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ABSTRACT 

When integrated to the power system, large wind farms pose stability and control 

issues. A thorough study is needed to identify the potential problems and to develop 

measures to mitigate them. Although integration of high levels of wind power into an 

existing transmission system does not require a major redesign, it necessitates additional 

control and compensating equipment to enable recovery from severe system disturbances.  

This thesis investigates the use of a Static Synchronous Compensator 

(STATCOM) along with wind farms for the purpose of stabilizing the grid voltage after 

grid-side disturbances such as a three phase short circuit fault, temporary trip of a wind 

turbine and sudden load changes. The strategy focuses on a fundamental grid operational 

requirement to maintain proper voltages at the point of common coupling by regulating 

voltage. The DC voltage at individual wind turbine (WT) inverters is also stabilized to 

facilitate continuous operation of wind turbines during disturbances.  
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1. INTRODUCTION 

A pressing demand for more electric power coupled with depleting natural 

resources has led to an increased need for energy production from renewable energy 

sources such as wind and solar. The latest technological advancements in wind energy 

conversion and an increased support from governmental and private institutions have led 

to increased wind power generation in recent years. Wind power is the fastest growing 

renewable source of electrical energy. Total wind power installation in the US was 

11,603 MW in 2006 and it increased by 26% in the year 2007 [1]. Figure 1.1 illustrates 

the total amount of installed wind power in the U.S. power system from the years 2000 to 

2007.  
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Figure 1.1. Cumulative wind power production in the United States 
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The wind power penetration has increased dramatically in the past few years, 

hence it has become necessary to address problems associated with maintaining a stable 

electric power system that contains different sources of energy including hydro, thermal, 

coal, nuclear, wind, and solar. In the past, the total installed wind power capacity was a 

small fraction of the power system and continuous connection of the wind farm to the 

grid was not a major concern. With an increasing share derived from wind power sources, 

continuous connection of wind farms to the system has played an increasing role in 

enabling uninterrupted power supply to the load, even in the case of minor disturbances. 

The wind farm capacity is being continuously increased through the installation of more 

and larger wind turbines. Voltage stability and an efficient fault ride through capability 

are the basic requirements for higher penetration. Wind turbines have to be able to 

continue uninterrupted operation under transient voltage conditions to be in accordance 

with the grid codes [2]. Grid codes are certain standards set by regulating agencies. Wind 

power systems should meet these requirements for interconnection to the grid. Different 

grid code standards are established by different regulating bodies, but Nordic grid codes 

are becoming increasingly popular [3].  

One of the major issues concerning a wind farm interconnection to a power grid 

concerns its dynamic stability on the power system [4]. Voltage instability problems 

occur in a power system that is not able to meet the reactive power demand during faults 

and heavy loading conditions. Stand alone systems are easier to model, analyze, and 

control than large power systems in simulation studies. A wind farm is usually spread 

over a wide area and has many wind generators, which produce different amounts of 

power as they are exposed to different wind patterns.  

Flexible AC Transmission Systems (FACTS) such as the Static Synchronous 

Compensator (STATCOM) and the Unified Power Flow Controller (UPFC) are being 

used extensively in power systems because of their ability to provide flexible power flow 

control [5]. The main motivation for choosing STATCOM in wind farms is its ability to 

provide busbar system voltage support either by supplying and/or absorbing reactive 

power into the system.   

The applicability of a STATCOM in wind farms has been investigated and the 

results from early studies indicate that it is able to supply reactive power requirements of 
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the wind farm under various operating conditions, thereby improving the steady-state 

stability limit of the network [6]. Transient and short-term generator stability conditions 

can also be improved when a STATCOM has been introduced into the system as an 

active voltage/var supporter [5, 7].  

The methods used to develop an equivalence of a collector system in a large wind 

power plant are described in [8]. The requirements, assumptions and structure of an 

aggregate model of a wind park with constant speed turbine and variable speed turbines 

are discussed in [9].  

This thesis explores the possibility of enabling wind farms to provide voltage 

support during normal conditions, as well as under conditions when system voltages are 

not within desired limits. The transient behavior of wind farms can be improved by 

injecting large amounts of reactive power during fault recovery [10]. This thesis 

examines the use of STATCOMs in wind farms to stabilize the grid voltage after grid 

disturbances such as line outages or severe system faults.  

The wind turbines (WTs) considered in this thesis are Doubly Fed Induction 

Generators (DFIGs) that are capable of variable speed operation. A DFIG has a power 

electronic converter by which both real power and reactive power can be controlled. A 

STATCOM was employed to regulate the voltage at the bus, to help maintain constant 

DC link voltages at individual wind turbine inverters during disturbances. This feature 

will facilitate the continuous operation of each individual wind turbine during 

disturbances, thus enabling the wind farm to participate in the grid side voltage and 

power control.  

The dynamic DFIG model available in DIgSILENT PowerFactory Version 13.2 

[11] was used for the simulations. The STATCOM with a higher rating capacity was 

developed based on the study of an available low capacity STATCOM model. The 

complete power grid studied in this thesis is a combined case study of interconnected two 

wind turbines, a synchronous generator, a STATCOM and a typical load all forming a 

four bus system.  

Power control is vital for transient and voltage stability during faults and is 

required to meet the connection requirements of the wind turbines to the grid which vary 

mostly with the short circuit capacity of the system considered. Reactive power is 
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required to compensate for the additional reactive power demand of the generator and the 

matching transformers so that the wind power installation does not burden the system. 

Low Voltage Ride Through (LVRT) is a recently introduced requirement that 

transmission operators demand from wind farms. A STATCOM is being evaluated for its 

performance to effectively provide LVRT for wind turbines in a wind farm.  

The European electrical power system contains larger amounts of wind power and 

the share of embedded wind generation is increasing in other power systems as well. The 

significant size of new wind power installations requires realistic modeling capabilities of 

wind generators for assessing the power system planning and to perform stability studies 

with increased wind power share.  

DIgSILENT version 13.6 was used for the simulation studies on the modeled test 

system. DIgSILENT is an acronym for “Digital Simulation and Electrical Network 

calculation program” is one the most powerful power system software with an integrated 

graphical one-line interface. DIgSILENT has faster simulation time when compared to 

PSCAD, SimPower systems in MATLAB. In terms of accuracy of the results and 

implementation of the models, all the softwares are similar in nature. This is becoming 

popular in DFIG model was used to model the turbines in a wind farm and the 

STATCOM model was developed specific to this application.  

