for tan θ and tan ϕ , respectively, yields,

$$n_{2} = \frac{\sigma_{m}}{\sigma_{y}} \frac{(1 + \frac{B}{A})}{(\frac{E}{E_{s}} + \frac{B}{A})} + n_{1} \frac{(\frac{E}{E_{s}} - 1)}{(\frac{E}{E_{s}} + \frac{B}{A})}$$
(11-A)

Eq. (11-A) can be written as

$$n_2 = K_4 n_1 + K_5 \frac{\sigma_m}{\sigma_y}$$
 (12-A)

substituting Eq. (12-A) into Eq. (7-A) yields,

$$\varepsilon_{g} = \alpha T + \sigma_{m} (K_{1} - \frac{K_{3}K_{5}}{\sigma_{y}}) - n_{1} (K_{2} + K_{3}K_{4})$$
 (13-A)

Also from Fig. 24 we obtain

$$\varepsilon_{\mathbf{B}_{2}^{1}} = \frac{\sigma_{\mathbf{m}}}{E} - \frac{\sigma_{\mathbf{m}} - \sigma_{\mathbf{B}_{2}^{1}}}{E}$$
(14-A)

$$\varepsilon_{A_{\frac{1}{2}}} = \frac{\sigma_{A_{\frac{1}{2}}} - \sigma_{Y}}{E} + \frac{\sigma_{Y}}{E}$$
(15-A)

$$\varepsilon_{\mathbf{A}_{\underline{1}_{2}}} = \varepsilon_{\mathbf{B}_{\underline{1}_{2}}} + \alpha \mathbf{T}$$
(16-A)

Substituting for $\epsilon_{A^1\!_2}$ and $\epsilon_{B_1\!_2}$ into Eq. (16-A) and then solving for n yields

$$n_{1} = \frac{\left(1 + \frac{A}{B}\right)\sigma_{y}}{\left(\frac{1}{E_{s}} + \frac{A}{BE}\right)} \cdot \frac{\sigma_{m}}{E} + \frac{\sigma_{y}}{\left(\frac{1}{E_{s}} + \frac{A}{BE}\right)} \alpha T$$

$$+ \frac{\left(\frac{1}{E_{s}} - \frac{1}{E}\right)\sigma_{y}^{2}}{\left(\frac{1}{E_{s}} + \frac{A}{BE}\right)}$$
(17-A)

Eq. (17-A) can be rewritten as

$$n_1 = K_6 \sigma_m + K_7 \alpha T + K_8$$
 (18-A)

where K_6 , K_7 and K_8 are constants.

Now substituting Eq. (18-A) into Eq. (17-A) yields

$$\varepsilon_{g} = (1 - K_{2}K_{7} - K_{3}K_{4}K_{7}) \alpha T + (K_{1} - \frac{K_{3}K_{5}}{\sigma_{y}} - K_{6}K_{2}$$
$$- K_{3}K_{4}K_{6}) \sigma_{m} - (K_{2}K_{8} + K_{3}K_{4}K_{8})$$
(19-A)

Rewriting Eq. (19-A) yields

$$\varepsilon_{g} = K_{g}\sigma_{m} + K_{10}\alpha T - K_{11}$$
 (20-A)

where K_{9} , K_{10} and K_{11} are constants.

It should be noted that ' ϵ_g ' is the plastic strain growth which may occur at the end of the first cycle. Also, it can be seen that the factors to choose for design are T, σ_m , the ratio A/B and the plastic strain growth ϵ_g .

Consider now the state of stress and strain at the end of l_2^1 and 2 cycles (see Fig. 26). At the end of l_2^1 cycles, the stress in bar B is

$$\sigma_{\rm B} = (1 + \frac{A}{B})\sigma_{\rm m} - \frac{A}{B}\sigma_{\rm A}$$
(21-A)

Also, the strains in bars B and A are given by

$$\epsilon_{B_{3/2}} = \epsilon_{1} - \frac{\sigma_{B_{1}} - \sigma_{B_{3/2}}}{E}$$
 (22-A)

and

$$\varepsilon_{A_{3/2}} = \frac{\sigma_{Y}}{E} + \frac{\sigma_{A_{3/2}}}{E} + \frac{\sigma_{X_{3/2}}}{E} ,$$
 (23-A)

respectively. And

$$\epsilon_{A_{3/2}} = \epsilon_{B_{3/2}} + \alpha T$$
 (24-A)

Therefore,

$$\epsilon_{A_{3/2}} = \epsilon_{1} - \frac{\sigma_{B_{1}} - \sigma_{B_{3/2}}}{E} + \alpha T$$
 (25-A)

Substituting Eqs. (21-A) and (23-A) into Eq. (25-A) yields

$${}^{\sigma}A_{3/2} \left(\frac{1}{E_{s}} + \frac{A}{B}\right) = \left(\frac{1}{E_{s}} - \frac{1}{E}\right){}^{\sigma}B_{1} + \left(1 + \frac{A}{B}\right) \sigma_{m} + \alpha T \quad (26-A)$$

Further, at the end of the second cycle, the stress and strain are given by

$$\sigma_{A_2} = \sigma_m \left(1 + \frac{B}{A}\right) - \frac{B}{A} \cdot \sigma_{B_2}$$
(27-A)

and

$$\varepsilon_2 = \frac{\sigma_{A_{3/2}} - \sigma_{A_2}}{E}$$
(28-A)

Also,

$$\varepsilon_2 = \frac{\sigma_y}{E} + \left(\frac{\sigma_{B_2} - \sigma_y}{E}\right)$$
(29-A)

Equating Eqs. (28-A) and (29-A) and then substituting for σ_{A_2} from Eq. (27-A) yields

$$\sigma_{B_{2}} = \{\frac{(1 + \frac{B}{A})}{\frac{B}{A} - \frac{E}{E_{s}}}\} \sigma_{m} - \{\frac{1}{(\frac{B}{A} - \frac{E}{E_{s}})}\} \sigma_{A_{3/2}} + \{\frac{(1 - \frac{E}{E_{s}})}{(\frac{B}{A} - \frac{E}{E_{s}})}\} \sigma_{Y}$$
(30-A)

Substituting the value of σ_A obtained by Eq. (26-A) into Eq. (30-A) gives

$$\sigma_{B_{2}} = \left\{ \frac{\left(1 + \frac{B}{A}\right)}{\left(\frac{B}{A} - \frac{E}{E_{s}}\right)} - \frac{\left(1 + \frac{A}{B}\right)}{\left(\frac{1}{E_{s}} + \frac{A}{B}\right)\left(\frac{B}{A} - \frac{E}{E_{s}}\right)} \right\} \sigma_{m}$$

$$- \left\{ \frac{1}{\frac{1}{E_{s}} + \frac{A}{B}} \right\} \alpha T - \left\{ \frac{\left(\frac{1}{E_{s}} - \frac{1}{E}\right)}{\left(\frac{1}{E_{s}} + \frac{A}{B}\right)\left(\frac{B}{A} - \frac{E}{E_{s}}\right)} \right\} \sigma_{B_{1}}$$

$$+ \left\{ \frac{\left(1 - \frac{E}{E_{s}}\right)}{\left(\frac{B}{A} - \frac{E}{E_{s}}\right)} \right\} \sigma_{Y}$$

$$= K_{12}\sigma_{m} - K_{13}\sigma_{B_{1}} - K_{14} \alpha T + K_{15}$$
(31-A)

where K_{12} , K_{13} , K_{14} , and K_{15} are constants.

Assume now that a temporary decision has been made about mean stress σ_m and αT (i.e., the external load and temperature range T have been selected). Consider, therefore, that σ_m and αT are constants. Eq. (31-A) can now be rewritten as

$$\sigma_{\rm B_2} = \kappa_{16} - \kappa_{13} \sigma_{\rm B_1}$$
 (32-A)

From the repetitive nature of the loading and following the same arguments, Eq. (32-A) can be generalized as

$$\sigma_{B_{K}} = \sum_{n = 2}^{n = K} (-1)^{n-2} \kappa_{13}^{n-2} \kappa_{16} + (-1)^{K-1} \kappa_{13}^{K-1} \sigma_{B_{1}}$$
(33-A)

where $\sigma_{B_{K}}$ is the stress in bar B at the end of the K_{th} cycle. Note that K>1. The total strain at the end of the K_{th} cycle is obtained from

$$\varepsilon_{\rm KT} = \frac{\sigma_{\rm Y}}{E} + \frac{\sigma_{\rm B_{\rm K}}^{\rm - \sigma_{\rm Y}}}{E}$$
(34-A)

The strain growth is the plastic component of the total strain. This plastic component is given by

$$\epsilon_{gK} = \sigma_{Y} \left(\frac{1}{E} - \frac{1}{E_{S}} \right) + \sigma_{B_{K}} \left(\frac{1}{E_{S}} - \frac{1}{E} \right)$$
$$= \kappa_{17} + \kappa_{18} \sigma_{B_{K}}$$
(35-A)

where K_{17} and K_{18} are constants.

Substituting Eq. (33-A) into Eq. (35-A) yields

$$\varepsilon_{gK} = K_{17} + K_{18} \begin{bmatrix} n & = K \\ \sum & (-1)^{n-2} K_{13}^{n-2} K_{16} \\ n &= 2 \end{bmatrix}$$

$$+ (-1)^{K-1} K_{13}^{K-1} \sigma_{B_{1}}$$
(36-A)

Also, from Eq. (12-A), solving for $\sigma_{\rm B_1}$ gives

$$\sigma_{\rm B_{1}} = \kappa_{5}\sigma_{\rm m} + \kappa_{4}\sigma_{\rm A_{1_{2}}}$$
(37-A)

Substituting Eq. (37-A) into Eq. (36-A) yields

$$\varepsilon_{gK} = K_{17} + \sum_{n = 2}^{n = K} (-1)^{n-2} K_{13}^{n-2} K_{19} + (-1)^{K-1} K_{13}^{K-1} K_{20}^{\sigma} A_{\frac{1}{2}} + (-1)^{K-1} K_{13}^{K-1} K_{21}$$
(38-A)

where

$$K_{19} = K_{16}K_{18}$$

 $K_{20} = K_4 K_{18}$

and

$$K_{21} = K_5 K_{18} \sigma_m$$

Expanding K₁₉, K₂₀ and K₂₁ yields

$$K_{19} = \sigma_{m} \frac{\left(\frac{1}{E} - \frac{1}{E}\right)}{\left(\frac{B}{A} - \frac{E}{E}\right)} \left\{ \begin{array}{ccc} \left(1 + \frac{B}{A}\right) - \left(1 + \frac{A}{B}\right) \\ \left(\frac{1}{E} + \frac{A}{B}\right) \end{array} \right\}}{\left(\frac{1}{E} + \frac{A}{B}\right)} \right\}$$

$$+ \left(\frac{1}{E_{s}} - \frac{1}{E}\right) \left\{ \begin{array}{c} \sigma_{y} \\ \frac{\left(1 - \frac{E}{E_{s}}\right)}{\left(\frac{B}{A} - \frac{E}{E_{s}}\right)} \\ \frac{\left(\frac{1}{E_{s}} + \frac{A}{B}\right)}{\left(\frac{1}{E_{s}} + \frac{A}{B}\right)} \right\}$$

$$K_{20} = \left(\frac{E}{E_{s}} - 1\right) \left(\frac{1}{E_{s}} - \frac{1}{E}\right) / \left(\frac{E}{E_{s}} + \frac{B}{A}\right)$$

and

$$K_{21} = \frac{\left(1 + \frac{B}{A}\right)\left(\frac{1}{Es} - \frac{1}{E}\right)}{\left(\frac{E}{Es} + \frac{B}{A}\right)} \sigma_{m}$$

Expansion of K₁₃ gives

$$K_{13} = \frac{\left(\frac{1}{E_{s}} - \frac{1}{E}\right)}{\left(\frac{1}{E_{s}} + \frac{A}{B}\right)\left(\frac{B}{A} - \frac{E}{E_{s}}\right)}$$

The exponential nature of Eq. (38-A) indicates that the total growth of plastic strain increases as the number of cycles increases. However, the rate of growth of plastic strain decreases. After a certain number of cycles, this rate may become negligible and an asymptotic stress condition may be achieved.

