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ABSTRACT 

In the competitive electricity industry, there exists some level of price risk for 

electricity in the form of price volatility. In order to perform efficient risk mitigation, it is 

necessary to have a good understanding on the future electricity demand and volatility. 

Electricity demand forecasting which drives the demand for fuels is first discussed. A 

method to predict future demand levels of electricity using a single factor mean reversion 

model is proposed. GARCH (1, 1) model is then used for forecasting the future daily 

volatility in demand. Both models use historical data for their simulations. The models, 

analysis methodology, data, and numerical results are discussed in this thesis. Modeling 

and simulation of risk is a key part of systems engineering. A risk mitigation framework 

that incorporates two cross-hedging strategies for reducing power price risk is proposed. 

The first strategy is a financial hedging strategy that involves taking one position in the 

cash market and an opposite position in the futures market. The second strategy involves 

the hedging of a physical delivery, which in this example involves taking two different 

positions in the electricity forward and natural gas futures markets such that the loss in 

one position will be offset by the gain in the other position. The risk is quantified in 

dollar terms for different risky scenarios, and the hedging strategies are simulated. To 

conclude, the two proposed hedging strategies are compared and the results of the 

mathematical modeling approaches are discussed in the final section  The results 

indicates two key features: Hedging results in the stabilization of the expected profit 

margin and it also reduces the upward potential to profit from favorable market 

movements.
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1. INTRODUCTION 

1.1. ELECTRICITY DEMAND AND VOLATILITY 

The electricity generation process is very comprehensive and involves generation, 

transmission, distribution and retailing. Electric power can advance the nation’s 

economic growth and productivity. Customers using electricity can be classified into 

three major groups: residential, commercial and industrial. The total demand for 

electricity in 2001 was 669,649 MW in the United States [2]. The demand is highest in 

the residential group (87.3%), followed by the commercial class (12.2%) with the 

reminder utilized by the industrial class (0.5%) [3].  

While slightly under 13% overall, the forecasting of the electricity demand and its 

associated volatility is becoming necessary for companies in today’s deregulated 

electricity market. It is essential for an electricity generating company to have an idea 

about future electricity demand levels. Based on the expected demand, the company 

might prefer to hedge electricity price risks and the associated uncertainty. Estimation of 

future volatilities is also useful for the calculation of Value-at-Risk (VaR), a commonly 

used metric for risk management [1].  

In recent years, several techniques have been used to forecast electricity demand. 

For instance, the demand for electricity for a chosen heating system has been estimated 

using an ordinary least squares method [4]. ARIMA models and Fourier series models 

have been used to forecast half-hourly electric demand using simulation software [5]. 

Bayesian statistics has been used to test the functional form of US electricity demand 

modeling. Linear demand models, Log-linear demand models and the superior Trans-log 

demand models are described in the literature [6]. In addition to demand forecasting, 

electricity demand dynamics have also been studied in great detail [7]. Electricity 

demand is largely dependant on temperature variations. Smooth Transition and Threshold 

Regression models have been used to capture the response of electricity demand to 

temperature variations in the Spanish market [8]. These techniques do not explain the 

phenomena of mean reversion and heteroskedasticity observed in the electricity demand.  

This study focuses on the single factor mean reversion and GARCH (1, 1) 

models. The mean reversion model captures temporary spikes in the demand level, which 
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are often induced by extreme weather conditions. However, these spikes are not 

sustainable and they quickly revert back to the normal level within a few days. It is 

recognized that the demand function should consists of a deterministic and a stochastic 

variable. The evolution of the stochastic variable is described by the mean reversion 

model. The GARCH (1, 1) model is an extension of the Exponentially Weighted Moving 

Average (EWMA) model [1]. Both these models explain how historical data can be used 

to produce estimates of current and future levels of volatilities of the modeled variable. 

The EWMA model is a particular case in which the weights assigned to the previous data 

decrease exponentially as it is traversed back through time. The GARCH (1, 1) model 

uses a long-run average variance rate in addition to the variables used in EWMA model.  

 

1.2. RISK MODEL USING CROSS-HEDGING STRATEGIES 

Deregulation of the electricity industry has increased the level of price risks that 

the owners of electricity generators face. This increase in the level of price risk is due to 

increases in the level of price volatility. Prior to de-regulation, electricity price was 

determined by the regulators. Plant owners and market participants were not required to 

worry about price levels. Deregulation has brought in several private power plant 

operators. This has resulted in an increase in competition. The electricity demand and 

supply functions became stochastic, resulting in increased price volatility. As a 

consequence, risk management techniques have gained importance among electricity 

producers. 

The three main sub-processes of systems engineering are Requirements Analysis, 

Functional Analysis and Allocation and Design Synthesis [13]. Risk management 

technique is a fundamental element within each of these sub-processes [14]. It is a 

continuous process of identifying, quantifying and mitigating risk. Mugurel et al. [15] 

presented a quantitative method for scenario based value, risk and cost analysis when 

proposing new systems architectures. Scenario based risk analysis methods provide an 

efficient way to model and simulate future risks. For instance, for an architect, who is 

either designing a new system or developing a new feature to integrate with the existing 

system, it is essential to have a good understanding about future risks in the early stages 

of architecting. 
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Risk management and mitigation techniques have been studied to a great extent. 

Several papers exist in the literature which discusses different strategies, algorithms and 

financial instruments for risk mitigation. S.J. Denga and S.S. Orenb [16] review different 

types of electricity financial instruments and highlight the roles of these electricity 

derivatives in mitigating market risks and structuring hedging strategies. Kaye, Outhred 

and Bannister [17] showed how forward contracts can be used to reduce the risk, while at 

the same time allowing for flexible responses to spot prices from the consumer’s point of 

view. Thomas. W. Gedra [18] extends the idea of callable forward contracts and allows 

market participants to take advantage of flexibility in generation or consumption to obtain 

a monetary benefit, while simultaneously removing the risk of market price fluctuations. 

This work also considers the effects of strategic behavior on the part of market 

participants in their contract sales/purchase decisions. Genetic Algorithms (GA) were 

adopted by Lane, Richter and Sheble [19] in their research. The GA was used to find 

alternate valuations that are used to generate buy and sell signals. This approach was used 

instead of the Black-Scholes models due to the underlying assumptions required in the 

latter Black-Scholes model. These models incorporate direct-hedging using electricity 

forward contracts, which have low liquidity. 

In this work, a risk mitigation framework which incorporates cross-hedging 

strategies to reduce electricity selling price risk is proposed. Two ‘Cross Hedging’ 

strategies, one as a financial hedge (not involving physical delivery of the commodity) 

and the other as a physical hedge (involving physical delivery), are discussed. Cross 

hedging uses futures contracts from two different markets. An example of using natural 

gas futures contracts to hedge the price risk in the power markets was pointed out by 

Andrews [20]. Eva Tanlapco et al. [21] describes the variance minimization approach for 

calculating the value of the hedged position and the amount of futures contracts that 

minimizes the risk for direct and cross hedging scenarios. Motivated by this work, the 

variance minimization approach is extended to study the actual dollar savings that results 

from the cross hedging. A modeling and simulation approach based on scenarios is used 

in this study. 
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1.3. NATURAL GAS FUTURES MARKET 

Hedging using futures contracts is a strategy for mitigating risk. The world’s first 

natural gas futures contracts were launched by the NYMEX in 1990. A natural gas 

futures contract is an agreement to buy or sell a specific amount of natural gas, at a 

specified future date called the delivery date, at a specific price called the futures price. 