This thesis is presented in five sections. Section 2 is about the wind power 

statistics, types of wind turbines, wind farm modeling requirements, stability and 

reliability considerations, and fault studies on the WTs, and the performance of WTs with 

faults on the system. Section 3 deals with the need for voltage control in the presence of 

wind energy. Also, the reactive power capability of wind turbines, the need for reactive 

power support along with the applicability of FACTS devices, and the reasons for 

choosing STATCOM are presented. Section 4 deals with the methodology including the 

capabilities, ratings, location of STATCOM, and the total reactive power available with 

faults on the system. Section 5 describes the test system and explains the simulation 

results obtained. The dynamic performance of the test system is analyzed for three cases, 

viz. three phase impedance faults, tripping of a WT in the wind farm and sudden 

temporary load changes. Section 6 consists of conclusions drawn from the simulation 

study.  
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2. WIND ENERGY IN THE POWER SYSTEM  

2.1. WIND ENERGY  

Wind is a continuously varying source of energy and so is the active power 

generated by the wind turbine. If a WT is connected to a weak grid (which has low short 

circuit power), the terminal voltage also fluctuates, producing flicker, harmonics and 

interharmonics due to the presence of power electronics.  

 For a set of connected wind turbines forming a wind farm, there exist certain grid 

codes or specific requirements with which each wind turbine must conform with in order 

to be allowed to be connected to the grid [12]. Most wind power systems are based in 

remote rural locations and are therefore prone to voltage sags, faults, and unbalances. 

These unbalanced grid voltages can cause many problems such as torque pulsations, 

unbalanced currents and reactive power pulsations [13].    

When wind farms are connected to a strong grid, that is closer to a stiff source, 

voltage and frequency can be quickly re-established after a disturbance with the support 

of the power grid itself. To wait for the voltage to re-establish after the fault has been 

cleared in the case of a weak grid interconnection is not reliable because there is always a 

risk of voltage instability initiated by the disturbance. Hence, reactive power and voltage 

support that can be provided by mechanically switched capacitors, SVC or STATCOM is 

needed to help improve the short term voltage stability and reinforce the power network. 

This is also true for wind farms with all fixed speed wind turbines with no dynamic 

control or reactive power compensation.  

There are many wind turbine manufacturers who produce different wind turbine 

technologies. Table 2.1 gives a list of all the MW range WTs manufactured by various 

producers and their technical specifications. The high power MW range WTs are 

typically the DFIGs which are becoming increasingly popular with their increasing 

number of installations.  

Wind generators are generally of two types: fixed and variable speed. Fixed speed 

generators are induction generators with capacitor bank for self-excitation or two-pole 

pairs or those which use rotor resistance control. Variable speed generators are either 

DFIG (which is a round rotor machine) or full power converters such as squirrel cage 
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induction generators, permanent magnet synchronous generators, or externally 

magnetized synchronous generators. Variable speed wind turbines are connected to the 

grid using power electronic technology and maximize effective turbine speed control.  

 

 

 

Table 2.1 Types of wind turbines produced by various wind generator manufacturers 

Wind Turbine 
Rated 

Speed 

Cut out 

speed 
Generator 

Power Control 

GE 1.5 MW 13 m/s 25 m/s DFIG Active blade pitch  

GE 2.5 MW 12.5 m/s 25 m/s PM generator Active blade pitch  

GE 3.6 MW 14 m/s 27 m/s DFIG Active blade pitch  

VESTAS 1.65 MW 13 m/s 20 m/s Asynchronous Active Stall 

VESTAS 1.8 MW 15 m/s 25 m/s 
Asynchronous 

with Optislip 
OptiSlip / Pitch 

VESTAS 3 MW 15 m/s 25 m/s 
Asynchronous 

with Optispeed 

OptiSpeed and OptiTip 

Pitch regulation 

NORDEX 2.5 MW 15 m/s 25 m/s DFIG Pitch 

NORDEX 3 MW 13 m/s 25 m/s DFIG Pitch 

SUZLON 0.95 MW 11 m/s 25 m/s Asynchronous Pitch 

SUZLON 1.25 MW 14 m/s 25 m/s Asynchronous Pitch 

 

 

 

Variable speed wind turbines such as DFIGs are the most popular wind turbines 

being installed today because they perform better than the fixed speed wind turbines 

during system disturbances. DFIGs are the only class of wind generators capable of 

producing reactive power to maintain unity power factor at the collector bus. Figure 2.1 

shows the DFIG model used in the simulations.  
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Figure 2.1. Block diagram of a Doubly-fed induction generator  

 

 

 

A back-to-back converter is connected between the rotor and stator of the DFIG. 

The main objective of the GSC is to keep the DC link voltage constant. The reactive 

power supplied by this converter can be controlled by maintaining the power factor of 

this converter at unity. The GSC works as supplementary reactive power compensation 

though the reactive power capability of this converter during the fault is limited as it is 

rated just about 25% of the wind turbine power ratings. RSC controls the stator active and 

reactive powers. The RSC is also used to control the machine speed and the stator 

reactive power.  The stator of the DFIG is directly connected to the grid and the slip-rings 

of the rotor are fed by self-commutated converters. The magnitude and phase of the rotor 

voltage can be controlled using these converters which makes active and reactive power 

control possible. By controlling the reactive power generated or absorbed by the RSC, 

voltage or reactive power at the grid terminals can be controlled.   

The main components of the DFIG model are: the prime mover consisting of the 

pitch angle controller, the wind turbine and the shaft, the DFIG, control system regulating 

active and reactive power of the DFIG through the RSC and a protection system. 

Crowbar protection is also being increasingly used in wind turbines to short circuit (with 
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small impedance) the rotor side converter in case of faults to protect the RSC from over 

currents. Crowbar protection is specific to DFIGs and protects the RSC against over-

currents. The converter is blocked and bypassed through additional impedance, when the 

rotor current exceeds the rotor converter current ratings. The additional impedance 

reduces the amount of reactive power absorbed by the machine and, thus, improves the 

torque characteristic during voltage sags [11].   

In DFIGs, the size of the converter is related not to the total generated power, but 

to the selected speed range and, hence, to the slip. As speed range requirements around 

the synchronous speed increases, the size and cost of the converter increases. Typical 

high power wind turbine generators are mostly DFIGs that allow more speed control of 

about 25% synchronous and an effective reactive power control with a small size rotor 

that is only about 25% of the total power rating of the turbine.  