Substituting $\sigma_{\rm m}$ = 0 into Eq. (20-A) gives

$$\varepsilon_{g} = K_{10} \alpha T - K_{11}$$
(39-A)

When $\varepsilon_q = 0$, Eq. (39-A) yields

$$\alpha T = \frac{K_{11}}{K_{10}}$$

$$= \frac{\sigma_{Y}^{3}}{E} \frac{\left(\frac{1}{E} - \frac{1}{E}\right)}{\left(\frac{1}{E} + \frac{A}{BE}\right)} \left\{ \begin{array}{c} \left(1 + \frac{A}{B}\right) + \left(1 + \frac{B}{A}\right)\left(\frac{E}{E} - 1\right) \\ \frac{\sigma_{Y}^{2}}{\left(\frac{1}{E} + \frac{A}{BE}\right)} \right\} \\ \frac{\sigma_{Y}^{2}}{\left(\frac{1}{E} + \frac{A}{BE}\right)} \left\{ \begin{array}{c} \left(1 + \frac{A}{B}\right) + \left(1 + \frac{B}{A}\right)\left(\frac{E}{E} - 1\right) \\ \frac{\sigma_{Y}^{2}}{\left(\frac{E}{E} + \frac{B}{A}\right)} \right\} \\ \frac{\sigma_{Y}^{2}}{\left(\frac{1}{E} + \frac{A}{BE}\right)} \\ \frac{\sigma_{Y}^{2}}{\left(\frac{E}{E} + \frac{B}{A}\right)} \\ \frac{\sigma_{Y}^{2}}{\left(\frac{E}{E} +$$

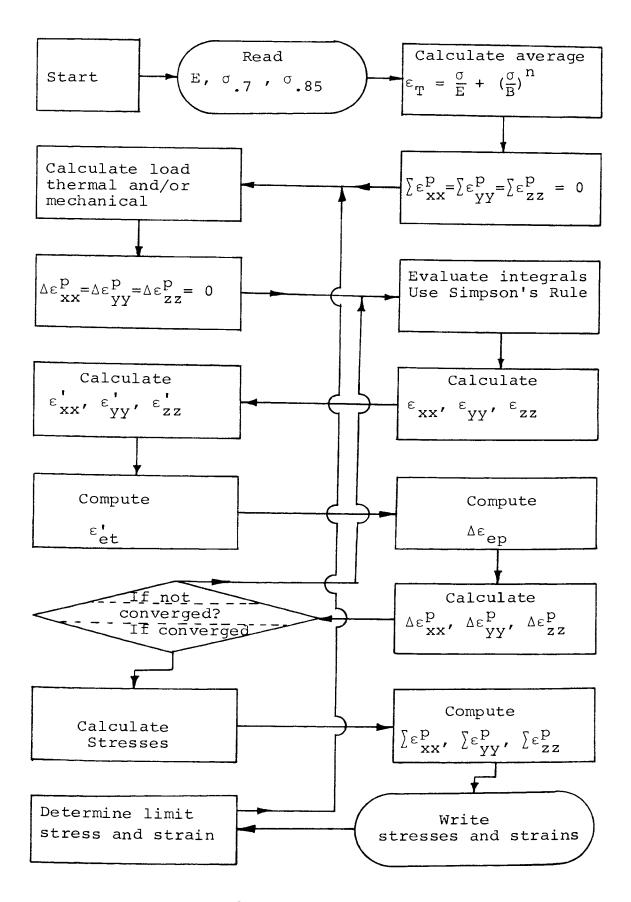
(40-A)

Eq. (40-A) shows that when the free thermal expansion αT of bar B exceeds the value expressed by the right hand side of the equation, strain growth may be observed even in the absence of external load.

APPENDIX B

Statement of an Example Problem and the Program

1. <u>Statement of an example problem</u>. Study the structural behavior of a rectangular section for the fol-lowing conditions:


(a)	Bending moment	15000.0 lb. in.
(b)	Axial load	0.0 lbs.
(c)	Maximum temperature	375.0 °F
(d)	Minimum temperature	75.0 °F
(e)	Cross section	
	(l) Height	4.0 in.
	(2) Width	0.23 in.

The structure undergoes cyclic thermal loading. The material of the structure is Aluminum alloy 2024-T3. The mechanical and thermo-physical properties have been listed in Table I.

In the computer program, the equations to calculate average properties cover the range of 75-700 F. The minimum temperature has been assumed to remain constant in this analysis.

The cross section has been divided into 21 stations as shown in Fig. 11.

Program Language:	Fortran IV
Computer :	IBM-360-50
Plotter :	Calcomp-750

Flow Chart

2. The program. The list of symbols used in the program:

А	Time, seconds.
ACRV(I)	Shape parameter of a stress-strain curve
	at 'I'th station.
ALPHA	Coefficient of thermal expansion, in./(in.)
	(F).
АМ	Poisson's ratio.
AMT	Bending moment, lb/inch.
ANITA(I)	Ratio h/Z at 'I'th station.
Bl, B2 & B3	Constants appearing in equations for
	ε_{xx} , ε_{yy} , and ε_{zz} .
BCRV(I)	Constant B in equation $(\sigma/B)^n$ at 'I'th
	station.
BP	Axial load, lbs.
С	Specific heat, btu/(lb.)(F).
Cl and C2	Constants appearing in equations for
	ε_{xx} , ε_{yy} and ε_{zz} .
CICLE	Temperature cycle.
СК	Thermal conductivity, btu/(hr.)(ft.)(F)).
CONCON	Condition for convergence.
CRTEX	Modified strain in 'X' direction, in./in.
CRTEZ	Modified strain in 'Z' direction, in./in.
DISC(I)	Distance of an 'I'th station from one end
	of the section, in.

- DIST(I) Distance from the reference point in the section, in.
- DLTEXP(I,J) Dimensionless increment of plastic strain in 'X' direction at 'I'th station and 'J'th iteration.
- DLTEZP(I,J) Dimensionless increment of plastic strain in 'Z' direction at 'I'th station and 'J'th iteration.
- DMTEXP(I,J) Increment of plastic strain in 'X' direction at 'I'th station and 'J'th iteration in./in.
- EC(I) Modulus of elasticity at 'I'th station. ECR Modulus of elasticity at reference temperature, lb./in.²
- EEP(I) Equivalent plastic strain increment.
- EQLIM(I) Equivalent limit strain at 'I'th station. EQSGMA(I) Equivalent limit stress at 'I'th station.
- EQSGMA(I) Equivalent limit stress at 'I'th station. EXM(I) Mechanical strain in 'X' direction, in./in.
- EZM(I) Mechanical strain in 'Z' direction, in./in.
- PFLOW1(M,I) First plastic flow during 'M'th cycle.
- PFLOW2(M,I) Plastic flow in the direction opposite to that of the first plastic flow at 'I'th station during 'M'th cycle.
- PLSTRN(I) Plastic strain at 'I'th station.
- PREFLO(I) Previous plastic flow at 'I'th station.
- PRESTS(I) Initial yield stress, psi.

- SECFL(I) Plastic flow having the direction opposite to that of the very first plastic flow.
- SECLIM(I) Limit Stress having the direction opposite to that of the stress which causes very first plastic flow.
- SDTEXP(I,2) Summation of plastic strain increment in
 'X' direction (dimensionless).
- SUMEXP(I,2) Summation of plastic strain increment in 'X' direction, in./in.
- SIGMAR Yield stress at the reference temperature.
- SLOPE(I) Slope of stress-plastic strain curve at limit stress.
- TREF Reference temperature.
- TLOW Lower temperature.
- TMAX Maximum temperature.
- THKW Width of section.
- TM Time, hr.
- TNCRIS Increase in temperature.
- TDCRIS Decrease in temperature.

RTRAN IV	G LEVEL 18	MAIN	DATE = 70159	15/50/1
1001	C R. C. HAZARI	WALA ME490, JOB MEI	40767G INCREMENTAL C (21,50 1,5DTEXP(21,2	OLLAPSE
Part destroy	101/50 1,0215	0 1, SIGMAX(21) . EX(2	1), EY(21), E7(21), EP((21), ANITA(21), GL(21	211, EET(21),
	1EEP(21), 10(2 1TOW(21), X(2)	1),81(21),82(21),83	(21), ANITA(21), GL(21), HA(21), AINGRL(21),),TM(21),T(21),
002	DIMENSION TH	AXC(21) . FC(21) . FOFT	(21), FOS(21), STRESS(451. CCPV(21)
	IACRV(21).BCR	V(21).SINPE(21)		Menter-side classic
003	DIMENSION ST	RES(21), PLSTRN(21),	DIST(21), EQSGMA(21),	EOLIM(21).
004	ISUMEXP[21,2]	, SUMEZP(ZI,Z), DMLE)	P(21,50),SIGMAC(21)	, DISC(21)
005	DIMENSION XS	ESTS(21), PREED(21),	0),XSIG11(450),XSIG1	01/1603
	1EXM(21), EXM2	1(450) . EXM20(450) . F	XM11(450), EXM10(450)	014907,
006	DIMENSION CO	INST(21), SETSTS(21).	SECEL (21) . ESTI TM(21)	
007	DIMENSION SE	CLIM(21), CONST2(21)	,FIRSTF(21), PREFLO(2 WNO(21), FPLOW1(21), F	11,
0008	IPELOWI(10,21), PELOW2(10,21), FLC	WN0(21), FPLOW1(21), F	PLOW2(21)
009	AMT=15000.0	HAZARIWALA RAMESHO	HA*,20,11	
010	BP=0.0			
0.11	TREE=75.0	1 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	100 M 100	and the same of the
012	TMA X=375.0	10 17 0 10 10 10 1		
013	TLOW=75.0 TDCRIS=15.0			
015	TNCRIS=TDCRI	2		
016	TINCR = (TMAX-	TLOW) / TNCRIS		
017	TINCRT=TINCP	2+1		Contraction of the local sector
019	AM=0.3125			
019	READ(1,201)	ANITA(J), J=1,21) GL(J), J=1,21)	. 4	E S C PRODUCTS
021	READ(1,202)(H(K) = X = 1, 51	and	0.01.5003099
022	DO 500 I=1,2	21	2003	
023	500 IMAXC(1)=TM	X	a the first state of the state	
0024	DO 501 I=1,1	200 01500 500 500	and the second se	STATISTICS AND ADDRESS OF
10.26	502 FCL11=10933	-300.0)502,502.503	11.75 01	and the second second
1027	FOS (1)=40100	-7.325*(TMAXCIT)	75.01	
0028	FOFT(1)=368	34.0-5.540×1144XC(1)	+75.0)	the second these
0020	STRESS(1)=3	2000 0		The state of the second s