Futures contracts, unlike forward contracts, are traded on an organized exchange (such as 

NYMEX). The rules and regulations of the exchange control the trading of the futures 

contracts. For instance, the clearing house of the NYMEX acts as an intermediary 

between the buyer and seller sees to it that the margin calls are met, and ensures that there 

is no credit risk for either of the parties. 

The contract details that describe the futures contract are specified by the 

exchange [28]. One natural gas futures contract trades in units of 10,000 million British 

Thermal Units (mmBTU). The price is based on delivery at the Henry Hub in Louisiana 

and the nexus of 16 interstate natural gas pipeline systems. The pipelines serve the 

market throughout the US. The price is quoted in US dollars and cents per mmBTU. The 

mode of trading is “Open Outcry”, conducted from 9:00 AM to 2:30 PM EST. The 

exchange specified mode of settlement is “Physical delivery”, although in most cases the 

contracts are closed prior to expiration. The seller is responsible for the movement of the 

gas through the hub. The contracts are traded for delivery during any of the 12 months. 

Natural gas futures (“Contract-1”) are for delivery during the subsequent calendar month. 

Trading stops three business days prior to the first calendar day of the delivery month. 

This thesis is organized as follows: In section two, an overview of the competitive 

electricity industry is provided. The entire process of electricity generation and 

distribution is very complex and it involves market participants at various levels. A 

snapshot about the market and its participants is presented in this section. In section three, 

the description of the problem and the modeling approach to this problem are presented. 

In section four, a modeling technique for forecasting the electricity demand with a lead 

time of one month into the future is determined. The mean reversion model is used to 

forecast month-ahead electricity demand using the historical data. In section five, a 

modeling technique for forecasting the volatility in the electricity demand is discussed. 

GARCH (1, 1) model is used to forecast the volatility in the electricity demand using the 
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historical data. In section six, cross-hedging strategies for financial risk mitigation are 

discussed. Two cross-hedging strategies are formulated for reducing the exposure to 

electricity price risk with a lead time of one-month. Natural gas futures contracts traded 

in NYMEX are used for cross-hedging purposes. The liquidity is very high in the natural 

gas futures market. Cross-hedging strategies are formulated using inputs from the 

electricity demand and volatility forecasts. 
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2. OVERVIEW OF THE COMPETITIVE ELECTRICITY INDUSTRY 

2.1. DESCRIPTION OF MARKET PARTICIPANTS 

After the deregulation of the utilities industry, a number of new market 

participants have appeared in place of old vertically integrated utilities. There are five 

categories of market participants discussed in this section. These categories are not 

mutually exclusive.  

2.1.1. Generation Companies (GENCO).  Generation Company refers to any 

firm which owns physical generation assets. These firms vary from very large 

deregulated subsidiaries to single plant independent power producers. The main objective 

of these companies is to maximize profit. 

2.1.2. Load Serving Entities (LSE).  Today end users are supplied electricity 

through bilateral agreements, or out of the wholesale market. Since buying electricity in 

the wholesale involves significant transaction costs, customers are generally served by 

intermediaries known as load serving entities. The functions of the LSE include 

estimating the aggregate demand of the customers and entering bids in the wholesale 

market to deliver power. LSE includes the competitive retailers (CR) that sell electricity 

at retail in the competitive market. 

2.1.3. Power Marketers.  Because of deregulation, there is a significant increase 

in the financial risk for both the generation companies and load serving entities. Most of 

the firms are not equipped to handle the risks. This led to the development of the new 

class of market participants known as power marketers. There are two fundamental 

components to this type of firm’s operation, the marketing and trading sections. The 

marketing section will approach GENCO, LSE and end users, offering to take part of the 

exposure associated with the electricity price. On many instances, the marketers pass on 

the risks to the trading section. Power marketers are equipped to handle the risk 

management aspect of the electricity supply. They have efficient trading operation 

procedures which minimizes the transaction costs. They have good knowledge about the 

trading and hedging principles using which they can hedge out the exposures arising out 

of uncertainty. The power marketers charge a premium for the risk management service. 

The transaction cost incurred is less since the transactions are performed in bulk. 
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2.1.4. Exchange and Market Makers.  Utilities generally supplied electricity to 

a clearly defined geographical area, using a set of native generators to fulfill the demand 

requirements. To accommodate the increase in the market activity, a number of 

exchanges have emerged for the electricity industry. Exchanges match buyers and sellers 

of the electricity, and charge a small transaction fee for their service. There are several 

types of exchanges, differing in the contract time frame of delivery and trading of 

physical and financial commitments. 

2.1.5. Independent System Operators.  To encourage the physical safety of the 

grid, regulators have encouraged the formation of independent system operators (ISO). 

An ISO is a non-profit entity, which acts as a supervisor of the physical transactions 

registered between power suppliers and customers. The two main functions of the ISO 

are to balance power, and to manage congestion on the grid. The power balancing 

problem is due to the non storability nature of the electricity. The congestion 

management results from non-linear relationship between power injection and flows (to 

avoid overloading of transmission lines). 

 

2.2. ELECTRICITY MARKETS 

There are three fundamental markets available for trading electricity: the spot 

market (day ahead), the physical forward or bilateral market, and the financial futures 

market. In addition to these, there are a number of standard as well as over the counter 

options contracts traded, either through exchanges or on a purely bilateral basis. It is 

necessary to have a good understanding of the manner in which electricity is traded. 

2.2.1. The Spot Market.  Spot power is traded under a number of different 

market structures in the U.S., ranging from power pools to power exchanges to ISO. 

There are a set of rules governing a typical power exchange. While rules may vary 

somewhat based on the geographical location, it serves to influence the decision process 

facing producers in the deregulated marketplace.  

A producer wishing to sell power submits a bid curve to the exchange. The bid 

curve describes the willingness of the producer to deliver power as a function of the 

market price. For example a producer may be willing to supply a total of 50 MW if the 
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price is $20/MW and may offer to supply a total of 100MW if the price increases to 

$30/MW. Bid curves are generally supplied in a day-ahead basis. 

The exchange gathers all the bids from the power producers, and similar bids 

from consumers. The bids are used to aggregate supply and demand curves for each hour. 

The intersection of the supply and demand curves determines the market clearing price 

(MCP). All supply bids with a price less than the MCP are accepted, and are paid the 

clearing price. Similarly all demand bids with a price higher than the MCP are accepted, 

and are charged the clearing price. This ensures that demand and supply commitments 

match perfectly and the exchange remains neutral. 

2.2.2. The Physical Forward Market.  Physical forwards can be traded on an 

exchange or in a bilateral manner through OTC transactions. Exchange traded forwards 

use standardized contracts. The contract specifies a single MW quantity and a single 

$/MWh price. The short position is obligated to deliver power physically at a constant 

rate to a location specified in the contract (the HUB). The short party is responsible for 

delivering the power from the generator location to the HUB, and that the long position is 

responsible for delivering the power from the HUB to the load location. For both the 

parties, this may involve purchasing additional contracts in the spot market. This 

purchase will not affect the price of the forward contract.  

The price of exchange traded physical forwards is quoted daily by the exchange. 

The information includes the high and low prices as well as the volume traded and the 

open interest. The exchange quotes prices for every delivery month up to 15 months into 

the future. This vector of prices, which consistently evolve as new trades become public, 

constitutes the forward curve for electricity. 

