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ABSTRACT 

It is an accepted fact that the simple Haxwell and 

Voigt models do not usually represent the behavior of real 

materials. In order to make the results of a model more 

realisitic, other combinations of springs and dashpots 

must be considered. To understand the more complicated 

models, it is desirable to have a knowledge of the Haxwell 

model since this element usually occurs either in series 

or in parallel in the advanced models. 

This investigation reports solutions of the spherical 

Have equation in both the elastic and viscoelastic media. 

Laplace transform techniques are used to obtain the para

meters: stress, velocity, and acceleration for the Maxwell 

solid and velocity, acceleration, displacement, stress, 

and strain for the elastic solid. The delta pressure pulse 

was chosen because of its simple transform (unity) and be

cause the solution for any other pressure pulse can be ob

tained by convolution. Simpson integration was performed 

to obtain the numerical data. 



TABLE OF CONTENTS 

ABSTR.A..CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 
PAGE 
ii 

iii 

LIST OF FIGURES....................................... v 

LIST OF SY~1BOLS ...................................... . vi 

CHAPTER 

I. INTRODUCTION.................................... 1 

I I. FUNDAI\!ENTAL CONSIDERATIONS AND THE I'-1AXWELL 

!v!ODEL. . . . . . • . . • . . . • . • . . . . . . . . . . . . . . . . . . . . . . 3 

i'·1axive 11 ]\1ode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

Method of Solution.............................. 4 

Unit Step Function............ . . . . . . . . . . . . . . . . . . 5 

De 1 ta Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

III. THE ANALYSIS OF STRESS, VELOCITY AND ACCELERA-

T ION OF THE SPHERICAL MAXWELL ?'.!ODEL lVITH 

DELTA PRESSURE PULSE....................... 7 

Acceleration.................................... 8 

V8locity........................................ 12 

Stress.......................................... 17 

Numerical Computations.......................... 19 

Discussion of Results........................... 19 

IV. SUMMARY AND CONCLUSIONS......................... 25 

BIBLIOGRAPHY ..•............•.. ··.··············•····. 27 



APPENDIX A. SOLUTIONS OF TilE SPHER!CAL WAVE EQUA

TION IN AN ELASTIC MEDIUM WITH A DIRAC 

DELTA PRESSURE PULSE. . . . . . . . . . . . . . . . . . . . 2 9 

ft .? PEND IX B. TRANSFORMED VISCOELASTIC OPERATORS. . . . . . 35 

APPENDIX C. THE EVALUATION OF A LIHIT IN THE MAX-

WELL SPHERICAL ANALYSIS................. 37 

APPENDIX D. AN APPLICATION OF THE SIFTING PROPERTY 

OF THE DIRAC DELTA FUNCTION l\!ITH A NON-

LINEAR ARGUMENT................. . . . . . . . . 40 

VITA................................................. 43 

iv 



v 

LIST OF FIGURES 

fiGURE PAGE 

1. Norm a 1 i zed s t res s a ' ( r ~ t) == a ( r ~ t) I p 0 r 0 c 2 

for o (t) forcing function for J·.lanvell spheri-

cal wave.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

7 .... . Normalized particle velocity v' (r,t) = 

(12/r 0 p 0 c 2 ) v(r,t) for o(t) forcing func tion 

for Maxwell spherical wave..................... 23 

3. Normalized acce l eration a' (r,t) = 3]..1/r 0 p 0 c 2 ) 

a(r,t) for 6( t) forcing function for Maxwell 

spherical ,.,rave.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 



u(r,t) 

r 

p 

c 

a(r,t) 

r 
0 

p 
0 

R 

E 

n 

w 
0 

y 

Io(z) 

0 ( t) 

H(t) 

v(r,t) 

E(r,t) 

a(r,t) 

LIST OF SY!,!BOLS 

displacement :5,n the rad:Lal d1rcct~_on 

radial direction 

density of the medium 

Lame's constant (elastic) 

elastic shear modulus 

displacen:ent potential (u = il_!) ar 
dilatational wave velocity (c = 

normal radial stress 

cavity radius 

constant 

(r-r
0 

)/c 

elastic spring constant (Young's modulus) 

coefficient of viscosity 

E/n 

·poisson's ratio (constant) 

