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INTRODUCTION 

The purpose of this investigation was to obtain an expression for 

the steady state temperature distribution of a disk of uniform thicknes s 

rotating at a constant speed in ambient air while absorbing heat through 

the periphery at a constant rate. Engineers encounter such problems in 

connection with brakes of several varieties. The general solution 

ob tained here could be extended to similar physical problems such as 

grinding wheels, disk clutches, and so on. 

A differential equation was obtained for the temperature in the 

disk by the application of Fourier's conduction law and Newton°s 

convection law. A solution of this equation was obtained in the form 

of a Bessel function of the first kind and order zero and the constant s 

of integration as determined by the boundary conditions. 
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ASSUMPTIONS 

1. Steady state conditions prevail. (i. e. the temperature is constant 

with respect to time. 

2. The disk material is homogenious and isotropic. (i. e. all 

intensive properties of the disk are symmetrical about the polar 

axis. 

3. The disk is thin enough that the temperature variation other than 

radially can be neglected. 

4. The thermal conductivity and the heat transfer film coefficient are 

constant over the region of the disk under consideration. 

5. No heat is lost through the disk periphery. 

6. The temperature of the surrounding air is constant. 

7. Aerodynamic heating is neglected. 

8. Heat is transferred through the edge at a uniform rate. 

9. Angular speed is maintained constant. 



NOTATIONS 

Refer to Figure 1. 

2Q B.T.U./hr energy applied at the periphery of the disk by the 

brake. 

h Combined heat transfer film coefficient expressed in B.T.U./ 

hr ft2°F. 

k Thermal conductivity in B.TaU./hr ft2°F/ft. 

r Radial distance in ft. 

Y One-half of the disk thickness in ft. 

w = The cons tant angular vel ocity of the disk in radians/sec. 

~ Temperature difference between the disk at a given point and 

i 

m 

Jn(x) 

Hn( x ) 

the ambient air in °F. 

Bessel function of the first kind and order "rr'. 

Bessel function of the second kind and order "n", al s o known a s 

the Hankel function. It is mos t commonly d enoted as Yn( x ) 

although it is denoted a s Nn( x ) in the "Tables of Functions" 

of Jahnke-Ernde. (l) The notation used here i s that of }mx 

Jakob in Volume I of " Heat Tra ns f e r''. ( 2 ) 

R The Reyno l ds nunilie r , w r2 /v 

v Kinemat ic Vi s cos i t y 

( 1) All references are in the bibliography. 
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Figure L Rotating disk with heat added through the periphery 



STEADY STATE HEAT CONDUCTION IN A ROTATING DISK WITH A 
CONSTANT FIU1 COEFFICIENT 

Consider a d i sk of unifo rm t h ickness 2y r otating in w~ient ai r at 

cons tant a ngular velo c ity, w, radians per s econd, whi le r eceiving heat 

unifo rmly at the rate of 2Q B. T .U ./hr, through its p eriphery . The heat 

i s d i ssipated by convection from the plane surfaces of the d i s k, 

a cco rding to Newton' s l aw, at the rate g iven by hA-6-, where h i s the film 

coe ffici e nt considered to be constant h ere , A i s the area g iving off 

the heat and -9- is the t emperatu re d ifference between the surface of the 

disk and the ambient ai r . The heat i s conducted through the me tal 

accor ding t o the Fourier e quation at the rate g iven by k A' d&whe r e k 
dr 

is the t hermal conductivity of the metal consid ered to be a c onstant 

here , A' i s the c r o ss- sectional flm-I area, and d& i s the tempe rature gra d­
dr 

i e nt. 

A differential equation for the temperature d iffe r e nce in t erms of 

the r a d ius can be obtained a s follovm : 

The heat flow through the c r o ss- s e ctional area at any r a d ial d i s-

tance , r , i s g i ve n a ccor d ing t o t he Four i er equation, by 

q = - k ( 2 1T ) ry de­
dr 

The heat loss by conve ction at this cro ss- sectional area i s , by 

N wt ' 1 - dq = h6dA = h& ( 2 7T ) r dr e on s aw, 

From q = - k ( 2 IT ) ry d& , 
dr 

d 
dr 

( q ) -k ( 2 TT ) y ( d8- + r 
dr 

By equating thi s to dq = -h&2 (TT) r dr , 



.9g 
dr 

-k ( 2 Tr ) y (de + r d2e) 
dr ~ 

From thi s , ky (de + rd~) 
d r dr2 

-he- ( 2 TT ) r dr 

he-r dr 

By transpo s ing, this becomes the diffe rential equation 

r2 d 2e- + r de - hr2 -& = 0 
dr2 dr ky 

An alter nate form of this equation i s : 

r2 d2e- + r de-+ {Jim) 2 r2 - n~-& = 0 
dr2 d r 

where n = 0 and m2 = h 
ky 

(l) 

( 2 ) 

This i s the Bessel' s equation of the first kind and o rder n with 

a parameter i m. ( 2 ) In thi s particular case, n = 0. 