Physical forward contracts trade continuously while the exchange is open until the 

fourth business day prior to the first delivery day of the contract. At this point the trading 

terminates, and any party left with the short position is required to deliver power 

according to the contract specifications. A traded can avoid this by ‘closing out’ the short 

position before the trading termination date by taking a long position in exactly the same 

number of forward contracts for the same delivery month. For the ‘close-out’ to take 

place, the market should be high in liquidity. The liquidity of the electricity forward 

market is less than the natural gas futures market. 
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2.2.3.  The Financial Futures Market.  Financial futures contracts for electricity 

are traded on exchanges such as New York Mercantile Exchange (NTMEX) and the 

Chicago Board of Traded (CBOT). Financial contracts are similar to the physical 

contracts in structure. The main difference is that the parties entering into the contract are 

not interested in physically producing or consuming power, but rather use these contracts 

as a financial hedge in the market. The financial futures contracts are therefore settled by 

the exchange of the cash rather than power. The exchanges have two different 

approached for settling cash: ex-post settling and ex-ante settling. In the ex-post settling 

process, the futures contract is settled gradually during the delivery month for all the days 

in the delivery period. In the ex-ante settling, the futures contract is settled financially at 

its expiration date, i.e. on the fourth day prior to the beginning of the delivery period.  

2.2.4. The Derivatives Markets.  A number of options and other derivative 

contracts are traded in the electricity marketplace. They are generally grouped into three 

categories: temporal, locational and inter-commodity derivatives. Temporal derivatives 

are the most common, and are used to hedge against future movements in the spot price 

of power at a given location. Locational derivatives are generally used to hedge against 

the risk of volatile price spreads between the power production and delivery locations. 

Inter-commodity derivatives are contracts based on the price differential between 

electricity and another commodity. 

The next section gives a description of the problem considered in terms of the 

unique nature of electricity and how it differs from other commodities. It is followed by 

the discussion on the modeling approach considered for this problem. 
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3. PROBLEM DEFINITION AND MODELING APPROACH 

3.1. PROBLEM DEFINITION 

The challenges currently facing participants in the competitive electricity markets 

are unique and staggering: unprecedented price volatility, fluctuations in the demand, a 

lack of historical market data on which to test the new modeling approaches, increased 

competition and continuously changing regulatory structure. Meeting these challenges 

will require the knowledge and experience of both the engineering and finance 

communities.  

The fundamental difference between electricity and other commodities is the 

storability factor. For commodities which can be physically stored, future price risks can 

be mitigated using the ‘cost-of-carry’ and ‘convenience yield’ approaches. The role of 

arbitrage pricing theory (ABT) can be applied to storable commodities, by taking into 

account the spot and forward price differentials. Since electricity is not storable, traders 

cannot take advantage of the arbitrage pricing theory in order to perform electricity price 

risk mitigation. Therefore, hedging strategies which are widely used in equities market 

can be taken forward to perform risk reduction in the electricity market.  

In the competitive electricity industry, there exists some level of price risk for 

electricity in the form of price volatility. Contracting exclusively in cash markets may 

leave electricity producers and purchasers exposed to price volatility, depending on 

contract terms. Contractual agreements are widely used in this industry, and are often 

based on the New York Mercantile Exchange (NYMEX) and Chicago Board of Trade 

(CBOT). Industry expansion is likely to heighten the demand for price risk management 

tools.  

Electricity plant owners and purchasers of electricity may benefit from various 

techniques to manage price volatility. For electricity, however, no futures market is 

actively traded. The electricity forward market in NYMEX is in its nascent stage and is 

low in liquidity. Producers and purchasers of electricity may find cross-hedging 

electricity with natural gas futures contracts to be effective in reducing exposure to price 

volatility. The objective of this study is to estimate the cross-hedge relationship and 
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strategies between spot electricity price and the NYMEX natural gas futures market for 

the cross-hedging horizon of one month. 

In order for cross-hedging to reduce exposure to price volatility, the prices of the 

commodities being cross-hedged must be related, so that the respective prices follow in a 

predictable manner. In this study, it is determined that the price of natural gas has a 

positive correlation with the price of electricity. Moreover, the natural gas futures market 

has higher liquidity than the other futures and forward markets. 

 

3.2. NEED STATEMENT 

There is a need for an electricity generator company to minimize the exposure to 

selling electricity in the future. Numerous gas-fired electricity generation facilities exist 

across the US. About 70% of the facilities use natural gas as the raw material due to the 

clean burning nature of the natural gas feedstock. Deregulation of the electricity industry 

has brought in increased price volatility (risk). The owners of power plants must decide 

on strategies for managing the price risk. The major constraint they face is the uncertainty 

about future prices, which can potentially lead to loss of revenues. 

 

3.3. MODELING APPROACH 

This section describes the architecture of the modeling approach considered. The 

problem is sub-divided into three sub-sections. First, a modeling technique for 

forecasting the electricity demand with a lead time of one month into the future is 

determined. Second, a modeling technique for forecasting the volatility in the electricity 

demand is estimated. Input from the first model is used in the second model for 

forecasting demand volatility. Finally, inputs from these two sections are used to perform 

risk mitigation which forms the third sub-section. Two cross-hedging strategies are 

formulated for reducing the exposure to electricity price risk. Figure 3.1 indicates these 

sequential steps, which forms the modeling approach to this problem. The scope of the 

system is the existing electricity generation system in the U.S. The objective is to 

minimize the selling price risk associated with the electricity generation process for the 

plant owners. The price of the raw material (natural gas), plan operation cost, electricity 

price, and trading are within the scope of this work. 
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Figure 3.1. Depiction of the Modeling Approach 
 

 

 

The next section discusses the electricity demand forecasting using the mean 

reversion model. The inputs to this model are the historical demand data and the time 

period. The parameters estimated are the speed of reversion, volatility and the long-run 

average demand. The output from this model is the estimate of the long-run average 

demand. 
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4. FORECASTING MONTH-AHEAD ELECTRICITY DEMAND 

4.1. FORECASTING LONG-RUN AVERAGE DEMAND 

4.1.1. Mean Reversion Model.  In dealing with energy demand and prices, the 

limitations of Geometric Brownian Motion (GBM) exist, such that the demand or the 

price level has the tendency to drift without any bounds. A GBM model shows no 

consideration for the previous demand or price level. The probability of returning to the 

average long-run demand or price is minimal. 

Seasonal effects are considered to be one of the most important parameters 

affecting the electricity demand level. For this research, the monthly seasonality will be 

modeled. For example, let  represents the monthly load variable. This is defined as the 

sum of deterministic and stochastic components, as given in Equation 1. 

mL

 

 L
m mL μ L

mr= +   (1) 

 

Within the equation, the deterministic component L
mμ  represents the average monthly 

load pattern. Each calendar month will have a separate deterministic component, which 

can be further used to capture the yearly seasonality. The stochastic component L
mr  of the 

monthly load pattern is needed to explain any deviation in the actual observed load from 

the pattern given by L
mμ . In order to achieve this, the variable  has to contain as many 

random variables as there are days in that particular month. 

L
mr

For this research, the mean reverting model is used to explain how the stochastic 

component evolves over time [9]. Mean reversion is the tendency of the load demand 

value to gravitate towards a normal equilibrium demand level. This is governed by the 

level of production, the level of demand caused by weather factors, the supply-demand 

equilibrium, etc. Let us suppose that the electricity demand on a particular day jumps 

from 20,000MW to 27,000MW due to an unexpected event such as a heat wave or an 

increased industrial activity. The probability of the demand to return to its average level 

once the cause of the deviation goes away is high. The electricity generators will 

eventually decrease production once the cause of the price jump goes away.  

