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INTRODUCTION

The purpose of this investigation was to obtain an expression for
the steady state temperature distribution of a disk of uniform thickness
rotating at a constant speed in ambient air while absorbing heat through
the periphery at a constant rate. Engineers encounter such problems in
connection with brakes of several varieties. The general solution
obtained here could be extended to similar physical problems such as
grinding wheels, disk clutches, and so on.

A differential equation was obtained for the temperature in the
disk by the application of Fourier’s conduction law and Newton’s
convection law. A solution of this equation was obtained in the form
of a Bessel function of the first kind and order zero and the constants

of integration as determined by the boundary conditions.



ASSUMPTIONS

Steady state conditions prevail. (i. e. the temperature is constant
with respect to time.

The disk material is homogenious and isotropic. (i. e. all
intensive properties of the disk are symmetrical about the polar
axis.

The disk is thin enough that the temperature variation other than
radially can be neglected.

The thermal conductivity and the heat transfer film coefficient are
constant over the region of the disk under consideration.

No heat is lost through the disk periphery.

The temperature of the surrounding air is constant.

Aerodynamic heating is neglected.

Heat is transferred through the edge at a uniform rate.

Angular speed is maintained constant.



NOTATIONS
Refer to Figure 1.
2Q = B.T.U./hr energy applied at the periphery of the disk by the
brake.
h = Combined heat transfer film coefficient expressed in B.T.U./
hr ft2°F,
k = Thermal conductivity in B.T.U./hr £t2°F/ft,
ha = Radial distance in ft.
y = One-half of the disk thickness in ft.
w = The constant angular velocity of the disk in radians/sec.
© = Temperature difference between the disk at a given point and

the ambient air in °F.

i = A-1

m = A/ h/ky

Jn(x) = Bessel function of the first kind and order “n”.

Hp(x) = Bessel function of the second kind and order ”n”, also known as
the Hankel function. It is most commonly denoted as Yp(x)
although it is denoted as Np(x) in the ”Tables of Functions”
of Jahnke-Emde. (1) The notation used here is that of Max

Jakob in Volume I of "Heat Transfer”. (2)

R = The Reynolds number, w r2/v

v = Kinematic Viscosity

(1) All references are in the bibliography.



Q sz QW =Q

i

-~ q —-

/‘fﬁxjr ’
Q »

Pigure 1. Rotating disk with heat added through the periphery




STEADY STATE HEAT CONDUCTION IN A ROTATING DISK WITH A
CONSTANT FIL!M COEFFICIENT

Consider a disk of uniform thickness 2y rotating in ambient air at
constant angular velocity, w, radians per second, while receiving heat
unifornly at the rate of 2Q B.T.U./hr, through its periphery. The heat
is dissipated by convection from the plane surfaces of the disk,
according to Newton’s law, at the rate given by hA®, where h is the film
coefficient considered to be constant here, A is the area giving off
the heat and © is the temperature difference between the surface of the
disk and the ambient air. The heat is conducted through the metal
according to the Fourier ecuation at the rate given by k A’ d6& where k
is the thermal conductivity of the metal considered to be a i;nstant

here, A’ is the cross-sectional flow area, and d& is the temperature grad-
dr

ient.

A differential equation for the temperature difference in terms of
the radius can be obtained as follows:

The heat flow through the cross-sectional area at any radial dis-

tance, r, is given according to the Fourier equation, by

g=-k (27T ) ry &&
dr

The heat loss by convection at this cross-sectional area is, by

Newton’s law, -dg = h®&dA = h& (277 ) rdr

From g = -k (277 ) ry d&,
dr
= 2g)
d (q) =-k (27 ) y (d& + r d
ar dr dr2

By equating this to dg = -2 (TT) r dr,



dg = -k (2T ) y (d& + xd28) = =h& (2 T ) r dr
dr dr dr2

From this, ky (d& + rd%6) = h& r dr
dr dr2

By transposing, this becomes the differential equation

r2 426+ r g6 - hr2 © =0 (1)
dr2 dr ky

An alternate form of this equation is:

r2 d26+rd6+ (im)z 1’2—n2_-}'-9-=0 (2)
ar? dr {

where n = O and m2 = h

This is the Bessel’s equation of the first kind and order n with
a parameter im. (2) In this particular case, n = O.