Vl 

zero order modified Bessel funct~on of first 
kind 

first order modified Bessel function of first 
kind 

Dirac delta function 

unit step function 

particle velocity 

strain 

acceleration 



s 

t 

Van der Pol's symbol 

Laplace transform variab le 

time 

transformed expresssion for the quantity 
over which the bar appears 

vii 



CHAPTER I 

INTRODUCTION 

The problem of stress-wave propagation from a spher

ical source has been investigated extensively in the last 

three decades by such authors as Sharpe (1), Lockett (2), 

and Blake (3). The early solutions were, 1n general, ei

ther valid only for an elastic medium, or were asymptotic 

solutions which made contributions only for large times 

after the pressure pulse was applied. In 1964, Lee (4) 

extended the spherical analysis in the viscoelastic med

ium by reporting closed form solutions to the propagation 

of spherical waves from an internal source and also to 

1 

the transient response of a viscoelastic medium to a pres

sure pulse. His work exhibited the damping effect of the 

medium and the influence at relatively short time inter

vals and distances. Berry (5) solved for displacement re

sulting from spherical waves in a Maxwell medium without 

recourse to a potential function. He assumed a Dirac delta 

pressure pulse. His method of solution was a Laplace trans

form technique which involved the same inversion formula 

(equation 3-1) as used in this paper to find stress, accel-

eration and velocity. 

available. 

No comparison between results are 

The simplicity and case of obtaining the transform so-

lution should not lull the reader into a false feeling 
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that the solution is readily tractable. In . general, for 

even the simplest problems of viscoelasticity, transform

ed solutions arise for which inverse functions are at pres

ent not tabulated in even the most advanced tables. It ·is 

possible, however, at least in theory, to apply the inver

sion integral and by suitably choosing the contour, perform 

an integration. 

This barrier of not being able to find the inverse 

function can be partly overcome by resorting to numerical 

techniques. Doetsch (6) discusses a method which involves 

the selection of a certain parameter. At present, no way 

has been found to optimize it. As a result, selecting an 

arbitrary value of the parameter may yield a valid expres

sion, but one which has no immediate value due to the fact 

that more accuracy will be needed for convergence of the 

solution than can be carried on conventional computers. 

Bellman (7) reduced the limits of the Laplace integral 

to the finite interval (0,1) and used Legendre polynominals 

1n an attempt to approximate the unknown function. The pro

cedure involved solving a system of equations. As the num

ber of equations increased, it was found that the solution 

was not stable. 
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CHAPTER II 

FUND.fu\1ENTAL CONSIDERATIONS AND THE MAXWELL HODEL 

MAXWELL MODEL 

The basic elements in any linear viscoelastic model 

are elastic springs and viscous dashpots. Different com-

binations of these elements arranged in such a manner as 

to produce no degenerate effects (e.g., two springs in se-

ries can be replaced by an equivalent spring) constitute 

the basic models. The proposed Maxwell model consists of 

an elastic and viscous element in series and will be refer-

red to as a Maxwell element. Schematically, the Maxwell 

element is represented as 

E 

----IJ-· 
where the nomenclature is 

E = modulus of elasticity of the 
spr1ng 

n = viscosity of the dashpot 

Thi stress (o) across both elements is the same, and 

the strain (E) is the sum of the strains of the two ele

ments. The stress-strain relationship of the ~IaxHell ele-

ment can be written as 
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(E + __ a )o 
n ot (2-1) 

METHOD OF SOLUTION 

Problems in linear viscoelasticity can be reduced 

to solving the same problem by elastic analysis and 

applying the correspondence principal (Bland -8) to ob-

tain the viscoelastic solution. This procedure is tail-

ored to fit into the field of transform calculus. This 

paper will make use of the one-sided Laplace transforma-

tion defined for an arbitrary piece-wise continuous, ex-

ponential order function f(t) as follows 

00 

L(f(t)) = J f(t)e-stdt = f(s) 
0 

(2-2) 

Using van der Pol's notation, a symbol ~which con-

nects the transform plane with the time plane, an opera-

tion in the transformed plane can be dir e ctly related to 

the corresponding operation in the time plane. This is 

best seen by replacing the·v a ri able in the transform pla11e 

by some constant times the variabl e (Doetsch- 9). In van 

der Pol's notation, this would appear as 

f(as) (a>O) (2-3) 



UNIT STEP FUNCTION 

The unit step function is a discontinuous function 

which first appears to have been introduced into the 

literature by Heaviside, although it was known at an 

earlier time by Cauchy. The value of the unit step func-

tion at the point of discontinuity varies depending upon 

the author. Since the point of discontinuity is irrele -

vant to the calculation of the Laplace integral, it may 
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be convenient for the function to have the value zero, one, 

or one-half at this point. Throughout this paper, the 

unit step function will be defined as 

0 ( t < t ) 
0 

H(t-t )= 
1 · 

( t = t ) (2- 4) 
0 2 0 

1 (t>t ) 
0 

The Laplace transform of the unit step function 1s found 

to be 

L {H(t-t
0

)} 

oo t co -st - s t e 
= jHCt-t

0
)e dt = Je-s dt = 

5 
° 

0 t 
0 

(2- 5) 

DELTA FUNCTION 

The Dirac delta function is defined as the derivative 

of the unit step function. It is apparent that this deri-

vative will be zero everywhere except at the point of dis-



continuity at which point the derivative is not defined. 