The general solution for thi s equation (3) (4) i s : 

-6- = M J 0 ( i mr ) + Ni H0 ( imr) (3) 

where M and Ni are constants of integration to be determined by the 

boundary cond itions. 

6 

One of the boundary conditions is obtained from the assumption that 

the temperature distribution i s a continuous function over the entire 

disk wi th a minimum at r = 0. From this, at r = 0, de= 0 . 
dr 

To obtain d (€-) from equation (3), two d ifferential formula s are 
dr 

needed. 

l. d Jo (imr) -im J1 ( imr) where m is cons tant (5) 

dr 

2. d Ho ( imr) -im Hl ( imr ) where m is constant ( 6) 

dr 

Us ing these, d6- = - N (im) J1 (imr) -Ni (im) H1 (imr) 
dr 

Cons i dering thi s equation as r approaches zero, J1 (imr), a s can be 
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seen from a table of values, approaches zero, and de/dr becomes zero, 

but H1 (imr ) approaches minus infinity. From these conditions , N must 

be equal to zero for this particular problem. 

Equation ( 3) then becomes: -e = N J 0 ( imr) ( 4) 

Evaluating N by noting that at r = 0, when -e = -&0 , equation ( 4) 

becomes: -60 = M ] 0 (0) = N since J 0 (0) = l 

Equation ( 3) now becomes: -8- = €10 J 0 ( imr) ( 5) 

-8-0 , the temperature at the center of the d isk can be obtained in 

tems of the energy being a dded at the periphery of the 1-'lheel by both 

Fourier's law and Ne1.rlon' s lavi. 

From the Fourier equation q = -k ( 2 TT) ry de/dr , where q i s the 

heat being conducted through the cross-sectional area ( 2 TT) ry at the 

radial d istance r. Since Q i s the heat being conducted through one-

half of the disk thickness, y, at the radial distance r = r L the Fourier 

equation gives the expression for Q as: Q = ( 2 Tf ) k rL y de/ dr J 
rL 

where de/dr]TL is the value of d&/dr evaluated at rL. 

Since de/dr = --B-0 (im) J1 (imr) 

then de/dr] r 
L 

and Q b e come s Q =-(21T) k rL y B 0 (im) J 1 (imrL). 

From thi s , -60 

Since m2 h/ky 1 kyrn and 0 0 can be written a s 

Also, under the assumption that one-half of the energy absorbed 

flows out of each face, Newton's equation can be integrated over the 

entire face of the disk to find Q. 

l rL (rL 
Q = -

0 
dq = ( 2 TI ) h )

0 
-8- r dr 

(6) 



In evaluating this integral the fo llowing theorem will b e 

utili zed . ( 7) 

"Let 'f' be a giv e n function continuous on the closed interval (a,b). 

8 

Suppos e that 'F' is any differentiable function such that F' ( x ) = f (x) 
b 

when a "£ x ~ b. Then j f (x) dx = f (b) - F (a). 

a 



Also, from the recurrence formula (8): 

where Z = x = (imr) 

Substituting, 

Z J 0 (Z) = (imr ) J 0 (imr) d {imr J 1 ( imr)} 
d( imr) 

or transposing, 

( im) 2 r J 0 ( imr) d r d {Cimr) J 1 ( imr )} 

which leads to: 

r J 0 ( imr) dr = 1 d {r J 1 ( imrJ} 
( imr) 

From Equation ( 5) -9 = -90 J 0 ( imr) 

Therefore Q ( 2 iT ) h jrL -& r dr 
0 

rL 

( 2 TT) h -90 iJ 0 (imr) r dr 

From (7) r J 0 (imr) dr = ~ d {r J 1 (imr)} 
1 m , , 

So Q becomes Q 5rL 
( 2 TT) h -90 

0 

Integrating, 

Q = ( ~ ;;; ) h -&0 r 1 J 1 ( imr1 ) 

_1_ d[r J 1 (imri} 
(im) 

From thi s , -6-0 = ~-==+( ;;;;im:=-) .....:Q~=-~:----. 
( 2 TT ) h r 1 J 1 ( imr 1 ) ( 2 1T) h r 1 