L
mr
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4.1.2. Methodology. Mean reversion is considered to be a modified form of the 

random walk process, wherein the changes in the demand level are not completely 

independent [10]. The mean reverting process is characterized by demand levels that 

have some degree of memory about previous demand levels. Mathematically the mean 

reversion can be represented as follows: 

 

 1 ( ) .t t td d d d tα σ ε+ − = − +  (2) 

 

where 

1t td d+ −   Expected change in demand at times (t+1) and (t) 

d    Mean reversion or the monthly equilibrium level 

td    Spot demand level 

α    Mean reversion rate (speed of reversion) 

σ    Volatility 

ε    Random shock to the demand from t to (t+1) 

( )td dα −   Mean reversion component 

. tσ ε    Random component 

The mean reversion component is governed by the reversion rate and the distance 

between the spot demand and the long-run equilibrium demand values. If the spot 

demand is below the mean reversion level, the mean reversion component is positive, 

resulting in an upward influence on the spot demand. If the spot demand is above the 

mean reversion level, the mean reversion component is negative, resulting in a downward 

influence on the spot demand. Over a period of time, this causes a drift towards the mean 

demand level at a speed determined by the mean reversion rate. 

Figure 4.1 illustrates how the short-term spikes in the load (daily demand values) 

quickly revert back to the long-term mean value (monthly equilibrium demand level). 

The daily demand (spot) has a tendency to revert back towards the monthly average 

value. Since the fluctuations occur on a daily basis, the demand is never at an equilibrium 

level. The plant operator meets the surge in the demand by purchasing natural gas in the 

spot market. Temperature is one of the factors for a surge in the demand. 
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 Figure 4.1. Stair Step Plot 
 

 

 

For clarity, the mean value is modeled as a monthly average value. Instead of 

considering daily spikes in demand, averages of three-day demand values are considered. 

This means there will be 10 values (indicated by the spikes) for a month (clarity is 

reduced when daily demand values are considered). From Figure 4.1, it is inferred that 

after each spike there is a tendency to revert back to the mean demand level. The mean 

reverting model explains this phenomenon. However, since the market is never at 

equilibrium, the normal monthly level in itself can be considered a stochastic process. 

During 1999, the monthly average value is higher during the months of July, August and 

September. The spot demand drifts back to the mean demand level at a speed determined 

by the parameter mean reversion rate. Higher the distance between the spot demand the 

long-term average demand, greater is the mean reversion rate. It indicates faster reversion 

towards mean. This parameter, along with the long-term average demand and the 

volatility are to be estimated. The mathematical estimation technique is presented in the 

next section.  
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4.1.3. Mean Reversion Parameters Estimation. The various parameters to be 

estimated in the mean reversion model are the mean reversion rate, the volatility and the 

mean reversion level. These parameters can be easily estimated using the Microsoft 

Excel© built-in functions for STDEV, SQRT, SLOPE, INTERCEPT and STEYX. The 

negative of the slope gives the mean reversion rate. This simple and robust method is 

used by regressing the absolute demand value changes over previous demand values. 

The technique for estimating the value of the mean reversion parameters is 

adopted from the energy price processes used for derivatives pricing and risk 

management [10]. In the calculation, the demand is annualized using 365 days per year. 

From the historical daily demand data, the percentage demand change and the actual 

demand change are calculated. Statistical regression analysis is used to estimate the 

parameters of the model. The SLOPE function uses the actual demand change against the 

previous demand. The rate of reversion parameter is the negative of the slope. The long-

run mean demand is the ratio of INTERCEPT to the negative of the SLOPE. The 

volatility is the ratio of the residual standard deviation STEYX to the long-run mean 

demand. 

 

4.2. DATA AND NUMERICAL RESULTS OF STUDY 

4.2.1. Data. The electricity data used for this study are publicly available. The 

University of California Energy Institute (UCEI) sponsored a collection of data related to 

the newly restructured electricity markets in California. Data from this collection was 

used, representing the day-ahead market clearing prices and quantities in the Power 

Exchange (PX). The dataset for this study is comprised of data from April 1998 to 

December 2000. For the mean reversion model, 1999 data is used to estimate the values 

of d,,σα . The estimated values are used in Equation 2 to forecast the demand for year 

2000, i.e., time (t+1). 

4.2.2. Mean Reversion Model Results. The parameters of the mean reversion 

model appear in Table 4.1 for the sampling population (training data). As an example of 

reversion and the use of the table, if the speed of reversion in January 1999 is 40.66% as 

shown in the table, the drift returns back to the mean level in (1/0.4066) = 2.45 days.  
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Table 4.1. Mean Reversion Model Parameters (Monthly) 

Months Speed of reversion Volatility Long-term mean 

demand (MW) 

Jan 99 40.66% 5.20% 20,374 

Feb 99 42.85% 5.15% 19,372 

Mar 99 53.72% 4.75% 20,055 

Apr 99 69.62% 5.33% 19,684 

May 99 44.85% 6.40% 19,969 

Jun 99 24.58% 6.57% 22,608 

Jul 99 68.10% 8.11% 25,005 

Aug 99 77.99% 6.76% 25,730 

Sep 99 61.36% 5.69% 23,627 

Oct 99 68.11% 4.87% 22,707 

Nov 99 70.93% 5.46% 22,727 

Dec 99 42.86% 3.83% 21,640 

 

 

 

The parameters values from Table 4.1 can be used to predict day-ahead electricity 

demand. This study is interested in predicting month-ahead electricity demand. 

Therefore, yearly values of long-term mean demand, volatility and speed of reversion are 

required, as shown in Table 4.2. The speed of reversion is 23.94%, which means the drift 

in the demand reverts back to the mean level in (1/0.2394) = 4.17 months. The yearly 

volatility of 6.35% is pretty high, which is largely due to the seasonality influence. 

 

 

 

Table 4.2. Mean Reversion Model Parameters (Yearly) 

Year Speed of reversion Volatility Long-term mean demand (MW)

1999 23.94% 6.35% 22,468 
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The yearly values from Table 4.2 and the current month’s mean spot demand 

value are used as inputs to predict the month-ahead demand for the year 2000. Using the 

spot demand, the forward demand at time t+1 (1 month ahead) is forecasted using 

Equation 2. 

The plot in Figure 4.2 compares the forecast against the actual demand values. 

The difference between the forecasted value and the actual value is high for the months 

June (6), July (7) and December (12). This model would have tracked the demand spikes 

better if a bigger dataset is available for training. The actual average demand during 

December 1999 is considerably higher than that in December 2000. Since the parameters 

are calculated using December 1999 data as the training population, the forecasted value 

is higher than the actual value during December 2000. 
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Figure 4.3 shows the residual bar plot for the forecasted period. During the 

months of June and July, the forecasted demand is less by 3000MW and 1500MW, 

respectively. In December 2000, it is greater by 2400MW. The Root Mean Square Value 

gives the best estimate of the deviation between the forecasted and actual demand values 

for the entire duration. The forecast root mean square error factor, which gives an 

estimate of the accuracy of the forecasted value, is calculated as 1366.1 MW. 
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Figure 4.3. Residuals Distribution 

 

 

 

The next section discusses the demand volatility forecasting using the GARCH (1, 

1) model. The inputs to this model are the forecasted demand and the time period. The 

parameters estimated are the weights alpha, beta, gamma and variance rate. The output 

from this model is the estimate of the demand volatility. 
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5. FORECASTING VOLATILITY IN THE ELECTRICITY DEMAND 

5.1. FORECASTING DEMAND VOLATILITIES 

5.1.1. GARCH (1, 1) Model. In this section, an explanation is made as to how 

historical data can be used to produce estimates of current and future levels of volatilities. 

