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ABSTRACT 

Three lumped parameter model representations of the one­

dimensional uniform continuous system in a vibration state 

are examined. The exact (continuous) solutions were used as 

a reference to evaluate the accuracy of the results obtained 

via these discrete element models. 

The model comparisons, carried out for both the princi­

pal modes and the systems under forced excitations, are 

based on the maximum strain energy. The effect of varying 

the number of segments in the model representation showed 

improvement in approximating the exact strain energy solution 

as the number of segments was increased. 

In general, the results of the model comparisons based 

on maximum strain energy were consistent with previous com­

parisons made on the basis of frequency root errors. 
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UnR(x) = nth mode shape in the relative coordinate 

U 11 (x) 
nR 

= 

= 

dUnR(x) 

dx 

2 
d UnR(x) 

dx 2 

{x} = Eigenvectors of the model 
-

{x} = Relative coordinate vector 

XN = Maximum displacement at the Nth mass in the model 

Y = Ratio of specific heat of the gas at constant 
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CHAPTER I 

INTRODUCTION 

A general theory for solving vibration problems involv-

lng continuous systems has been in existence for many years. 

However, the number of problems which can be solved analytic-

ally is very small. Therefore, other techniques which give 

approximate solutions to continuous systems, have been exten-

sively investigated. 

One such technique, which has been very popular since 

the advent of large computers, is the lumped parameter model 

approximation. Here the continuum is replaced by a finite N 

degree-of-freedom system composed of lumped elements, i.e., 

massless springs, point masses, etc. This technique actually 

dates back to the fundamental work in vibration by Lagrange 

and Rayleigh. 
(l) 

Duncan , using the same technique, was one 

of the first to study the behavior of errors in frequency 

roots resulting from the lumped parameter model approximation. 

Other investigators have also used the frequency root error 

comparison for models ranglng from rods and bars to beams and 

plate elements. 

Rocke( 2 ) has compared lumped parameter models for the 

one-dimensional systems, i.e., vibrating systems which are 

governed by the one-dimensional wave equation, using the same 

basis of comparison and has attempted to evaluate whether 

those models, which are judged best on the basis of smaller 

frequency root errors, do indeed provide better dynamic des-

cription under general transient type behavior. The cases 



treated by Rocke include only the constant base acceleration 

excitation of rods and beams and because of inconsistent 

results his work points out the necessity of having a con­

sistent basis of comparison. 

2 

The work presented herein attempts to provide a consis­

tent basis of comparison for lumped parameter models of one­

dimensional systems in a general dynamic state. The basis to 

be used is the maximum strain energy of the system. Strain 

energy is proportional to the stress times the strain in the 

system and summed over the entire system. Hence, it should 

be indicative of displacements and stresses in the system 

independent of their position within the system. Furthermore, 

the maximum system strain energy should be a better measure 

of total system distortion than any one particular parameter, 

e.g., maximum displacement or maximum stress. 

A. Contents of Thesis 

Chapter II contains a description of the one-dimensional 

uniform continuous systems. The governing differential equa­

tion and its homogeneous solutions have been established. 

To study the system under forced excitation, a constant base 

acceleration type of excitation has been used to verify the 

analytical solutions derived and to study the behavior of 

the models on the basis of maximum system strain energy. A 

half Slne pulse base acceleration type of excitation has 

also been examined to include a time-varying forced excita­

tion. The period of the half sine pulse has been varied to 



be less than, greater than, and nearly equal to the funda­

mental period of the system. 

3 

The base acceleration excitation when using relative 

coordinates is analogous to the case of a distributed forc­

ing function, which is only a function of time and not of 

position, imposed upon the uniform one-dimensional system 

with fixed base and absolute coordinates. The latter has not 

been studied directly since it is covered by the former type 

of excitation. 

Strain energy of the continuous systems, which is used 

as a reference for the comparison of the lumped parameter 

models, has also been established in closed form in Chapter 

II for the systems in both the principal modes and the 

general transient state for base excitations described. 

Chapter III describes the three lumped parameter models 

used to describe the continuous one-dimensional systems. 

Evaluation of the models as they approximate the continuous 

systems has been made. Strain energy for both the principal 

modes and the forced excitation conditions has been esta­

blished using matrix algebra. 

In Chapter IV, comparisons of the models have been made 

on the basis of the maximum system strain energy to deter­

mine if any given model is best. Use of an IBM-360-50 compu­

ter has been made to establish numerical results for the 

maximum system strain energy of the various cases. These 

comparisons, based on the maximum system strain energy, have 

been made for both the principal modes and the forced excita­

tion response. 



To check the validity of the solutions established for 

the system strain energy, the results for maximum displace­

ment and maximum stress were compared with those of Rocke( 2 ) 

for the case of constant base acceleration. A half sine 

4 

pulse base acceleration was used to study the effect of time­

varying excitations on the evaluation of the models. 
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CHAPTER II 

CONTINUOUS SYSTEMS 

A. Governing Differential Equations 

Systems represented by the one-dimensional wave equation, 

i.e., longitudinal vibrations of bars, torsional oscillations 

of shafts, transverse vibrations of strings, acoustical oscilla-

tions in ducts, etc., are of practical importance in engineer-

ing design problems. Once the one-dimensional wave equation, 

as it governs these various systems, is established and its 

general solution found all solutions to the above systems are 

determined within applicable constants. To illustrate the 

derivation of the one-dimensional wave equation the cases of 

the longitudinal rod and torsional bar will be used. 

Figure l shows a thin uniform bar. Because of axial 

forces there will be a displacement 'u' of any particular point 

along the bar which will be a function of both the particle's 

position 'x' and time 't'. Since the bar has a continuous 

distribution of mass and stiffness it has an infinite number 

of natural modes of vibration and the displacement of any 

given cross section will differ with each mode. 

Considering a'dx 1 element of this bar, it is evident that 

the element in the new position has changed in length by an 

amount au 
ax dx; thus, the unit strain is ~~ Using Newton's 

law of motion and equating the unbalanced force on the ele-

ment to the product of the mass and the average acceleration 

of the element gives: 

dx = p dx , or 
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(2.1) 

From Hooke's law the ratio of unit stress to unit strain 

is equal to the modulus of elasticity E. Thus, 

PIA = E 
Cau/'dx) 

where: A is the cross-sectional area of the 

bar. 

Differentiating this expression with respect to x gives: 

From eqs. (2.1) and (2.2) 

a2u 
AE = 

~x2 

Defining, 

AE/p = a 2 

, or 

the governing differential equation becomes: 

( 2. 2) 

(2.3) 

where a 2 is a system constant and depends on the physi-

cal properties of the system as will be illustrated by con-

sidering a second, but different system. 

Figure 2 shows torques on a 'dx' element of a uniform 

bar in torsion. In the derivation of the governing differ-

ential equation for the torsional vibration of shafts, the 

approach is the same as explained for the longitudinal 
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vibration of rods except that forces 'P' and the longitudinal 

displacement 'u' in the latter case are replaced by the 

torques 'Tr and the angular displacement 1 8 1 , respectively. 

) 
dx ---,jlilll'.,...f 

T + aT,dx 
ax 

Fig. 2 Torque Acting on a 1 dx 1 Element of a shaft 

Therefore, Newton's law of motion for this system gives: 

where: 

The angle of twist 

From eqs. ( 2. 4) and 

aT dx = 
ax 

I 
p 

, or 

( 2. 4) 

I = mass moment of inertia per unit p 

length of the rod. 

for the element dx is glven by, 

ae = Tax or GJ ' 

ae T 
ax = GJ . 

GJ a 2 e = aT ( 2. 5) -2 ax ax 

(2.5), 

a2 e GJ a2 e or 

at 2 
= y--2 ' p ax 



where: GJ/I . 
p 

( 2 . 6) 

It may be noted here that eqs. (2.3) and (2.6) are similar 

except for the constant 'a'. Similarly, the partial differ-

ential equation of motion for other one-dimensional systems 

9 

is the same as eq. (2.3) except for the change in constant 

'a'. Table I shows the values of the constant a 2 for various 

one-dimensional systems, 

Table I 

Constant na 2 " for Various One-dimensional Systems 

TYPE OF SYSTEM 

Longitudinal vibration of bars 

Torsional oscillations of shafts 

Acoustical oscillations of tubes 

Transverse vibrations of strings 

AE/p 

GJ/I 
p 

Solution of eq. (2.3) is, therefore, applicable to all the 

above systems and others within the constants or paramet2rs 

which are basic to that system's description with eq. (2.3). 

B. Homogeneous Solutions 

Using a standard separation of variables solution of the 

form, 

u(x,t) = U(x) f(t) 



10 

eq. ( 2 . 3) becomes: 

U(x) a2 £Ct) a 2£Ct) a2uCx) or 
Bt 2 

= 2 ' ax 

1 a2£Ct) 2 .1 a2 uCx) ( 2. 7) 
f(t) 

at 2 = a urxT 2 
ax 

Since the left hand side of eq. (2.7) is independent of x and 

the right hand side is independent of t, it follows that each 

side must be equal to a constant. Assuming that both sides 

2 of this equation are equal to -w , two differential equations 

can be obtained: 

( 2. 8) 

0 • (2.9) 

General solutions of these two differential equations are 

. given by: 

U(x) = C cos (~ x) + D sin (w x) 
a a (2.10) 

f(t) = A cos (wt) + B sin (wt) (2.11) 

The arbitrary constants A, B and C, D depend on the initial con-

ditions and the boundary conditions, respectively. 