Approximating the unit step function by a continuous 

function, it is found that the derivative has an infinite 

value at the point of discontinuity. (The assumption 

here is that the limit and derivative operation may be 

interchanged). It follows that 

t :;i: t 
o(t-t ) = 0 

6 

l 00

0 

0 t - t 
0 

(2-6) 

with the additional property 

00 

JoCt-t
0
)dt = 1 

-co 

The Laplace transform of the delta function is 

L = 

co 

JoCt-t
0
)e-stdt = 

0 

-st e o 

( 2- 7) 
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CIIAPTER III 

THE ANALYSIS OF STRESS , VELOCITY, A~D ACCELERXl'ION OF 

THE SPHERICAL ~1AXWELL }10 DEL \\'ITH DELTA PRESSURE PULSE 

In solving for the acce leration, velocity, o.nd stress 

of the ~·lo.Xlve ll spherical wave with delta pressure pulse, 

use is made of the correspondence principle wl1ich relates 

the elastic solution to the viscoelastic so luti on . This 

method involves replo.cing the clastic parameter s in the 

transform plane by their corre s ponding viscoelastic para -

meters. In general , difficulty is experienced in trying 

to invc1·t the viscoelastic solu ti on into the physical 

plane. The method of series has been s uccessfully used 

by Clark, Rupert and Jamison (10). Convolution integrals 

have also been used extensively. It has been found that 

a particular inversion formula used by Berry (S) is appli-

cable to the form of the ~1axwell spherical equation. This 

formula is 

at t 

e- 2 [ f (t} + ~ J f({t~)I 
1 

<}ill dB] ·. f (Is (s+;;)) (3-1) 

0 

where a is a real non-negative constant, and S is a dummy 

variable of integration. 

In order to find the viscoelastic transform of the dis-

placement potential, substitute equations (B-4), (B-7) and (B-10) 



into the elastic transform equation (A-21) to arrive at 

r<t>(r,t)-
..:p r 

0 0 

Equation (3-2) can be put in the form 

r <j> (r,t) 

where 

ACCELERATION 

-P r c 2 s(s+w ) 
0 0 0 -----

3l1 2 s 

c 
0 

4c 
cl -~ ·3r 

0 

e x p( -Ris (s+w ) ) 
0 

8 

(3-2) 

(3-3) 

Multiplying the transform by s 2 has the effect of 

taking the second derivative in the time plane (Doetsch -11). 

The result is a function of ls(s+w ) : 
0 



where 

f(.,ls(s+w )) = 
0 

From equation (3-5) 

f (t) 
2 - Rs 

. .s e 

.s 2 + c l s 

-P r c 2 
0 0 .; 

3 
f( s(s+w )) 

).1 . 0 

2 
(/s(s+w )) . exp(-R/s(s+w )) 
. 0 0 

[c.; s ( s + w 0) ) 
2 

+ c l.; s ( s + w 0) + c a] 

+ c 
0 

== e-Rs [1-
52 

Iquation (3-6) can be inverted (Erdclyi -12) to give 

cl 

9 

(3-4) 

(3-5) 

(3-6) 

f(t) == o(t-R)-H(t-R)e 
2 

c 1 
-- (t-R) [ 

cos D(t-R) + A sin D(t-R~ 

where 
( 3- 7) 

D == {co - c2 
l 

4 

c2 
1 

Co - 2 
A = D 



By the use of equation (3-1) with a = w 

X [ c1 cos 

w 
0 +-
2 

- P r c 2 
0 0 

D(t-R) + A 

t 

0 

w t 
--- ----( t-R) 

e 2 
o(t-R) - e 2 

0 [ c l 

sin D(t-R)JIII(t-R) 

c l 

I jo(/t2-S2-R) 
--( /t2- 13 2- R) 

- e 2 I l ( /tT~s-2 - R ) 

0 

From appendix (D), o(lt-2-B2-R) and IJ(/t2:s2-R) can be 

linearized and the sifting property of the delta func-

tion can be applied to the integral in equation (3-8) to 

obtain (t>R) 

- P r c 2 
~ ( ) __ o_Q__ e 

rat2 r,t = 3~ 

c 

w t 
0 

2 

w w 
__sl_R I 1 ( ~/t 2- R i) 