Estimating future volatilities is useful for the calculation of Value-at-Risk (VaR). Here, 

Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) is used to model 

the future volatilities against Variance (Standard Deviation). The most important feature 

of this model is that the inconstant volatilities keep on changing day-by-day. 

Heteroskedasticity is defined as the variations in the volatility on a day-to-day basis. The 

phenomenon of heteroskedasticity is observed in the electricity demand data. The 

GARCH model is used because it explains the heteroskedasticity and attempts to keep 

track of the variations in volatility. In this model, the volatility value for a particular day 

is calculated using the value at the end of the previous day. 

The key parameter of interest is to calculate the daily variance rate in demand 

using the previous day’s data.  is the variance rate on day n and is the variance 

at the end of day (n-1). Here,  is defined as the daily percentage change in the demand 

value.  

2
nσ 2

1−nσ

nu
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The model used to estimate the variance is 

 

  (4) 2
1

2
1

2 ... −− ++= nnLn uV σβαγσ

 

The parameters LV,,, γβα are estimated from the historical data (January 1999 to 

September 2000). The values of γβα ,, are the weights assigned to 

respectively. These weights must total to one. These weights determine the 

value of long-term mean variance and hence, the volatility. 
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By setting LV.γω = , Equation 4 can be written as 

 

  (5) 2
1

2
1

2 .. −− ++= nnn u σβαωσ

 

5.1.2. Methodology.  The Maximum Likelihood Method is used to determine the 

parameters LV,,, γβα [1]. It is a popular statistical method used to calculate the best way 

of fitting a mathematical model to the data. Modeling real world data by estimating 

maximum likelihood offers a way of tuning the free parameters (weights) of the model to 

provide an optimum fit. Let . The best estimate of is that value which 

maximizes the following function:

nn V=2σ nV
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For the first step, assume some temporary values for ωβα ,,  to determine the value of the 

function  and its sum. In the next step, regression analysis is used to estimate the true 

values of 

nf

ωβα ,,  that maximize the sum obtained. The steps are explained in Appendix 

A. The Long-term variance rate is given by: 

 

 
βα

ω
−−

=
1LV  (7) 

 

The Long-term volatility (Standard Deviation) = LV , therefore, 

LV.γω = giving LV/ωγ = . After checking to see that 1=++ γβα , a graph of 

2
nσ versus days, i.e., volatility or standard deviation versus days can be plotted. Using 

the estimated values of LV,,, γβα , and using the previous day’s data for and1−nu 1−nσ , the 

variance, and hence, the volatility in demand for the next day can be calculated using 

Equation 4. 

 



 22

5.2. DATA AND NUMERICAL RESULTS OF STUDY 

5.2.1. Data. The electricity data used for this study are publicly available. The 

University of California Energy Institute (UCEI) sponsored a collection of data related to 

the newly restructured electricity markets in California. Data from this collection was 

used, representing the day-ahead market clearing prices and quantities in the Power 

Exchange (PX). The dataset for this study is comprised of data from April 1998 to 

December 2000. 

For the GARCH model, the demand data from January 1999 to September 2000 is 

used to estimate the values of the parameters LV,,, γβα . The estimated values are used in 

Equation 4 to forecast the daily volatility in the demand for the period October 2000 to 

December 2000. 

5.2.2. GARCH (1, 1) Model Results. The parameters used for the GARCH 

model appear in Table 5.1, given the sampling population (training data) used. Alpha 

(weight associated with previous demand) has a value 0.0201, Beta (the weight 

associated with variance rate) is 0.6572 and Gamma (weight for long-term variance rate) 

is 0.3227. Beta has the highest influence on Long-term volatility. 

 

 

 

Table 5.1. GARCH Model Parameters 

Alpha Beta Gamma Omega Long-run 
Average 

Variance Rate 

Long-run 
Average 

Volatility Rate 

0.0201 0.6572 0.3227 0.0016 0.0050 7.04% 

 

 

 

Figure 5.1 shows the pattern by which the volatility of electricity demand changed 

over the 21 month period from January 1999 to September 2000. The volatility was 

higher during the summer months of June and July, which coincides with huge increase 

in the demand experienced during these months. The volatility changes on a daily basis 

and the phenomenon of heteroscedasticity is evident from the plot. 
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Figure 5.1. Volatility for the 21-Month Period 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The parameters values from Table 5.1 are used to forecast the daily volatility in 

the electricity demand from October 2000 to December 2000. Figure 5.2 shows the 

forecasted daily volatility in the electricity demand over the 90 day period. During the 

first and second month the volatility was between 5% and 5.5%. During the third month 

the volatilities were higher, exceeding 6%. These values are considered high in the 

trading market which move up or down very quickly. Volatility values are used on 

different occasions. For instance, it is an important factor in the pricing of options since 

higher the volatility higher is the price of options on futures (premium) because the 

probability of the option attaining the intrinsic value or moving deeper ‘in-the-money’ 

increases. In this study, hedging strategies for financial risk reduction are formulated 

based on the forecasted demand and volatility values. Based on the volatility, it is 

possible to have an estimate of the deviation in the selling price of electricity in the future 

for different risky scenarios. The values of expert probabilities used in section 6 are based 

on the historical volatility value in the electricity demand. 
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Figure 5.2. Forecasted 90-Day Period Volatility  

  

 

The next section discusses the hedging strategies for financial risk mitigation. The 

inputs to this model are the forecast of electricity demand and volatility. The 

effectiveness of the hedge is measured in terms of Revenue to Loss ratio and the Net 

wealth change parameters. The results of this model indicate the stabilization of the 

expected profit margin as a result of hedging. 
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6. HEDGING STRATEGIES FOR FINANCIAL RISK MITIGATION 

6.1. RISK MITIGATION 

Risk analysis is the process of identifying, quantifying and handling the 

occurrence of an undesirable event in the future, which in this case is the targeted selling 

price risk. One approach is to use derivatives of energy commodities as financial 

instruments to hedge the exposure to price risk. Contractual agreements for a wide range 

of energy commodities are traded in the New York Mercantile Exchange. Agreements 

that include futures give the owner the obligation and options give the right but not the 

obligation to buy or sell the underlying primitive commodity for a certain price at a 

certain time in the future. 

6.1.1. Risk Mitigation Framework. A cross-hedge is performed by hedging the 

cash price of one commodity with the futures price of another commodity. For 

performing the cross-hedge, both of the commodities should have a correlation between 

each other. In this study, the spot electricity price risk is hedged using the natural gas 

futures contract. The correlation between electricity and natural gas price is positive, 

implying that both the prices move in the same direction. An increase in the price of 

natural gas tends to increase the price of electricity for gas-fired electricity generators. 

The steps necessary for carrying out the risk reduction functionality are shown in the 

framework in Figure 6.1. 

 

 

 

 
 

Figure 6.1. Risk Mitigation Framework 
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6.1.2. Case Study – Risk Mitigation by Hedging.  The main objective of this 

case study is to implement the proposed risk mitigation framework within a real-world 

example. The study is performed on the publicly available electricity data from the 

California Power Exchange and the natural gas futures data from NYMEX. The dataset 

for this study is comprised of data from January 1999 to December 2000. 