It is of interest to note that if the constant chosen 

for eq. (2.7) 2 was +w , the time dependent part of the solu-

tion f(t), is given by: 

f(t) = A cosh (wt) + B sinh (wt) 

which does not provide an oscillatory solution, as being 

sought. The total solution from eqs. (2.10) and (2.11) becomes: 



11 

u(x,t) = [A cos(wt) + B sin(wt)] [C cos(~ x) + D sin(w x)] 
a a 

(2.12) 

This homogeneous solution is applicable to all the one-dimen-

sional systems except for the change in the value of constant 

'a'. For simplicity the longitudinal rod will be the common 

system of reference in this study and all equations and solu-

tions will reflect the appropriate constants and parameters 

for this system. Hence, to apply the solutions herein to any 

one-dimensional system requires a change in appropriate physi-

cal constant only. Likewise, any comparison of lumped para-

meter models should be invariant to any physical system. 

B.l Homogeneous Solutions with Various Boundary Conditions 

For one-dimensional systems there can be four sets of 

possible boundary conditions considering free and fixed ends, 

i.e., fixed-fixed, free-free, fixed-free and free-fixed. 

Previous work( 2) has shown that the behavior of the system 

for the fixed-fixed and free-free end conditions is similar 

while that of fixed-free ends is physically a mere image of 

the free-fixed case. This reduces further investigation to 

only two of the four sets of boundary conditions, i.e., fixed-

fixed and fixed-free. In this report these end conditions 

have been chosen and used throughout. 

The mode shapes depend on the specific boundary condi-

tions and can be obtained by using eq. (2.10), which is: 

U(x) = C cos(~ x) + D sin(~ x) . 
a a 
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Fixed-Fixed ends: 

These boundary conditions requlre the following restric-

tions on the spatial function: 

u(O,t) = 0 and u(L,t) = 0 . 

Since u(x,t) = U(x) f(t), it follows that 

U(O) = C = 0, and 

U(L) = D sin(~) L = 0 . 
a 

D cannot be equal to zero slnce the resulting trivial solu-

tion U(x) = 0, which implies no vibrations, would be obtained. 

Therefore, for vibrations to occur: 

Sin(~ L) = 0, or 
a 

w L = 
a 

\!11" (2.13) 

where: v =mode number= 1,2,3,4, ..... ,oo 

L and a are constants, independent of the mode number. 

Therefore, eq. (2.13) shows that the natural frequency depends 

on the mode number and should be subscripted to each mode, 

i.e., 
w 

(2) 
a L = \!11", or 

w \!11" (2) = a L 

Thus, the mode shapes for fixed-fixed ends are given by: 

where: 

U (x) 
\) 

wv 
= D sin(--) x, or 

v a 

D = a normalization constant. 
\) 

(2.14) 
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Fixed-Free boundary conditions: 

The fixed end condition at x = 0 requlres u(O,t) = 0 

which specifies directly that: 

U( 0) = C = 0 . 

The free end condition at x = L requires zero stress at the 

free end, i . e. , 

E au/ = o, or 
ax x=L 

U'(L) = 0, since f(t) ~ 0. 

U'(L) = D(~).cos(~) L = 0 
a a 

But D and Caw) cannot be equal to ~ "b t" t zero ~or Vl ra lons o occur; 

therefore, 

cos(~) L = 0, or 
a 

w L = 
a (2v-l) Trl2 • (2.15) 

where: v = l,2,3, ..... (all positive integers). 

Equation (2.15) shows that w needs to be subscripted, being 

dependent on the mode number 

w 
(~) = (2v-l) n/21 . 

a 

Thus, the mode shapes for fixed-free ends are given by: 

where: 

U (x) = D sin [(2v-l) nx/21] 
\) \) 

D =a normalization constant. 
\) 

(2.16) 
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C. Forced Excitation Solution 

Two types of forced excitations have been used to study 

the model description of the continuum under transient behav-

lor. These are: 

(i) constant base acceleration 

Cii) half sine pulse base acceleration 

Constant base acceleration has been chosen, slnce some of 

h ' ' ( 2 ) h b d . th t t e prevlous comparlsons ave een ma e uslng e same ype 

of excitation. These comparisons, based on the maximum sys-

tern displacement and the maximum system stress~ have been 

reviewed. Furthermore, comparisons of the lumped parameter 

models have been made on the basis of the maximum system 

strain energy herein, using constant base acceleration type 

of excitation. For these comparisons, system strain energy 

expressions have been evaluated for the one-dimensional con-

tinuous systems in this chapter. Maximum system strain energy 

of the continuous system is used as the reference quantity 

for the above comparisons. 

In the second case, the one-dimensional systems have been 

considered for four variations of the duration of the half sine 

pulse. This type of excitation has been included to examine 

the time-varying forced excitations. The solution for the 

displacement function for both the constant base acceleration 

and the half sine pulse base acceleration uRCx,t) are dealt 

with ln this section of the study. 

The boundary conditions used are fixed-free to obtain a 

consistent comparison between the results using the strain 
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energy approach and the previous results. 

C.l Constant Base Acceleration Excitation 

A constant base acceleration, A , is applied at the left 
0 

end of the rod. In this type of excitation all normal modes 

are excited, some to a greater extent than others. Also with 

the constant excitation, the characteristic time (period) of 

the forcing function is not aligned with any of the normal 

mode periods. 

Figure 3 shows a thin uniform bar with a known base dis­

placement uB(t) and a bas~ acceleration ~B(t). 

Let, (2.17) 

where uR(x,t) is the displacement, at distance x and time t, 

relative to that of the base of the bar. 

Using eq. (2.17) in eq. (2.3) gives: 

2 2 a uR(x,t) 
+ uB 

2 a uR(x,t) 
= a 

ax 2 at 

since uB is only a function of time t and not of position x. 

(2.18) 

Equation (2.18), now becomes the governing differential equa­

tion. It will be shown by applying Newton's law of motion to 

an element 'dx' shown in fig. 3a that eq. (2.18) is similar 

to that which represents a system having a distributed forcing 

function F(t) which is independent of the position 'x'. 

Equating forces on the 'dx' element in fig. 3a gives: 



~ !lllo X 

I -- UB' UB 

UR 

L 
_j 

Fig. 3 Continuous Bar with Base Acceleration ·~8 Ct) 

F(t)dx 

p -< [- ------ - ---, ~ 

~dx~ 

aP P + - dx ax 

Fig. 3a 'dx' Element with Uniformly Distributed Force F{t) 
I-' 
m 



From eq . ( 2 . 2 ) 

aP dx + F(t) dx 
ax 

2 a u = p dx --:-2 
at 

2 
aP = P ~ - F(t) 
ax at2 

, or 

combining the above two equations, 

a2u a2u 
AE --- = p - F(t) , or 

ax 2 at 2 

2 a2u F(t) a + is obtained. 
ax 2 P 

17 

This is similar to eq. (2.18) except that u 8 has been replaced 

by -F(t)/p. Hence, all solutions and conclusions derived 

herein are also valid for a fixed base system with a time-

dependent uniformly distributed forcing function F(t). 

Solution of eq. (2.18) can be obtained by the standard 

procedure of separation of variables. Earlier, it has been 

shown that there exists an infinite number of principal modes 

and solutions. Thus, the most general solution would then be 

the summation of all of these solutions. Therefore., the form 

of the solution for eq. (2.18) can be given by: 

00 

uR(x,t) = L unR(x) fnR(t) 
n=l 

(2.19) 

where UnR(x) are the mode shapes of the bar relative to its 

base and fnR(t) is the accompanying time dependent part of the 

solution .. Substituting eq. (2.19) into eq. (2.18) gives: 
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co 

L u~R(x) fnR(t) - UB. 
n=l 

Multiplying each side by UrnR(x) dx and integrating from 0 to L, 

JL f unR(x) umR(x) f~R(t) dx 
n=l 

0 

= a 2 JL f: U" (X) 
n=l nR 

0 

UrnR(x) 
L 

- JL u~R<xl 
0 

0 

u~R(x) 

- JL UBumR <xl dx 

0 
is obtained. 

dx) fnR(tj 

It should be noted here that the first term on the right 

hand side, when evaluated at x = 0 or x = L, is always zero 

since U~R(x=L) = UrnR(x=O) = 0 for the fixed-free ends. 

ntl[L UnR(x) UmR(x) fnR(t) dx 

= a 2 [ JL U 1 ( x) Urn1 R ( x) fnR ( t) dx 
n=l nR 

L 0 -I liB U mR ( x) dx . ( 2 • 2 o) 

0 
The orthogonality and normalization relationships are 

glven by: 

f~ 
0 

m ;t n 

(2.21) 

dx, m =n 



and, 

0 ' 

JL 2 
= P[U~R(x)J .dx, 

0 

0 

Using eqs. (2.21) and (2.22) in eq. (2.20) gives: 

JL .. 
- UB 

0 

m:;t'n 

(2.22) 

m=n. 
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Referring back to the classical free vibration analysis 

discussed in section B, for the fixed-free boundary conditions, 

UnR(x) = DnR sin(n~x/21), n=l,3,5, .... (2.24) 

where: DnR = a normalization constant. 