 

2.2. WIND FARM MODELING  

When many wind turbines are added to the system, the grid becomes weaker as 

these types of generators require additional control equipment since they do not have any 

self recovery capability like the conventional generators. This requires a thorough study 

of the normal and dynamic performance of the wind turbines during and after a 

disturbance. Before integrating large amounts of wind power with the conventional 

generating units, a comprehensive analysis of the power system stability and reliability 

issues has to be studied. A simulation study is the best known method to understand the 

system dynamics for operation under normal conditions and during contingencies. 

Smaller wind farms are easier to model and study while larger wind farms require more 

effort and complex modeling.  

A very large wind farm contains hundreds of wind turbines which are connected 

together by an intricate collector system. Though each WT of a wind farm may not 

critically impact the power system, a wind farm has significant impact on the associated 

power system during severe disturbances [14]. It is not practical to represent all wind 

turbines to perform a simulation study; a simplified equivalent model is required. It also 

helps that there is no mutual interaction between wind turbines with well-tuned 

converters in a wind farm (apart from the conditions of the power grid) [15]. 
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2.3. RELIABILITY AND STABILITY CONSIDERATIONS   

Power quality problems to the associated power system due to the presence of 

WTs are continuous power variations, voltage variations, flicker, harmonics, and 

transients.  Likewise, the kind of power quality issues that the wind farm encounters due 

to the associated network are voltage dips, interruptions, voltage imbalances and 

frequency variations. In the past, wind power was exempted from some grid 

interconnection requirements like voltage regulation and frequency regulation. The wind 

power systems were allowed to disconnect on system events like three phase faults and 

blackouts. Only recently, after the increase in wind power penetration, have some 

stringent interconnection rules, known as “grid codes” with which these wind plants have 

to conform been developed. These grid codes require that wind turbine generators be 

treated more like conventional generating units and participate in grid voltage and 

frequency regulation. To facilitate WT participation in frequency control there are two 

major controls: turbine-based control and substation-based control. In turbine-based 

control systems, each turbine has to have some specific control capabilities, such as 

power factor or reactive power (Q) control. In substation-based control, some kind of 

reactive power compensation is either provided by switched capacitors (manual or static 

compensation) or FACTS devices. [16].  

 

2.4. POWER AND VOLTAGE PERFORMANCE    

Effective power control is essential for transient and voltage stability during 

system faults such as a 3-phase short circuit fault. When a three phase short circuit fault 

occurs in the system, the voltage at the terminal drops to a value that depends on the 

fault’s location.  In this case, the WT will not be able to transfer all its generated power 

leading to an acceleration of the wind turbine due to an imbalance between input 

mechanical power and output electrical power. This imbalance makes it more difficult for 

the WT to recover after the fault has been cleared because more reactive power is 

required by the system.  

Power control is necessary for all connection requirements for wind turbines, 

which vary widely according to the short circuit capacity of the system. The relative 

impedance for weak grids is high, so the impact of Q support is usually significant. If 
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wind turbines are connected to a weak system, more power control is required to keep the 

system stable during and after a fault.  

A turbines Low voltage ride through (LVRT) capability is its ability to survive a 

transient voltage dip without tripping. Wind turbines’ LVRT capability is vital for wind 

farm interconnection because the tripping of a wind farm due to a fault on a nearby power 

line results in the loss of two major system components (the line and the wind farm).  

 

2.5. PERFORMANCE OF A WT WITH FAULTS ON THE SYSTEM  

Generators are the major components in the power system that reacts to system 

disturbances. The reaction of the conventional synchronous generators to all kinds of grid 

disturbances has been studied extensively; however wind turbines are generally not 

equipped with synchronous generators. Wind turbine generators interact differently with 

the grid when there are faults on the system. The grid voltage has to be controlled 

inevitably, irrespective of the capabilities with which a wind farm’s generators might be 

equipped.  

The most popular type of wind turbines installed today are variable speed wind 

turbines that feature improved power quality and speed control and reduced mechanical 

stresses. Under the same circumstances, the power generated by variable speed wind 

turbines is greater than that generated by the fixed speed wind turbines [17]. Recently-

developed grid codes require that wind turbines be able to withstand voltage disturbances 

without disconnection, which is known as the LVRT capability of the wind turbine [10]. 

Figure 2.2 shows the LVRT requirement for wind generation facilities per FERC order 

661 and power electronic based FACTS controllers such as STATCOM can be used to 

hold the line voltage to a specific value to help the WT ride-through the fault. The LVRT 

requires that a WT does not trip even if the voltage drops to 0.15 per unit for about 0.625 

seconds. If due to a fault, the voltage drops below this value, the wind turbine can be 

tripped until the system restores and the wind turbine can be resynchronized. A WT can 

take a maximum of 2.375 seconds to restore to about 0.9 per unit voltage after the fault 

has been cleared. These rules are more stringent for some grids which are derived based 

on grid reliability requirement.   
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Order No. 661 issued by FERC (Federal Energy Regulatory Commission) on June 

2, 2005, sets specific wind power requirements, namely, low voltage ride through, power 

factor design criteria (reactive power), and Supervisory Control and Data Acquisition 

(SCADA) capability. The grid codes are specific to a particular power zone and they vary 

with respect to the voltage profile requirement during system disturbances.  

This thesis focuses mainly on the low voltage ride through requirement for wind 

turbines. Several studies have been performed to understand the behavior of the wind 

generators, the voltage profile and the reactive power in the system, to various system 

disturbances. The transient behavior of the wind turbines during and after fault in the 

presence of different compensation techniques and their dynamic performance has been 

studied.  
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Figure 2.2. LVRT requirement for wind generation facilities per FERC Order No. 661 
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3. VOLTAGE CONTROL IN THE PRESENCE OF WIND ENERGY  

3.1. WIND TURBINE REACTIVE POWER CAPABILITY  

A majority of the wind turbines installed in the past were induction generators 

that absorb reactive power from the system even during normal operating conditions. As 

WTs are a sink for reactive power, an effective dynamic reactive power management 

system is required to avoid low-voltage issues in the wind power system. Recently a large 

number of wind turbines installed are of the variable speed type fitted with DFIGs. Under 

normal operating conditions the DFIGs operate at close to unity power factor and may 

supply some reactive power during system disturbances such as a three phase fault close 

to the wind farm in order to meet the LVRT grid code requirement. Mechanically 

switched capacitors are used in wind farms containing asynchronous generators to 

provide reactive power support during system disturbances. However, limited support 

provided by these small wind generators is required to meet the interconnection standards 

such as to ride through a fault. Hence, additional compensating equipment is needed by 

the system in order to restore quickly after the fault has been cleared so as to maintain 

system stability and to avoid generator tripping. In some instances, the collector bus of 

the wind farm may have some reactive power compensation, which is typically lower 

than that required for critical contingencies in the system.  