and a state of the state of the

The second

0031	503 IF(TMAXC(I)-500.0)504,504,505 504 EC(I)=(2365500000.0+10585000.0*(TMAXC(I)-300.0)-4750.0*
0033	1 (TMAXC(I)**2.0-90000.0))/(TMAXC(I)-75.0) FDS(I)=(8612000.0+52050.0*(TMAXC(I)-300.0)-27.25*
0034	$\frac{1(1MAXC(1) * * 2.0 - 90000.0)}{(1MAXC(1) - 75.0)}$ FOET(1)=(7830000.0+48550.0*(1MAXC(1) - 300.0) - 26.75*
0035	$\frac{1(1MAXC(1) * * 2.0 - 90000.0))}{(1MAXC(1) - 75.0)}$
0036 0037	GO TO 506 505 EC(I)=(3733500000.0+13400000.0*(TMAXC(I)-500.0)-5000.00*
0038	FOS(I) = (14662000 + 71300 + 0* (TMAXC(I) - 75.0))
0039	FOET(I) = (12260000 + 66050 + 0 + (TMAXC(I) - 75 + 0) + 43 + 25 *
0040	1(1MAXC(1)**2.0-250000.0))/(TMAXC(1)-75.0) STRESS(1)=22000.0
0041 0042 0043 0044	506 CCRV(I)=(FOS(I)/FOET(I)) ACRV(I)=1.0+((ALOG(2.4285))/(ALOG(CCRV(I)))) BCRV(I)=(FOS(I)**((ACRV(I)-1.0)/ACRV(I)))*(EC(I)**(1./ACRV(I))) STRES(I)=STRESS(I)
0045	514 PLSTRN(I)=(STRES(I)/BCRV(I))**ACRV(I) IF(PLSTRN(I)-0.00010)512,512,513
0047	512 STRES(1)=STRES(1)+350.0
0049	513 IF(PLSTRN(I)-0.00011)515,515,516 516 STRES(I)=STRES(I)-200.0
0051 0052	GD TO 514 515 ELLIM=(STRES(I)/EC(I))
0053	EOLIM(I)=((2.0*(1.0+AM))/3.0)*ELLIM 501 CONTINUE
0055	WRITE(3,520)EC(1), FOS(1), FOET(1), STRES(1), PLSTRN(1) DO 525 I=2,21
0057	FC(1)=EC(1) FDS(1)=EOS(1)

059	Contraction of the second	FOFT(I)=FOFT(I)	-
060		STRES(1)=STRES(1)	and the second second
061		EOLIM(I) = EOLIM(I)	
0.62	Contraction of the	PLSTRN(I)=PLSTRN(1)	1.1.2.60
063		ACRV(1) = ACRV(1) $BCRV(1) = BCRV(1)$	STATISTICS.
065	525	CONTINUE	
	C	*** IN THIS PARTICULAR EXAMPLE, TMAXC(I) HAS BEEN ASSUMED	
	C.	CUNSIANI AL ALL PUINTS, ALL PROPERTIES, THEREFORE, WILL BE	CAME
	C	AL ALL PUINTS, DO LOOPS DEELNED BY STATEMENT NUMBERS 525 AND	D FOI
0.66	6	HAVE BEEN INTRODUCED TO ELIMINATE REPEATITION OF COMPUTATION	NS. **
067	The second second	ECR=10300000.0	-
068		STRNYR=SIGMAR/ECR	10.62
069		ALPHA=0.000014	
070 071	12	P=172.8	10000
072		C=0.2375 CK=75.0	1000
073 -		PK=(CK)/(P*C)	July Ville
074		TL=0.33333	- With
075		THKW=0.23	- Marshe
075	155	HTCW=2.0 DD 163 I=1,21	
078	199	SDTEXP(1,2)=0.0	Samuela
079	-	SDTEZP(1,2)=0.0	A DE LA D
080		PFLOW1(1,1)=0.0	
081		PFLOW2(1,I)=0.0 $FLOWD(I)=0.0$	
083		FIRSTE(I)=0.0	W PTR
084		CONST2(I)=1.0	
085	and a second second	PREFLO(I)=0.0	
086		SECFL(I)=0.0	
083		CONST(I)=1.0 PRESTS(I)=SIRES(I)	State and
089		EQSGMA(I) = PRESIS(I)	
090	- Annother	EP(I) = PLSTRN(I)	
091	Norweshines	FSTLIM(I)=PRESTS(I)	EN CARACT
093	167	SECLIM(I)=PRESTS(I) SETSTS(I)=PRESTS(I)	1 1905
094	103	STRSIN=400.0	Martin Partie
0.95	1 52. 3 563 600	N = 1	10 AN
096	2502	STRAIN(N)=PRESTS(1)+STRSIN-4000.0 STRAIN(N)=(STRESS(N)/EC(1))+(STRESS(N)/BCRV(1))**ACRV(1)	1000

0099	2500	N=N+1 STRSIN=STRSIN+400.0	The Deader Stall 1941
0101 0102 0103 0104	2 50 1	GO TO 2502 CALL NEWPLT(9.0,5.0,18.0) CALL DRIGIN(0.0,0.0)	Annal Children and
0105 0106 0107		CALL XSCALE(-0.0150,0.015,15.0) CALL YSCALE(-50000.0,50000.0,8.0) CALL XAXIS(0.0025) CALL XAXIS(5000.0)	11/16
0108 0109 0110 0111		CALL XYPLT(STRAIN, STRESS, N, 1, -1) CALL ENDPLT NC=4 KZ=4	
0112 0113 0114 0115		N=1 D0 484 M=2,NC D0 2400 I=1,21 FPLOW1(I)=0.0	
0116 0117 0118 0119		FPLOW2(I)=0.0 PFLOW1(M,I)=0.0 PFLOW2(M,I)=0.0 CICLE=0.25 DO EFO 121	
0121 0122 0123		DO 550 I=1,21 T(I)=TLOW GD TD 622 T(11)=T(11)+TNCRIS	in and the second
0124 0125 0126 0127	560	T(21)=T(11) IF(T(11)-TMAX)622,622,560 CICLE=0.50 A=0.2	10.315
0129	614	DO 11 J=1,11 DO 12 K=1,4 TF=TMAX TO(J)=TLOW	
0132 0133 0134	and the second	$\frac{TM(J)=(A/3600.0)}{B=(3.1428*H(K)*(GL(J)))/(TL)}$ AN=(4.0*(TO(J)-TE))/(H(K)*3.1428)	Contraction of the local distance
0135	12	EXPT=((1)/(EXP(((H(K))**2*(3.1428)**2*(PK)*(TN X(K)=B*AN*EXPT SUM=X(1)+X(2)+X(3)+X(4) T(J)=SUM+TF	((J)))/((TL)**2))))
0139 0140 0141 0142	5 10 P 11	IF(T(J)-TLOW)41,41,11 T(J)=75.0 CONTINUE DO 178 J=12,21	

40143	178	T(J) = T(J-10)	
0145	553	GO TO 622 IF(A-2.2)611,612,612	
0146	611	A-ATU.20	
0147	and the second se	GO TO 614	and the second
0148	612	IF(A-24,2)617,618,618	
0150	617	A=A+1.0 GO TO 614	
0151	618	IF(A-44.2)619,620,620	
0152	619	A=A+2.0	
0153		GO TO 614	1. 10
0154	620	IF(A-74.2)2619,2620,621	
0155	2619	$A = 4 + 5 \cdot 0$	- Tester / T
0157		GO TO 614	
0158	2620	A=100.0	
0159		DD 31 J=1,21 T(J)=TF	
0160	31	CONTINUE	and the second se
0161		GO TO 622	A REAL PROPERTY AND A REAL
0162	621	CICLE=0.75 I(11)=I(11)-TDCRIS	and the second se
0163	555	T(11) = T(11) - TDCRIS	
0165		T(21)=T(11) IF(T(11)-TLOW)561,622,622	
0156	561	CICLE=1.0	
0167		A=0.2	
0168	400	DO 461 J=1,11	
0170	and and the second	DO 401 K=1,4 TO(J)=TMAX	
0171	And the second	TF=TLOW	Contraction of the second seco
0172		TM(J) = (A/3600, 0)	
0173		B=(3.1428*H(K)*(G[(1)))//TI	
0174		AN= (4.0 * (10(J)-(F))/(H(K)*2	14291
0176	401	FXP1=(11)/(FXP(((H(K))±±2±)	3.1428)**2*(PK)*(TM(J)))/((TL)**2111)
0177	401	SUM = X(1) + X(2) + X(3) + X(4)	and the second se
0178		T(J) = SUM + TF	H . LI MARKE
0179		IF(T(J)-TO(1))402,403,402	a B B AT I B
0180	403	1(J) = 10(J)	The second secon
0182	402	GO TO 461	Children and a state of the second state of th
0183	462	TF(T(J)-TLOW)462,462,461	
0184	461	CONTINUE	And the second se
0185	Printer Street Street Street	DP 405 J=12.21	