The normalization constant, DnR' is found by equating the 

normalization relation to the total mass of the bar, or, 

JL 2 
P.UnR (x) dx = PL , or 

0 

DnR 2 = L j ~~in 2 cn~x/2L) dx . 

0 
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D = 12 and nR ' 

UnR(x) = .f2 sin(nTix/2L) . (2.25) 

Substituting for UnR(x) from eq. (2.25) into eq. (2.23) glves: 

2 [ j\in2 (nnx/2L) dx J fnR (t) + 2a 2 [ f\~~) 2 
cos 2Cnnx/2L) dx] 

0 0 

= - /2 uB JL sin(nTix/2L) dx, or 

0 .. 
2 

· • ( ) L/ 2 + a 2 ( n 'IT) fnR t . 2L 
UB 

(2L/nTI) 
/2 

as JL 2 
sin (nTix/21) dx = 

0 

where: FC t) = 

J~os 2 Cnox/2L) dx = L/2 . 

0 

This equation is of the form, 

f (t) 
n 

+ w 2 f (t) = 
n n 

F(t) 

(2.26) 

and by Duhamel's integral solution (with zero initial condi-

tions) : 

dT. (2.27) 

For a constant base acceleration: 

uB(t) = A0 = constant (time independent) 

dT. 



Substituting for wnR in the above equation gives: 

2 -8./2 AOL 
3 3 2 [l-cos(n1Tat/2L)] . 

n 1T a 

where: n = 1, 3, 5, 7 

Recalling the definition of the constant "an, 

a 2 = AE/p 

a 2/L 2 = AE/pL 2 

Substituting for a 2/L 2 into eq. (2.28) gives: 

where: 

2 -8/2 A pL 
0 

n = odd integer. 

, and 

Furthermore, from the general form of the solution, 

00 

uRCx,t) = [ UnR(x) fnR(t) . 
n=l 

Hence, the total solution becomes: 

21 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

Note that, to find the base stresses it is the relative 

displacement which is of primary interest and not the absolute 

displacement. Moreover, it is easier to work with the rela-

tive mass deflections in the lumped parameter models. In as 
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much as the rigid body part of the soluti.on is not considered 

in the case of continuous systems and the lumped parameter 

models, for comparisons of end deflections and strain-energy, 

eq. (2.31) represents the total displacement solution for the 

continuous system to a constant base acceleration excitation. 

The relative end deflections and base stresses are found 

in order to verify the validity of the method employed as these 

(2) 
responses have been established in a previous papen This 

will also keep the study in consistent comparison with the 

previous work. 

The relative end deflection of the rod is given by: 

-16 A pL 2 \ 
= 0 L l/n 3. sin(n'TI'/2) [l-coscn;tJAE/pL2)] 

'T1' 3AE n=l,3,5,----

and its maximum value is found by summing up the series: 

uR(L,t) max 

~32A pL 2 \ 
= 0 L l/n3.sin(n'TI'/2) 

'T1'
3AE n=l,3,5,----

(2.32) 

Obviously this maximum value is first reached at t = 2JpL2 /AE. 

Stress in the bar is found from the relation: 

o(x,t) 
au 

= E(___B.) ax , or 

- 8A0 P1 \ 2 [ nTitJ 2 oCx,t) = 2 L lin. cos(n'TI'x/21) 1-cosC-2- AE/pL )J 
'TI' A n=l,3,5,----

This is maximum at x = 0, i.e., at the base. Thus, the maxi-

mum stress in the bar occurs at the base and is given by: 

-SA pL \ 2 tJ 2 
a( O,t) = 2° L 1/n · [1-coscn; AE/pL )] . 

~ A n=l,3,5,----
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Again, this base stress first reaches its peak value at 

t = 2JpL 2/AE. 

The maximum base stress can be obtained from: 

a{O, t) 

-2A0 pL 
= A (2.33) 

C.2 Half Sine Pulse Type of Base Acceleration Excitation 

The half sine pulse type of base acceleration has been 

chosen to demonstrate the effect of time varying excitations. 

The period of the half sine pulse has been examined for four 

different cases, 

(i) Period of the half sine pulse made equal to half of 

the fundamental period of the system. 

Cii) The pulse period made 10% less than the fundamental 

period. 

(iii) The pulse period made 10% greater than the fundamen-

tal period and 

Civ) The pulse period made 50% greater than the fundamen-

tal period. 

The first and the last cases exhibit the effect of hav-

ing a fast and a slow system, respectively, while the other 

two cases exhibit the effect of the forced excitation fre-

quency near the fundamental frequency of the system. 

A half sine pulse type of base acceleration is applied 

at the left end of the rod and the right end is free. 



Figure 4 shows a half sine pulse with the duration time of 

nt1 . The equation of thB pulse is given by A0 sin(t/t1 ), 

where A is the peak amplitude of the pulse. 
0 
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The governing equation used previously is directly appli-

cable as only the forcing function is being changed, that is: 

UnR(x) ~ 12 sinCnnx/21) , and 

wnR ~ nna/21 , n ~ odd integer. 

For a half sine pulse, the base acceleration function now 

becomes: 

~ A 
0 

-212A0 sin(t/t1 ) 

nTI 
(2.34) 

Again Duhamel's integral solution can be used to obtain the 

solution to fnR(t). 

The solution of the problem with the half sine pulse type 

of excitation is obtained in two parts; one is valid for time 

t less than nt1 (the total duration of the pulse) and the other, 

valid for time t greater than the pulse time, nt 1 . Both these 

solutions are obtained by the Duhamel's integral, care being 

taken with the limits of the integral. 

For o<t~nt1 the solution is given by: 



ACCELERATION 

A 
0 

A0 sin(t/t1 ) 

0 TIME 
0 7ftl 

Fig. 4 Half Sine Pulse Applied as Base Acceleration 

1'0 
()"1 



= 

= r 
0 

= r 
0 

sin w R(t-T) 
n F(T) dT 

wnR 

sin wnR(t.,...T) 

(J.)nR 

-2./2A0 .s . .;tn.( -r/t1 ) 

TI1T dT , or 

-12A 
0. Jt[cos(wnRt-wnRT- ".2..)-cos(w t-w T+ 2-)]•dT t 1 nR nR t 1 

0 

_-_12_2A_0 [sin( wnR t-wnR T-T/t1 ) 

wnRn1T -CwnR+l/tl) 

As already found for fixed-free ends: 

Therefore, for o<tcwt1 : 

= n1Ta/2L 

a = IAE/p 

TI1T ~ = 21 -vAE/p 

and 

(2.35) 

-412A0 r;;:i} [nw [Af fAE ] = 2 2 vAE- 21vp- sinCt/t1 )-l/t1sinC~~V~-P- t) 
n n 

/[ nn 2 2] C211AE/p) -l/t1 

= L unR(x) fnR(t) 
n=l,3,5,----

(2.36) 

, it follows: 

26 
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-BA Jii- [~~J~E sin(t/t1 )- /·sin(~~J¥ t) 
o PL \ 2 1 

= ---2- AE ~ l/n · [ n~ 2 2] 
~ n=l,3,5,---- C21 jAE/P) -l/t1 

• sin(n7rx/2L). (2.37) 

The relative displacement uRCx,t) for t~1rt 1 is obtained 

by again using the Duhamel's integral. Using eq. (2.34) for 

all t;;.1rt1 gives: 

f'thn wnR ( t-T) ft sin wnR(t--r) 
fnR(t) = F 1 ( -r) dT + F2(T) 

wnR wnR 
0 ~tl 

where Fl(T) is the external force, as a function of T' acting 

during the period O<t~1rt 1 and F2 C-r) is the external force 

acting during t;;.1rt 1 . Note that F2 C-r) = 0, 

f 1Tlj_sin wnR(t--r) 
f nR ( t ) = wnR F 1 ( -r) d -r , or 

7ftl 0 
= f sin wnR(t--r) .-212A0 sin(T/t1 ) dT 

w n~ 
nR 

~/2A [1 = 0 cos(w Rt-w RT- t' )-cos(w Rt-w RT+ 
w n~ n n 1 n n 

nR 
0 

or 

fnR (t) = 
wnRn7ftl 

Since, uR(x,t) = E U nR ( x) f nRC t) 
n=l,3,5,----

, and 

(2.38) 

UnR(x) = /:2 sin(~~x), it follows that for all time 

dT 
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. sin(n"ITx/2L) . (2.39) 

The period of the half s1ne pulse is given by 2nt1 and is 

varied for four different cases as explained below: 

where k is a constant and is made equal to 0.5 in the first 

case, 0.90 in the second, 1.10 in the third and 1.50 in the 

last case to study all the four cases of the duration of the 

pulse time. Therefore, fork = 0.5 

1s obtained. Similarly other values of t 1 fork= 0.9, 1.10 

and 1. 50 are obtained and are shown below: 

k = 0.90 k = 1.10 k = 1.50 

t 1 = 0. 9/ w1 R t l = 1. 50 I wlR 

The relative displacement function uR(x,t) can be eval­

uated for all the four cases of the pulse duration by using 

eqs. (2.37) and (2.39) for 0 < t ~"IT t 1 and t ~ n t 1 , 

respectively. 

D. Strain Energy for Principal Modes 

The objective of this report is to compare the behavior 

of the lumped parameter models using strain energy as the 
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basis for this accuracy comparlson. Strain energy of the 

continuum, therefore, needs to be established for each princi-

pal mode. The maximum strain energy determined for each 

lumped parameter model in a principal mode is then compared 

to the established exact (continuous) solution to determine 

how well the principal modes are described by these models. 