__ 2 ___ 2 ____ _ 

- e 

1 
---(t-R) 

2 
[cl cos D(t-R) + A sin 

t cl 
w 

f 
- -(z-R) 

[cl 
0 e 2 cos D(z-R) 

2 

R w 

D(z-R)J 

z I 1 ( _Q_/ t 2 - z 2 ) 

+ A sin 
2 dz 

lt2-z2 

D(t-R)J 

10 

( 3- 8) 

(3-9) 



The acceleration can be obtained from equation (3-9) by 

noting that 

d 
ar 

a 2 
atT u(r,t) = a(r,t) 

11 

d 
The application of ar to equation (3-9) by Leibniz's rule 

(Churchill -13) yields upon collecting terms (t>R) 

a(r ,t) = H(t-R) e 

w t 
0 

--2-
sln 

t cl 

D(t-R) 

(3-10) 

+ 
w 

0 

2 r -2 (z-R) 
e [cc 1 - rN) cos D(z-R) 

+ (A-rm) 

where 

and 

sin D(z-R)J 

~R 

w 
zi 1 (

2
° lt2-z2) 

d z + 
lt2-z2 

2 

w 
w I 1 ( _Q_I t 2- R 2) 

0 2 

lt2-R2 

+ ~c(l + c,R) - ~]- 4c(t2-R2) 

Ac 1 Dc 1 
H = 2c + c 

cl2 
AD 

N = - --
2c c 

(3-11) 



VELOCITY 

From the definition of displacement potential ¢, 

equation (A-2), it follows that 

u(r,t) = ~(r,t) -
P r c 2 

0 0 

-Ris (s+w ) 
(s+w )e 0 

0 

X _rl2 + o 
[ 

ls(s+w ) ] 

cr 

12 

Using the s multiplying property (Doetsch -11) results in 

v(r,t) = 

Using the same procedure as 1n the acceleration, equation 

(3-13) can be written as 

v(r,t) 

+ w f(ls(s+w ))] 
0 0 

(3-12) 

(3-13) 

(3-14) 



where 

exp ( -Ris (s+w0 )) 

f(ls(s+ w0 ) ::::: ~---------------
[cls(s+ w0))2 + c1 s(s+w0 ) + co] 

Is (s+w0 ) J 
cr 

13 

l~rom equation (3-1), and the properties of the delta func-

tion of appendix (D), equation (3-15) becomes 

f(ls(s+w0)) · e 
2 

H(t-R) [r2 cos 1'-1(t-R) + P sin f\1( t-r) J e-N(t-R) 
cr 3 

where 

Wo 
+-

2 
-N ( z-R) [ 2 ] e . r cos 1'-l(z-R) + P sin H(z-R) 

dz 

cl 
N ::::: 

2 

cr - Nr2 
p ::::: 

M 

(3-15) 

(3-16) 
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Noting 

00 

L { F I (t) H(t-R) } = 1 H(t-R) F'(t)e-st dt 
0 

= !00 00 

F' (t)e-st dt -st F(t) = e 
R R 

+ s foo H(t-R) F(t)e-st dt = -e-R5 F(R) 
0 

+ sL { H(t-R) F(t)} (3-17) 

it follows that 

L{F'(t) H(t-R) + F(R) c(t-R)} = sL{F(t)H(t-R)} 

The F (R) term in eq.ua tion ( 3-18) must he in tcrpre ted as 

F(R+) and not the functional value since the introduction 

of the term H(t-R) makes the product a discontinuous func-

tion. 

From equation (3-16) 

w0 R 
e- -2-

cr 

(3-18) 



Thus, taking ~t of equation (i- 16) results in 

w R 
0 

2 
a f (r,t) e o (t-R) 

+ -------"--'-------"-
at cr 

sf(ls (s+w ) ) 
0 

15 

In applying Leibnitz's rule to equation (3-16), the method 

(3-19) 

of appendix (C) mus t be used. The partial derivative is (t>R) 

af( r,t) = 1 
at cr 3 H(t-R) exp (- ~ t+ N R) [(MP-I;r 2 ) cos M(t-R) 

w 2 w t ft 
sin M(t-R)J -+ exp(-+) exp (-N(z-R)) 

x[r 2 cos ~1 ( z- R) + P 

R 
w 

] 

zi 1 ( 2°/t2-z2) dz 
sin 11-t(z-R) 

/t2-z2 

w 
0 

+ ---
2 

w t - ~ [ 
ex p ( -- ~ ) j e X p ( - N ( Z - R ) ) r 2 c o s ~1 ( z - R) 

R 

+ P sin ~1 ( z- R) J 

+ 

w 2 
0 

8 

w0 t [ t exp(--
2

- _ -N(t-R)) r 2 cos H(t-R) + P sin (3-20) 



where 

cr - Nr2 
p = __ tv_! __ 

S·...1bstituting equations (3-16), (3-18), and (3-20) into 

equation (3-14), and collecting terms, it follows that 

(t>R) 

cr
0

P
0 

[ [ ] [ v(r, t) = 
3
]Jrz exp (NR-i;t) U·1P-r,r2 + 1u 0 J.'