0186	405 T(J) = T(J-10)	
0187	GO TO 622	
0188	556 IF(A-2.2)429,430,430 429 A=A+0.25	
0189	429 A=A+0.25 GO TO 400	and the second sec
0190	430 IF(A-24, 2) 431, 432, 432	Andrews Market
0191	430 IF(A=24.2/451,452,452 431 A=A+1.0	and the second se
0193	4 31 A=A+1.0 60 TO 400	
0194	432 IF(A-44.2)433,434,434	and the second with the second s
0194	433 A=A+2.0	
0196	GO TO 400	
0197	434 IF(A-74,2)2433,2434,436	the second se
0198	2433 A=A+5.0	
10199	GO TO 400	
0200	2434 A=100.0	
0201	DO 435 J=1,21	And a state of the
0202	435 T(J)=TF	and the second
0203	GO TO 622	a sensing which it is the sense of the Arrivan and the sense of the
0204	436 WRITE(3,457)	and the second se
0205	GO TO 483	IC DEQUIDED FOR THE
161866.30	C DOUBLE INTEGRATION BY SIMSON'S RULE 1	IS REQUIRED FOR MO
	C DIMENSIONAL PROBLEMS.	Contraction of the Association o
0206	$622 DO 179 J=1,21 \\ TOW(J) = (ALPHA*(T(J)-TLOW)) / STRNYR$	18 200 M 10 M
0207	B1(J) = 1.50	1 Provide and 1
0209	B2(J)=0.0	
0210	B3(J)=0.5	
0211	179 CONTINUE	245 T 1 1 28 1
0212	STARMW=AMT/(SIGMAR*HTCW**2.0*THKW)	
0213	STARPW=BP/(SIGMAR*HTCW*THKW)	
10214	1001 DJ 175 I=1,21	
0215	DO 176 J=1,2	and the second s
0215	DLTEXP(1, J)=0.0	The second the state of the second se
0217	DMTEXP(I,J)=0.0	
0218	176 DLTEZP(I, J)=0.0	
0219	175 CONTINUE	
0220	32 00 16 J=2,50	
0221	1114 DO 1 I = 1,21 HA(I) = FC(I)/FCR	
0222	F(I) = HA(I) * (TOW(I) + SDTEXP(I,2) + DLTEX	P(1.1))
- 0224	F(I) = F(I) + ANITA(I)	
0225	$EINCRI = (0, 1/3, 0) \times (E(21) + E(11))$	
ALC AND	1+4, $0*(F(20)+F(10)+F(18)+F(8)+F(16)+F$	(6)+F(14)+F(4)+F(12)+F(2))+
The second second	12.0*(F(19)+F(17)+F(7)+F(15)+F(5)]++++13]+++(3]+++(1]])
0226	$TIMGRI = (0.1/3.0) \times (FN(21) + FN(11) + 4.0 \times 10^{-1})$	(FN(20)+EN(10)+EN(8)+
and the second	1FN(13)+FN(16)+EN(6)+EN(14)+FN(4)+FN(12)+FN(2))+ +FN(5)+FN(13)+FN(3)+FN(1)))
Constant of the second	12.*(FN(10)+FN(9)+FN(17)+FN(7)+FN(15)	AT THE REAL PROPERTY OF A DESCRIPTION OF A

0227	DD = 1 = 1, 21
0229	AINGRI (Î)=FINGRI
0229 0230 0231	BINGRL(I)=TINGRL
0230	
0221	C1(J)=B1(I)*STARMW+B1(I)*BINGRL(I)-B2(I)*STARPW-B2(I)*AINGRL(I)
0232	C2(J)=B3(I)*AINGRL(I)-B2(I)*BINGRL(I)+B3(I)*STARPW-B2(I)*STARMW
0233	EX(I) = CI(J) * AN ITA(I) + C2(J)
0533	EZ(I) = - AM*(C1(J)*ANITA(I)+C2(J))+(1.0+AM)*TOW(I)+(SDTE7P(I,2)+
0.001	
0234	EY(I) = -AM * (C1(J) * AN (TA(I) + C2(J)) + (1.0 + AM) * TOW(I) +
	1(AM-1,0)*(SDTEXP(1,2)+D(TEXP(1,1))-(SDTE7P(1,2)+D(TE7P(1,1)))
0235	EX[1]=EX[1]#SIKNYR
0236	EZ(I) = EZ(I) * STRNYR
0237	EY(T) = EY(T) * STRNYR
0238	EXM(I) = EX(I) - TOW(I) * STRNYR
0239	CR TEX=FX(I)-SDTEXP(I,2)*STRNYR
0240	CRTEZ=EZ(I)-SDTEZP(I,2)*STRNYR
0241	CRIEY=EY(I)+(SDTEXP(I,2)+SDTEZP(I,2))*STRNYR
0242	DIFXY=ABS(CRTEX-CRTEY)
0243	DIFYZ=ABS(CRTEY-CRTEZ)
0244	DIFZX=ABS(CRTEZ-CRTEX)
0245	
0246	EFT(I)=((2.0**0.5)/3.0)*(DIFXY**2.0+DIFYZ**2.0+DIFZX**2.0)**0.5 IF(ABS(EFT(I))-EQLIM(I))165,165,144
0247	165 FFP(I)=0.0
0248	K = J + 1
0249	DLTEXP(1,K)=0.0
0250	
0251	DLTEZP(I,K)=0.0 G0 T0 2
0252	
0253	144 IF(J-2)1440,1440,147
0254	1440 IF(EQSGMA(I)-STRES(I))146,146,147
	146 EQSGMA(I)=STRES(I)
0255	EP(I) = (STRES(I)/BCRV(I)) * * ACRV(I)
0256	SLOPE(I)=(BCRV(I)*(1.0/ACRV(I)))/((ABS(EP(I)))**((ACRV(I)-1.0)
a second second	
0257	853 RAM=0.66667*((1.0+AM)/EC(1))
0258	147 EEP(I)=(EET(I)-RAM*(EOSGMA(I)))/(1.0+RAM*SLOPE(I))
0259	$14U_{-}X=J+1$
0260	DL TEZP(I,K)=0.3333*(ABS(EEP(I)/EET(I)))*(2.0*CRTEZ-CRTEY-CRTEX)
A. 12 112 18 /1	1/DIKINIK
0261	DLTEXP(I,K)=0.3333*(ABS(FEP(I)/EET(I)))*(2.0*CRTEX-CRTEY-CRTEZ)
A TRANSIC	1/STRNYR
the second	
· Martin Aller	the second
- Salar	
These Manda I have	

EL LO ST	
0262	2 CONTINUE
0263	522 DO 3 I=1,21 IF(ABS(DLTEXP(I,K))-0.0)141,142,141
0264	IF(ABS(DL)EXP(1,K))=0.0)141,142,141
0265	142 GO TO 3
0266	141 DMTEXP(I,K)=DLTEXP(I,K)*STRNYR
0267	DMTEXP(I,J)=DLTEXP(I,J)*STRNYR
0268	CONCON=ABS(DMTEXP(1,K)-DMTEXP(1,J))
0269	IF(ABS(DMTEXP(1,K))-0.001)242,242,243
0270	242 IF(CONCON-0.000001)3,3,24
0271	243 IF(ABS(DMTEXP(I,K))-0.01)244,244,245
0272	244 IF(CONCON-0.00001)3,3,24
0273	245 CONCON=ABS((DLTEXP(I,K)-DLTEXP(I,J))/DLTEXP(I,K))
0274	IF(CONCON-0.0010)3,3,24
0275	3 CONTINUE
0276	00 4 1 = 1, 21
0277	DIST(I)=GL(I)*12.0
0278	510 SIGMAX(I)=SIGMAR*HA(I)*(C1(J)*ANITA(I)+C2(J)-TOW(I)-SDTEXP(I,2)
	1-DLTEXP(I,K))
0279	SDTEXP(1,2)=SDTEXP(1,2)+DLTEXP(1,K)
10280	SDTEZP(1,2)=SDTEZP(1,2)+DLTEZP(1,K)
0281	SUMEXP(1,2)=SDTEXP(1,2)*STRNYR
0282	SUMEZP(1,2)=SDTEZP(1,2)*STRNYR
0283	FP(1)=(2.0/(3.0**0.5))*(ABS((ABS(SUMEXP(1.2)))**2.0+
1 martine and the	1(ABS(SUMEZP(1,2)))**2.0+(SUMEXP(1,2))*(SUMEZP(1,2))))**0.5
0284	4 CONTINUE
0285	DD 2001 I = 1, 21
9286	EOSGMA(I) = ABS(SIGMAX(I))
0287	IF(EQSGMA(I)-STRES(I))2001,2001,2002
0288	2002 SETSTS(I)=SIGMAX(I)
0289	IF(SIGMAX(I) -0.0)2003,2003,2004
0290	2003 IF(PFLOW1(M,I)-1.0)2005,2005,2006
0291	2005 PFLOW1(M,I)=1.0
0292	PREFLO(I)=1.0
0293	IF(FPLOW1(I)-1)8001,8002,8001
0294	8001 FLOWNO(T)=FLOWNO(I)+1
0295	8002 FPLOWI(I)=PFLOWI(M,I)
0296	GO TO 2200
0297	2006 PFLOW2(M,I)=1.0
0298	IF(FPLOW2(II)-1)8003,8004,8003
0299	8003 FLOWNO(I)=FLOWND(I)+1
0300	8004 EPLOW2(1)=PELOW2(M,1)
0301	2004 IF(PELDWI(M,I)-1.0)2007,2008,2007
0302	2007 PFLDW1(M, I)=2.0
(DCMARKESSECON	The second function of the second s

0304	PREFLO(1)=2.0
0305	IF(FPLOW1(I)-2)8005,8005,8006 8005 FLOWNO(I)=FLOWNO(I)+1
0306	8005 FEDWAUTT = PEDWAUTT = 8006 FPLOWI(I)=PFLOWI(M,I)
0308	GO TO 2200
0309	2008 PFLOW2(M,I)=2.0
0310	IF (FPLOW2(1)-2)8007,8007,8008
0311	8007 FLOWNO(I)=FLOWNO(I)+1
0312	8008 FPLOW2(I)=PFLOW2(M,I)
0313	2200 IF(FIRSTF(I) -1.0)2201,2099,2099
0314	2201 IF(PFLOW1(M,I)-1.0)2203,2204,2205
0315	2203 FIRSTF(1)=0.0
0316	GO TO 2099
0317	2204 FIRSTF(I)=1.0 SECEL(I)=2.0
0318	
0319	2205 FIRSTF(1)=2.0
0320	SECFL(1)=1.0
0321	2099 IF(FIRSTF(I)-1.0)2001,2209,2210
0323	2209 IF(SIGMAX(1)-0.)2401,2401,2212
0324	2212 SECLIM(I)=SIGMAX(I)
0325	60 10 2001
0326	2401 FSTLIM(I)=SIGMAX(I)
0327	G0 T0 2001
0328	2210 IF(SIGMAX(I)-0.0)2214,2214,2402
0329	2402 FSTLIM(I)=SIGMAX(I)
0330	GO TO 2001 2214 SECLIM(I)=SIGMAX(I)
0331	2001 CONTINUE
0333	WRITE(3,5111)SIGMAX(21), SETSTS(21), FSTLIM(21), SECLIM(21), STRES(21)
-0333	1.CONST(21).CONST2(21)
0334	WRITE(3,5111)SIGMAX(11), SETSTS(11), FSTLIM(11), SECLIM(11), STRES(11)
No. State Land	1.CONST(11).CONST2(11)
0335	5111 FURMAI(7,5X,F10.2,5X,F10.2,5X,F10.2,5X,F10.2,5X,F9.2,5X,F5.2,5X,
THE PARTY OF	1F10.4)
0336	$\begin{array}{c} 00 & 2010 & I=1+21 \\ 0 & 0 & 2011 & 2011 & 2012 \\ \end{array}$
0337	IF(SETSTS(I)-0.0)2011,2011,2012
0338	2011 IF(SIGMAX(1)-0.0)2013,2013,2014 2014 IF(PFLOW2(M,I)-1.0)2015,2278,2279
0339	2278 IF(SECFL(I)-1.0)2178,2178,2041
0341	2279 IF(SECFL(I)-1.0)2042,2042,2179
0342	2015 IF(PFLOW1(M,1)-1.0)2071,2141,2142