The derivation of an expression which evaluates the strain 

energy of the continuum as a function of the mode number, v, 

is given in this section. Referring to fig. 1, the potential 

strain energy for the element dx is given by: 

dU = .!_ P ( oU) dx 
c 2 ox (2.40) 

where P is the force acting on the element dx and assumed to be 

constant over the length dx. From the relation, 

Force = stress x resisting area 

it follows that: 

P = EC au) A ox · 

Therefore, for the element dx: 

dU = l AE (~) 2 dx 
c 2 ax 

( 2 • 41) 

is obtained. 

Strain energy, over the entire length of the bar, is obtained 

by integrating eq. (2.41) from 0 to L. The total strain energy 

of the system is, therefore: 

f 1
1/2 AE(~) 

2 
u = dx or c ox ' 

0 JL 2 u = l/2 AE c au) dx (2 .42) c ox 
0 

(since for the system under consideration AE is constant). 
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Equation (2.42) gives the strain energy of a uniform thin 

bar and can be used to determine the strain energy of the con-

tinuous system with fixed-fixed and fixed-free end conditions. 

In fact, eq. (2.42) can be used for any type of boundary con-

ditions. 

Fixed-Fixed Boundary Conditions 

The mode shapes are given by: 

U (x) = D sinCvTix/L) . 
v v 

The normalization constant, D , is obtained by normalizing the v 

first orthogonality relation to the total mass of the bar, 

l. e. , 

JL 2 
p u\) ( x) dx = pL (2.43) 

0 
where p lS the mass per unit length of the bar, which is con-

stant for the system under consideration. 

Substituting for u (x) ln eq. (2.43), 
v 

D 
2 L = v 

[ sin2 Cv7Tx/L) dx 

is obtained. 

D = 12 ' and v 

u (x) = /2 sinCv'lTx/L) (2.44) 
v 

For a particular vth mode, the maximum displacement as a 

function of position 'x' is given by: 

u(x,t)max = U (x) 
\) 

= 12 sin('\lnx) 
L 
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Maximum strain energy for this vth mode is obtained from eq. 

(2.42) and is given by: 

u c max 

1 [L auv Cx) 2 
= 2AE ( ax ) . dx 

L 

= ~AE [ 2 ( 0{) 
2 

cos 2 Cv~x). dx 

= l AE (v1T)2 . 21 

Fixed-Free Boundary Conditions 

(2.45) 

The mode shapes for these end conditions are given by: 

U (x) = D sin[(2v-1)1Tx/2L] . 
\) \) 

The normalization constant, D , is found in the same manner 
v 

as for fixed-fixed end conditions explained earlier. From 

the first normalization relation: 

L 

[ U0 
2 Cx) dx = L . 

D 2 = 
\) 

L 

J'1sin2 [C2v-l)1Tx/2L].dx 

0 

Dv = 12 , and 

Uv(x) = 12 sin[(2v-1)1Tx/2L] 

, or 

(2.46) 

Using eq. (2.42), maximum strain energy for the vth mode is 

given by: 

1 JL 2 2 = 2AE 2{(2v-l)1T/2L} cos [(2v-l)1Tx/2L].dx 

0 

l AE 2 = 8 ~[(2v-l)1T] (2.47) 
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E. Strain Energy for Forced Excitation 

To study the behavior of the lumped parameter models under 

transient conditions, using strain energy as the basis of com-

parison, it is essential to evaluate an expression for the 

strain energy of the continuous systems under similar transient 

conditions. Equation (2.42) is used for the evaluation of 

strain energy for both the constant base acceleration type of 

excitation and the half sine pulse type of excitation. 

Constant Base Acceleration Excitation 

Differentiation of eq. (2.31) yields: 

auR -8A pL\ 2 [ tffE J ax-= 2° ~ l/n·cos(nnx/2L) 1-coscn; ---2 ) 
n AE n=l,3,S,---- pL 

Strain energy of the system with a constant base acceleration, 

A , is given by: 
0 

From the orthogonality and normalization relations of the 

system in question: 

JLu~RCx) 
0 

U~R(x).dx = 0 , m~n 

= JLu~R2• dx, m=n • 

0 
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2 1 

. u 
c 

32AE A P1 f [ 4 2 nt~E 2] = ~( ~E ) L lln•cos (nnxl21){1-cos(~ ---2 )} · dx 
n n=l,3,5,---- P1 

0 
2 

16AE1 Aop 1 ~ 4 nnt/!j 2 
= 4 C-py-) L lin ·[1-cosC-2- --2 )] 

n n=l,3,5,---- P1 
(2.48) 

Obviously this is maximum at t = 2~ . The maximum 

system strain energy is, therefore, glven by: 

64A 2P2L3 
o4 L lln4 
n AE n=l,3,5,----

u = c max 
(2 .49) 

Half Sine Pulse Base Acceleration Excitation 

Strain energy for half sine pulse base acceleration type 

of excitation is obtained in two parts, one for 0<t~nt 1 and 

the other for t~Tit 1 , by using applicable displacement func­

tions in eq. (2.42). 

For O<t~Tit 1 , using eq. (2.37), strain energy, Uc' is 

given by: 

u c 

= 
8Ao2P 

2 
TI 

n TIX ] 
2 

•COS(~) ·dX 

[ nn{Af. C I ) I . cnn/AE 
2 2Lv~sln t t 1 -1 t 1sln 2Lvp--p-L lin . 2 

n=l,3,5,---- {("!2.!!.fAE) -lit 2} 
2L\jp- 1 

· J~os 2 Cnnxl21) ·dx , or 

0 



u c = 
4-A PL 

0 

2 
[ n 7T J¥ . ( I ) I . ( n 7T /AE ) J ~ 2 21 --s~n t t 1 -1 t 1 s~n 21v~-- t 

L lin P P 

n=l,3,5,---- {(nn ~) 2-llt 2} 2 
21V-p 1 

(2.50) 

The strain energy expression ~s also needed for t~nt 1 

since maximum strain energy may occur after the pulse time. 

To establish an expression for the strain energy for all 

t~nt 1 , uR(x,t) for t~nt 1 is used from eq. (2.39): 

[ sin ~~-E-(t-nt ) +sin(-n_nt_~_E_)J 
_ 8A0 p L 2 \ 2 21{"f) 1 21 ~p 

uR(x,t) - --2-- AE L lin ~------------~2----------------~ 
n t 1 n=l,3,5,---- {(nn mE) -lit 2} 

21VT 1 

. ( nnx) 
·s~n ~ . 
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oUR . 
Substituting for--- 2n eq. (2.4-2), strain energy of the system ax 
can be evaluated as: 

1 [ .. { nn fAEc ) } . cnnt /AE)J 
1 1 t4Ao Jp12 '\' S1n 2L"JP t-wtl +sw 2LVP 

Uc = 2AE ~ AE L lin 2 
n 1 n=l,3,5,---- {Cnn~) -lit 2} 

= 

0 ·COS(~~X)J dx 21 p 1 

G · nn ~ . nnt ~ ] 2 
4-A pL 

0 

2t 2 
7T 1 

2 ~s2n 21V~Ct-nt1 )}+s~nc~Vp-) 

L lin [ 2 2 
n=l,3,5,---- (nn ~) -lit 2] 

21V"P 1 (2.51) 

The strain energy for all four cases of half sine pulse, 

for O<t~nt1 and for t~nt 1 can be obtained from eqs. (2.50) 

and (2.51), respectively. Maximum system strain energy can 

be computed by evaluating numerically eqs. (2.50) and (2.51) 

for various values of time 't'. This will be discussed in 



chapter IV where the comparlson between model and continuum 

is presented. 
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CHAPTER III 

LUMPED PARAMETER MODELS 

A. Model Definitions 
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Three lumped parameter models commonly used to describe 

one-dimensional systems are shown in fig. 5. These models 

each approximate the mass and stiffness of one increment of a 

uniform continuous system composed of N segments. Model (a), 

which was first used by Rayleigh, has the total mass of each 

of the N increments, into which the bar has been segmented, 

divided into two equal masses concentrated at each end of a 

sprlng which represents the stiffness of the increment. The 

second model has been attributed in the literature to Lagrange 

but has been investigated to some extent by Duncan(l) and is 

sometimes referred to as Duncan 1 s model. This model has the 

mass of the increment concentrated at the center with equal 

springs on each side. The third one, model (c), which has 

been used to a large extent in practice, has the mass concen-

trated at one end of a spring. 

A new method, under the consistent mass matrix technique, 

developed by John Archer( 3), has been applied to one-dimensional 

systems by A. V. Krishna Murty( 4 ). This new method evaluates 

the equivalent inertia forces of the elements at the discrete 

displacement points instead of lumping the masses in the con­

ventional models discussed above. The method also requires 

selection of a suitable displacement distribution function 

over each element and as in Rayleigh-Ritz method, the closer 

the displacement function to the exact mode shape, the better 
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m/2 m/2 m 
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the result. The frequency roots found by this method have 

been shown to be slightly more accurate than those found by 

using the models. 
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In this report only the conventional models will be studied 

using the strain energy approach. However, the consistent mass 

matrix also needs to be studied on the basis of system strain 

energy. 