The business context is the risk faced by the electricity generator company, which 

expects to supply some specific quantity of power at time t+1, for a price pre-determined 

at time t. Since the futures contracts have month-ahead delivery dates, a lead time of one 

month is considered. For instance, if time t represents 01-January-1999, then time t+1 

correspond to February-1999. The risk reduction goal is to stabilize the profit margin for 

different risky scenarios. The risk considered here is the financial risk. Risk can also be 

stated as the probability that the outcome might result in a loss, which leads to 

uncertainty. If the risk leads to financial loss, it can be termed a financial risk. This type 

of risk results in a decrease in revenues and hence, the operating profits. 

6.1.2.1 Quantify risk.  The term quantitative risk analysis generally implies the 

reliance on probability and statistics. However, few quantitative risk analysis 

methodologies, such as maximin, minimax and game theory do not depend on 

probability. This study builds on the existence of probabilities for determining the 

outcomes. Probabilities based on historical data and systemic observations are called 

‘objective probabilities’. Since it is not possible to obtain historical data, the probabilities 

based on expert evidence, referred to as ‘subjective probabilities’, are used here. 

Two methods are available in the literature for generating expert evidence based 

probabilities – the fractile method and the triangular distribution method [25]. The 

fractile method requires the expert to asses the probabilities of different outcomes. The 

expert should be comfortable with probabilities. The triangular distribution follows a 

similar approach to the one used in the fractile method. However, only three assessments 

are required – Optimistic, Pessimistic and Most-Likely estimates of the outcomes. This 

approach is less complex, aids in fast calculation, and is easy to simulate. 

A simple triangular distribution, which is shown in Figure 6.2, is a reasonable 

Probability Density Function (PDF) for describing the risk. Its structure is based on three 
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parameters: the ‘minimum’ selling price (pessimistic), the maximum selling price 

(optimistic) and the ‘most likely’ selling price. 

 

 

 

 
Figure 6.2. Triangular Probability Distribution 

 

 

 

Table 6.1 relates the risk values of low, moderate, high, and very high to a set of 

risk factor multipliers. It has been developed by experts to facilitate risk estimation [26]. 

The ‘risk factor multipliers’ in the table provide a reasonable range of risk quantification 

for the problem considered here. 

 

 

 

Table 6.1. Risk Factor Multipliers 

    Price ($) per MW 

Code   Min Most Likely Max 

Low risk L 0.96 1 1.05 

Moderate risk M 0.91 1 1.16 

High risk H 0.83 1 1.29 

Very High risk V 0.68 1 1.57 
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Interpretation of Table 6.1 shows that for a scenario coded ‘Low risk’, the ‘min’ is 

defined as 4% less than the ‘most likely’ and the ‘max’ is defined as 5% more than the 

‘most likely’. Suppose on 01-January-1999 that the generator company decides to sell 

1515 MW of electricity on February-1999. The company targets a price of $25 per MW, 

or a total selling price of (25)*(1515) = $37,875. If the price falls below $25/MW, it will 

result in a decrease in the revenues. The risk in this case is the ‘Selling Price’. The ‘most 

likely’ value is $25/MW. Table 6.2 shows the quantification of the three parameter values 

for each of the four risk codes. 

 

 

 

Table 6.2. Price at Different Risk Codes 

    Price ($) per MW 

Code   Min Most Likely Max 

Low risk L 24 25 26.25 

Moderate risk M 22.75 25 29 

High risk H 20.75 25 32.25 

Very High risk V 17 25 39.25 

 

 

 

6.1.2.2 Formulate algorithm.  The formulation of hedging strategies is 

performed as a six-step process, using the available dataset. As a first step, the electricity 

generator company sets the target selling price (i.e. the price per MW) for the electricity 

to be delivered in the future. If the actual price happens to be less than the targeted price, 

the company will realize a decrease in the operating profit. Therefore, it is necessary to 

model the risk involved in dollar terms (risk quantification). 

Whenever there is randomness about future, probability is used to model the 

uncertainty, such that the price risk is modeled as a Probability Distribution Function. 

This is the second step. Expert opinion based studies for understanding the future states 

of economy are widely used in risk analysis. As a third step, the risk factor multipliers 
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based on expert opinion are obtained. The values are shown in Table 6.1. Using these 

multiplier values, the price risk in dollar terms is calculated as the fourth step. Based on 

the values obtained, cross-hedging strategies involving a natural gas futures contract are 

formulated, simulated, and the results verified. These final two steps are used to 

formulate algorithm functionality. The six steps are shown in Figure 6.3. 

 

 

 

 

 
Figure 6.3. Formulate Algorithm Function 

 

 

 

The next section describes the two cross-hedging strategies: one as a financial 

hedge and the other as a physical hedge. 

6.1.2.3 Financial hedge – no physical delivery of the asset.  Suppose that on 01-

January-1999 the generator company anticipates selling electricity at $25 per MW. The 

natural gas futures price on this date for February-1999 delivery is $2.275 per mmBTU. 

For performing cross-hedge, the first step is to estimate the number of futures contracts 

needed. The quantity ‘Optimal Hedge Ratio’ indicates the number of futures contracts 

required for a unit risk. It refers to the number of futures contract for 1 MW of electricity 

that will be sold. The equation for calculating the optimal hedge ratio (h) is: 
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where 

sσ   Standard deviation of electricity spot price over the hedging period 

fσ   Standard deviation of natural gas futures price over the hedging period 

),cov( fs  Covariance between spot and futures price over the hedging period 

If ρ represents the correlation between spot and futures price, Equation (1) can be 

rewritten as: 
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From the real-time data, the optimal hedge ratio for January-1999 is calculated to 

be 2.4945. This means that if at time t the company anticipates to sell 1 MW of electricity 

at time t+1, it can hedge against price risk by selling 2.4945 MW worth of futures 

contract. Time t corresponds to 01-January-1999 and time t+1 correspond to February-

1999. In cross hedging, both the units are not same since two different commodities are 

involved. The company performs two transactions: First, it sells 2.4945 MW worth of 

futures contract (short sale) on 01-January-1999 at $2.275 per mmBTU. These futures 

contracts are for delivery during the next month. The trading terminates on 26-January-

1999, three business days prior to 01-February-1999. On 26-January-1999, the company 

closes its short sale by buying the same number of futures contracts in order to avoid 

physical delivery of natural gas. 

The correlation coefficient between spot and futures price is calculated to be 

0.7260. Therefore if the price of electricity decreases at time t+1, the price of natural gas 

futures also decreases. If the short-selling price at time t is high, the buying price at time 

t+1 is less. The difference in these two values, to some extent, reduces the loss in the 

targeted revenue for the generator company. If the optimal hedge ratio turns out to be 

negative, the company can buy the same amount of futures contracts. The transactions are 

shown in Table 6.3. For the correlation coefficient mentioned, if the electricity price 
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decreases by $1 per MW, the natural gas futures price decreases from $2.275 to $2.165 

per mmBTU. 

Table 6.3. Cross-hedging Using Natural Gas Futures 

 Cash Market Futures Market 

t = 0; 

01-Jan-

99 

Plan to sell 1515MW at $25 

per MW, which should net 

the firm 1515*25=$37,875 

Sell 2.4945 MW worth of natural gas futures 

contract. Price is (6600*1000)*2.4945*1515 

=24,962 mmBTU. 

Current futures price is $2.275 per mmBTU. 