0343	2141 IF(FIRSTE(I)-1.0)2041,2041,2178
0344	2142 1F(F1RSTF(T)-1.0)2179,2179,2042
0345	2041 IF(CONST(1)-1.0)2050,2050,2051
0347	2050 CONST(I) = ABS(FSTLIM(I))/PRESTS(I)
0348	GO TO 2051 2071 IE (PELOW2(M-1, I)-1 0)2077 2278 2270
0349	2071 IF(PFLOW2(M-1,1)-1.0)2077,2278,2279 2077 IF(PFLOW1(M-1,1)-1.0)2242,2141,2142
0350	2242 IF(PREFLO(I)-1.0)2141,2141,2142
0351	2012 IF(SIGMAX(I)-0.0)2017,2017,2013
0352	2017 IF(PFL0W2(M,I)-1.0)2019,2379,2378
0353	2379 IF(SECFI(I)-1,012179,2179,2042
0354	2378 [F(SECF](1)-1,12041,2041,2178
0355	2019 1F(PFLOW1(M,I)-1,0)2072,2342,2345
0356	2342 IF(FIRS)F(I)-1.012042.2042.2179
0357	2345 IF(FIRSTF(I)-1.0)2178,2178,2045
0359	2045 IF(CONST(I)-1.0)2052,2052,2051 2052 CONST(I)=ABS(FSTLIM(I))/PRESTS(I)
0360	GO TO 2051
0361	2072 IF(PFI 0W2(M-1,1)-1.0)2080,2379,2378
0362	2080 IF(PFLOW1(M-1,1)-1.0)2245,2342,2345
0363	2245 IF(PREFLO(I)-1.0)2342,2342,2345
0364	2013 STRES(I)=ABS(SETS(I))
0365	GD TO 2010
0366	2024 STRES(I)=PRESTS(I)
0367	GO TO 2010
0368	2178 IF(ABS(SUMEXP(1,2))-PLSTRN(1))2024,2024,3025
0369	3025 FSTLIM(I)=(BCRV(I)*(ABS(SUMEXP(I,2)))**(1.0/ACRV(I)))
0371	CONST2(I)=ABS(FSTLIM(I)/SECLIM(I)) STRES(I)=ABS(SECLIM(I))*CONST2(I)
0372	GO TO 2010
0373	
0374	2179 IF(ABS(SUMEXP(1,2))-PLSTRN(1))2024,2024,2025
0375	2025 FSTLIM(I)=(BCPV(I)*(ABS(SUMEXP(I,2)))**(1.0/ACRV(I))) CONST2(I)=ABS(FSTLIM(I)/SECLIM(I))
0376	STRES(I)=ABS(FSTLIM(I))/CONST2(I)
0377	GO TO 2010
0378	2051 STRES(I)=(ABS(FSTLIM(I)))/CONST(I)
0379	SECLIM(I)=-ESTLIM(I)/CONST(I)
0380	GO TO 2010
0381	2042 STRES(I)=ABS(SECLIM(I))*CONST(I)
0383	2010 FOLIM([]=0.6667*[1.0+AM)*(STRES([)/EC(1)) XSIG21(N)=SIGMAX(2])
0384	XSIG20(N)=SIGMAX(20)
The state of the second second	The second s

10385.	XSIGII(N) = SIGMAX(11)	E anti-
0386	X SIGIO(N) = SIGMAX(10)	States Barris and
0387	EXM21(N) = EXM(21)	The state of the second
0388	FXM2O(N) = FXM(2O)	
0389	FXM[1(N)] = FXM(11)	Stranger Land
0390	EXM10(N) = EXM(10)	1109 1 16
0391	IF(N-1)700,701,702	CONTRACT OF STREET
0392	702 IF(N-21)700,701,703	a the first factor
0393	703 IF(N-69)700,701,704	And the second second
0394	704 IF(N-89)700,701,705	Pr Storig
0395	705 IF(N-137)700,701,700	100 / MILLINGS
0396	701 D0 706 I=1,11	3 234 3 23
0397	DISC(I) = DIST(12-I)	1 BR119
0398	706 SIGMAC(I) = SIGMAX(12 - I)	B. S. BRAND
0399	107071 = 12,21	1.200
0400	SIGMAC(I) = SIGMAX(I)	1 1 A 199 1
0401	707 DISC(I)=DIST(I)	1 S.20 4 8
0402	CALL NEWPLT(0.0,5.0,10.0)	いたの間でも見
0403	CALL ORIGIN(0.0,0.0)	TT AND TH
0404	CALL XSCALE(0.0,4.0,8.0)	ALL SCHOOL
0405	CALL YSCALE (-70000.0,70000.0,10.0)	ALC: STORE
10406	CALL XAXIS(0.25)	Seal Martin
0407	CALL YAXIS(5000.0)	AND DECKING
0408	CALL XYPLT(DISC,SIGMAC,21,1,-1)	
0409	IF(N-137)700,708,700	
0410	708 CALL ENDPLT	
0411	700 N=N+1	
0412	IF(CICLE-0.25)551,551,552	
0413	552 IF(CICLE-0.50)553,553,554	2月1月1日日1月1日日
0414	554 IF(CICLE-0.75)555,555,556	
0415	24 IF(J-49)16,25,25	
.0416	16 CONTINUE	Contract where
0417	483 IF(M-K7)2061,2061,2061	
0418	2061 CALL NEWPLT(9.0,5.0,18.0)	
0419	CALL ORIGIN(0.0,0.0)	
0420	CALL XSCALE(-0.0150.0.015,15.0)	
.0421	CALL YSCALE(-50000.0,50000.0,8.0)	1 1 1 2 1 3 5
0422	CALL XAXIS(0.0025) CALL XAXIS(5000.0)	TRAINE ROLLING
0423		
0424	CALL XYPLT(EXM11, XSIG11, N-1, 1, -1)	A CONTRACTOR
0425	CALL NEWPLT(9.0.5.0.18.01	The second second
0426	CALL OR IGINIO. 0, 0.01	a de la company
0427	CALL XSCALEI-0.0150.0.015,15.01	the state of the state
0428	CALL YSCALF1-50000.0,50000.0,8.0)	And the second second
0429	CALL XAXISTO 00251	12-21 - This
0430	LALL AMAID CONCEPTION	Contraction of the second

6151	and a state with the second	
0431	CALL YAXIS(5000.0)	warf?
0432	CALL XYPLT(FXM10, XSIG10, N-1, 1, -1)	
0433	CALL ENDPLT	100
0434	CALL NEWPLT(9.0,5.0,18.0)	199
0435	CALL OR IGIN(0.0,0.0)	1997
0436	CALL XSCALF(-0.0150,0.015,15.0)	1
0437	CALL YSCALE(-50000.0,50000.0,8.0)	13
0438	CALL XAXIS(0.0025)	and a
0439	CALL YAXIS(5000.0)	5.4.1
0440	CALL XYPLT(EXM20, XSIG20, N-1, 1, -1)	20
0441	CALL ENDPLT	100
0442	CALL NEWPLT(9.0,5.0,18.0)	1993
0443	CALL DRIGIN(0.0,0.0)	3
3444	CALL XSCALE(-0.0150,0.015,15.0)	1983
0445	CALL YSCALE(-50000.0,50000.0,8.0)	125
Olylak	CALL XAXIS(0.0025)	
0447	CALL YAXIS(5000.0)	25
0448	CALL XYPLT(EXM21, XSIG21, N-1, 1, -1)	
0449 -	CALLENDPLT	111
0450	2060 DO 2021 I=1,21	E.F.
0451	IF(PFLOW2(M, I)-1.0)2075,2021,2021	-
0452	2075 CONST2(I)=CONST(I)	100
0453	2021 CONTINUE	100
0420	C NEW LOADING CYCLE IS TO BE RESUMED.	28
0454	IN=N-1	100
0455	WRITE(3,465)IN	
0456	IF(M-K7)484,2046,484	100
0457	2046 N=1	
0458	K7=K2+3	
0459	484 CONTINUE	
0460	GO TO 231	
0461	25 WRITE(3,230)	
0462	201 FORMAT(7F10.6/7F10.6/7F10.6)	2.3
0463	202 FORMAT(5E10.5)	
0464	203 E02MAT(7E10,2/7E10,2/7E10,2/7E10,2/7E10,2/7E10,2/7E10,2/7E10,2/7E10,2/	
0465	222 FORMAT(//.6X. 'TIME'.5X. 'DISTANCE'.3X. 'TEMP.'.5X. 'ANITA'.	121
	15X. TOTAL FX'.7X. TOTAL FY'.7X. TOTAL F7'.8X. STGMAX'.5X.	
499.4 1600.0	1'SUMPLY',/)	
0466	226 FORMAT(4X, F6.2, 4X, F7.4, 4X, F6.2, 4X, F5.2, 4X, F12.8, 4X, F12.8,	125
	14X, F12, 8, 4X, F10, 2, 4X, F10, 71	10.
0467	520 FORMATIGY, F14, 2, 5X, F10, 2, 5X, F10, 2, 5Y, F10, 2, 5Y, F10, 2, 5Y, F12, 71	191.
0468	5/1 FURMATIOX.FL/. (.5X.FL/. (.5X.FL/. /)	125
0469	624 EDRMAIL 1, 15Y, 1××××× COOLINC CTADTC xxxxx/ /1	507
0470	457 FORMAT(/, 15X, **** CYCLE ENDS ****! /)	123
0471	230 FORMATTISX, XXXX DOFS NOT CONVERCE IN AG ITERATIONS WHILE	Ter P
0472	465 FORMAT(/,15X, *** NO. OF INCREMENTS : 1,2X,13,/1	E.L.
0473	231 CALL I STPLT	200
0474	CALL EXIT	
0475	END	525
1100 200		-

TABLE I

LIST OF PROPERTIES OF ALUMINUM 2024-T3

Temp. °F,	Time Hr.	E psi x 10 ⁶	^σ 0.7 KSl	^σ 0.85 KS1	n	μ
Room	2	10.7	39.0	36.0	11.5	0.3125
300	2	10.3	35.7	33.5	15.0	-
500	2	8.4	24.8	22.8	10.9	- (
700	2	6.4	6.2	5.5	8.2	-

Material: Aluminum Alloy 2024-T3; sheet and plate, heat treated, thickness < 0.25 inch.