B. Homogeneous Solutions 

Various methods are available for establishing the princi­

pal mode shapes for the lumped parameter models, e.g., the 

modal matrix technique and the difference equation approach. 

The latter method which is particularly useful for repeated 

sections has been used for models (a) and (c). For model (b), 

this approach gives displacements at the points between adja­

cent springs of the two connecting segments and not at the 

mass points as desired. Mass point deflections for model (b), 

therefore, have been obtained in conjunction with the use of 

the IBM-360-50 computer utilizing a standard eigenvalue sub­

routine from the system library. 

Mode shapes for the models under consideration are derived 

as described in the following subsection. 

Model (a) with Fixed-Fixed Ends 

The difference equation approach is used to establish the 

mode shapes (see Appendix A) for this case: 

(3.1) 
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where: N = 0,1,2, •...... ,Nand refers to the mass 

point location in the system 

v =mode number= 1,2,3,4, ....... ,up to 

the number of masses. 

The boundary conditions impose following restrictions on the 

spatial functions: 

and 

which g~ves: 

= F sin(f3N) = 0 v 

( 3. 2) 

where: Fv is a normalization constant. 

Model (a) with Fixed-Free Ends 

The fixed end condition gives: 

x0 = Ev = 0 . 

XN = Fvsin(SN) 

In this model representation with fixed-free ends, the Nth 

mass (i.e., mass at the free end) is not equal to other masses 

in the system and in order to apply the difference equation 

solution, which is applicable to repeated sections only, the 

motion of the Nth mass is examined and a condition for the 

rest of the system is evaluated at this mass as shown below. 

Considering the equilibrium of the Nth mass: 

Form of the solution ~s given by: 

x­N 
= X- eiwt 

N 



Substituting this form of solution in the above equation, 

2 
- w m ( 
---2- XN = -K XN-XN-1) 

is obtained. 

. . 
Substituting for XN-l and XN' the above equation becomes: 

2 
sin { S(N-1) } = (1 - mw ) sin(SN) . 

2K 

2 
Noting that, (1- ~~) = cos(S) then, 

sin{eCN-1)} = cos( 13) sinCSN) 

which gives: 

sin(S) cos(SN) = 0 . 

Therefore, either sin(S) = 0 or cos(SN) = 0 . 

sin(S) = 0 gives the trivial solution, 

XN = 0, i.e., no vibrations. 

For vibrations to occur cos(SN) = 0, or 

f3 -· (2v-l) 1T/2N . 

XN = F vsin [( 2v-l) 1TN/2N] ( 3. 3) 

Model (b) with Fixed-Fixed Ends 

The difference equation approach is not applicable in 

40 

this case since it gives displacements at the points between 

adjacent springs of the two adjacent segments and not at the 

mass points of the model as desired. These displacements 

are given by eqs. (3.2) and (3.3) for fixed-fixed and fixed-free 
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ends, respectively. To determine the mass displacements 

standard eigenvalue techniques are used. The differential 

equations of motion in matrix form are first reduced to a 

desirable form in order to facilitate finding of eigenvalues 

and eigenvectors of the system. The differential equations 

of motion in matrix notation are given by: 

r-m-J{x}+IKJ{x} = {O} . (3.1+) 

It should be noted here that the mass matrix [m] is 

always a diagonal matrix for model (b) and each diagonal ele-

ment, mii' is equal to m (the mass of each segment). The 

general form of the stiffness matrix [K] for model (b) with 

fixed-fixed ends is given by: 

[K] = 

3K -K 

-K 2K 0 
' ' '\ 

' ' 0 2K -K 
-K 3 

N x N MATRIX 

where: K = AE/1 and 1 = 1/N. 

Premul tiplication of eq. ( 3. 4) by [-m-1 -l yields: 

It may be noted that matrix [KJ is a symmetric matrix and 

r-m-J-1 [K] is also a symmetric matrix in this particular case, 

since r-m-1 -l is equal to 1 [I] , where [I] is an identity matrix. 
m 

A standard eigenvalue subroutine from the IBM-360-50 

computer library was employed to find the eigenvalues and 

eigenvectors of [-m-1-l [K]. The square root of the eigenvalues 
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glves the natural frequencies of the system. The eigenvectors 

obtained are normalized just as in the continuous system, by 

using the normalized equation in matrix notation, l.e., 

D 2 {x} T [-m.._] {x} = m N and 
\) 

{ U (X) } = D {X} , or 
\) \) 

= T k: • 
( {x} r-m-] {x}) 2 

Model (b) with Fixed-Free Ends 

The procedure for finding the eigenvalues and the eigen-

vectors, of model (b) with fixed-free ends, is exactly the same 

as that used for model (b) with fixed-fixed ends, except for 

the change in the stiffness matrix [K]. The stiffness matrix 

[K], in general form, for model (b) with fixed-free ends is 

of the form: 

[K] = 

3K -K 

-K 2K 0 
' ' 

0 
' ' ., 

2K ...:K 

..;.K K 

N x N MATRIX 

where: K = AE/1 and 1 = L/N. 

Model (c) with Fixed-Fixed Ends 

Models (a) and (c) are exactly alike for fixed-fixed 

boundary conditions. Thus the solutions for model (a) with 

fixed-fixed ends, established earlier, can also be used for 

model (c) with fixed-fixed ends. 



Model (c) with Fixed-Free Ends 

The fixed boundary condition gives: 

The free boundary condition glves: 

cosS(N+~) = 0, or 

(2v-l)rr 
S = (2N+l) 

XN = F v s in [ ( 2 v -l) rr N I ( 2 N + l) J 

C. Forced Excitation Solutions 

( 3 . 5) 

For means of comparisons, the two types of excitation 

used for the continuous systems will be employed for the 

lumped parameter models. These are: 

(i) constant base acceleration 

(ii) half sine pulse base acceleration. 
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In each case a analogue system of the model relating to the 

continuous bar with base acceleration, uB(t), is obtained. 

This new system gives the mass point deflections relative to 

the base, the base stresses and the strain energy to be com-

pared with the corresponding results obtained for the continuum. 

Relative Coordinate Formulation 

The formulation of the analogue systems can be shown by 

an example with the number of segments in the model being 

three. Figure 6 shows model (a) with 3 segments and with a 

base displacement or displacement of mass m1 , as u 8 and base 

acceleration as uB which are general time-varying functions. 



K K K 

ml m2 m3 m4 

~ UB' UB ~ x2 ~ x3 ~ x4 

Fig. 6 Model (a) with N=3 and Base Acceleration ~8 (t) 

-m2uB -m3uB -m4uB 

m2 m3 m4 

1---- x2 ~x3 r--- x4 

Fig. 6a Relative Coordinate Formulation 

+ 
+ 
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The absolute displacements of masses m2 , m3 and m4 are given 

by x 2 , x 3 and x 4 , respectively, in fig. 6. Each 

figs. 6 and 6a has the same stiffness K = AE/1 = 

spring in 

AE 
LIN' where 

L is the total length of the bar and N is the number of seg-

ments used in the model representation. 

Figure 6a shows a system with a fixed base and displace-

ments x2, x3 and x4 of masses m2, m3 and m4, respectively, 

which are displacements measured relative to the base. There-

fore, ln this new system the base is shown to be fixed. It 

will now be shown that the system with its base fixed and 

each mass having (fig. 6a) an external force, proportional to 

its own mass, has similar differential equations as those of 

the system with a base acceleration, u8 (fig. 6). 

Referring to fig. 6, the differential equations of motion 

m2x2+2Kx 2-Kx 3-Ku8 = 0 ( 3 . 6) 

m3x3-Kx 2+2Kx 3-Kx 4 = 0 ( 3 . 7) 

m4x4 -Kx 3+Kx 4 = 0 ( 3 . 8) 

The displacements, x, of the system ln fig. 6a are defined as: 

-x. = xi-uB ' or l 

x. = xi+uB l 

- .. 
x. = xi+uB l 

Substituting for x. and x. ln eqs. (3.6), (3.7) and (3.8), the 
l l 

differential equations of motion become: 
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( 3. 9) 

(3.10) 

(3.11) 

It may be noted here that eqs. (3.9), (3.10) and (3.11) 

are similar to eqs. (3.6), (3.7) and (3.8), respectively, 

except for the change of coordinate system. The new system 

of coordinates defined by x. gives the relative deflections 
1 

of point masses. Equations (3.9), (3.10) and (3.11) repre-

sent the system shown in fig. 6a. In matrix notation these 

equations can be written as: 

(3.12) 

These equations represent a system with the mass points 

having external forces proportional to the masses themselves. 

Thus a new system, given by eq. (3.12) and shown in fig. 6a, 

is formulated and is shown to be analogous to the system pre-

sented in fig. 6. This new system can be used to determine 

the relative end deflections given by xN (the displacement 

of the mass mN in fig. 6a) and the base stresses per unit 

cross sectional area of the bar. The latter quantity is given 

by x 2 times the stiffness of the first spring, which depends 

upon the type of model under consideration. Strain energy can 

be evaluated by using x 2 , x3 , ..... , xN, directly and without 

considering the rigid body displacements x 2 , x 3 , ..... , xN. It 

may be noted here that all solutions and conclusions derived 

herein for a system with external forces at the mass points, 
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proportional to the masses themselves, are also equally appli-

cable to a system with base acceleration since the two systems 

have been shown to be analogous. 