 

3.2. FACTS DEVICES AND CAPABILITIES  

Recently, FACTS-based devices have been used for power flow control and for 

damping power system oscillations. They can also be used to increase transmission line 

capacity; steady state voltage regulation; provide transient voltage support to prevent 

system collapse; and damp power oscillations. FACTS devices can be used in wind 

power systems to improve the transient and dynamic stability of the overall power 

system. The STATCOM is from the family of FACTS devices that can be used 

effectively in wind farms to provide transient voltage support to prevent system collapse. 

In other words a STATCOM is an electronic generator of reactive power. Figure 3.1 

show the various STATCOM installations on the map of the United States. Table 3.1 
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shows these STATCOM installations and their voltage levels along with their reactive 

power control ranges.  

 

 

 

 
Figure 3.1. US STATCOM installations [18] 

 

 

 

Transmission of power ‘S’ ( jQP + ) over a power line with impedance ‘Z’ 

( jXR + ) results in a voltage drop ( VΔ ) (1)  

 

V
QXPRV .. +

=Δ      (1) 

 

For larger wind farms connected to transmission systems X>>R and, from 

equation 1, VΔ  is directly proportional to the reactive power (Q) transferred. From 

equation 1, it is clear that for efficient voltage control an effective reactive power strategy 

San Diego G&E/ 
STATCOM/100 MVA 

 CSWS (Texas) 
STATCOM/ 150 MVA 

Austin Energy 
STATCOM/ 100MVA 

TVA 
STATCOM/100MVA

Northeast Utilities/ 
STATCOM/ 150 MVA 

Vermont Electric/ 
STATCOM/ 130 MVA 
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is required. FACTS devices can provide dynamic and steady state support. They can 

improve dynamic and transient stability, control dynamic overvoltages and undervoltages 

and also support against frequency and voltage collapses.   

 

 

 

Table 3.1 US STATCOM installations [19] 

No. Year Customer Location Voltage Control 
range Supplier 

1 1995 

Tennessee 
Valley 
Authority 
(TVA) 

Sullivan 
Substation 
(Johnson City, 
Tennessee) 

161kV ±100MVar 
Westinghouse 

Electric 
Corporation 

2 2001 Vermont 
Electric Power 

Essex station 
(Burlington, 
Vermont) 

115kV -41 to 
+133MVar Mitsubishi 

3 - 

Central & 
South West 
Services 
(CSWS) 

Laredo and 
Brownsville 
stations (Texas)

- ±150MVar W-Siemens 

4 2003 
San Diego Gas 
& Electric 
(SDG&E) 

Talega station 
(Southern 
California) 

138kV ±100MVar Mitsubishi 

5 2003 Northeast 
Utilities (NU) 

Glenbrook 
station 
(Hartford, 
Connecticut) 

115kV ±150MVar Areva 
(Alstom) 

6 2004 Austin Energy Holly (Texas) 138kV -80 to 
+110MVar ABB 

 

 

 

3.3. SVC/STATCOM/UPFC COMPARISONS    

The thyristor protected series compensation (TPSC), Thyristor Controlled series 

compensation (TCSC) are those FACTS devices that have a strong influence on the 

system stability and small or no influence on the voltage quality. The SVC and 

STATCOM have a strong influence on voltage quality improvement and show medium 

performance with respect to overall system stability. The unified power flow controllers 

(UPFC) have shown efficient performance in terms of load flow support, stability and 

voltage quality. The main objective in this thesis is to look for solutions to provide 
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voltage stability to the system in order to operate wind turbines in accordance with the 

grid codes. The STATCOM is the best option available for providing efficient voltage 

quality in the power system.  

A STATCOM is a shunt-connected reactive power compensation device that is 

capable of generating and/or absorbing reactive power and in which the output can be 

varied to control the specific parameters of an electric power system. The STATCOM is 

a static compensator and is used to regulate voltage and to improve dynamic stability 

[20]. A STATCOM can supply the required reactive power under various operating 

conditions, to control the network voltage actively and thus, improve the steady state 

stability of the network. The STATCOM can be operated over its full output current 

range even at very low voltage levels and the maximum var generation or absorption 

changes linearly with the utility or ac system voltage.  

The maximum compensating current of the SVC decreases linearly with the ac 

system voltage and the maximum var output decreases with the square of the voltage. 

This implies that for the same dynamic performance, a higher rating SVC is required 

when compared to that of a STATCOM. For an SVC, the maximum transient capacitive 

current is determined by the size of the capacitor and the magnitude of the ac system 

voltage. In the case of a STATCOM, the maximum transient capacitive overcurrent 

capability is determined by the maximum turn-off capability of the power semi-

conductors employed.  [19] 

Figure 3.2 shows the schematic of SVC and its VI characteristics. Figure 3.3 

shows the schematic of the STATCOM and its VI characteristics. The main function of a 

STATCOM is to provide reactive power support and thus improve voltage stability. The 

main objective of using a UPFC in a system is to be able to control both active and 

reactive power in the associated line in which it is placed. The STATCOM has better 

reactive power control than an SVC as seen in Figures 3.2 and 3.3.  

Mechanically switched capacitors do not have a better performance at lower 

voltages and hence a higher rating device is needed for the same performance. Also, the 

reactive power support provided by the SVC is dependent on the ac system voltage and 

hence its capability is de-rated at lower voltages. The UPFC is not very economical and 

requires more complicated control techniques for exploiting its complete capabilities. 



               16

VUtility
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Figure 3.2. SVC and its VI characteristics  
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Figure 3.3. STATCOM and its VI characteristics  

 

 

 

3.4. REASONS FOR CHOOSING A STATCOM     

Capacitors are usually connected to fixed speed wind turbines to enhance the 

system voltage because they are a sink of reactive power. Mechanically switched fixed 

shunt capacitors can enhance the system’s voltage stability limit, but is not very sensitive 

to voltage changes. Also, voltage regulated by the wind generators equipped with only 

fixed capacitors can become higher than the voltage limit of 1.05 pu.  Hence, a fixed 

capacitor cannot serve as the only source of reactive power compensation.  
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One of the most important advantages of using STATCOM over a thyristor based 

SVC is that its compensating current is not dependent on the voltage level at the 

connection point which means that the compensating current is not lowered as the voltage 

drops [3].  