- ρ 0.10 lb./in.³
- C 0.23 BTU/(1b.)(F)
- K 75.0 BTU/[(hr)(Ft) (F)]

• •

α 0.14 in./in./(F)

XIV. FIGURES

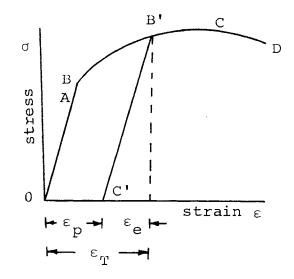


Figure 1. Conventional stress-strain curve.

Ŧ

 \hat{V}

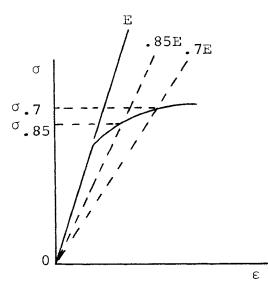


Figure 2. Stress-strain curve described by three parameters.

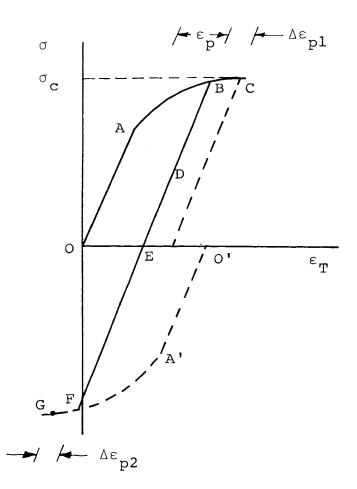


Figure 3. Behavior of materials under uniaxial stress.

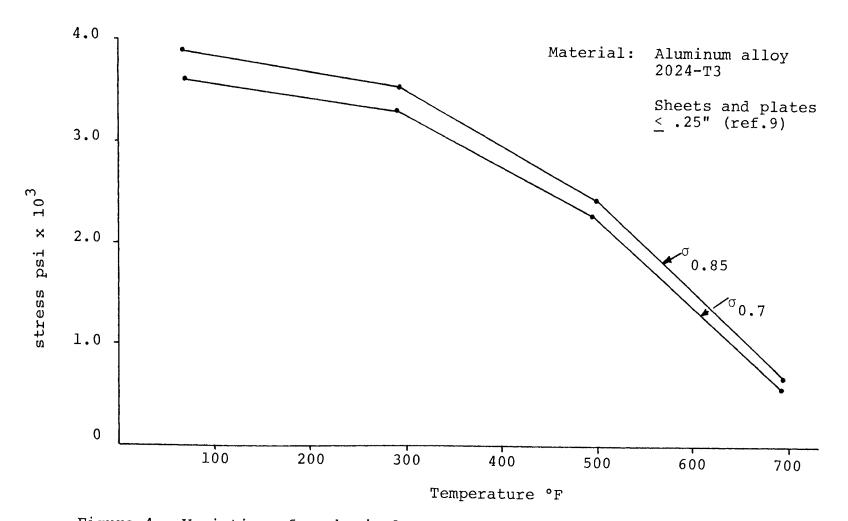


Figure 4. Variation of mechanical properties with changes in temperature.

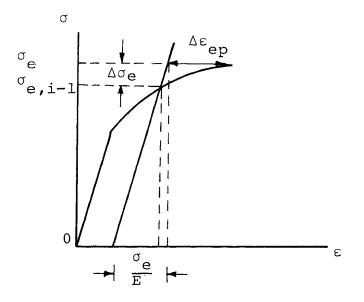


Figure 5. Relation between ε'_{et} , σ_{e} , and $\Delta \varepsilon_{ep}$.

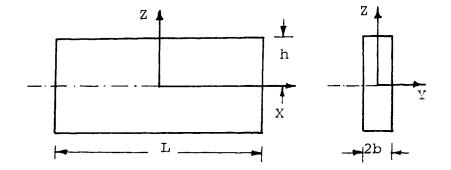


Figure 6. Beam with rectangular section.

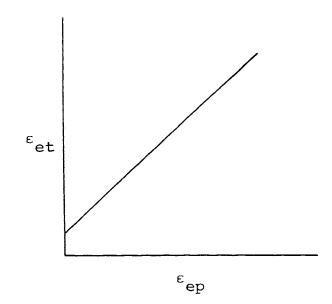


Figure 7. ϵ_{et} versus ϵ_{ep} curve.

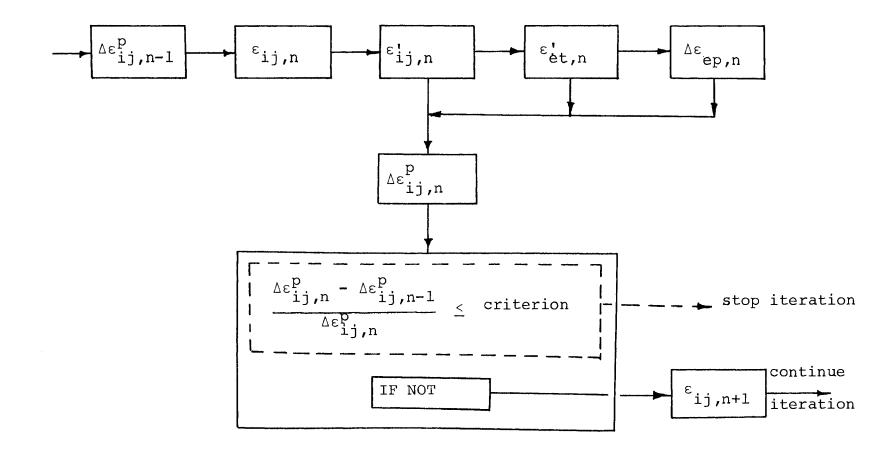
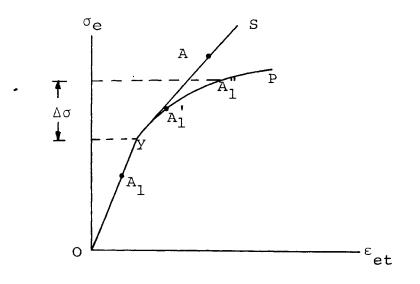
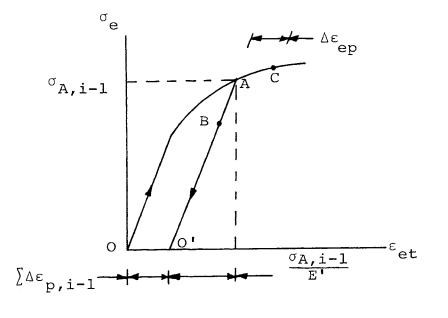




Figure 8. Flow diagram for a rapidly convergent successive approximation scheme.

(a) Effect of size of load increment

(b) Limit stress $\sigma_{A,i-1}$ for the next load increment

Figure 9. Determination of magnitude of plastic strain increment $\Delta \epsilon_{ep}$.

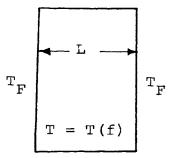


Figure 10. Model for one dimensional transient temperature distribution (faces and ends are insulated).

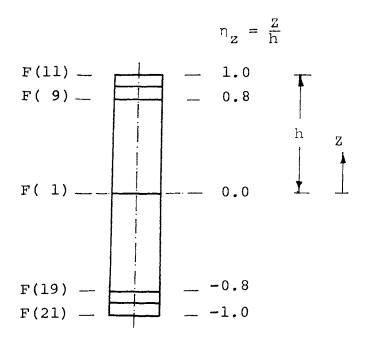
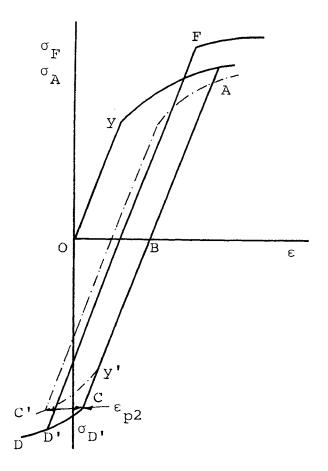



Figure 11. Model of the rectangular section with 21 stations.

----- path which may, presumably be traveled if the Bauschinger effect is considered

Figure 12. Effect of isotropic strain hardening.

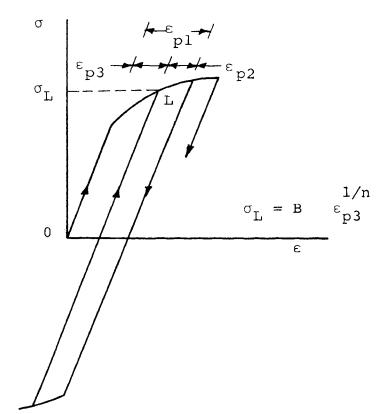
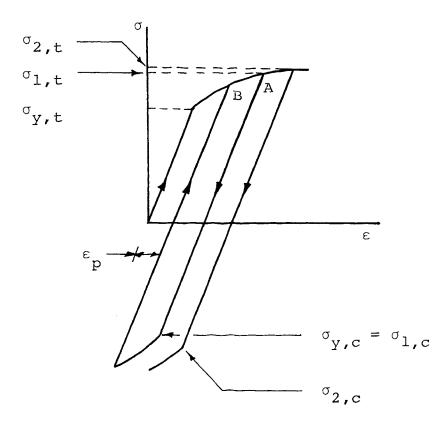



Figure 13. Limit stress for the next loading cycle; $\sigma_{\rm L} = {\rm B} ~ \epsilon_{\rm p3}^{1/n} ~ \cdot$

$$\frac{\sigma_{1,t}}{\sigma_{1,c}} = K = \text{constant}$$

$$\frac{\sigma_{2,t}}{\sigma_{2,c}} = K$$

$$\frac{\sigma_{1,t}}{\sigma_{2,c}} = K$$

$$\frac{\sigma_{2,t}}{\sigma_{2,c}} = K$$

$$\frac{1/n}{\sigma_{B}} = B \varepsilon_{p}$$

Figure 14. The simplified stress-strain curve for cyclic loading.