The general solution for this equation (3) (4) is:
© =M J, (imr) + Ni Hy (imr) (3)
where M and Ni are constants of integration to be determined by the
boundary conditions.

One of the boundary conditions is obtained from the assumption that
the temperature distribution is a continuous function over the entire

disk with a minimum at r = O. From this, at r = O, d& = O.
dr

To obtain d (©) from equation (3), two differential formulas are
dr
needed.

—im J7 (imr) where m is constant (5)

1. d Jo (imr)
dr

2. d Ho (imr) -im Hy (imr) where m is constant (6)

dr
-M (im) Jp (imr) -Ni (im) H; (imr)

Using these, d&
dr

Considering this equation as r approaches zero, J; (imr), as can be



seen from a table of values, approaches zero, and d8/dr becomes zero,
but Hl (imr) approaches minus infinity. From these conditions, N must
be equal to zero for this particular problem.

Equation (8) then becomes: € =M J, (imr) (4)

Evaluating M by noting that at r = 0, when € = 65, equation (4)
becomes: €, =M J5 (0) = M since J5 (0) =1

Equation (3) now becomes: € =65 Jo (imr) (5)

©,, the temperature at the center of the disk can be obtained in
terms of the energy being added at the periphery of the wheel by both
Fourier’s law and Newton’s law.

From the Fourier equation g = =k (2717 ) ry d8/dr, where g is the
heat being conducted through the cross—sectional area (277 ) ry at the
radial distance r. Since Q is the heat being conducted through one-
half of the disk thickness, y, at the radial distance r = r; the Fourier

equation gives the expression for Q as: Q = (27T ) x ¥ de/dr:{ -

where cie-/dr_-]rL is the value of d®/dr evaluated at rj.
Since d®/dr = =6, (im) J (imr)

then d@/dr]rL = 0, (im) J; (imrp)

and Q becomes Q =—(27TT ) k .,y ©, (im) J'l (imrL).

From this, €, =

Q
(2T ) r, ky m (-1) Jq (imrp)
Since m2 = h/ky, kym = #hky and Oy can be written as

OO==

Q ]
(277 ) Ty, VRky (-1) Jg (1mrL) . (6)

Also, under the assumption that one-half of the energy absorbed
flows out of each face, Newton’s equation can be integrated over the
entire face of the disk to find Q.

I'L l’L
Q=—}dq=(2ﬂ')h € r dr
o [e]



In evaluating this integral the following theorem will be

utilized. (7)

"Let ’f’ be a given function continuous on the closed interval (a,b).
Suppose that 7F’ is anybdifferentiable function such that F’/ (x) = f (x)

when a = x £ b, Then}f (x) dx = £ (b) - F (a).
a




Also, from the recurrence formula

Z3Jo (2) =adz 3, (z}
dz

where Z = x = (imr)

Substituting,

(8)

23, (2) = (imr) J (imr) = dfimrJ1 (imr%

d(imr)
or transposing,
(im)? r Jo (imr) dr = 4 {(imr) J; (imr
which leads to:

r Jg (imr) dr = 1 d {r J (imr)}

(imr)
From Equation (5) © = S, SR (imx)

Therefore Q = (2 TT) h/( ©rdr =

¥

I'

(2 1) h-e ; (imr) r dr

From (7) r J_ (imr) dr = _1 d {r J. (imr)}
(e} S 1
im
r
So Q becomes Q = (2 7TT) h &, 1 d{r ‘Tl (imr)}
o (im
Integrating,
= gf ;?2 h & 2 Jl (1mrL) }
From this, € = (im) Q = Q