Thi s is the same expression a s equation (6), s o from equation (5): 

J 0 ( imr ) 

9 

(7) 

( 8) 
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Equation (8) is an e xact solution only in cases where the heat 

transfer film coefficient and the thernul conductivity are constant 

over the entire disk. Theory predicts and experimental data shows that 

in the laminar flow region the heat transfer coefficient can be obtained 

for an isothermal disk. (9) (10) 

Laminar flm'l e x ists at Reynolds numbers below about 2 x 105. For 

laminar flovJ across a rotating isothermal disk for the Reynolds number, 

R, between 100,000 to 200,000 

N = R36 (R)•5 (ll) 

where N is the local Nussel t number given by her vrhere h 0 is the local 
k 

convection heat-transfer coefficient at r, the radial distance. 

This can be written as 

N =her= .36 (w r2fv)•5 
k 

Upon simplifying, the following expression for the local heat 

transfer convection coefficient is obtained: 

h 0 = .36 k (w r2/v)•5 = .36 k (w/v)•5 
r 

An important point to note is t hat the local convection heat trans-

fer coefficient for an isothernul rotating disk is not a function of 

the radius. (12) (13) For moderate temperature ranges, the effects of 

radiation can be neglected without appreciable error. The above expres-

sian for the convection heat transfer coefficient for an isothermal 

rotating disk can be used to approximate an average heat transfer 

coefficient for the disk, neglecting radiation. This approx imate heat 

transfer coefficient can be used in equation (8) to approximate the 

temperature distribution across the disk for laminar flow conditions. 
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Ob viously, the higher the temperatures involved, the greater the effects 

of rad iation upon the actual disk. ~f.here radiation does occur the 

results predicted by equation (8) are higher than the actual temperatures 

will b e for the high temperature region of the disk, i.e., the disk 

periphery. The results obtained from equation (8) for various constant 

valu es of h , k, andy are shown in Fig . 2 and Fig. 3. 







STEADY STATE HEAT CONDUCTION IN A ROTATING 

l1ETAL DISK I.<HTH A VAEIABLE FILH COEFFICIENT 

AND THERHAL CONDUCTIVITY 

Consider the case of heat conduction in a metal disk of uniform 

thickness rotat ing in ambient air at a constant angular velocity, w, 

radians per second, vrhile receiving heat uniformly through its periphery 

whe re the heat transfer film coefficient and the thermal conductivity 

are not constant over the entire disk. 

The disk can be split into ~ concentric rings of small enough 

area that the heat transfer film coefficient and the the rma l conductiv­

ity can be considered to have a constant, but different value, for each 

of the given rings. As will be shown, the solution for the temperature 

distribu tion across each of the regions can be determined as a f unction 

of the given values of the heat transfer film coefficient and the 

thermal conductivity across each particular ring. 

\fithin a given ring, the heat i s dissipated from the surface in 

accordance with Newton' s l aw at the rate g iven by 

q=h~A 

where h i s the heat transfer film coefficient which is conside red to 

be c o nstant a cross the ring , but Hh ich ma y vary from r ing t o ring , -e 

i s t he t emp eratu re d ifference between the surf ace o f the d i s k and the 

ambie nt air in Fahre nheit degrees, and A is the area dissipating the 

h eat. The heat i s conducted t h rough t he meta l by the Fourie r equatio n 

at the rate g ive n by 

q = k A' dB/dr 

where k is the thermal conductivity of the metal, A' is the cross-
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sectional floH area, and r3:&-/dr is the temperature gradient . 

As in the previous part, a differential equation for the tempera-

ture difference between the disk and the ambient air as a function of 

the radius of the disk can be obtained. In this case the values of h, 

the film coefficient , and k, the thermal conductivity, may vary from 

ring to ring . The value of h is greatest near the periphery because of 

radiation effects and , in the case of turbulent flow, due to the 

increased air velocity at the periphery. 

Within a g iven ring area the heat flow throu gh the cross-sectional 

area at t he radial distance r, is g iven by 

law, 

q = - k ( 2 TT) r y dff/dr 

The hea t dissipated at this cross-sectional area is, by Newton 's 

-dq = h -e- ciA = h -e ( 2 IT ) r dr 

From q = - k ( 2 IT ) r y dB/ dr 

d 
d r 

( q) = - k ( 2 TT ) y ( dB/dr + r d 2e) 
dr2 

By equating this expression fo r dq to the expression for dq 

obtained from Newton ' s law 

dq 1 dr = - k C 2 TT ) y < cte + r 
dr 

d 2.e-) = - h -e ( 2 lT ) r dr 
dr2 

or ky ( d6/dr + r h -9- dr 

By transposing , this becomes the d ifferentia l equation obtained 

previously , 

An alternate form of this equation is: 

r 2 d 2e- + r dB + {j. im) 2 r 2 - n 2 } -e = 0 

dr2 dr 
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where n = 0 and m2 = h / ky . Here m is a constant for a g ive n ring . 