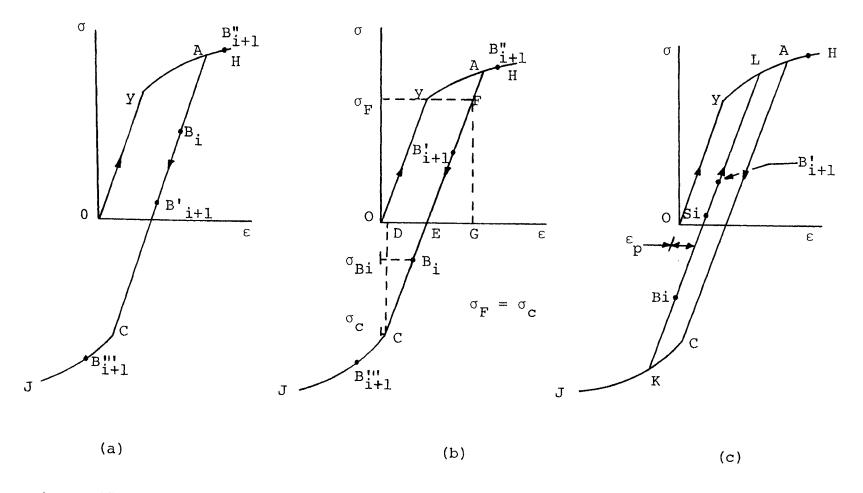


Figure 15. The size of the load increment and possible limit stresses.

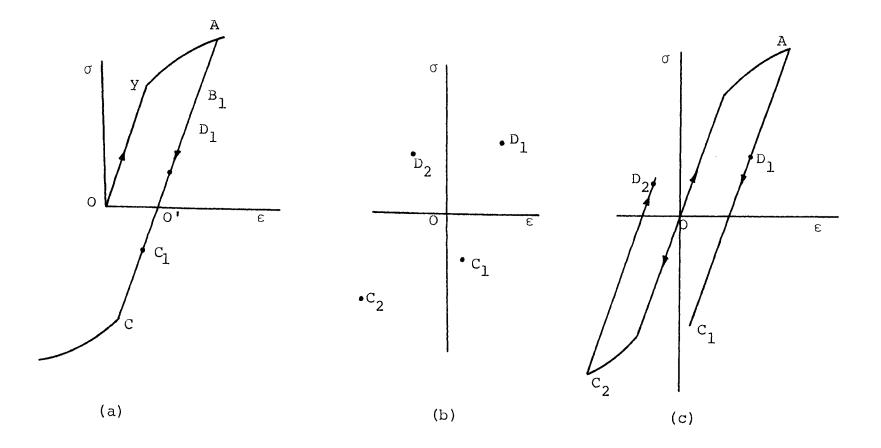


Figure 16. Importance of direction of plastic flow.

~

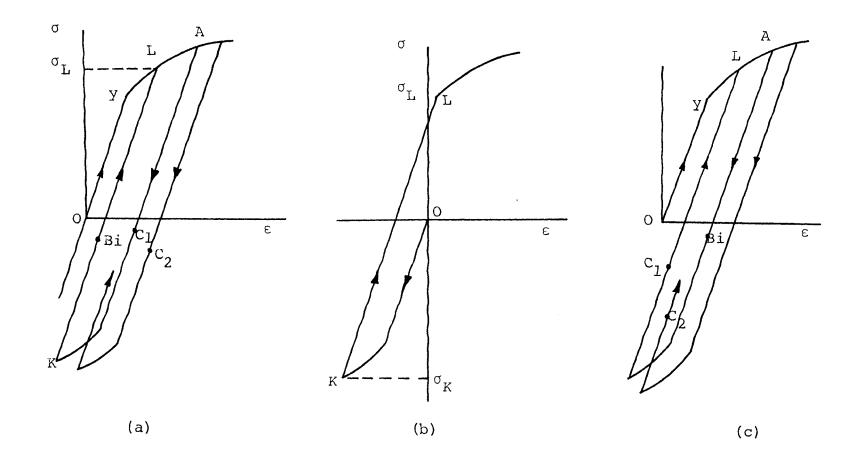
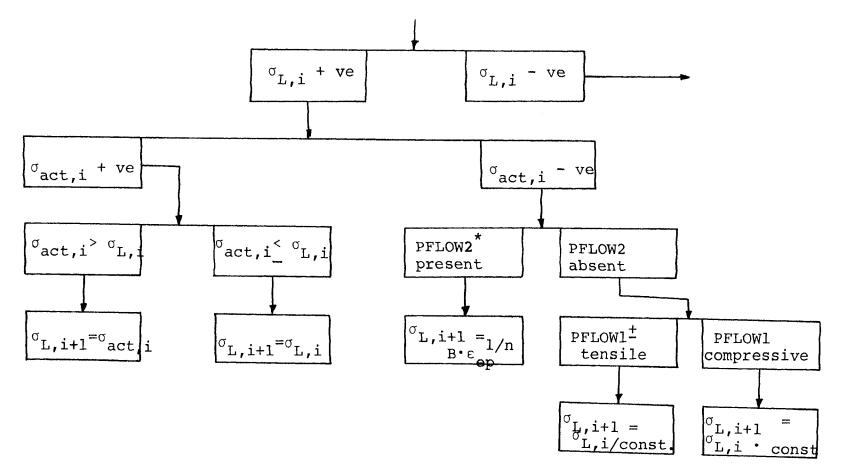



Figure 17. Determination of a limit stress for the next load increment.

Figure 18. Preliminary flow diagram to determine a limit stress for the next increment of load.

- * plastic flow in reversed direction
- + First plastic flow

|

L

1

Only to explain the basic idea. Division or multiplication by K_f has not been included. Also, effect of change in the direction of the first plastic flow has not been included. See Article XI for futher details.

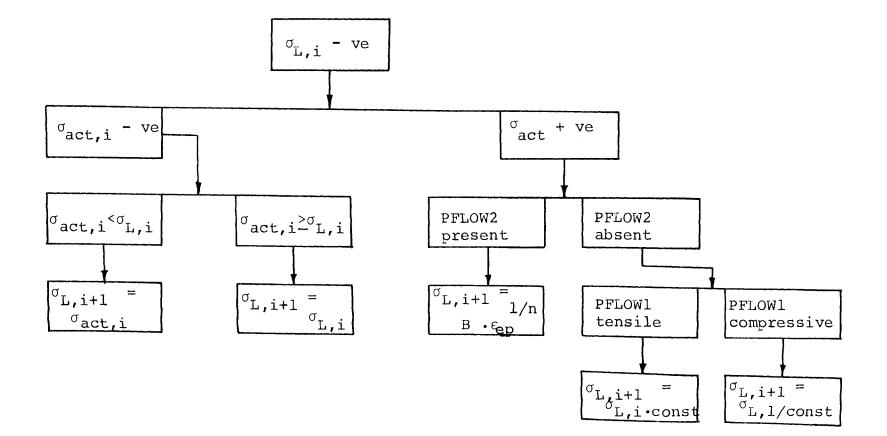


Figure 18

Figure 19. Structural behavior at different stations of the section due to cyclic thermal load.

Total cycles: 3

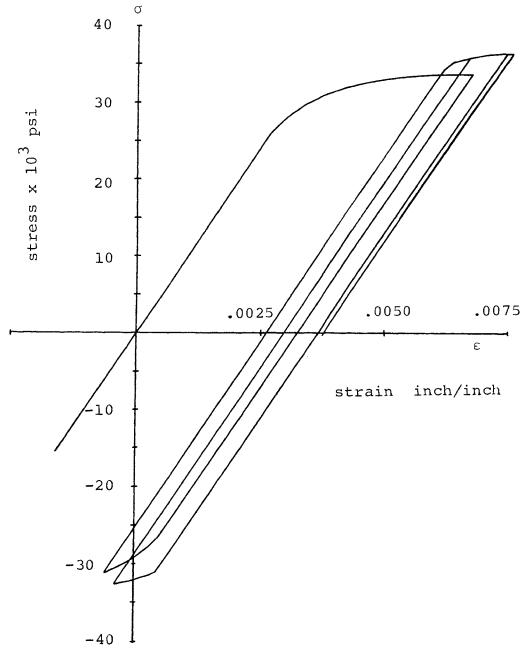
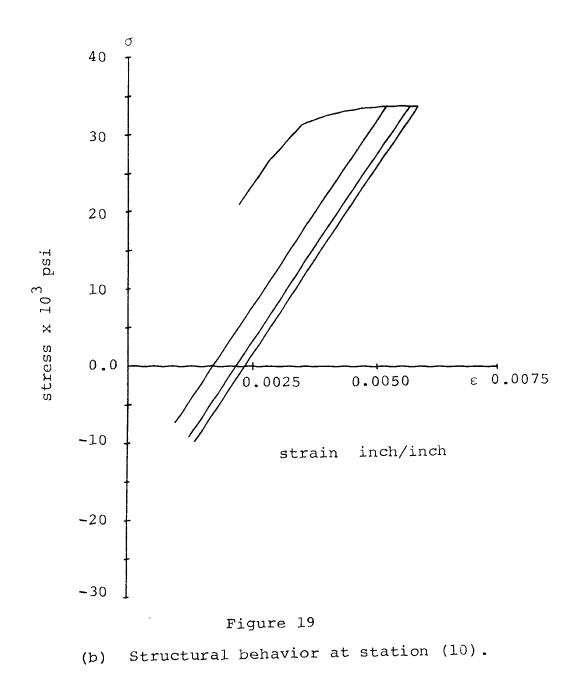
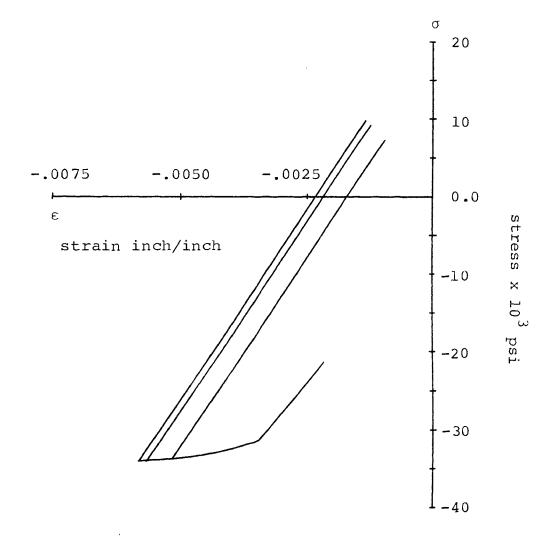
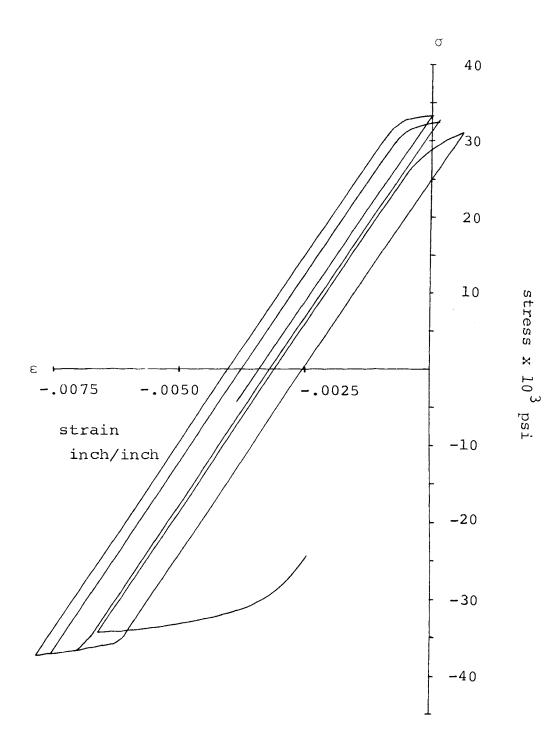




Figure 19


(a) Structural behavior at station (11).