(7)

(277T) h I, Jl (imrL)

(27T ) h rp (-1) J; (imr

0
(2 717) (kb y)1/Z o (-

i) Jl (imrL)

This is the same expression as ecuation (6), so from equation (5):

Jo (imr)

= J (imr) = Q
9 "o (2 7T )4Thky) T

(-1) jl (imrLT

L

)

(8)



10

Equation (8) is an exact solution only in cases where the heat
transfer film coefficient and the thermal conductivity are constant
over the entire disk. Theory predicts and experimental data shows that
in the laminar flow region the heat transfer coefficient can be obtained
for an isothermal disk. (9) (10)

Laminar flow exists at Reynolds numbers below about 2 x 105, For
laminar flow across a rotating isothermal disk for the Reynolds number,
R, between 100,000 to 200,000

N = .36 (R)'S (11)

where N is the local Nusselt number given by hcr where hg is the local
k

convection heat—transfer coefficient at r, the radial distance.
This can be written as

N = hor = .36 (w 12 [v) =9
k

Upon simplifying, the following expression for the 1local heat
transfer convection coefficient is obtained:

h, o= .36 k (w r2/v)=5 = .36 k (w/v)=®

L

e}

An important point to note is that the local convection heat trans-
fer coefficient for an isothermal rotating disk is not a function of

the radius. (12) (13) For moderate temperature ranges, the effects of

radiation can be neglected without appreciable error. The above expres-—

sion for the convection heat t+ransfer coefficient for an isothermal

rotating disk can be used to approximate an average heat transfer
coefficient for the disk, neglecting radiation. This approximate heat

transfer coefficient can be used in equation (8) to approximate the

temperature distribution across the disk for laminar flow conditioms.
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Obviously, the higher the temperatures involved, the greater the effects
of radiation upon the actual disk. Where radiation does occur the
results predicted by equation (8) are higher than the actual temperatures
will be for the high temperature region of the disk, i.e., the disk
periphery. The results obtained from equation (8) for various constant

values of h, k, and y are shown in Fig. 2 and Fig. 3.
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STEADY STATE HEAT CONDUCTION IN A ROTATING
METAL DISK WITH A VARIABLE FILM COEFFICIENT

AND THERMAL CONDUCTIVITY

Consider the case of heat conduction in a metal disk of unifomrm
thickness rotating in ambient air at a constant angular velocity, w,
radians per second, while receiving heat uniformly through its periphery
where the heat transfer film coefficient and the thermal conductivity
are not constant over the entire disk.

The disk can be split into n concentric rings of small enough
area that the heat transfer film coefficient and the thermal conductiv-
ity can be considered to have a constant, but different value, for each
of the given rings. As will be shown, the solution for the temperature
distribution across each of the regions can be determined as a function
of the given values of the heat transfer film coefficient and the
thermal conductivity across each particular ring.

Within a given ring, the heat is dissipated from the surface in
accordance with Newton’s law at the rate given by

g=h©A
where h is the heat transfer film coefficient which is considered to
be constant across the ring, but which may vary from ring to ring, ©
is the temperature difference between the surface of the disk and the
ambient air in Fahrenheit degrees, and A is the area dissipating the
heat. The heat is conducted through the metal by the Fourier equation
at the rate given by

q = k Ar de/dr

where k is the themmal conductivity of the metal, A’ is the cross-
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sectional flow area, and d&/dr is the temperature gradient.

As in the previous part, a differential equation for the tempera-—
ture difference between the disk and the ambient air as a function of
the radius of the disk can be obtained. In this case the values of h,
the film coefficient, and k, the thermal conductivity, may vary from
ring to ring. The value of h is greatest near the periphery because of
radiation effects and, in the case of turbulent flow, due to the
increased air velocity at the periphery.