The output of the wind power plants and the total load vary continuously 

throughout the day. Reactive power compensation is required to maintain normal voltage 

levels in the power system. Reactive power imbalances, which can seriously affect the 

power system, can be minimized by reactive power compensation devices such as the 

STATCOM. The STATCOM can also contribute to the low voltage ride through 

requirement because it can operate at full capacity even at lower voltages.  

In this thesis, a voltage source converter (VSC) PWM technique based 

STATCOM is proposed to stabilize grid connected DFIG based wind turbines.  
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4. THE STATCOM   

4.1. STATCOM MODEL 

Figure 4.1 shows the basic model of a STATCOM which is connected to the ac 

system bus through a coupling transformer. In a STATCOM, the maximum 

compensating current is independent of system voltage, so it operates at full capacity 

even at low voltages. A STATCOM’s advantages include flexible voltage control for 

power quality improvement, fast response, and applicability for use with high fluctuating 

loads.  

 

 

 

VSC

AC System Bus
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Figure 4.1. Basic model of a STATCOM 

 

 

 

The output of the controller cQ  is controllable which is proportional to the voltage 

magnitude difference ( )VVc −  and is given by (2) 

 

( )
X

VVV
Q c

c
−

=      (2) 
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The shunt inverter, transformer and connection filter are the major components of 

a STATCOM. The control system employed in this system maintains the magnitude of 

the bus voltage constant by controlling the magnitude and/or phase shift of the voltage 

source converter’s output voltage. By properly controlling iq, reactive power exchange is 

achieved. The DC capacitor voltage is maintained at a constant value and this voltage 

error is used to determine the reference for the active power to be exchanged by the 

inverter.  

The STATCOM is a static var generator whose output can be varied so as to 

maintain or control certain specific parameters of the electric power system. The 

STATCOM is a power electronic component that can be applied to the dynamic control 

of the reactive power and the grid voltage. The reactive output power of the compensator 

is varied to control the voltage at given transmission network terminals, thus maintaining 

the desired power flows during possible system disturbances and contingencies.   

STATCOMs have the ability to address transient events at a faster rate and with 

better performance at lower voltages than a Static Voltage Compensator (SVC). The 

maximum compensation current in a STATCOM is independent of the system voltage. 

Overall, a STATCOM provides dynamic voltage control and power oscillation damping, 

and improves the system’s transient stability. By controlling the phase angle, the flow of 

current between the converter and the ac system are controlled  

A STATCOM was chosen as a source for reactive power support because it has 

the ability to continuously vary its susceptance while reacting fast and providing voltage 

support at a local node. Figure 4.2 show the block diagram of the STATCOM controller. 

The values for all the variables in the figure are presented in the appendix.  
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Figure 4.2. Control scheme of the STATCOM [DIgSILENT version 13.6] 

 

 

 

By controlling the phase and magnitude of the STATCOM output voltage, the 

power exchange between the ac system and the STATCOM can be controlled effectively. 

The outputs of the controller are id_ref and iq_ref which are the reference currents in the 

dq coordinates which are needed to calculate the power injections by the STATCOM as 

in (3) and (4).  

 

               ( ) qqddiqidiinj iviviiVP +=+= θθ sincos       (3) 

 

               ( ) qqqdiqidiinj iviviiVQ +−=−= θθ cossin      (4) 

 

 where di  and qi are the reference d and q axis currents of the ac system. The 

control variables are the current injected by the STATCOM and the reactive power 

injected into the system.  
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The STATCOM ratings are based on many parameters which are mostly 

governed by the amount of reactive power the system needs to recover and ride through 

typical faults on the power system and to reduce the interaction of other system 

equipment that can become out of synchronism with the grid. Although the final rating of 

the STATCOM is determined based on system economics, the capacity chosen will be at 

least adequate for the system to stabilize after temporary system disturbances. The type of 

faults that the system is expected to recover from also determines the size of the 

STATCOM. For example, a three phase impedance fault of low impedance requires a 

very high rating STATCOM while a high impedance short circuit fault needs a lower 

rating device to support the system during the fault and help recover after the fault. The 

converter current ratings and the size of the capacitor also decide the capability of the 

STATCOM.  

The STATCOM can be connected to the system at any voltage level by using a 

coupling transformer. The devices in a voltage source converter are clamped against 

over-voltages across the DC link capacitor bank to minimize losses and not have to 

withstand large spikes in reverse over-voltage.   

 

4.2. LOCATION OF STATCOM 

Simulation results show that STATCOM provides effective voltage support at the 

bus to which it is connected to. The STATCOM is placed as close as possible to the load 

bus for various reasons. The first reason is that the location of the reactive power support 

should be as close as possible to the point at which the support is needed. Secondly, in 

the studied test system the location of the STATCOM at the load bus is more appropriate 

because the effect of voltage change is the highest at this point.  

The location of the STATCOM is based on quantitative benefits evaluation. The 

main benefits of using a STATCOM in the system are reduced losses and increased 

maximum transfer capability. The location of STATCOM is generally chosen to be the 

location in the system which needs reactive power. To place a STATCOM at any load 

bus reduces the reactive power flow through the lines, thus, reducing line current and also 

the RI 2 losses. Shipping of reactive power at low voltages in a system running close to 

its stability limit is not very efficient. Also, the total amount of reactive power transfer 
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available will be influenced by the transmission line power factor limiting factors. Hence, 

sources and compensation devices are always kept as close as possible to the load as the 

ratio 
nomV
VΔ will be higher for the load bus under fault conditions.  