This i s the Bessel's equation of the first kind and order n with a 

paramet e r i m. Again, n = 0 for thi s particular equation . The i mportant 

d i st inction between this and the previous case , where h a nd k: were 

constant over the entire disk, is that in this case the va l ue of the 

parameter m i s a constant only for a pa r ticular ring and t he value of 

the cons tant changes from ring to ring so now there are as many 

equations f or the disk as there are rings being cons i dered . The 

distinguishing characteristic of the equations representing t h e various 

rings lies e n t irely in the values of the parameter m. 

The gen e ral s olution for thi s equation is as b efore : 

( 9) 

Where~ is the tempe rature at the radial distance r in ring _n, M and n n 

N are cons tant s of integration tha t have to be evaluated for each r ing 
n 

from the b ounda ry cond i t ions for the particular rings in question, and 

mn i s the particular parameter across ring ~· 

There mu st be no discontinui ty in temper ature or heat flow a t a 

boundary c ommon to adjacent rings . The s e two conditions will p r ovi de 

the necess ary equations for the e valuat i o n of the integrat i on c o nstant s , 

Ivl and N • 
n n 

Qn, the heat flow t hrough the one-half t h i c kness , y , int o a r ing 

n whose p eriphe ry i s at r n can be expressed in tern1s of the Fouri e r 

equation as 

Qn = ( 2 TT) rn y kn (de/dr ) r == rn 

From the g e n eral solution fo r B-within a giv e n ring, 

de/ dr = £_ 
dr 

f ( imr ) ==~In ( imn) J1 ( imn r ) - Nn i ( i~ ) H1 ( imn r ) 

(Refer page 6 of thesis) 
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Substitu t i ng dB/ drat r = rn , the express i on f o r Qn becomes 

Qn = ( 2 1T ) r n y kn {- Hn ( i mn ) J 1 ( i mn r n) - N i ( i m ) 
n n 

I-il (im n rn )} 

A more us eful form of thi s equation , obtained by s i mplifyi ng , i s 

~Qn , the heat d i ss ipated by one of the surfaces of a g iven 

ring, ~, can be determined from Newton's law as 

5rrn r -e- dr 

( n-l) 

1vhe:re r and r 1 are the radial distances to the boundaries of ring 
n n-

n . 

S ince within the ring n the temperature differenc e , -6-, is g iven 

by -e- = H J ( i m r ) + N i H ( i m r ) n o n n o n 

the integral express ion for~Qn becomes 

{ }1 J 
n o 

H 
0 

dr 

To e valuate t h is integral the following are utili zed : 

r J ( im r) dr = o n 
( Refer page 9 of thesis ) 

{ d (1 4 ) 

+ Nn i 

Upon integration, 
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This equation can also be \Hitten as 

J 1 ( i rnn :r n >] 
+ Nn [rn Hl (imn rn)- rn-1 Hl (imnrn-1~} 

The r e i s one restriction to this integral . For the r ing at the 

center of the disk, i.e., for n = 1, the value of N is zero because 

i H1 ( i mr ) approaches infinity as r goes to ze ro, and d& must be zero, 
dr 

so only the Bessel function has to be integrated between r 0 and r 

( Refer page 6 of thesis) 

An expression fo r the heat flow out of a ring n ltfhere the inner 

radiu s is rn-l and the outer radiu s i s r can be obtained by either of 
n 

two different approaches. The first i s to simply >·rr i te the Fourier 

equation for the heat flow out of the ring. The con s tant s \;Jill be 

tho se for ring n but the radial d i stance to the cross sectional area 

in que s tion i s r n-l s o in this ca se de-/ cl r i s evaluated at rn-l" 

= ( 2 1T ) r 1 y k (de-/ dr ) _ 
n- n r - r n-1 

l. 