Within a given ring area the heat flow through the cross—sectional
area at the radial distance r, is given by

g=-k (2 7)) ry d&/dr

The heat dissipated at this cross-sectional area is, by Newton’s
law,

-dg=h€di=h®(27T) rdr

From g = - k (27T7) r y d8/dr
4 (q) = -k (2TT) v ( de/dr + r d%0)
dr dr

By equating this expression for dg to the expression for dg

obtained from Newton’s law

dgfdr = -k (2T ) vy (do+1r d%) =-he (2T) rdr
dr ar?

or ky ( @@/dr + r d% ) = h ©dr
dr2

By transposing, this becomes the differential equation obtained

previously,
2 g%+ r 4@ ~(hr2 ) € =0
dr? dr ky

An alternate form of this equation is:

, 2 -
r2d26-+r§_9_+{£1m)2r2—n}‘9'—0
er dr
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where n = O and m2 = h/ky. Here m is a constant for a given ring.

This is the Bessel’s equation of the first kind and order n with a
parameter im. Again, n = O for this particular equation. The important
distinction between this and the previous case, where h and k were
constant over the entire disk, is that in this case the value of the
parameter m is a constant only for a particular ring and the value of
the constant changes from ring to ring so now there are as many
equations for the disk as there are rings being considered. The
distinguishing characteristic of the equations representing the various
rings lies entirely in the values of the parameter m.

The general solution for this equation is as before:

€, = £ (imr) = M, J, (im, r) + Ny i Ho (img r) (9)
Where'eh is the temperature at the radial distance r in ring n, Mn and
Nn are constants of integration that have to be evaluated for each ring
from the boundary conditions for the particular rings in question, and
m, is the particular parameter across ring n.

There must be no discontinuity in temperature or heat flow at a
boundary common to adjacent rings. These two conditions will provide
the necessary equations for the evaluation of the integration constants,
Mn and Nn.

Qn, the heat flow through the one-half thickness, y, into a ring
n whose periphery is at rp can be expressed in terms of the Fourier
ecquation as

Qu = (27TT) r_ v ky (d8®/dr) ¢ = p

From the general solution for © within a given ring,

a®fdr =4 £ (imr) =-M, (imn) J1 (imn r) - N, i (imn) Hl (imn r)

dr (Refer page 6 of thesis)
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Substituting d&/dr at r = T, the expression for Qn becomes
Qn = (2T7) rp v k- My (dmp) Jp (dmy 1) - N4 (dm)
Hy (im r )}
A more useful form of this equation, obtained by simplifying, is
Q. = 2T) ry ¥y E. v U (-1) I (im_ r ) + g Hy (in, 7 )¥
AQH, the heat dissipated by one of the surfaces of a given

ring, n, can be determined from Newton’s law as
r

n
AQ, = (2T) h r € dr
r
(n-1)
where T and r 1 are the radial distances to the boundaries of ring
n—-
n.
Since within the ring n the temperature difference, ©, is given
by < = Mn Jo (imn r) + Nn i Ho (:\.mn r)

the integral expression forAQn becomes
r . . .
AR = (2T hy j nor {u I, G 1) + N iH (im0} dr
r
(n-1)
To evaluate this integral the following are utilized:

i Jo (imn r) dr = i {d [r Jl (iml_1 rﬂ} (Refer page 9 of thesis)

1 fa [rm Gmy rﬂ} (14)
im,

Using these,AQn becomes

In
_ M. d J, (im_ 1) + N_ i
AQH = (277) h, Sé“nl [I 1 n ] n
e

“Im,
d EHl (imnr)]}

I
'—l-

r M, (imn r) dr

n

Upon int egration,
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AL, = (27T7) h <{Mn En Iy Umg rp) - rp g J) (dmy rn—l)]
imn

- . , o ,
N1 [%n Hl (imp rn) o (1mn rn—la}’
This ecquation can also be written as