2) cos M(t-r) 

+ (Pw -Nr"- !;P) sin M (t -R) J + w; 
2 

t [ exp (NR- l; t) J [ r 2 cos H( t - R) 

16 

+ P sin M(t-R) ] 
w0 

Wo Jt [ 
H t- + 2 exp - -2 ( R) ( ) 

R 
exp( - N(z-R)) r 2 cos M(z-R) 

+ P sin ~1(z-R) J 

(3-21) 
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STRESS 

From equation (A-7), the normal radial elastic stress 

l_S 

Taking the Laplace transform of equation (3-22), and us1ng 

equations (B-7) and (A-2), yields 

o (r, t) (~) - s+w 
0 

[
3 <l

2 t + ~ ~] 
()r2 r <lr 

Inserting the first and second derivatives of equation (3-3) 

into equation (3-23) gives the transformed stress as 

o(r,t) _ exp(-Ris(s+w )) l 4 - p 0 r~c2 - _________ ___::o ______ J_ 3rT + 

[
s(s+w ) + c 1 /s(s+w ) + c 

0 0 0 

+ 3 4 2-/ s ( s + w ) r c o 
+ 

s (s+w ) 
0 

(3-22) 

(3-23) 

(3-24) 



After some calculations, it follows that (t>R) 

where 

a(r,t) 
P 2 oroc 

w0 t 
= exp (- -

2
- ) 

x[{exp (-J(t-r)) [M cos V(t-R) 

Wo 

+ Q sin V(t-R)] 

Bw0 RI 1 (~ /t2 -R2 

+ -4- ) } H(t-R) 

exp(-·J(z-R)) [ M cos V(z-R) 

+ Q sin V(z-R) ] -
z r_I_C ~2_1_t_z --z_z ) d z Wo ] 

/t2-z2 

4 cl 
M = ---

3r2c rc2 

4 Co 
p = ---

3r3 rc2 

c 
J =_l 

2 

Q 
P-JM = -v 

y2 8c2 
= 

9r2 

18 

(3- 25) 



NUMERICAL COMPUTATIONS 

The non-elementary integrands of the normalized para

meters stress, velocity, and acceleration necessitated the 

19 

use of numerical methods in obtaining the data for the graphs 

of Figures 1, 2, and 3. The computations were performed on 

an IBM 360 computer. Simpson integration was used with ac

curacy of 10- 3 . This tolerance sufficed for the purpose of 

obtaining graphical data and reducing the tremendous machine 

time required to integrate the above parameters. 

The constants r 0 , w0 , and c were assigned the values 

Y 0 ~ SO ft 

w0 = 600 

c = 20,000 ft/sec 

The radial distance variable was incremented in multi-

ples of twenty-five starting with an initial value of seven

ty-five feet. After each radial increment, the time para-

meter was varied over the range of the arrival time to thir-

ty milliseconds in increments of one millisecond. 

DISCUSSION OF RESULTS 

In all of the viscoelast~c solutions obtained in this 

paper, ~1e values of the parameters were infinite (contained 

delta functions) at the time of arrival of the wave. The 

clastic solutions did not contain the delta function due to 

the initial conditions on the transform of the elastic wave 
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equation. The delta functions and their derivatives (non-

zero only at the arrival time) were omitted from the solu-

tions since only time greater than the arrival time was con-

sidered. 

The infinite value of the parameters at the arrival time 

of the wave can best be understood by considering the behavior 

of the Maxwell model when it is instantaneously subject to an 

infinite stress. The viscous element acts as a rigid member 

since it requires a finite time to respond. As a result, 

the elastic element alone is responsible for the initial re-

sponse (infinite). 

The data plotted in Figures 1, 2, and 3 in the vicinity 

of the arrival time do not represent the actual limiting val-

ues, but values which are obtained from the next integral val-

ue of time after the arrival time. The limiting values can 

be obtained from either the elastic or viscoelastic solutions. 