Total futures price = 24,962 * 2.275 = 

$56,744 

t = 1; 

1 month 

Sell electricity at $24 per 

MW, which will net the firm 

1515*24 = $36,360 

Buy the same number of futures contract to 

close out the short-sale position. Current 

futures price = $2.165 per mmBTU. Buy 

price = 24,962 * 2.165 

= $54,043 

 Loss = $1,515 Profit = $2,701 

 Net Wealth Change = $1,186 

(0.7260 $ / 6.6 mmBTU) * 1 mmBTU = $0.11 per mmBTU 

(2.275 – 0.11 = $2.165) 

     

 

 

 

The same hedging strategy is followed to compute the net wealth change for all 

four risk codes. Results for the four risky scenarios are presented in Figure 6.4. This chart 

shows the two sets of bars for the four risky scenarios. The bars in blue show the loss that 

the company would have incurred if no hedging was carried out, and the ones in red show 

the profit made due to the hedge in place. The bars are arranged from low risk to very 

high risk from left to right. The purpose to carry out hedging is not to profit from it, but 

to reduce the downside potential. The cross hedging strategy is tested for four different 

risky scenarios and the dollar values are denoted by the bars in Figure 6.4. The target 
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selling price varies depending on the risk of the future scenario. The values obtained 

using expert opinion based probabilities are used to formulate the strategies. 
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 Figure 6.4. Profit and Loss for Different Risk Codes 
 

 

 

“Zero Hedge” refers to no hedge at all. It has resulted in a loss for company since 

the expected target revenue is not achieved. “Optimal Hedge” has resulted in eliminating 

the loss and had contributed to a positive wealth change for the company.. The 

performance of the hedge is defined in terms of a Revenue To Loss (RTL) ratio. The 

RTL is a new parameter mentioned here, defined as the ratio of cash inflow due to 

hedging to the loss that would have occurred without hedging. It can be seen that the 

RTL ratio is approximately the same for the different scenarios. Hedging has resulted in 

stabilizing the profit margin, as indicated by the values in Table 6.4. 

 

Table 6.4. RTL Ratios for Four Risky Scenarios 

 Low Risk Medium Risk High Risk Very High Risk 

RTL Ratio 78.28% 79.93% 80.54% 80.87% 
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6.1.2.4 Physical hedge – physical delivery of the asset.  So far, the case study 

has dealt with the case of hedging as a financial contract. Physical delivery of natural gas 

is advantageous for gas fired electricity generation plants in order to meet the surge in 

demand for electricity. For instance, on a very cold day, the demand for electricity might 

be higher that usual. In such situations, the company can procure natural gas from the 

nearest distribution center and use it for electricity generation. If the spot price is very 

high, the company is at a price risk. In order to avoid this exposure, the company can 

make use of a natural gas futures contract to lock into a fixed price by taking a long 

position, especially during the summer and winter months. Natural gas is transported 

from production fields to distribution centers. The most important market center in the 

US is the Henry Hub, located in Louisiana. It is the most active and highest-volume 

traded center. The NYMEX traded futures contracts use Henry Hub as the physical 

delivery point. From this hub, the gas is supplied to different distribution centers through 

pipelines [29]. The party with a short position in the futures contract is responsible for the 

physical delivery of natural gas. 

Options are the other type of financial derivatives that can be used as risk 

mitigation instruments. Specifically, a spark spread option is a type of call option which 

can be used effectively to minimize the exposure to power price risk. It describes the 

payoff of the gas-fired electricity generation asset. The spark spread is the difference 

between the electricity price and the electricity generation cost. It is defined as: 

 

Spark spread = Electricity Price – (Standard heat rate * Natural gas price)      (10) 

 

Fred [30] has modeled spark spread option using a mean reverting model and Fourier 

transforms. It was also used for the valuation of electricity generation assets as a real 

option [31]. Spark spread is a type of call option that provides the holder, the right, but 

not the obligation to buy or sell an asset at an agreed price at a specific time in future. If 

is the spot price of the underlying asset and K is the strike price of the option expiring 

at time T, then the payoff of the call option is 

tS

]0,[ KSMax t − . The holder of the call 

option decides to exercise the option only if the spot price is greater than the strike price. 

Similarly, the owner of the gas-fired plant will decide to operate the plant only if the spot 
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price of electricity is greater than the cost of generation of the unit. This is similar to a 

call option with a payoff given by: 

 

 ]0)),*([( ne PhPMax −  (11) 

 

where  

eP    The spot electricity price  

nP   The spot gas price  

h   The standard heat rate 

The hedging strategy adopted here is that the plant operator simultaneously enters 

into a short position in the electricity forward contract and a long position in the natural 

gas futures contract. Since both the markets have a positive correlation between them, a 

loss suffered in one market will be compensated by a gain in the other market. The 

magnitude of the profit or loss determines the overall result. The standard heat rate is 

6600*1000 BTU per MW. The electricity forward contract obligates the operator to 

deliver power during the delivery month. The gas futures contract obligates the operator 

to accept delivery of natural gas during the delivery month. Both the contracts mature 

during the subsequent month. For instance, let us consider the following scenario 

observed on 01-November-2000. The plant owner hedges by entering into a short month-

ahead COB1 electricity forward contract for $100.6 per MW, and a long Contract-1 

natural gas futures contract2 for $4.618 per mmBTU. By doing so, the plant owner locks 

into a profit margin of [(100.6 – (4.618/0.1515)] = $70.12 for each MW of power. (Note: 

this calculation uses 0.1515 because at the given heat rate, 0.1515 MW of electricity will 

be generated from 1 mmBTU of natural gas). 

For instance, on a particular day (say 01-December-2000), the spot electricity is 

$120 per MW and the spot natural gas price is $17 per mmBTU. The plant will be 

                                                 
1 COB forward contracts are for 432 MWh each, to be delivered at the rate of 1 MW/hour for 27 days of a 
month. They are available for delivery during any of the 12 months. 
2 Contract-1 futures contract are for delivery during the next month. They are available for delivery during 
any of the 12 months. One contract is for 10,000 mmBTU of natural gas. Other contracts are named 
Contract-2, Contract-3 and Contract- 4 to represent contracts 2, 3 and 4 months out respectively. 
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operated and the profit margin is still $70.12. Without hedging, the profit margin would 

have dropped to [120 – (17 / 0.1515)] = $7.78. 

As another instance, if the spot electricity on 01-December-2000 is $112 per MW 

and the spot natural gas price is $17 per mmBTU, the plant will not be operated in this 

case since the spot electricity price is less than the cost of operating the plant [Spark 

spread = 112 – (17*6.6) = -0.2112]. However, the owner has obligations on the futures 

contracts. For the short position, the owner buys electricity from the spot market at $112 

per MW and delivers it. For the long position, the owner accepts deliver of natural gas at 

$4.618 per mmBTU and sells it in the spot market at $17 per mmBTU. The profit margin 

from doing so is [(-112 + 100.6) - (4.618/0.1515) + (17/0.1515)] = $70.33, where the 

negative sign indicates buying (cash outflow) and the positive sign indicates selling (cash 

inflow) for the owner. The different feasible scenarios are indicated in Table 6.5. 

 

 

 

Table 6.5. Profit Margin With and Without Hedging 

 At the time of hedging (entering into forward and future contracts): 

Electricity forward price=$100.6/MW 

Natural gas futures price = $4.618 / mmBTU 

Profit margin locked upon = $70.12/MW 

    Profit Margin 
Scenario Spot 

electricity 
price 

($/MW) 

Spot natural 
gas price 

($/mmBTU) 

Plant 
operation 

With 
Hedging 
($/MW) 

Without 
Hedging 
($/MW) 

1 110.6 5.186 Yes 70.12 76.37 

2 100.6 3.5 Yes 70.12 77.5 

3 100.6 6 Yes 70.12 60.99 

4 80 2 Yes 70.12 66.79 

5 120 17 Yes 70.12 7.78 

6 112 17 No 70.33 -0.2112 
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For scenarios 3 to 6, hedging turned out to be advantageous because the profit 

margin would have decreased if a hedge is not put in place. For instance, in scenario 4, 

when both the electricity and natural gas spot prices fell, the hedge had guaranteed the 

anticipated profit margin. For the scenarios 1 and 2, hedging turned out to be 

disadvantageous because it has circumvented the favorable price movements. For all the 

scenarios, hedging has resulted in stabilization of the profit margin. 