Modal Matrix for Lumped Parameter Models 

The modal matrix is required to establish a solution for 

the relative deflection vector {x} and to, thus, find the base 

stresses and the strain energy of the system. Computation of 

the relative deflections, the base stresses and the strain 

energy is done by us1ng the system represented in fig. 6a for 

various values of N. 

The differential equations of motion in matrix form for 

the homogeneous solution are given by: 

r- m __] {X } + I K ] { X } = { 0 } (3.13) 

where rm-.] is a diagonal mass matrix and {x} is the relative 

displacement vector. Assuming, {x} = 
1 

r-m.._] -"2{y}' i.e. ' a change 

of system coordinates, and substituting into eq. (3.13) gives: 

1 

and premul tip lying throughout by r-m .. _]-~ results ln 

. • -1: -k 
{y }+ r-m .._] 2 [K] [-m -..] 2 {y } = { 0 } . 

It may be noted that [-.m.._)-!::2 [K] r-m--.J-!::2 is symmetric since 

[K] is a symmetric matrix. Therefore, the coordinate transfor-

mation has not disturbed the symmetry of the stiffness matrix. 

Using [KJ = ~k -k 
r-m.._] 2 [K] r-m-.] 2 gives: 

(3.14) 

[K] is now, used to determine the eigenvalues and eigenvectors. 

This was done using the IBM-360-50 computer utilizing a 



standard eigenvalue subroutine from the system library. It 

can be shown that the eigenvalues of [K] are the same as 
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those obtained using eq. (3.13). The modal matrix, formed by 

writing columnwise the eigenvectors of [K], is premultiplied 
_1 

by r-m._] "2 to obtain the modal rna trix of eq. ( 3 .13) , l. e. , 

if [S] is the modal matrix of [K] and [u] be that of eq. 

(3.13), 

-1: 
IuJ = r-m-J 2 IaJ . 

The normalized modal matrix [vJ of eq. (3.13) is obtained as 

explained below. 

If [-A.-] is the normalization constants matrix with 
l 

normalization constants as the diagonal elements, the normal-

ized modal matrix becomes: 

[v] , and 

[Jl] T r-m-J [).l] 

Nm 

, or 

(3.15) 

Ai can be found from eq. (3.15) and, thus, modal matrix, [v], 

can be obtained from: 

[v] is, then,. the required modal matrix to be used to 

establish the relative deflections, the base str~sses and the 

strain energy of the lumped parameter models. · 



49 

Solution by Classical Superposition of Normal Modes 

Once the dynamically equivalent system is established 

and its modal matrix formed, the next step is to find the rela-

tive deflections of the mass points. This 1s done as follows. 

Let, {x} = [\)J{P} 

where: {P} are the principal coordinates. 

Then, from eq. (3.12): 

Premultiplying this by [v]T, 

[v]T[-m-..J [v]{P}+[v]T[K] [v]{P} = -·~B[v]T{mi} ( 3 . 16) 

is obtained. 

It may be noted that [v] T ['--m .. ..] [v] is normalized to N m [I] , 

where m is the mass of each segment and [I] is an identity 

matrix. Also, 

Therefore, eq. (3.16) g1ves: 

{P} = {F(t)} (3.17) 

where: 

Duhamel's integral can now be used to evaluate {P} as 

shown below: 

{P} = 



Constant Base Acceleration Excitation 

For studying the case of constant base acceleration, 

uB = A0 =constant (i.e., independent of time 't 1 ). 

Since 

{P} = 

= 

{x} = 

{:i{} = 

-A 
0 

Nm 

-A 
0 

Nm 

[v]{P}, 

-A 
0 

-[v] 
Nm 

dt , or 

it follows that: 

' -1 rl-cos wit] [ r [w· J v {m.} 
1--, wi "--... l 

(3.18) 

Equation (3.18) glves the relative deflections of the 

mass points in the system. The time-varying relative end 

-deflection is given by xN' the displacement of the last mass 
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point, and its maximum value is established by selecting the 

maximum value of xN over all values of time 1 t 1 • 

The relative end deflections are of importance in order 

to check the validity of the method by comparing the results 

. . . 1 ( 2 ) 1 d computed hereln Wlth ones prevlous y ca culate . This 

comparison is made in the following chapter. To verify the 

previous work further, base stress, in the bar, is also com-

puted. Base stress per unit cross-sectional area of the 

bar is obtained by multiplying the stiffness of the first 

sprlng, from the fixed end of the system of the type shown 

in fig. 6a, by the relative displacement of the first mass, 

x2 , from the fixed end of the same system. Since x2 is time­

dependent, the base stress per unit cross-sectional area of 
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the bar is found for various values of time 't' and its maxi-

mum value established. Maximum base stress per unit cross-

sectional area of the bar has been compared with the results 

obtained from the continuous analysis. 

Half Sine Pulse Base Acceleration Excitation 

The base acceleration, UB' from a half sine pulse 1s 

given by: 

uB = A0 sin(t/t1 ) 

where the duration is rrt 1 . 

Substituting for uB in eq. (3.17) gives: 

(p} + [
"- 2] -A 0 s in ( t /t l ) T 

w. {P}= N [v] {m.} 
1, m 1 

Duhamel's integral can again be employed to obtain the 

{P} vector for O<t~rrt 1 and for t~rrt 1 . It may be noted here 

that the solution for {P} is obtained in two parts, as in the 

continuous analysis, one valid for O<t~rrt 1 and the other for 

t~nt 1 , care being taken in the integration limits of the 

integral. Therefore, for O<t~rrt 1 : 

{P} 

-A 
= o [ wl. J -1 2Nm lsin(wit-wiT-Tit1 ) 

-(wi+l/t1 ) 

T 
.[v] {m.} 

l 

sin( wi t-wi T+T /t 1 ~ t 

-(wi-1/tl) '\j 0 

(3.19) 



Further simplification yields: 

-A 
{p} 0 - -1 :;: -N [ w.-] m l 

(3.20) 

T 
[v] {m.} . 

l 

(3.21) 

The solution for t?Tit1 is obtained by using the limits 

of integration from 0 to nt1 in the eq. (3.19). Therefore, 

for t~Trt 1 : 

{P} 

T ·[v] {m.} 
l 

lS obtained. On simplification: 

{P} Ao _ -1 
:;: -N [ w. _] m l 

T 
[v] {m.} 

l 

lS obtained. Since {x} :;: [v] {P}, it follows that: 

(3.22) 

(3.23) 
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It is important to note that the period, 2Trt 1 , of the 

half sine pulse is changed as in the continuous analysis and 

depends, now, upon the fundamental period of the lumped para-

meter model under consideration. The relative mass 
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displacement vector, {x}, was evaluated for all the four 

cases of the period of the half sine pulse, i.e., pulse period 

50% less, 10% less, 10% greater and 50% greater than the funda-

mental period of the system under consideration. 

D. Strain Energy Form for Discrete Systems 

The strain energy of the lumped parameter models is 

evaluated for each model and compared with the reference 

quantity, the strain energy obtained from the continuous analy-

sis. The strain energy for the principal modes and the forced 

excitation is dealt with in this section. 

Principal Modes 

The mode shapes of the models evaluated in section B need 

to be normalized to obtain consistent results with those of 

the continuum and this is done in a manner similar to the one 

followed for the continuum. 

If D is the normalization constant, it can be evalua­
v 

ted from the relation: 

2 T . 
D {X } [ .... m .... ] {X } = N m 

\) \) \) 

where {Xv} are the mass point displacements amplitude vector, 

in the vth mode, established for each model and for specific 

boundary conditions in section B and N m is the total mass of 

the bar. Thus, the normalized mode shapes are given by: 

{U Cx)} = D·{x}. 
v v \) 

Maximum strain energy for the vth mode is obtained by 

using the matrix equation: 



u m max 
= l2 {U (x)}T[K]{U (x)} 

\) \) 

where [K] is the stiffness matrix of the model in question. 

Forced Excitations 
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Strain energy of the lumped parameter models is obtained 

by using the matrix equation: 

(3.24) 

where {x} is the relative mass point deflections vector of 

the model and the type of excitation in question. Since {x} 

is time dependent, the maximum value of the system strain 

energy can be found by computing the strain energy for various 

values of time 't'. Difference in the maximum strain energy 

of the models and that of the continuum is checked for conver-

gence and the rate of convergence as a function of N, the 

number of segments. Results of these comparisons are included 

in the next chapter. 



55 

CHAPTER IV 

COMPARISON OF LUMPED PARAMETER MODELS 

A. Basis of Comparison 

The objective of this study has been to provide a consis-

tent basis of comparison for lumped parameter models of one-

dimensional systems in a general dynamic state. The basis 

chosen for this comparison is the maximum system strain energy 

as it is indicative of displacements and stresses in the sys-

tern independent of their position dependence within the system. 

Furthermore, this basis of model comparison should give a 

better measure of total system distortion than any one parti-

cular parameter, e.g., maximum displacement or maximum stress. 

The strain energy expressions in principal modes and under 

forced excitations for the continuum and the lumped parameter 

models have been derived in chapters II and III, respectively. 

In this chapter these expressions have been numerically eval-

uated for the comparison of the models. 

For the model comparison a system has been devised whereby 

the strain energy expressions can be evaluated numerically. 

In this system 

AE = T 1 , and 

pL = Nm = 1 . 

r =Q = 1. 