The particle velocity (Fig. 2) takes on a positive value 

imntediately after the arrival of the wave front, decreases 

rapidly to zero, changes direction and oscillates about the 

zero state to eventually approach zero velocity from the posi-

tive side. 

The particle acceleration, by nature of its definition 

av 
a t ' 

is the slope of the velocity curve. This relationship 



between velocity and acceleration is illustrated in Fig. 

2 and 3 by the fact that the acceleration is zero at maxi

mum and rn1n1mum points of the velocity. 

21 

The stress (Fi gure 1) decays rapidly for short periods 

of time and approaches the zero state without oscillation. 
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CHAPTER IV 

SU?>H,fARY AND CO~CLUS IONS 

The purpose of this paper , .. ,as to obtain ;Jnd analyze 

solutions in closed form for the parameters stress, veloc

ity, and acceleration of the Maxwell solid. As has been 

in d i c a t e d s eve r a 1 t i me s , the Max'" e 11 m o de 1 do c s no t s u f -

ficiently represent real behavior. It appears that a com-

bination of at least three or more basic clements must be 

used since the Maxwell element repre se nts stress rclaxa -

tion and the Voigt mode l alone represe nts rctarJcd defer-

mation. 

The delta forcing function docs not represent a real-

istic pressure function which would closely approximate 

observed real wave phenomena due to the instantaneous 

rise and fall time. It was chosen because of its simple 

transform and integral properties. The solution for any 

other pressure function can be obta.ined from the delta 

solution by convolution. The operation of convolution 1n-

25 

traduces an integration which, in general, must be rcrform-

ed by numerical methods since non-el ementary functions arc 

usually involved. 

As is expected, the addition of more clements into 

the model greatly increased the complexity of the function 

whose inverse is desired. It may be that the 
. . 
ll1VCrS1011 

formula (eq. 3-1) used in the 01aX\vell sphcricll mode l can 
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be applied to more complicated models, say, the Burger model. 

In general, the viscoelastic transform involves square roots 

~ltich hinder the inversion. Since the solution for only the 

simplest models can be found from tabulated inverse trans

form pnirs, other techniques should be at the disposal of 

the investigator. A knowledge of contour integration and 

complex function theory can be used to obtain a solution 

from the inversion integral. Also, expanding a function 1n 

a poh'er series and inverting term by term has been used with 

s uccess. 
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APPENDIX A 

SOLUTIONS OF THE SPHERICAL NAVE EQUATION 

IN AN ELASTIC MEDIUM WITH A DIRJ\C DELTA 

PRESSURE PULSE 

From Bland (14), the basic equation for a spherical 

elastic wave with normal impact on the boundary of a 

spherical cavity in an infinite medium is found to be 

The displacement potential ¢ 1s defined as 

u = ~ ar 

Equation (A-1) has the form 

a [au 
ar Lar 

2 u] = 1 
+ r c2 

From equation (A-2) 

au = ~ 
ar ar 

and, from equation (A-3) 

[ ~ + 
C'lr 

1 
CT 

29 

(A-1) 

(A- 2) 

(A- 3) 

(;\- 4) 

(A- 5) 



I t f o 11 o '" s t h a. t the s ph e r i c a 1 \v a v '.:! e x p r e s s e d i n t c r m s 

of the displacement potential becomes 

From Bland (14) the normal radial stress o 1s 

0 = (>.+2)1) 
au 
- + ar 2>.~ 

r 

The imposed boundary conditions are 

~ ~ = +(] = 
r ar 

d 
a-tCr<l>) = 0 

r<J> = 0 

lim (r<j>) = 0 

-P o (t) 
0 

r=r 
0 

t>() 

r>r 
0 

t=O 

r>r 
0 

t := 0 

Assuming that the system is initially in an unp-r c turbed 

state allows for the following initial conditions 

30 

(A-6) 

( A-7) 

(A-8) 

(A-9) 

(A -10) 

(A -11) 



u(r,O) = 0 

v(r,O) = 0 

s(r,O) = 0 

cr(r,O) = 0 

,,... k. 1a·1ng the Laplace Transform 

r>r 
0 

of equation (A-6) . yields 

_ (3(r p )) J 
3t t=O 

Applying equations (A-9) and (A - 10) to equation (A-16) 
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(A -12) 

(A-13) 

(A -14) 

(A-15) 

(A-16) 

produces the second order ordinary differential equation 

which has a solution of the form 

r ~ = A(s) 

s 
--r 

e c + B(s) 

s 
--r 

e c 

The application of the Laplace Transform 

(A- R) and (A -11) r equires that B (s) = 0 

( ::\ +Zll) d 2 i + 
2>. d~ = -P. --· --

b dr 2 r dr 

(A -17) 