The plot in Figure 6.5 compares the variation in the profit margin with and 

without hedging for different scenarios. When no hedge is put in place, the profit margin 

fluctuates between $0 and $77.50. This variation is avoided by hedging using futures 

contracts. Hedging, while reducing the loss due to unfavorable market movements, also 

eliminates the potential to gain from favorable market movements. 
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 Figure 6.5. Stabilization of Profit Margin 
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6.2. DISCUSSION 

The case study emphasized on two hedging strategies using futures contracts from 

different commodity markets. Eva Tanlapco et al. [9] in their paper say that direct 

hedging is superior to using a cross-hedging strategy in the electricity industry. Although 

this might be true theoretically, direct hedging might not be always feasible. In actual 

hedging applications, the nature of hedging is determined by several factors, such as the 

time span covered and liquidity for that commodity markets, among others. For instance, 

let us consider a plant operator who enters into a short financial hedge position using 

electricity futures contracts. This market has lesser trading than the natural gas futures 

market. When the operator plans to close out the position just before the expiry date, it 

might be difficult because there are no contracts to buy. If the operator is unable to close 

the position before the delivery month, the responsibility for physical delivery lies with 

the operator. This gives rise to an additional risk. Illiquid markets usually pose such risks. 

The natural gas futures market is comparatively more liquid than electricity futures 

market. A press release from NYMEX stated that in 1999, the volume of natural gas 

futures contracts traded was 15,978,286, versus 128,423 contracts for California Oregon 

Border (COB) electricity futures [33]. 

The scope of this research is limited to the two types of hedging strategies 

discussed. It would be interesting to compare other hedging strategies to the ones 

discussed in this work. Other types of hedging include dynamic hedging, a multiperiod 

hedging approach, and a replicating portfolio approach. The choice of the hedging 

strategy depends on the circumstances and the risk aversion rating of the company. Risk 

is directly proportional to the return and so a company interested in higher returns might 

prefer not to formulate risk reduction hedging strategies in place. 

The next section states the results of the mean reversion model and the GARCH 

model. The forecast mean square error is used to estimate the accuracy of the forecast 

made using the mean reversion model. The two hedging strategies proposed are 

compared to determine which of these is advantageous for the electricity generator 

company depending on the circumstances and the availability of suitable data. The scope 

for further research and investigation using the models used in this research are also 

discussed in the next section. 
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7. CONCLUSION AND FUTURE RESEARCH 

7.1. CONCLUSION 

This work discusses the risk management for the existing U.S. electricity 

generation system. The problem faced by the electricity generator companies and the 

modeling approach to this problem are described. The mean reversion model for 

forecasting long-term demand is proposed. Electricity demand has a strong deterministic 

component due to seasonal effects. The monthly average demand level and the speed of 

reversion for each month are estimated. While one year training data (monthly values) is 

insufficient to provide an accurate forecast, it is reasonably good to provide a starting 

point for understanding the effect of seasonality on electricity demand. The monthly 

electricity demand forecasted using mean reversion model is close to the actual demand, 

with the forecast root mean square error of 1366.1 MW. The error can further be reduced 

by employing the same procedure on a larger dataset, if available, for training purpose. 

Daily and hourly seasonal patterns have a high influence in the demand on a daily basis. 

Since the electricity demand has a strong heteroscedastic behavior due to seasonal 

effects, a GARCH model for forecasting demand volatility is proposed. This model 

forecasts the daily volatility rate and the trend, along with the long-run variance rate. The 

daily demand volatility of 5.5%, forecasted using the statistical GARCH model indicates 

that the demand is high in volatility. 

A risk mitigation framework for reducing the exposure to electricity price risk is 

proposed. A case study describing the implementation of the steps mentioned in the 

framework is undertaken. The risk is quantified using a triangular probability distribution 

function for different risky scenarios. Two cross-hedging strategies, one as a financial 

hedge and the other as a physical hedge are formulated and simulated for different 

scenarios. The results of the simulated scenarios indicate the performance of the hedge. 

For a financial hedge, the results of the simulation with and without hedging are 

compared in terms of "Net wealth change" and "Revenue To Loss" ratio. For a physical 

hedge, the results illustrate the stabilization of the anticipated profit margin as a 

consequence of hedging. Both the advantages and disadvantages of hedging are discussed 

based on the results.  
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7.2. DISCUSSION 

In cross-hedging it is hardly possible to have a perfect hedge - a hedge leaving 

total wealth unchanged [32]. Table 7.1 shows the comparison between the two hedging 

strategies. 

 

 

 

Table 7.1. Comparison of the Two Hedging Strategies 

Scenario No Physical Delivery Strategy Physical Delivery Strategy 
1 The plant operator acts as an 

"Outright position trader", who 

speculates the future price 

movements and takes a position. 

The plant operator acts as a 

"pure hedger", who profits in 

one position and loses in the 

other position, depending on 

the price movements. 

2 Best suited when the liquidity is 

very high in the futures market. 

Best suited when the spot 

natural gas price drives the 

electricity sale price for the 

operator. 

3 It is useful when the plant 

operator has no storage facility. 

It is useful when the plant 

operator has a storage facility. 

4 It is advantageous when the 

operator is located far away from 

the gas distribution center. 

It is advantageous when the 

operator has ready access to a 

nearby gas distribution center. 

5 In situations when transportation 

costs are very high. 

In situations when the 

transportation costs are not 

high. 

6 The plant operator anticipates 

spot and futures commodity price 

movement is in the same 

direction. 

The plant operator anticipates 

random (non-linear) price 

movement between the spot 

and futures commodities. 
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The intention for carrying out hedging is not to profit from it, but to reduce the 

loss. With this approach, the electricity generator company can adopt any of these two 

hedging strategies depending on the circumstances. While there are many different types 

of hedging strategies involving futures and options, it is impossible to generalize which 

of these strategies is the best. It depends on every firm's individual characteristics, 

hedging objectives and risk aversion. 

 

7.3. FUTURE RESEARCH 

The single factor mean reversion model can be extended to two-factor mean 

reversion model, by incorporating temperature as one of the parameters in the model. The 

bidding behavior of the electricity traders can be simulated using an agent based 

modeling approach. This approach requires a group of people to simulate the market 

participant’s behavior under various scenarios. As the electricity market becomes more 

liquid, this would theoretically allow traders to form a replicating portfolio for electricity 

using oil and gas contracts. The replicating portfolio approach is widely used in financial 

engineering and financial markets for option pricing and binomial tree approaches. The 

effect of storing electricity in the secondary forms such as hydro-electric dams and back-

up power stations can be studied depending on the availability of company specific data 

for this approach. 
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APPENDIX 

MAXIMIZATION FUNCTION 

Derivation for the value of   that maximizes the sum of the function in Equation 6. nV
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Equation 5 can be rewritten as    2
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The values for 11 ,, −− nnn uu σ  are available. Regression analysis is used to estimate the 

values of the coefficients ωβα ,, . 
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