1vhere Qn i s t he h ea t flow leaving through the inne r boundry of r ing n 
out 

o·rhe r e r = r n-l 

Upon substituting the value of d&/clr at r r , the expression 
n-1 

fo r the heat flov.r out of the interio:r boundary of the r ing in question 

becomes 
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A raore u s efu l form of thi s ex p r es s ion i s 

Qn = ( 2 TT) r n- l A/h k y { :tvl (-i)J1 out n n n 
( i mn r J ) + N n- _ n 

H (im r 1 )} 
1 n n-

The second approach to obtaining the same expression i s t o \·rri te 

a heat balance fo r the r ing i n question . S i nc e the heat conduct ed 

throu gh the periphery on ring !!. at r = rn minus the heat di ss ipat ed 

to the ai r acros s the ring s u rface is equal to t he h eat being 

c onducted through the ins i de boundary of the ring at r = r 1 , a heat 
n-

bala nce can be expres s ed a s 

Q = Q - A Qn 
nout n ~ 

\<fuere Q i s the heat flmv into the r ing !!. at the periphe ry through y , 
n 

the one- half thickness of the disk , and - ~Qn i s the heat diss ipated 

ac ross one of the plane surfaces of ring n. 

Us ing the t wo expressions 

Q = ( 2 Tr ) r n ,Jh k y { Hn (-i) J 1 (im r ) + N H1 (im r )} 
n n n n n n n n 

( 2 IT) V h nk ny { Hn 

+lJ n 

[ r (-i)J1 (im r ) 
n n n 

H1 (im r ) -
n n 

-rn-1(-i)Jl (imnrn-l ~ 

r n-1 I-l l (imnrn- l u} 
The expr ess ion for Q can nmv be obtained by subtracting 6 Qn 

nout 

whi c h g ives the expression 

+ N H1 ( i m 
n n 

This i s the same as the previous ly obtained expre s s ion for Q • 
nout 

To obtain the t emp erature distribution across the di s k, the disk 

i s split into n concentric rings of smal l enough surface area that the 
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h eat transfer f ilm c o e ffici ent and the thermal conductivity c an b e 

cons i dered constant throu ghout the g iven ring . For the temperature 

d iffe rence anywhe r e in the disk, _n equat ions w1' l l be · d requl re • This 

temperature difference for the d i sk can be expressed as 

-B 
n 

H J ( i mn r ) + N i H ( i m r ) 
n o n o n ( 9) 

Hhere -Bn i s the temperature d ifference at the radial difference , r , in 

the r ing .!!. vrhere n vari es from n = 0 to n n . As before , m is the 
n 

va l u e of t he parameter m for the g iven ring.!!. under cons i derat i on. 

vH th t he .!!. temp e rature diffe rence equations , there are 2 n-1 

integ ration cons tants to be evaluated. (i. e ., M1 , H2 ..... 1·1n and N2 , 

N3 , ••••• Nn) As explained pre v iou sly N1 , the integration c onstant fo r 

the Hankel function in the region containing the c e nter of t he d i sk i s 

zero . ( Refer page of this thes i s ) These 2n-l int egration constants 

can b e e valuated from the equations that can be written as a result of 

the temperature difference and the heat f l ow continuities a t the ring 

bounda r ies and a lso f rom t h e equation that can b e vvri tten from the 

k n own heat f l ov.r into the outer rim of the disk . The firs t of the 2n-l 

equat ions can b e obtai ne d by equat ing the expression for the h e a t f l ow 

into the ou ter ring of the di s k to the knm·m va l u e of the heat being 

a bsorbed thr ough the per iphery of the di sk . In addition , n- 1 equations 

can be 1,ui tten by vi r tue of the continuit y o f t he t emp e r a t ure differe nce 

at the b oundaries of the rings . The temperatu re at each of t he n-1 

common b ounda r i es can be written in t e rms of ei t h e r r ing. The two 

e xp ressions fo r each given common b oundary t emp e ratu re diffe r e nce 

b e t ween the di sk and t he ambi e n t air can the n be equate d , resul t ing in 

one equation fo r each of the n-1 common b oundar ies, o r n-1 equat ions in 
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all, each >vi th only integration constants as unknowns. Since the h eat 

flow across a given common ring boundary can also be written in terms of 

either of the adjoining rings, anothe r equa t ion in terms of the integ ra­

tion cons tants for the adjacent rings results for each of the common 

boundaries after the two expressions for the common heat flow through a 

given boundary are equated. Since there are n-1 common b oundaries, 

another n-1 equations result. So far, 2n-2 equations can b e obtained 

from the temperature and the heat flmr continuities, and one equation 

can be obtained from the knmm heat energy absorbed by the disk; nmv 

there are 2n-l possible equations >vhose only unknowns are the integra­

tion constant s . This gives as many equations as there are unk:nmms, s o 

the integration constants can be determined. After the integration 

constants are determined, the temperature at any point in the disk 

can be determined by using the general equation with the appropriate 

integ-ration constants and the correct value of the parameter for each 

ring. 