(A -18) 

to equations 

and 

r=r (A -19) 
0 
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When equation (A-18), with B=O, is substituted into equa

tion (A-19), with~=~, the unknown function A(s) is found 

to be 

A (s) = 
-P r c 2 

0 0 

3ll 
e 

r s 
0 

c 

_52 + 4cs 
~+ 

0 

(A- 2 0) 

Inserting equation (A-20) into equation (A-18) results 

in the transformed elastic spherical wave equation for 

the displacement potential with delta pulse. Equation 

(A-18) then becomes 

rq> = 
-P r c 2 

0 0 

3u 

Solving equation (A-21) for ¢ and finding ~~ results 1n 

~ = u(r,s) = ar 

P c2r 
0 0 

3]1 

!3s + D 
s2 + c _ s + c 

l 0 

-Rs e 

(A- 21) 

(A-22) 



where 

R := 
r-r 

0 

c 

4c 2 
co = 3:r2· 

0 

4c 
c l ;:: 

3r 
0 

B 
1 

;:: 

cr 

D 
.I 

;:: 

r2 

t.t 2 = c 
0 

cl2 

4 

It can be shown that equation (A- 2 2) 
, 
n;l s 

u(r,t) ;:: 
P r c 2 
. 0 0 

3]1 
c o s 1·1 ( t - R ) + 

From equation (A- 2 3) it follows that for 

c 1 (t-R) 
p r c2 --2 

[co-Bell v(r,t) 
0 0 = e 

3]1 

c 10 Bcl2 

the inverse 

(
D -~~~) 
--~ sin 

~1 

t>R 

cos ~I ( t- R) 

~I ( t- R) J - (~! B + -- - ) sin H(t-R) 
2 ~1 4M 
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M(t-R)J ll(t-R) 

(A- 2 3) 

(A-24) 



a(r,t) = 
P r c 2 

0 0 

- M(D-Bci) ~ 

-- ~ 
c1 (t-R)[ 

e 2 ~ 

~ D c 1 
sin M(t-R)- l M(BM + ~ -

Bcl2 

4M ) 

+ c~ (D-Bc 1 ) ~ cos M(t-R)] H(t-R) 

E(r,t) 

o(r,t) 

c 1 (t-R) 

2 
cr2 

c1 (t-R) 

[ l 

[ 

M 2 cl 
C2r - Mr3 + Mcr2 

cos M(t-R) ] H(t-R) 

2 
- -- + cr2 

28 l cos M(t-R) 
3r \ 

34 

(A-25) 

sin ?-1 ( t- R) 

(A- 2 6) 

CJ2 

--+ 
4 c 2t--tr 

20 
3rM 

Rc1 ~ J sin N(t-R) 
3rM 

H(t-R) 

(A- 2 7) 
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APPENDIX B 

TRANSFORI-IED VISCOELASTIC OPERATORS 

The Maxwell model has the force-displacement (stress

strain) relationship 

where 

w = 
0 

E 
T) 

The result of applying the Laplace transform to equation 

(B-1) is (o and E initially zero) 

-
0 = 

Es _ 
--£ 
s+w 

0 

From which the transformed viscoelastic operator corres-

ponding to Young's modulus is 

E->- Es 
s+w 

0 

To obtain the corresponding viscoelastic operator for 

(B-1) 

(B-2) 

(B-3) 

(B-4) 

the elastic parameter ~, consider the relationship between 

~ and E as found in Timoshenko (15) 

E 
)J = 2(l+y) 

(B-5) 



Applying equation (B-4) to equation (B-5) results in 

s 
s+w 

0 

Substituting equation (B-5) into (B-6) gives the trans-

formed viscoelastic operator 

llS 
jJ -r s+w 

0 

The remaining viscoelastic operator is found from the 

definition of the dilatational wave velocity 

setting A~JJ and using equation (B-7) results in 

c -r [~(_lJ~]~ = 
p s+w 

0 
[< ~) (-s-~~· 

p s +w 
0 

A combination of equations (B-8) and (B-9) gives the 

transformed viscoelastic operator 

c-.. r.~~J!z s +(JJ 
0 
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(B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-10) 



37 

APPENDIX C 

THE EVALUATION OF A LIMIT IN THE 

MAXWELL SPHERICAL ANALYSIS 

In the course of applying Leibniz's rule for differ-

entrating integrals, it may be that an indeterminate form 

1s obtained when the integral is evaluated at the upper 

or lower limits and multiplied by the derivative of that 

upper or lower limit respectively. This is indeed what 

happens in integrals of the form 

t 

F ( t) (
. 