 

4.3. REACTIVE POWER SUPPORT FROM STATCOM  

The amount of reactive power supplied by any compensating device depends on 

the voltage drop at the bus and its capabilities. For example, a STATCOM can supply its 

maximum rated compensating current even at lower voltages. The rating of the 

STATCOM also decides the maximum reactive power that can be supplied, but usually 

they have some extra capability called the transient capability which is available to the 

system for a short period of time. The reactive power supplied is also dependent on the 

immediate reactive power sources in the system. The size of the wind turbine and the 

synchronous machine also influences on the reactive power capability.  
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5. TEST SYSTEM AND SIMULATION RESULTS 

5.1. TEST SYSTEM  

To evaluate the voltage support provided by a STATCOM which is connected to 

a weak grid, simulations have been performed in DIgSILENT Version 13.6. Figure 5.1 

shows the test system that includes a load supplied by the local synchronous generator as 

well as from the installed wind turbines (DFIG). The power system is studied to evaluate 

the system performance under different transient conditions such as a three phase fault, a 

sudden load change, and temporary tripping of a wind turbine in a wind farm.  

The values and ratings of system components are presented in the Appendix. The 

system voltage rating is 30 kV and every transmission line has an impedance of 0.06+j0.6 

ohms. Two DFIGs operating under similar conditions are connected to a common bus 

called the collector bus. The system is connected to an external grid whose short circuit 

capacity is 50 MVA, i.e., it is a weak grid and cannot respond to system disturbances. 

The total system has a load of 18 MW and 2 Mvar connected at bus 3 (the load bus).  The 

DFIG WTs operate at close to unity power factor and hence the reactive power generated 

from these machines is almost zero. The total demanded reactive power is therefore 

mostly generated by the synchronous generator. The active power of the load is shared by 

the WTs and the synchronous generator. As per the previous analysis, a STATCOM, an 

active voltage supporter, is connected to the load bus and the mechanically switched 

capacitors (MSC) will also be connected to the same bus. The STATCOM is connected 

to the system via a 0.4 kV/30 kV transformer. MSC with a 30 Mvar capacity is connected 

to the system during contingencies.  

Synchronous generators respond immediately to system disturbances while due to 

their complex control it is difficult to make wind turbines respond in a similar fashion. 

Hence, additional system equipment is required to help maintain the power grid to be 

stable during and after a disturbance. The proposed test system has two types of 

generators - a DFIG and a synchronous generator. Under normal operating conditions, the 

synchronous generator is not operating at its full capacity to accommodate for power 

reserve in the system.  
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Figure 5.1. Test system 

 

 

 

The grid represents an external system which is connected to the system of 

interest through a weak link. The intent to force the generator and STATCOM only, and 

not the grid to respond to faults in the area of interest. The low short circuit capacity of 

the connected electric power grid implies that this is a weak grid and thus requires a 

compensating device of a higher rating. One of the objectives of this thesis is to evaluate 

the specific needs of the system to restore to its initial state as quickly as possible after 

fault clearing.  

The source of reactive power is always connected as close to the point where it is 

required and this is the main motivation for connecting the STATCOM at the load bus. 

This is specifically done to facilitate the effective operation of the STATCOM and to 

avoid excessive interaction of the connected power system. Also, mechanically switched 

capacitors are relatively inexpensive and are used for slow changes in the reactive power 

but ideally reactive power requirement changes continuously and hence a controller is 

required to adjust the reactive power level. 
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The different cases studied on this test system are (i) small duration high 

impedance three phase faults, (ii) a sudden temporary change in the load, and (iii) 

tripping of a wind turbine. The results are presented in the corresponding sections and 

discussions are mentioned therein.  

 

5.2. SIMULATION RESULTS  

5.2.1. Three phase impedance ground faults.  The effect of a three phase high 

impedance (Xf=5Ω) short circuit fault at the load bus is studied. The ground fault is 

initiated at t=0.4 sec and cleared at t=0.6 sec. The system is studied under five different 

conditions at the load bus: (i) without a compensating device, (ii) with mechanically 

switched capacitors, (iii) with a STATCOM with a rating of 25 MVA, (iv) with an MSC 

and a STATCOM, and (v) a STATCOM with a rating of 125 MVA. The study evaluates 

voltages during the fault, voltage recovery time, voltage overshoot at recovery, and the 

settling time.  

Figure 5.2 shows the voltage at the load bus or the fault bus for the five different 

operating conditions discussed earlier. Without any compensating device, the voltage 

takes a long time to recover after the fault has been cleared - a condition that does not 

meet some stringent grid codes for certain transmission operators. Figure 5.3 shows the 

zoomed version of the load bus voltages where it is observed that the voltage during the 

fault, and overshoot at recovery is the highest in the case of system using 125 MVA 

STATCOM. It also has the fastest response time.  
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Figure 5.2. Voltage at the fault bus (Load bus) 
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Figure 5.3. Voltage at the fault bus (Zoomed version) 

 

 

 

Figures 5.4 and 5.5 shows the synchronous generator bus voltage and its zoomed 

version respectively under the same five distinct conditions. The time that this voltage 

takes to recover is longer than that of the load bus voltage as it has to supply some 

reactive power to the system to help stabilize the voltages at different buses of the 

system. The case with the high rating STATCOM yields the best performance. The DFIG 

operates normally even during the faulted conditions as the total reactive power demand 

is provided only by the STATCOM and the system is not overly stressed. In the other 

cases, the synchronous machine also has to respond to supply some of the reactive power 

required. DFIG protection is triggered if the rotor side converter currents exceed a 

threshold value, thus shorting the RSC connections by impedance so that it becomes an 

induction generator. The rotor protection scheme called “crowbar” protection is removed 

once the rotor currents return to normal. Figures 5.6 and 5.7 show the collector bus 
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voltage and its zoomed version respectively under the same five conditions. It can be 

observed that there is a voltage overshoot at recovery for every case where a STATCOM 

is used. The case with only mechanically switched capacitors does not exhibit any 

overshoot during recovery but they do have a longer recovery time.  

 

 

 

 
Figure 5.4. Voltage at the synchronous generator bus 
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Figure 5.5. Voltage at the Synchronous generator bus (Zoomed version) 

 

 

 

The compensating devices will be connected to the load bus as the ratio 
nomV
VΔ  is 

the maximum for this bus. The voltage at the generator terminals (both the synchronous 

generator and the DFIG) is also depressed due to the voltage drop at the load bus with the 

reactive current flowing into the load bus. Table 5.1 tabulates this ratio for the different 

buses of the system.  
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Table 5.1 Ratio 
nomV
VΔ  at different buses 

Bus Ratio 

Synchronous generator bus  0.5210 

Collector bus 0.5998 

Load bus 0.6611 

 

 

 

 
Figure 5.6. Voltage at the collector bus  
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Figure 5.7. Voltage at the collector bus (Zoomed version) 

 

 

 

5.2.1.1 Without STATCOM.  Figure 5.8 shows the reactive power in the system 

with no compensating device. When the fault occurs at t=0.4 sec, the synchronous 

generator immediately responds by supplying the maximum possible reactive power to 

support system voltages. The reactive power supplied by the synchronous generator 

slowly decreases during the fault period as the voltage decreases at the load bus. The 

support provided by the external grid is constant during the fault period which depends 

on the total required reactive power. At t=0.4044 sec, crowbar protection is triggered in 

the system, thus, short circuiting the rotor windings of the DFIG, making it a 

conventional induction generator. These wind turbines now operating as squirrel cage 

induction generators start to absorb reactive power from the system. The crowbar 

protection is removed at t=0.9144 sec and the RSC is re-activated. After the DFIG 
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operation starts again, the reactive powers are restored to those steady state values before 

the occurrence of the fault.  