For the same reason, it is assumed that the amplitude, A of 
0 

the base acceleration is also equal to unity. 
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It may be mentioned here that in the evaluation of the 

comparisons of the lumped parameter models, the strain energy 

value obtained from the exact solution (continuous) will 

always be utilized as the reference point. 

B. Comparisons in Principal Modes 

The maximum system strain energy in the vth mode, of the 

continuum with fixed-fixed ends is obtained from eq. (2.45) 

and with the constants chosen simplifies to: 

For fixed-free ends, the maximum strain energy lS obtained 

from eq. (2.47) which reduces to the form: 

u c max 

1 2 = 8 [(2v-l)TI] 

The maxlmum system strain energy ln the vth mode, of the lumped 

parameter models with any specific boundary conditions, is 

found from the relation: 

The normalized eigenvectors, {Uv(x)}, for the vth mode of the 

models are obtained for a specific boundary condition as 

explained earlier in chapter III. 

Figure 7a shows the behavior of the difference in maximum 

strain energy of the continuous system and that of the models 

(a) and (c) as a function of the number of segments, N, for 

the first three modes with boundary conditions as fixed-fixed. 

The corresponding difference for model (b) is shown in fig. 7b. 
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Figures 7c, 7d and 7e show the difference in maximum strain 

energy of the continuous systems and that of the models (a), 

(b) and (c) respectively, for the first three modes with 

fixed-free boundary conditions. 

Models (a) and (b) are found to behave as : 2 for a large 

value of N for both fixed-fixed and fixed-free ends. This is 

established numerically as shown below: (refer to the curve 

in the second mode of fig. 7c). 

At N = 15, DIFF, the difference in maximum strain energy, 

1s equal to 0.094. Assuming the relation: 

DIFF = a/N 2 

0.094 = a/225, or 

a = 0.094 x 225 is obtained. 

Assuming the form above, DIFF at N = 10 should be: 

DIFF = 0.094 X 225/100 

= 0.2118. 

From the graph at N = 10, DIFF is found to be 0. 208. There-

fore, at these values of N the results follow closely the 

assumed form. To check the accuracy of the assumed behavior 

for small values of N, the value of DIFF = 2.10 is obtained 

from the graph at N = 3 and by calculation, it is found to be: 

DIFF = 0.094 x 225/9 = 2.35. 

It can, therefore, be seen that the assumed behavior is 1n 

error by 11.9%, for small values of N. This is still close 

for engineering guideline purposes. 
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Similarly, for models (a) and (c), the results for small 

N are found to be in error by about 15.4% with fixed-fixed 

ends. For model (b) the corresponding percentage is found to 

be 19 with fixed-fixed ends and 17.9 with fixed-free ends. 

Model (c) behaves as 1/N, for large N, with fixed-free ends 

and the error in this behavior, for small N, is found to be 

about 3.66%. This result can also be established numerically 

as shown above for model (a). 

On the basis of the above discussion it can be concluded 

that models (a) and (b) give more consistent errors in strain-

energy approximation for the specific boundary conditions used. 

It may be noted also that models (a) and (c) have only (N-1) 

differential equations to work with for fixed-fixed boundary 

conditions while model (b) has N. 

P . . ( 5 ) b d h f rev1ous compar1sons ase on t e requency root errors 

have established similar results obtained here by using the 

strain energy compar1son. The error in the maximum strain 

energy representation behaves similar to the frequency root 

errors for models (a), (b) and (c) for the boundary conditions 

considered. 

C. Comparison under Forced Excitations 

Constant Base Acceleration 

To check the numerical calculations against previous 

work( 2 ), comparison of the models is made on the basis of 

maximum relative end deflection and the maximum base stress 

in the system. 
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The maximum relative end deflection for the continuous 

system is obtained from the eq. (2.32) after further simplifi-

cation to: 

-32 \' 3 = --3- ~ 1/n.sin(nn/2) 
n n=l,3,5,----

(4.1) 
= -1.0 . 

The maximum base stress for the continuous systems is obtained 

from the eq. (2.33) which is simplified to the form, 

cr(O,t) = -2/A 
max 

and the maximum base stress per unit cross-sectional area of 

the bar is given by: 

cr(O,t) = -2.00 . max 
( 4. 2) 

The maximum strain energy of the continuous system is estab-

lished by using eq. (2.49) after further simplification to 

obtain: 

u c max 
= 64 L l/n4 = 2 

TI 4 n=l,3,5,---- 3 
( 4. 3) 

Relative end deflections for the lumped parameter models 

are computed from the_eq. (3.18) simplified to the form: 

rx} 1 ll-cos(w.t)] T 
= - I v J r- wi .._] - wi J. """ I v ] {mi } . 

(4.4) 

The peak value for xN is obtained by computing the vector {x} 

for various values of time 't'. This has been done for N = 3, 

5 and 9. Base stresses, for the models with N = 3, 5 and 9 

are computed from the expression, 



Base stress per 
unit cross­
sectional area 
of the bar 

= C~ 2 ) x (stiffness of the first spring 
from the fixed end) 

x2 is found for various values of time 't' and thus maximum 

base stress and its timing are established. 
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Strain energy of the models is calculated from the equa-

tion 

u m 
1 - T · -= 2{x} [K]{x} 

Maximum values of strain energy of the three models have 

been evaluated by computing the strain energy of the models 

for various values of the time 't'. Difference in the maximum 

value of the strain energy, between the continuum and that of 

the models, is found for N = 3, 5 and 9. Values of N as 3, 5 

and 9 are chosen to establish the rate of convergence for the 

low as well as larger values of N. 

Figure 8 shows a plot of the relative end deflections 

against time 't' for models (a), (b) and (c) with fixed-free 

ends and a constant base acceleration A0 = l, at the fixed 

end. Model (a) behaves better than models (b) and (c) on com-

parison with the continuum, since the peak amplitude of the 

relative end deflection and its timing are better approximated 

by model (a). The number of segments considered in fig. 8 is 

nine while those published( 2 ) for the similar case were made 

with N = 5. The results with N = 9 show improvement in approx-

imating the peak displacement and its timing over the ones with 

N = 5. 

A plot is drawn for the base stresses against time 't' for 

the three models with the number of segments considered for 
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Fig. 8 End Deflections for Models (a), (b) and (c) with 
Constant Base Acceleration 
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each model as nine, see fig. 9. Plots with N = 9 show improve-

ment in approximating the continuum as N is increased, as com­

pared to the previous work published( 2 ) with N = 5. The main 

point being that the results are very close and, thus, verifi­

cation of the calculations was shown. 

Figure 9 shows a plot of the base stress against time 't' 

for models (a), (b) and (c). The peak amplitude of the stresses 

is best approximated by models (b) and (c); however, models (a) 

and (b) are better in approximating the timing of the peak 

amplitude of the base stresses. 

Figure 10 shows a plot of the difference in the maximum 

strain energy of the contin~um and that o£ the models for con-

stant base acceleration against the number of segments N. 

Model (a) shows best approximation of the maximum strain energy 

of the continuum followed by models (b) and (c). The timing 

for the maximum strain energy is also best approximated by 

model (a) followed by model (b). Model (c) deviates by 0.1 

seconds from the exact timing for the case N = 9. Models (a) 

and (b) g~ve solutions that agree with the exact solution within 

the ±0.05 seconds time increment used . 

. Model (c) behaves as 1/N, for the reg~on of N considered, 

which is found numerically from the plot, in fig. 10, in a 

manner similar to the one shown earlier in section B of this 

chapter. Model (b) behaves slightly better than 1/N and model 

(a) slightly better than l/N2 for values of N considered. The 

percentage error for N = 3 (small values o£ N) in the above 

behavior for model (b) is about 21% and for model (a) is about 
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33%. The above behavior are good for the boundary conditions 

considered, i.e., fixed-free. 

These comparisons show that model (a), in general, is 

better than the other models for the boundary conditions used 

and for the constant base acceleration problem. It shows more 

consistent errors on a comparison of maximum strain energy. 

Half Sine Pulse Base Acceleration 

The maximum strain energy of the continuum is found by 

evaluating eqs. (2.50) and (2.51) for various values of time 

't'. The maximum strain energy may occur in the region O<tcnt1 

or in the region t~nt 1 . This, therefore, necessitates the com-

putation of both eqs. (2.50) and (2.51). 

These equations for the system under consideration can be 

rewritten as: 

2 

4 \ 2 [~7Tsin(t/t 1 )-l/t1 sincn;t)] 
= 2 L 1 /n · -------:::2:---------

n n=l,3,5, {(~) -l/t 2}2 
2 1 

and for t~Tit 1 , 
2 

[sin{~(t-nt 1 )}+sin(nnt/2)] 
u c 2 2 2 {(nn) -1/t } 

2 1 

( 4. 5) 

( 4. 6) 

Maximum strain energy for the continuum lS established 

for all values of t 1 discussed in chapter II from eqs. (2.50) 

and (2.51). Maximum strain energy of the three models under 

consideration is obtained from the equation: 

( 4 • 7) 
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The vector {x} can be established from eqs. (3.2l) and (3.23) 

for O<t~Tit1 and t~Tit 1 , respectively. For a system with AE/L=l 

and N m=l, these equations become: 

For 0 <t~Tit1 , 

-1 = [v] [- w. _] 
l 

T 
[ v] {m. } 

l 

( 4. 8) 

and for t~Tit1 , 

T 
[ v] {m. } 

l 

( 4. 9) 

Equations (4.8) and (4.9) are used in eq. (4.7) to provide 

continuity through the point t=Tit 1 , and the strain energy is 

computed for different values of time 't'. This gives the max-

imum strain energy of the system at a particular value of time 

It I • 

Likewise, maximum strain energy for the three models 1s 

established for the four values of t 1 discussed earlier. The 

procedure is repeated with N = 3, 5 and 9. Difference in the 

maximum strain energy of the continuum and that of the models 

was found and plotted against the number of segments, N, of 

the model. This was done for the four values of t 1 . 