= 
J 

g(z,R) 

R 
/t2-z2 

Assuming that g(z,R) and its derivative are finite at 

z=t, the limit can be evaluated by an application of 

L'Hospital's rule 

but, 

lim 
z->-t 

L = lim 
z->-t [

g(z,R)I 1 (b/t2-z2)] = 

lt2-z2 

t2 z2 --·- d 
z·+t -~ I 1 (b/t2-z2)d~(z,R) = 0 
lim[1- -- J 

(C-1) 

(C- 2) 
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from which equation (C-2) becomes 

L - - (C- 3) 

The derivative of the Bessel function can be obtained by 

making a substitution 

v = blt2-z2 (C-4) 

From tables of mathematical functions (16), it can be 

shown that 

d I (v) 
_Y = I (v) - Y I (v) 
dv y- 1 v y (C- 5) 

Withy= 1 and v = blt2-z2, it follows that 

d I 1 
(v) dll (v) 

(~~) -bz [r 0 (v) - >I(v)] = dV = ---
dz /t2-z2 

-bz [ I 0 (blt2-z2) _ 1 r1 (b/t2-z2)] (C-6) = 
/t2-z2 b/t2- z2 

Thus, equation (C-3) becomes 

L =- lim[(-bg(z,R))lr (b/t2-z2) 
z+t o 

(C-7) 
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However, 

lim 
z+t bg(z,R)I

0
(blt2-z2) = bg(t,R) (C- 8) 

and 

1 im ! [ J z~t ( -bg(z,R) (C-9) 

hence, equation (C-3) can be written as 

L = bg(t,R) - L (C-10) 

Solving equation (C-10) for L yields 

L =lim [g(z,R)I 1(blt2-z2]= b 
z+t lt2-z2 2g(t,R) (C-11) 



APPENDIX D 

AN APPLICATION OF THE SIFTING PROPERTY OF THE 

DIRAC DELTA FUNCTION WITH A NON-LINEAR ARGUMENT 

The usefulness of the Dirac d2lta function in 

operational maths matics depends upon its integrating 

property 

00 

rh(t-T)o(T) dT 
-oo 

= f h(T)o(t-T)dT 
-oo 

= h(t) (D-1) 

Symbolically, the delta function acts as if it were a 

si e ve; after multiplying an arbitrary function h(t-T) 

by 8(,), and then integrating over the real t-axis, 

the value of h(t) is selected at 1= Q This property 

will be referred to as the sifting property of the delta 

function. 

The sifting property can be illustrated by the fol-

lowing graph: 

h ('Y) 
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N t . th~t h(T) is approximately constant (equal to h(t)) o J ng ,, 

in the r eg ion wh~re the delta function is large, the 



integral then is equal to h(t) times the area below the 

8(t-T) curve. This agrees with equation (D-1). 

In order to apply the sifting property, the 

argument of the delta function must be of the form of 

equation (D-1). 

Considering integrals of the form 

t 

F ( t , R) = f 0 (/t 2 - B 2 - R) [ A cos {It 2 - B 2 -R) + 

0 

B sin (/t2-B2-R)]r 1 (aB)dB 

and makin g the substitution 

z = /t2-J32 

equation (D-2) becomes 
0 

F(t,R) =j O(z-R{A cos(z-R) + 

t 

J 
zi 1(alt2-zZ") 

B sin(z-R) · z 
/t2-z2 

Interchanging limits and applying the sifting property 

yields 

F(t,R) = 
ARI 1 (a/t 2 -R 2) 

/t2-R2 
t>R 
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(D-2) 

(D- 3) 

(D- 4) 

(D-5) 
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It is seen that the limits of integration of equation (D-1) 

which defines the sifting property are infinite \-.ihile those 

of equation (D-2) are finite (t<=). Both equations are 

consistant since the infinite limits may be replaced by 

finite limits provided the critical point (here z = R in 

equation (D-4)) lies interior to the interval (O,t). 

The nature of R assures that this condition is met. 

If the critical point 1s on the end of the interval, 

then the sifting property (Equation D-1) will have to he 

modified as follows 

t 

lh ( T ) 0 ( t - T ) d T 
-00 

= Jh(-r)o(t-T)dT + 

-= 

I h(T)o(t-T)dT = h(t) 

t 

(D-6) 

If atl.Ol1 (D-6) 1s to have the value h(t), then it must . equ · 

follow that 

t 

I h ( T) 0 ( t- T) d T = !zh ( t) :: I h ( T) 6 ( t- T) d T (D- 7) 

t 
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