An ex runple problem follows to illustrate the method. 



Example Problem ( Ref . Fig. 4) 

Suppo se a homogeneous disk of uniform thickness, 2y , with a one 

foot radius is absorbing heat energy through its periphery at a con-

stant 25,450 B.T.U./hr -vrhile rotating \vith a constant angular velocity. 

Furthermore, s uppose the disk was spli t into five concentric ring s 

and the average combined heat transfer film coefficient across each 

ring •·ms det ermined to be the value as list ed in Table l. In this 

case , the value for ky was assumed to be l/4 B.T.U./hr op for 

convenience . 

Since there are n = 5 concentric rings , there will be five 

temp erature equations required to ex press the temperature difference 

between the d isk and the ambient air as a continuous function across the 

e nti re di sk which has b een split into five rings. These five tempera-

ture equations will have 2n-l = 9 integration constants to be e xaluated. 

The first of the nine equations can be obtained by equating the 

e xp res s ion for the heat flow into the outer ring to the knmm quantity 

of hea t energy being absorbed by the disk. Therefore, for n = 5 for the 

outer r ing , 

Up on substituting the known va l u es of Q5 and the variou s para-

meters l i sted in Tables 1 and 2 , 

Q5 = 25 ,450 = C2 TI) ,j h 5 ky { H5 (53 2 .8) - N5 ( .00005900)} 

2 

Upon transp osi ng, this become s 

( 1 .) M5 (5 32 . 8 )- N5 c.oooo5900) 954.7081 
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TABLE 1 

P_I\R.AHETER VALUES 

n rn- 1 r h mn mn rn- 1 mn rn 
( ft. ) ( ft .) BTU / hr op (/ ft. ) 

1 0 " 2 8 5 . 6568 5 4 0 1 . 1313708 

2 . 2 . 4 10 6 . 3245 55 1 . 2649110 2 . 5 2 98220 

3 . 4 . 6 12 6 . 9 282 03 2 .771 2812 4 .1569218 

4 . 6 . 8 15 7.7 45967 4 . 6 475802 6 . 1967736 

5 .8 l.O 18 8 . 485281 6 . 788 2248 8 . 48 52810 
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TABLE 2 

TABLE OF FUNCTIONS ( 15 ) 

··- - - -
mr Jo ( i rnr ) i H0 ( i rnr ) (-i) J 1 ( i mr ) - H1 ( i mr) 

1 . 1 313708 1. 3 467 0. 2227 0 .6614 0 . 308 4 

1. 26 4 9110 1 . 4 42 9 0 . 1882 0 . 7677 0 . 2 502 

2 . 5 298 22 0 3 . 3660 0 . 03831 2 . 586 0 . 0453 2 

2 . 771 28 1 2 4 . 0640 0 . 02885 3 . 217 0 . 03370 

4 . 1569 218 1 2 . 95 5 0 . 005963 11.256 0 . 006621 

4 . 647580 2 19 . 805 0 . 003481 1 7 . 61 0 . 003 81 7 

6.1 967 736 80.48 0 . 00 0640 0 73 .66 0 . 0006903 

6 . 7 88 2248 138.6 2 0 . 000339 2 1 27. 96 0 . 0 00363 4 

8 . 4 85 281 0 673 . 8 0 0 . 00005578 53 2 . 80 0.00005900 
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Four more equations (n-1 = 4 ) can b e \·nitten from the expressions 

for the temperature at each of the four conmton ring boundaries as 

follovJS: (All numerical values are taken from Tables l and 2 ) 

At r 

or, 

( 2 ) H1 ( l. 3 46 7 ) 

At r = r 2 = .4 

M2 (1. 4429 ) + N2 (0.188 2 ) 

-9- = H2 J 0 ( im2 r2) + N 2 iH0 ( im2 r 2 ) 

or, 

H3 Jo (im3 r2) + N3 i Ra 

( im3 r 2 ) 

(3) H2 (3.3660) + N2 (0.03831) M3 (4.0640) + N3 (0.02885) 

At r = r 3 = .6 

~ = r-13 J 0 ( im3 r 3 ) + N 3 iH0 ( im3 r 3 ) 

or, 

H4 J 0 (im4 r 3 ) + N4 i H0 

( im4 r 3) 

( 4 ) M3 (1 2 .955) + N3 (0.005963) M4 (19.805) + N4 (0.003481 ) 