 

 

 

 
Figure 5.8. Reactive power in the system with no compensating device   

 

 

 

5.2.1.2  With a mechanically switched capacitor. Figure 5.9 show the reactive 

powers of the system with MSC (25 MVA) connected at the load bus. Whenever the load 

bus voltage drops below its nominal value, the MSC is switched ON and reactive power 

is supplied by the MSC as shown in Figure 5.10. At t=0.4 sec, a three phase short circuit 

impedance fault (Xf = 5 ohms) occurs at the load bus. The synchronous machine starts to 

supply reactive power in order to help the system sustain the voltage variations. The 

reactive power supplied by the synchronous generator is very high due to excessive 
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available reserve capacity. The external grid also supplies a constant amount of Q to 

improve the voltage stability of the system. The WT operates in a manner similar to its 

operation during the system without any compensating devices. At t=0.41 sec, the MSC 

is connected and it supplies the reactive power as in equation (3). MSCQ  is proportional to 

the square of the voltage at the fault bus. The reactive power supplied by the MSC 

decreases with the voltage at the fault bus decreasing during the fault.  

 

    
cap

MSC X
VQ

2

=             (3) 

 

 

 

 
Figure 5.9. Reactive power in the system with mechanically switched capacitors   

 

 

 



               34

At t=0.6 sec, the three phase short circuit fault is cleared and the system starts to 

recover from the fault. The load bus voltage is improved when compared to same without 

any compensating device. The voltage rises and MSCQ  overshoots to a value close to its 

rated capacity. At t=0.61 sec, the MSC is disconnected from the system at which time 

MSCQ  is zero. At t=0.914 sec, crowbar protection is disconnected from the wind turbine 

system.  

 

 

 

 
Figure 5.10. Reactive power supplied by the MSC and the MSC terminal voltage  

 

 

 

5.2.1.3 With 25 MVA STATCOM. Figures 5.11 show the reactive power and 

the active power of the STATCOM. Figure 5.12 shows the ac and dc terminal voltages of 

the STATCOM. At t=0.4 sec, a three phase high impedance short circuit fault occurs at 
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the load bus. The voltage at the fault bus drops depending on the fault location and the 

fault impedance. This initiates the operation of the STATCOM. The drop in the terminal 

voltage determines the amount of reactive power needed. The STATCOM can operate at 

full capacity even at low voltages. The STATCOM in this case supplies its rated reactive 

power to support the load bus voltage. From t=0.6 sec when the fault has been cleared to 

the point where the system completely recovers, the STATCOM helps the RSC to return 

to full operation.  

 

 

 

 
Figure 5.11. Reactive power and active power of the STATCOM  

 

 

 

At t=0.6 sec, when the fault is cleared, the voltage rises and the reactive power 

provided by the STATCOM overshoots.  This transient can be ignored as it is well within 
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the limit and the current carrying limits of the STATCOM. As the dc voltage of the 

STATCOM observes a transient, a small amount of real power exchange occurs at t=0.4 

sec and also at t=0.6 sec. The value of the dc busbar voltage of the STATCOM can be 

maintained stiff by properly choosing the values of Kp and Tp of the controller.  

 

 

 

 
Figure 5.12. AC and DC busbar voltages of the STATCOM  

 

 

 

Figure 5.13 show the reactive powers in the system with a 25 MVA STATCOM. 

Whenever the rotor current exceeds its rated value (at t=0.404 sec), the converter 

protection shorts the RSC with an impedance, at which time the DFIG becomes a 

conventional induction generator. The DFIG then absorbs reactive power from the power 

network, which is necessary for the generator excitation. The control of the RSC is now 
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inactive and dynamic reactive compensation must be incorporated near the wind farm 

connection point to meet the reactive power demands. The additional dynamic reactive 

power compensation helps reduce the voltage drop at grid faults and performs dynamic 

reactive power control.   

 

 

 

 
Figure 5.13. Reactive powers in the system with a 25 MVA STATCOM 

 

 

 

5.2.1.4 With 25 MVA STATCOM and MSC.  Figure 5.14 show the reactive 

and active powers of the STATCOM. The transient overshoot in the reactive power can 

be ignored as it within the ratings of the system. At t= 0.61 sec, the MSC is connected, 

which starts to supply reactive power and the amount shared by the STATCOM is 

slightly decreased during the fault duration. The voltage increases and the controlled 
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reactive power supplied is to help the RSC to restore operation quickly. The slight 

transient overshoot in voltage at t=0.41 sec and t= 0.61 sec is due to the interaction of the 

MSC.  

 

 

 

 
Figure 5.14. Reactive and active powers of the STATCOM  

 

 

 

Figure 5.15 show the reactive power and the terminal voltage of the MSC. The 

peak overshoot between t=0.6 sec and t =0.61 sec in the reactive power is due to the 

sudden increase in voltage at the fault bus due to fault clearing. The terminal voltage of 

the MSC will follow the load bus voltage. Figure 5.16 show the ac and dc terminal 

voltages of the STATCOM.   
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Figure 5.15. Reactive power and terminal voltage of the MSC  
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Figure 5.16. AC and DC busbar voltages of the STATCOM  

 

 

 

Figure 5.17 show the reactive powers in the system with a STATCOM and MSC. 