(c) Structural behavior at station (20).

(d) Structural behavior at station (21).

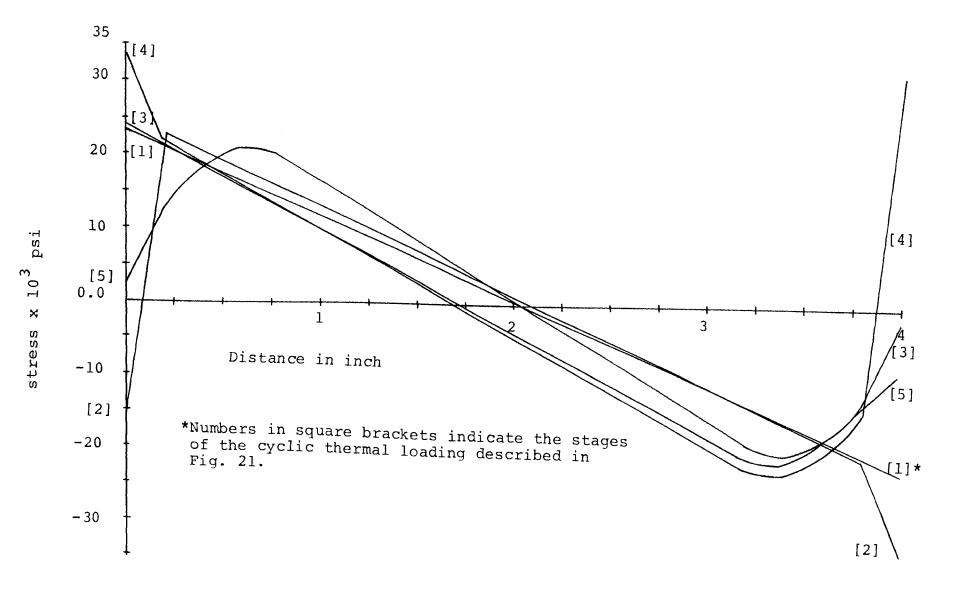


Figure 20. Stress distribution in a rectangular section due to cyclic thermal loading.

· · ·

Figure 21. Stresses in an I section due to cyclic thermal load.

A s	:	Area of the flange of an I section
А _w	:	Area of the web of an I section
σу	:	Yield stress

$$\sigma_{o} = \sigma_{y} \frac{\begin{pmatrix} A_{s} - A_{w} \\ 2 \end{pmatrix}}{\begin{pmatrix} A_{s} + A_{w} \\ -\frac{W}{6} \end{pmatrix}}$$

$$\sigma' = \sigma_{y} \frac{(A_{s} - A_{w})}{A_{s}}$$

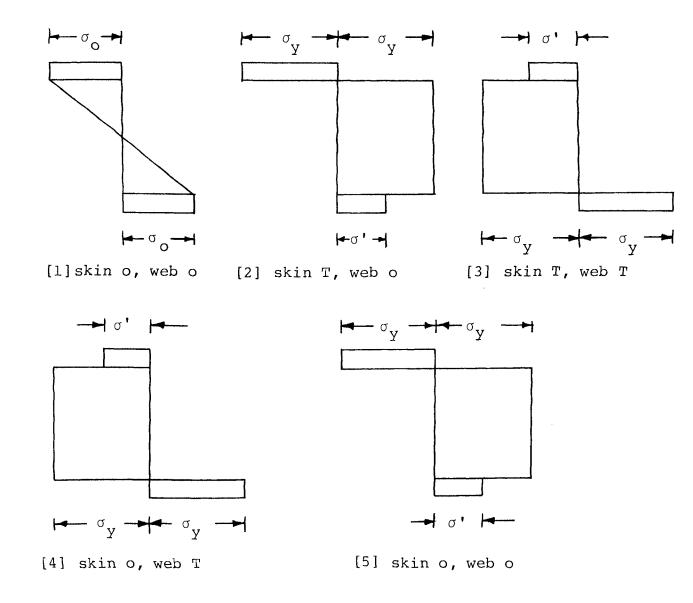


Figure 21

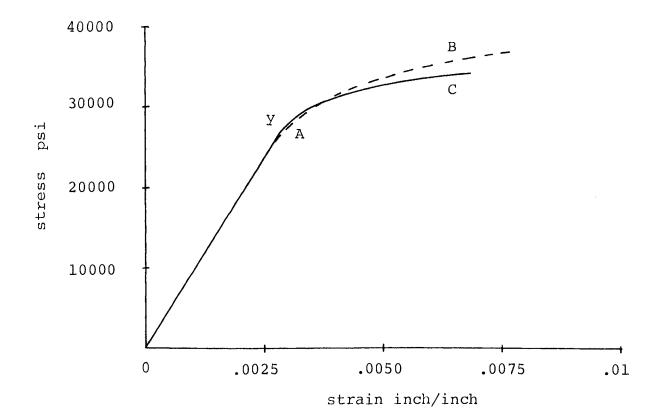


Figure 22. Error in the computation procedure.

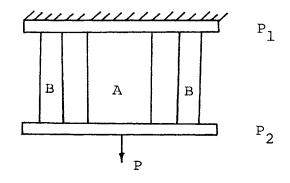


Figure 23. Two bar model.

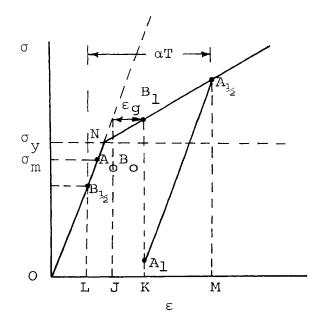


Figure 24. State of stress and strain in bars A and B at the end of the first cycle.

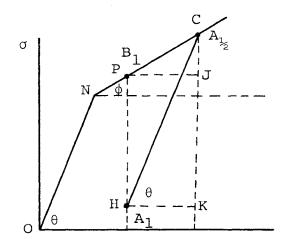


Figure 25. Relation between stresses $\sigma_{A_{\frac{1}{2}}}$ and $\sigma_{B_{\frac{1}{2}}}$.

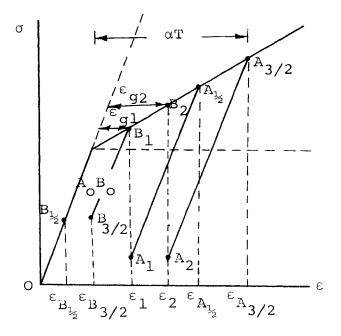


Figure 26. Growth of plastic strain in a two bar model.

.

XV . BIBLIOGRAPHY

- (1) Parkes, E.W., "A Design Philosophy for Repeated Thermal Loading," <u>Agardograph No. 213</u> (1958), Presented at AGARD Structures and Materials Panel Meeting, Copenhagen, Denmark, October, 1958.
- (2) Manson, S.S., <u>Thermal Stress and Low-Cycle Fatigue</u>, New York: McGraw-Hill Book Company, 1966.
- (3) Parkes, E.W., "Wings Under Repeated Thermal Stress," <u>Aircraft Engineering</u>, XXVI (December, 1954) 402-406.
- (4) Parkes, E.W., "Incremental Collapse Due to Thermal Stress," <u>Aircraft Engineering</u>, XXVIII (November, 1956), 395-396.
- (5) Ayers, K.B., "Behavior Patterns in I Beams Carrying a Pure Bending Moment and Subjected to a Repeated Thermal Cycle," Journal of Mechanical Engineering Science, VI, No. 4 (1954) 343-352.
- (6) Miller, D.R., "Thermal-Stress Ratchet Mechanism in Pressure Vessels," Transactions of the American Society of Mechanical Engineers: <u>Journal of</u> <u>Basic Engineering</u>, LXXXI, No. 2 (June, 1959) 190-196.
- (7) Sprague, G.H. and Huang, P.C., "Behavior of Aircraft Structures Under Thermal Stress," <u>Transactions of</u> <u>the Society of Automotive Engineers</u>, LXVI (1958) 457-465.

- (8) Ramberg and Osgood, "Description of Stress-Strain Curves of Three Parameters," <u>NACA, Tech. Note</u> <u>902</u>, 1962.
- Bruhn, E.F., <u>Analysis and Design of Flight Vehicle</u> <u>Structures</u>, Cincinnati, Tri-State Offset Company, (ed. 4) 1965.
- (10) Mendelson, Alexander, Plasticity: Theory and Application, New York: The Macmillan Company, 1968.
- (11) Lehnoff, Terry F., <u>ME451, Thermal Stresses I, Class</u> Notes, University of Missouri-Rolla, 1969.
- (12) Boley, B.A. and Weiner, J.H., <u>Theory of Thermal</u> <u>Stresses</u>, New York: John Wiley & Sons, Inc., (ed. 4) 1967.
- (13) Wells, C.H., "An Analysis of the Bauschinger Effect in Some Engineering Alloys," Transactions of the American Society of Mechanical Engineers: <u>Journal of Basic Engineering</u>, (December, 1967) 893-896.
- (14) Conte, S.D., <u>Elementary Numerical Analysis</u>, New York, McGraw-Hill Book Company, 1965.

XVI. VITA

Hazariwala Rameshchandra Chandulal was born on May 20, 1942, at Mandvi, District Surat, Gujarat State, India.

He graduated from Tapidas and Tulsidas Verajdas Sarvajanik High School, Surat, India in 1959. He received the B.S. degree in Mechanical Engineering, with distinction, from the Gujarat University, Ahmedabad, India, in 1964.

From December, 1964, until August, 1966, he was an Associate Lecturer in Mechanical Engineering at Sardar Vallabhbhai Regional College of Engineering and Technology, Surat, India. Between September, 1966, and June, 1967, he worked as an Assistant Engineer in the project and planning department of Atul Products Ltd., Atul, India. From June, 1967, to May, 1968, he worked with Friedrich Uhde Gmbh (West Germany) as a Mechanical Engineer on the erection of a fluorocarbon plant in Bhestan, India.

He married Ranjula Mohanlal Master on May 19, 1967.

In September, 1968, he enrolled in the University of Missouri at Rolla, for work toward the Master's Degree in Mechanical Engineering.