Figure lla shows a plot of the difference in the max1mum 

strain energy of the continuum and that of the models (a), 

(b) and (c) function of N with t 1 = 
0.5 

Figures llb, as a w . 

llc and lld show similar results with t 1 
_1 0.9 

tl 
1.1 

' = 
wl wl 

and tl 
1.5 respectively. In all four plots model (a) = ' w 

1 
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behaves approximately as ~ for the values of N considered as 
N3 

3, 5 and 9. For a small value of N, the percentage error in 

the above behavior ~s about 28%. Model (b) behaves nearly as 

1 N for the region of N considered and for all the four plots. 

The error in the behavior for a small value of N is about 23.7%. 

Model (c) behaves approximately as ~ for all the four cases of 

the pulse duration. The error in the behavior for a small value 

of N is about 9.6%. 

Note that the above behavior of models (a), (b) and (c) 

are good for the fixed-free ends with base acceleration applied 

at the fixed end only. As discussed earlier, however, this 

result is analogous to the system with fixed free ends and a 

uniformly distributed time dependent forcing function. 

As can be seen from the plots for t 1 = 0.9/w1 and t 1 = 

l.l/w1 the maximum strain energy is finite and is, therefore, 

also expected to be finite for the case where t 1 
l . 

= - ' ~.e.' {Ill 

for the time period of the half sine pulse to be exactly equal 

to the fundamental period of the system. Equations (2.50), 

C 2. 51), C 3. 21) and ( 3. 2 3) are all indeterminate for this par-

ticular case where t 1 - wl . 
1 By applying La-Hospital's rule 

to these equations it was found that the strain energy of the 

system, for the case when t 1 = 1/wl' is bounded and the value 

of the maximum strain energy, for this case, can be established. 

The evaluation of the strain energy of the system in the case 

of t = ~ was not found necessary due to the complications 
1 w1 

involved in its computation. Instead the two border cases of 

t 1 = 0.9/w 1 and t 1 = l.llw 1 were examined. 
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The duration of the half sine pulse was a function of 

the model being investigated and was determined as a per­

centage of the period of the fundamental mode of each model. 

The variation in the duration of the pulse was not appre­

ciable from model to model. This change does not effect the 

absolute value of the maximum system strain energy appreciably 

as can be seen from the maximum system energy error curves 

for the half sine pulse. Examining these curves for any 

given model shows that the maximum strain energy difference 

between models varies slightly when t 1 is changed by a fac­

tor of three, which is represented by a change of 25% to 

75% of the fundamental period. 

Since the pulse duration was varied from model to model, 

no correlation could be obtained for the time occurrence of 

the maximum strain energy. This correlation could have been 

obtained if the pulse duration had been held constant for all 

models. One means of doing this would be to select the pulse 

duration as a percentage of the duration of the fundamental 

mode of the continuous system. 
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Using the maximum strain energy as a basis of comparison, 

several conclusions can be reached about the accuracies of the 

three lumped parameter models examined. 

1. Model (a) (mass-spring-mass) and model (b) (spring-mass­

spring) produce essentially equivalent strain energy errors 

in the principal modes. When N is large, the errors behave as 

l/N 2 in the principal modes with fixed-fixed and fixed-free 

end conditions. 

2. Model (c) (spring-mass) is less consistent than models (a) 

and (b) under the same principal mode comparison. For fixed­

fixed ends, the strain energy error behavior is l/N 2 for a 

large value of N and for fixed-free ends it is found to be 

1/N, when N is large. The behavior of all the three models 

is similar to that based on the frequency root error compari-

son. 

3. It is possible to formulate a related system of models 

with base acceleration by a change to relative coordinates. 

Thus all results derived in the study are equally applicable 

to systems with uniformly distributed forcing functions. 

4. In extending the model comparisons to transient behavior, 

models (a) and (b) were found to produce more consistent 

strain energy error for both the constant base acceleration 

and the half sine pulse base acceleration types of excitation. 

For the constant base acceleration, models (a) and (b) behave 

approximately as l/N 2 while the behavior for model (c) is 
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found to vary approximately as 1/N for values of N in the 

range 3, 5 and 9. This result ~s similar to that of the fre­

quency root error behavior obtained by Rocke( 2). 

5. In the case of half sine pulse type of excitation, model 

(a) with fixed-free ends is found to behave approximately as 

l/N 3 for values of N considered being 3, 5 and 9. Under the 

same comparison, the behavior for model (b) varies slightly 

better than l/N 2 and that for model (c) slightly better than 

liN. 

6, The timing for the maximum system strain energy for the 

constant base acceleration problem is best approximated by 

model (a). Model (b) is less accurate and model (c) deviates 

considerably from the exact timing. 
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Frequently in a dynamical system identical sections are 

repeated several times. The equations of motion can then be 

treated with advantage by the difference equation. As an 

example of repeating sections, consider the N~segments spring-

mass system (fig. 12), where all masses are equal tom and all 

springs have a stiffness of K. The differential equation of 

motion for the Nth mass is then: 

CA-l) 

Assuming harmonic motion of the masses, i.e., let form of solu-

tion be: 

= X n 
iwt e CA-2) 

Substituting eq. CA-2) in eq. (A-1), eq. (A-1) becomes: 

This suggests form of solution for Xn as: 

iSn xn = e 

which leads to the relationship: 

mw2 eiS+e-iS 
(1- ~) = 2 = cos s. 

CA-3) 

CA-4) 

(A-5) 

From eq. CA-4), the general solution for Xn ~s given by: 

where: 

X = A cos(Sn) + B sin(Sn) 
n 

A and Bare constants. 

Note that S, a parameter dependent upon the symmetrical pro­

perties m and K and the natural frequency of the system is 

evaluated from the boundary conditions in the given problem. 



K 

m m 

~xi-1 ~ x. 
l 

K 

m 

~ xi+l 

Fig. 12 Spring-Mass System with N Symmetrical Segments 

00 
1-' 



CHAPTER VII 

BIBLIOGRAPHY 

82 

l. Duncan, W., "A Critical Examination of the Representation 
of Massive and Elastic Bodies by Rigid Masses Elastically 
Connected", Quarterly Journal of Mechanics and Applied 
Mathematics, Vol, 5 (1952) pp. 97-108. 

2. Rocke, R. D., "Comparison of Lumped Parameter Models 
Conunonly Used to Describe Continuous Systems", NASA Sym­
posium on Transient Loads and Response of Space Vehicles, 
NASA-Langley Research Center, Nov. 7-8, 1967. 

3. Archer, John, Journal of the "Structural Division", pro­
ceedings of the American Society of Civil Engineers 
(Aug. 1963) pp. 161. 

4. Krishna Murthy, A. V. , "A Lumped Inertia Force Method for 
Vibration Problems n, The Aeronautical Quarterly (May 19 66) 
pp. 127. 

5. Rocke, R. D. , "Transmission Matrices and Lumped Parameter 
Models for Continuous Systems", Ph.D. Thesis, California 
Institute of Technology (June 1966). 

6. Timoshenko, S. , "Vibration Problems in Engineering", 
D. V~n Nostrans Company, Inc., New York (1955) pp. 297-323. 

7. Vol tera, E. , ''Dynamics of Vibrations", Charles E. Merrill 
Books, Inc., Columbus, Ohio (1965) pp. 257-272, 293-310. 

8. Pestel, E. C. and Leckie, F. A., "Matrix Methods in Elas­
tomechanics", McGraw Hill Book Company, Inc., New York 
(1963) pp. 32-35, 221-223, 227-233. 

9. Thompson, W. T., "Vibration Theory and Applications", 
Prentice-Hall, Inc., New Jersey (1965) pp. 251-253, 99-102. 

10, Jolley, L. B. W., "Summation of Series", Dover Publi­
cations, Inc., New York. 



CHAPTER VIII 

VITA 

83 

Suresh Kumar Tolani was born on January 15, 1946 in 

Calcutta, India. He received his primary and secondary educa­

tion in New Delhi, India. He received a Bachelor of Engineer­

iDg degree in Mechanical Engineering from Sardar Patel 

University 1n Anand, Gujerat State, India. 

He has been enrolled in the graduate school of the Uni­

versity of Missouri - Rolla since September 1968 and has held 

a teaching assistantship for the period January 1969 to May 

1969 and the N.S.F. Scholarship for the period June 1969 to 

November 1969. He is currently working towards his Ph.D. 

degree on an N.S.F. sponsored project at the University of 

Missouri - Rolla. 

183320 


	A comparison of lumped parameter models commonly used to describe one-dimensional vibration problems
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084
	Page0085
	Page0086
	Page0087
	Page0088
	Page0089
	Page0090
	Page0091
	Page0092
	Page0093