A = T iy {1 [ (40 3] G o) - s ()

Jl (imn rn)l

+ Np [rn Hy (dmp rp) - ¢ 4 Hy (imnrn_l)]}

There is one restriction to this integral. For the ring at the
center of the disk, i.e., for n = 1, the value of N is zero because

iH, (imr) approaches infinity as r goes to zero, and d& must be zero,
ar

so only the Bessel function has to be integrated between r = 0 and r = 1.
(Refer page 6 of thesis)

An expression for the heat flow out of a ring n where the inner
radius is rn;l and the outer radius is r can be obtained by either of
two different approaches. The first is to simply write the Fourier
ecquation for the heat flow out of the ring. The constants will be

those for ring n but the radial distance to the cross sectional area

in cuestion is r ] so in this case d&f/dr is evaluated at X

; = (2 r k de/dr)
Qnou't (2 r) n-1 Y n (e - n-1
where Q ig the heat flow leaving through the inner boundry of ring n
out
where r = Y
Upon substituting the value of dea/dr at ¥ = rn X the expression

for the heat flow out of the interior boundary of the ring in question

becomes

Q = (27TT) rp1 v k, {Mn m, (-1) I (imnrn_l) + N m H, (imnrn_l)}

Nout
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A more useful form of this expression is
Q_, = (T r ) fBE T {Mn (=i) Ty (impr__ ) + N
H, (imnrn_l)}

The second approach to obtaining the same expression is to write
a heat balance for the ring in guestion. Since the heat conducted
through the periphery on ring n at r = ry minus the heat dissipated
to the air across the ring surface is ecual to the heat being
conducted through the inside boundary of the ring at r = ro_qr @ heat
balance can be expressed as

Q. =9 - AQ

out

Where Qn is the heat flow into the ring n at the periphery through vy,
the one-half thickness of the disk, and - ZCSQH is the heat dissipated
across one of the plane surfaces of ring n.

Using the two expressions

Q. = (2T)r, yEEy {i (-1) Jp (inr ) + N H, (im r )Y

AL, = T YEEy {1 [r(-1)3) Gim 7)) -7, 3 (-1)T) (mory )
+N [}n Hl (imnrn) - T Hl (imnrn—laj}

The expression for Q can now be obtained by subtracting Z}pn
n
out

which gives the expression

Sn ut B EAN (277) =, Vﬁ23§57'{}%3'1) *1 (imprp )
o
+ N Hl (1mn rn—l{}
This is the same as the previously obtained expression for Qn .

out

To obtain the temperature distribution across the disk, the disk

is split into n concentric rings of small enough surface area that the
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heat transfer film coefficient and the thermal conductivity can be

considered constant throughout the given ring. For the temperature
difference anywhere in the disk, n equations will be required. This
temperature difference for the disk can be expressed as

€% = Mn Jo (imn r) + Nni HO (imn r) (9)

Where €, is the temperature difference at the radial difference, r, in
the ring n where n varies from n = 0 to n = n. As before, mn is the
value of the parameter m for the given ring n under consideration.

With the n temperature difference equations, there are 2 n-1
integration constants to be evaluated. (i.e., Ml’ M2.....Mn and N2,
NS"""Nn) As explained previously Nl' the integration constant for
the Hankel function in the region containing the center of the disk is
zero. (Refer page of this thesis) These 2n-1 integration constants
can be evaluated from the equations that can be written as a result of
the temperature difference and the heat flow continuities at the ring
boundaries and also from the equation that can be written from the
known heat flow into the outer rim of the disk. The first of the 2n-1
equations can be obtained by equating the expression for the heat flow
into the outer ring of the disk to the known value of the heat being
absorbed through the periphery of the disk. In addition, n-1 equations
can be written by virtue of the continuity of the temperature difference

at the boundaries of the rings. The temperature at each of the n-1

common boundaries can be written in terms of either ring. The two
expressions for each given common boundary temperature difference
between the disk and the ambient air can then be equated, resulting in