At r = r 4 = • 8 

-e- = 1'14 J 0 ( im4 r 4 ) + N 4 iH0 ( im4 r 4 ) 

or , 

:H5 J 0 (im5 r 4 ) + N5 iH0 

(im5 r 4 ) 

( 5 ) H4 (80. 48 ) + N4 (0.0006 400 ) = M5 (138.62) + N5 (0.000339 2 ) 

The ranaining four required equations can be obtained from the 

expressions for the heat f low at each of the four common ring boundaries 

as follows: (Again numerical values are taken from Tables l and 2) 

At r = r 1 = • 2 
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{ Hl Q1 = ( 2 TT ) rl ,j hl k:y ( - i ) J l (im1 rl ~ = ( 2 IT) A./ h2 r 1 ky 

{ n2 (- i ) Jl ( im2 r2 ) - N2 (-) Hl (im2 r2 )} 

or , up o n evaluating the const ants and simplify ing, 

( 6 ) H1 ( 0.66.4 ) = . 858315 1·12 - . 27973 2 N2 

At r = r2 . 4 

Q = 2 ( 2 TT) r 2 ,.; h2 k:y { H2 (- i ) Jl ( i m2 r2 ) - N2 (- ) Hl ( im2 r2 )} 

( 2 IT ) r2 1 h3 k:y { H3 ( -i) J l (im3 r 2 ) N3 (- ) Hl ( i m3 r 2 )} 

or , upon eval uating the c onstant s and simp l i fying , 

( 7 ) Iv12 ( 2 .586 ) - N 
2 

( 0.04532 ) = 3 . 52 405 }13 - 0.0369165 N3 

At r ;:::; r 
3 

.6 

Q3 = ( 2 TI) r.., 
0 

y h3 k:y { H3 (-i ) Jl ( im3 r3 ) - N3 (- ) Hl ( im3 r3 )} 

o r , upon e va l uating t h e constants and simplifying, 

At 

( 8 ) M3 ( 11. 256 ) - N3 ( 0 . 006621 ) = 19.6774 M4 - 0.0042675 N4 

r = r 
4 

.8 

Q4 = ( 2 TI) r 4 { h 4 k:y { N4 (-i ) J 1 ( im4 r 4 ) -N4 ( - ) H1 ( im4 r 4 )J 

( 2 TI) r 4 ,.,j h5 k:y { H5 (-i ) J 1 ( im5 r 4 ) -N5 ( - ) H1 Cim5 r 4 )} 

o r , upon e valuating the constants and simplifying , 

( 9 ) H4 ( 73 . 66 ) - N4 ( 0.0006903 ) = 140. 173 N5 - 0. 000398085 

Now t h e r e are nine equations i n t erms of t he nine unknown integra-

t i on constant s so the integration cons tants c an be determined a lgebrai-

cal l y . Upon the d e t e r mination of the integrat i on c ons tant s , the five 

t emp e ratu re equations become : 

F rom r 0 to r = . 2 

-6- = 7 • 4 7 45 J 0 ( im1 r ) 
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From r . 2 to r . 4 

-e- 6.628 90 J ( i m2 r ) + 2.66 879 i H ( i m2 r ) 
0 0 

Frorc1 r . 4 t o r = .6 

B 5 . 23865 Jo ( i m3 r ) + 39 . 003 3 i H0 (im3 r ) 

From r = . 6 to r = . 8 

-e- = . 3 . 23 483 Jo ( i m4 r ) + 1, 15 8 . 74 i H0 ( i m4 r ) 

From r = . 8 to r 1. 0 

-6- = 1 . 79 583 J ( i m5 r ) 
0 

+ 35 , 796 . 4 iH0 C im5 r) 

v.rhe r e the va l u es o f t h e parameter mn are l i s t e d in Tab l e l. 

The temp erature differ e nce dist ribu t ion across t h e ent ire d i s k 

as shown b y these equations i s g r a phica l ly illu s trated i n Fi g . 4 . I t 

shoul d be n o t ed her e that the last d e c imal place o f the t abulated 

Bessel and Hankel f unc t i o n s i s uncertain ( l 6 ) s o t h e e nd r e s u l t i s 

that t h e temp eratures obt ained from t he t emp eratu r e equat i ons above are 

accura te o nly t o thre e p lac es . However, f o r computat ional c o n s i s tancy 

in eva l uating a nd cros s-che c king the va r ious cons tant s , sever a l more 

place s were u sed . 
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CONCLUSIONS 

In this investigation, the steady s tate temperature distribution 

for a disk of uniform thickness rotating at a constant speed in 

ambient air vJhile absorbing heat at a constant rate through its peri­

pher y \'las obtained. 