i - ies, or n-1 equations in
one equation for each of the n 1 common boundar . qu
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all, each with only integration constants as unknowns. Since the heat
flow across a given common ring boundary can also be written in terms of
either of the adjoining rings, another equation in terms of the integra-
tion constants for the adjacent rings results for each of the common
boundaries after the two expressions for the common heat flow through a
given boundary are equated. ©Since there are n-1 common boundaries,
another n-1 equations result. So far, 2n-2 equations can be obtained
from the temperature and the heat flow continuities, and one equation
can be obtained from the known heat energy absorbed by the disk; now
there are 2n-1 possible equations whose only unknowns are the integra-
tion constants. This gives as many equations as there are unknowns, so
the integration constants can be determined. After the integration
constants are determined, the temperature at any point in the disk

can be determined by using the general equation with the appropriate
integration constants and the correct value of the parameter for each
ring.

An example problem follows to illustrate the method.



Example Problem (Ref. Fig. 4)

Suppose a homogeneous disk of uniform thickness, 2y, with a one
foot radius 1is absorbing heat energy through its periphery at a con-
stant 25,450 B.T.U./hr while rotating with a constant angular velocity.
Furthemore, suppose the disk was split into five concentric rings
and the average combined heat transfer film coefficient across each
ring was determined to be the value as listed in Table 1. In this
case, the value for ky was assumed to be 1/4 B,.T.U./hr °F for
convenience.

Since there are n = 5 concentric rings, there will be five
temperature equations required to express the temperature difference
between the disk and the ambient air as a continuous function across the
entire disk which has been split into five rings. These five tempera-
ture equations will have 2n-1 = 9 integration constants to be exaluated.

The first of the nine equations can be obtained by equating the
expression for the heat flow into the outer ring to the known quantity
of heat energy being absorbed by the disk. Therefore, for n = 5 for the
outer ring,

Q, = Qs = (2T) 4hs &y {115 (-1) J; (img rg) + Ng Hy (img 75)¥

Upon substituting the known values of Q5 and the various para-

meters listed in Tables 1 and 2,

Qs = 25,450 = @TT) N5 ky {Ms (532.8) ~ Ng (.00005900)}
2

Upon transposing, this becomes

(1.) Mg (532.8) - Ng (.00005900) = 954.7081



TABLE 1

PARAMETER VALUES
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! & (££.) BTU/?I oF (;;?.) m ol S

1 0 .2 8 5.656854 0 1.1313708
2 .2 .4 10 6.324555 1.2649110 2.5298220
3 .4 .6 12 6.928203 2.7712812 4.1569218
4 .6 .8 15 7.745967 4.6475802 6.1967736
5 .8 1.0 18 8.485281 6.7882248 8.4852810




TABLE 2

TABLE OF FUNCTIONS (15)
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mr Jo (imr) iH, (imr) (-1) Jl (imr) -Hq (imr)
1.1313708 1.3467 0.2227 0.6614 0.3084
1.2649110 1.4429 0.1882 0.7677 0.2502
2.5298220 3.3660 0.03831 2.586 0.04532
2.7712812 4.0640 0.02885 3.217 0.03370
4,1569218 12.955 0.005963 11.256 0.006621
4,6475802 19.805 0.003481 17.61 0.003817
6.1967736 80.48 0.0006400 73.66 0.0006903
6.7882248 138.62 0.0003892 127.96 0.0003634
8.4852810 673.80 0.00005578 532.80 0.00005900
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Four more equations (n-1 = 4) can be written from the expressions
for the temperature at each of the four common ring boundaries as
follows: (All numerical values are taken from Tables 1 and 2)

At r = ry = ,2

© =14 Jo (imy 1) = M Js (img rl) + Ny 1 Hy (imzrl)
or,

(2) My (1.3467) = Mg (1.4429) + Ny (0.1882)

At r = Ty = 4

© =My Jgo (im2 r9) + No iHg (img r2) = Ma Jy (img r2) + Ng iH,

or,

(3) M, (3.3660) + N, (0.03831) = Mg (4.0640) + N5 (0.02885)

2
At r = rg = ne

€ =15 J, (img r3) + NS iHo (im3 rg ) = My Jo (im4 r3) + Ng iHg

(imy rg)
or,
(4) MS (12.955) + N3 (0.005963) = M4 (19.805) + N4 (0.003481)
At r = L .8
€ = My J, (imy 14) + N4 i, (imy r4) = M5 o (im5 r4) + Ng iHg
(im5 r4)
or,

(5) M4 (80.48) + Ny (0.0006400) = Mg (138.62) + Ng (0.0003392)

The remaining four required equations can be obtained from the

expressions for the heat flow at each of the four common ring boundaries

as follows: (Again numerical values are taken from Tables 1 and 2)

At r = Ty = .2



Q = (2TT) n) Wi B My (-i) 3y (im) o }= (2 TT) 1} By &

{MZ (-1) Iy (im.2 o) -Ng (=) Hy (im2 rg&'

or, upon evaluating the constants and simplifying,
(6) Ml (0.66.4) = .858315 M, - .279732 N2

At r = r, = .4
Q = 2T 1y Vi, By {H, (=1) 3y limy rp) - Ny (=) Hy (imy )}
= (2T) 1, YAy {M; (-1) I (imy 7p) - N3 (=) Hy (img 1)}
or, upon evaluating the constants and simplifying,

(7) Mo (2.586) - N2 (0.04532) = 3.52405 M3 - 0.0369165 N3

Q3 = (2TT) rg ¢/A By I, (-1) T, (img r3) - N3 (=) Hy (img 1y}

(27T ) r3 /by ky {1y (-i) Jp (imy rg) - Ny (=) Hy (im, r3ﬁ~

or, upon evaluating the constants and simplifying,

Il

(8) Mg (11.256) - Ng (0.006621) = 19.6774 M, - 0.0042675 N,
At r=r, = .8

= (Z.ﬁ) r, yi, &y {M4 (-i) J; (imy z,) =Nz (=) H (im, 1’4)}

O
N
|

= (27T) v, /By & {M5 (-1) I} (ing r) -Ng (=) H (ing r,)}

or, upon evaluating the constants and simplifying,

(9) M4 (73.66) - N4 (0.0006903) = 140,173 Mg — 0.000398085

Now there are nine equations in terms of the nine unknown integra-
tion constants so the integration constants can be determined algebrai-

cally. Upon the determination of the integration constants, the five

temperature equations become:

From r = 0 to r = .2

© = 7.4745 J_ (im; )

I
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From r = .2 to r = .4

© = 6.62890 JO (imy r) + 2.66879 iH, (img 1)
From r = .4 to r = .6

© = 5.23865 Jo (im3 r) + 39.0033 iHo (ims r)
From r = .6 to r = .8

© = 3.23483 Jo'(im4 r) + 1,158.74 il (im, 1)
From r = .8 to r = 1.0

© = 1.79583 J (img r) + 35,796.4 iH_ (im: 1)
o S o 5

where the values of the paraﬁeterl%larelisted in Table 1.

The temperature difference distribution across the entire disk
as shown by these equations is graphically illustrafea in Fig. 4. It
should‘be noted here that the last decimal place of the tabulated

(16):

Bessel and Hankel functions is uncertain so the end result is

that the temperatures obtained from the temperature equations above are
accurate only to three places. However, for computational consistancy

in evaluating and cross—checking the various constants, several more

places were used.
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CONCLUSIONS

In this investigation, the steady state temperature distribution
for a disk of unifoxrm thickness rotating at a constant speed in
ambient air while absorbing heat at a constant rate through its peri-
phery was obtained.