A simple Bessel function relationship, equation ( 8), \>J"as obtained 

for cases where h., the heat transfer film coefficient, and k, the 

thenual conductivity, can be cons idered a constant throughout the disk. 

Fig. 2 and 3 show the temperature distribution in a b'fo-feet diameter 

disk for various constant values of the heat transfer film coefficient 

and the parameter ky where k is the thenual conductivity andy i s 

one-half the disk thickness. These figures illustrate that most of the 

heat is dissipated within a few inches of the periphery. As a result of 

this heat dissipation, the temperature at the center of the disk for a 

given set of parameters is negligable compared to the temperature at 

the periphery. The majority of the engineering applications for a 

disk brake can be handled with this simple relationship. The author 

r ecorMlends that equation (8) be u sed to approximate the temperature 

di s tribution if the exact distribution i s not required because of the 

s i mp l icity of the computations required. By evaluating the variables 

h and k at the center and at the periphery of the disk, an upper and 

lmv-er boundary of the possible temperature values across the disk can 

be quickly obtained 1.-Ji th equation ( 8 ) for a g iven amount of heat added 

at t h e periphery of a given disk. 

For the cases where an exact temperature distribution is required, 

the disk is split into a number of small concentric rings and equation 
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(9) is used to evaluate the temperature distribution across each ring. 

Equation (9) expresses the temperature distribution within each ring in 

ten~s of Bessel and Hankel functions of the parameter m = ~h/ky 

where m is evaluated specifically for each ring. For the disk of n 

concentric rings, ~ temperature equations are required which have 

cons tant s of integration to be evaluated from the boundary conditions 

listed in t h e thesis. An example problem is included to illustrate the 

method. Fig. 4 illustrates the temperature distribution for the 

e x a mple prob lem featuring a disk two feet in diameter absorbing 25 , 450 

B.T.U. / h r . The disk was assumed to have a ky value l/4 B.T.U./hr °F 

which correspond s to a one-fourth inch thick steel disk . 

The above method is an exact solution, but the mathematic 

computations tend to encourage the use of equation ( 8 ) to approx imate 

the r e sulting temperature distri bution rather than the more exact 

s olution g iven by equation (9). 



APPENDI X 

On t he Evaluation of the Combined 
Heat Transfer Film Coefficient 

The equations expressing the temp erature difference dist ribution 

of the rotating d i sk are only as c orrect as the computed val ues of the 

required parameters. Tabulated val u es of t he thermal conduct ivity are 

readily available and determining the thickness of the disk is no 

prob l em . Howeve r, determining the heat transfer f i lm coeffici e n t i s 

much more involved. 

At the present 
_._. 
Llme , the best way to evaluate the heat t ransfer 

film coeffi cient sea~s to be to evaluate the conve c tion film coefficient 

and then a dd to it a film coefficient to cove r radiation effects. 

Two empi r ical equatio n s a re available for e valuat ing the convection 

fi lm coefficient . The one used for the laminar flow range for 

Reynolds number , R, from 100,000 to 240,000 : 

h e= .36 k (w/v)• 5 (17) 

where he i s the local convection film coeff icient, k is the thermal 

conducti v i ty of the air , and v is the l ocal kinematic vi s cos ity of the 

air . 

In the t u rbu lent range for Reynolds number , R, g reater than 

240 , 000: 

0 .015 ( R ) • 8 (18 ) 

where Nm is an average Nusselt numbe r based on he , an ave rage convection 

filnt coefficie nt for the ring in que stion, a nd ave rage values of k and r . 

This expression for the a verage Nusselt number can b e rearranged 

to give: 



he 0.015 k ( R)• 8 
r 

These two equations were obtained from experimental data based 

on i sothel~al rotating disks. The expression for turbulent flow is 

p robably only a rou gh approx i mation of the average convection film 

coefficient for a g iven ring, but it i s all that is available at the 

prese nt time. Note that the two equations were extended into the 

transition region vlhere R = 200,000 to 280,000. 

To account for the radiation effects , a fictitious radiation 

film coefficient can be computed from the following: 

3 2 

hr = 0.173 e (Td/100) 4 - (Ta/100) 4 
(Td - Ta) 

(19) 

the average absolute temperature of the g iven ring of the 

disk, 0 Rankine 

Ta the absolute ambient temperature , 0 Rankine 

e emissivity constant 

If the d isk has been split into rings of small enough area, 

the c ombined heat transfer film coefficient for each ring can be 

obtained by combining the c o nvect ion and the radiation film coeffi-

ci e nt s f or the g iven ring. 
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