A simple Bessel function relationship, equation (8), was obtained
for cases where h, the heat transfer film coefficient, and k, the
thermal conductivity, can be considered a constant throughout the disk.
Fige. 2 and 3 show the temperature distribution in a two-feet diameter
disk for various constant values of the heat transfer film coefficient
and the parameter ky where k is the thermal conductivity and y is
one-half the disk thickness. These figures illustrate that most of the
heat is dissipated within a few inches of the periphery. As a result of
this heat dissipation, the temperature at the center of the disk for a
given set of parameters is negligable compared to the temperature at
the periphery. The majority of the engineering applications for a
disk brake can be handled with this simple relationship. The author
recommends that equation (8) be used to approximate the temperature
distribution if the exact distribution is not required because of the
simplicity of the computations required. By evaluating the variables
h and k at the center and at the periphery of the disk, an upper and
lower boundary of the possible temperature values across the disk can
be quickly obtained with equation (8) for a given amount of heat added
at the periphery of a given disk.

For the cases where an exact temperature distribution is required,

the disk is split into a number of small concentric rings and equation
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(9) is used to evaluate the temperature distribution across each ring.
Equation (9) expresses the temperature distribution within each ring in
terms of Bessel and Hankel functions of the parameter m = VG:ES;
where m is evaluated specifically for each ring. For the disk of n
concentric rings, n temperature equations are required which have
constants of integration to be evaluated from the boundary conditions
listed in the thesis. An example'problem is included to illustrate the
method. Fig. 4 illustrates the temperature distribution for the
example problem featuring a disk two feet in diameter absorbing 25,450
B.T.U./hr. The disk was assumed to have a ky value 1/4 B.T.U./hr °F
which corresponds to a one-fourth inch thick steel disk.

The above method is an exact solution, but the mathematic
computations tend to encourage the use of equation (8) to approximate
the resulting temperature distribution rather than the more exact

solution given by equation (9).



APPENDIX

On the Evaluation of the Combined
Heat Transfer Film Coefficient

The equations expressing the temperature difference distribution
of the rotating disk are only as correct as the computed values of the
required parameters. Tabulated values of the thermal conductivity are
readily available and determining the thickness of the disk is no
problen. However, determining the heat transfer film coefficient is
rmuch more involved.

At the present time, the best way to evaluate the heat transfer
film coefficient seems to be to evaluate the convection film coefficient
and then add to it a film coefficient to cover radiation effects.

Two empirical equations are available for evaluating the convection
film coefficient. The one used for the laminar flow range for
Reynolds number, R, from 100,000 to 240,000:

h, = .36 k (w/v)*> (17)
where hc is the local convection film coefficient, k is the thermal
conductivity of the air, and v is the local kinematic viscosity of the
aira.

In the turbulent range for Reynolds number, R, greater than
240,000:

N, = Bz £ = 0.015 (R)-8 (18)

k

where Ny i1s an average Nusselt number based on h,, an average convection
£ilm coefficient for the ring in question, and average values of k and r.

This expression for the average Nusselt number can be rearranged

to give:



w
o

h, = 0.015 k (R)-8
r

These two equations were obtained from experimental data based
on isothermal rotating disks. The expression for turbulent flow is
probably only a rough approximation of the average convection film
coefficient for a given ring, but it is all that is available at the
present time. Note that the two equations were extended into the
transition region where R = 200,000 to 280,000.

To account for the radiation effects, a fictitious radiation

film coefficient can be computed from the following:

h, = 0.173 e (Tg/100)% - (Tg/100)% (19)

Where Tq = the average absolute temperature of the given ring of the
disk, °Rankine

T4 the absolute ambient temperature, °Rankine

e emissivity constant
If the disk has been split into rings of small enough area,
the combined heat transfer film coefficient for each ring can be

obtained by combining the convection and the radiation film coeffi-

cients for the given ring.
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