After the crowbar protection is removed the system reactive power reaches its steady 

state value within a few milliseconds.  
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Figure 5.17. Reactive powers of the system with a STATCOM and MSC  

 

 

 

5.2.1.5 With 125 MVA STATCOM: The reactive power of the 125 MVA 

STATCOM is shown in Figure 5.18. The total amount of reactive power required by a 

system during a fault is decided by the fault impedance and the fault’s location. In this 

specific case, the total amount of reactive power required to boost the voltage to 0.9 pu is 

about 145 MVA. The 125 MVA STATCOM operates at its full capacity and the 

synchronous machine supplies the remaining reactive power needed. The ac and dc 

terminal voltages of the STATCOM are shown in Figure 5.19. The synchronous machine 

absorbs the reactive power transients as shown in Figure 5.20.  
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Figure 5.18. Reactive power of the 125 MVA STATCOM 

 

 

 

In this case, the STATCOM responds by supplying regulated reactive power. The 

rotor currents are not exceeded and thus, crowbar protection is not activated. The system 

is restored to its pre-fault level immediately after the fault has been cleared. The DFIG 

operation does not change and the STATCOM helps in quick restoration of system 

voltages. The operation with a high rating device poses issues like temporary overshoot 

which necessitates the need for protection against temporary overvoltages and currents.  
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 Figure 5.19. AC and DC busbar voltages of the 125 MVA STATCOM  

 

 

 

It is observed that the voltage of the wind turbine and the load bus do not recover 

even after the fault is cleared. With the use of a STATCOM, the voltage profile during 

the fault has been improved and moreover the wind turbine’s terminal voltage has been 

improved. The use of a higher rating STATCOM improves the voltage drop during the 

fault and has better voltage recovery after the fault. This enables the continuous 

connection of the wind farm to the grid and in accordance with the grid codes.  
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Figure 5.20. Reactive powers of the system with a STATCOM and MSC  

 

 

 

In terms of voltage profile during the fault, the performance of the system is best 

with the 125 MVA STATCOM and worst in the case when the system has no additional 

compensation. This identifies the need for some form of a compensating device in the 

power system with wind generation. The voltage overshoot at recovery is very high in the 

case of a 125 MVA STATCOM which requires that some over voltage clamp or 

protection be connected. The voltages in the system take a long time to stabilize after 

fault clearing in the case of no STATCOM which clearly indicates that a STATCOM in 

the system improves the response time as well as system stability.  
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5.2.2. Load changes. The applicability of STATCOM to provide support during 

sudden load changes is studied next. The four cases studied are: a sudden short duration 

50% change (+50% and -50%) in the reactive power load, and a sudden 10% change in 

real power and 50% change in reactive power are studied.  

5.2.2.1 50% negative step change in reactive load. In this case, a sudden 

temporary step reactive load change is studied. At t=0.4 sec, the reactive load is 

decreased by 50% which is reversed at t=0.6 sec. This particular case is studied because 

the STATCOM acts like a reactive power reserve and can be used to absorb/produce the 

incremental reactive power demand. This system has the ability to react effectively to 

sudden load changes when the STATCOM is connected to the system. Figure 5.21 shows 

the load bus voltage of the system with and without the STATCOM.  

 

 

 

 
Figure 5.21. Load bus voltages  
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When there is a sudden reactive power load rejection, the voltage at the bus rises 

and the ac bus voltage of the STATCOM also rises as seen in Figure 5.22. The excess 

reactive power is absorbed by the STATCOM as seen in Figure 5.23. With the use of a 

STATCOM, a better voltage profile is obtained in the system as it limits the over voltage 

and also assists in the immediate voltage recovery after the load change has been 

reversed.  

 

 

 

 
Figure 5.22. AC and DC busbar voltages of the 25 MVA STATCOM 
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Figure 5.23. Reactive and active powers of the STATCOM 

 

 

 

5.2.2.2 50% positive step change in reactive load. In this case, a sudden 

temporary step reactive load change is studied. At t=0.4 sec, the reactive load is increased 

by 50% which is reversed at t=0.6 sec. Figure 5.24 shows the load bus voltage of the 

system with and without the STATCOM.  
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Figure 5.24. Load bus voltages  

 

 

 

When there is a sudden increase in the reactive power load demand, the voltage at 

the bus drops and the ac bus voltage of the STATCOM drops as seen in Figure 5.25. The 

required reactive power is supplied by the STATCOM as shown in Figure 5.26. The 

STATCOM improves the voltage characteristics of the system during and after the load 

change.  
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Figure 5.25. AC and DC busbar voltages of the 25 MVA STATCOM 
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Figure 5.26. Reactive and active powers of the STATCOM  

 

 

 

5.2.2.3 10% real and 50% reactive negative step change in load.  In this case, 

a sudden temporary step load change is studied. At t=0.4 sec, the resistive load is 

decreased by 10% and the reactive load is decreased by 50%, and is reversed at t=0.6 sec. 

This case also identifies the STATCOM’s capability of damping real power oscillations 

by controlled reactive power flow.  

Figure 5.27 shows the load bus voltage of the system with and without the 

STATCOM. The voltage oscillations after the initial load conditions are restored are due 

to the real power changes in the system. The prolonged oscillations are due to the fact 

that real power control of the synchronous generator is not modeled in the test system. 

The STATCOM helps to quickly damp these oscillations by supplying controlled 

variable reactive power to the system.  
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Figure 5.27. Load bus voltages 

 

 

 

When there is a sudden decrease in the power demand, the voltage at the bus 

increases and also the ac terminal voltage of the STATCOM increases as seen in Figure 

5.28. The additional reactive power is absorbed by the STATCOM as shown in Figure 

5.29. The STATCOM improves the voltage characteristics of the system during and after 

the load change.  

The active power needed can be supplied by the synchronous generator reserve. 

Though the wind turbine and the synchronous generator share the increased load, the 

wind turbine shares a small fraction of it as it is operating at its maximum rated capacity. 

This case is justified because the system has enough reserves of both active and reactive 

power sources. 
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Figure 5.28. AC and DC terminal voltages of the STATCOM  
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Figure 5.29. Reactive and active powers of the STATCOM  

 

 

 

5.2.2.4 10% real and 50% reactive positive step change in load. In this case, a 

sudden temporary load step change is studied. At t=0.4 sec, the resistive and the reactive 

loads are increased by 10 and 50% respectively which is reversed at t=0.6 sec. This case 

also identifies the STATCOM’s capability to damp the real power oscillations by 

controlling reactive power flow. Figure 5.30 shows the load bus voltage of the system 

with and without the STATCOM. The voltage oscillations after restoring the initial load 

conditions are due to the change in real power in the system. The STATCOM helps to 

quickly damp these oscillations by supplying controlled variable reactive power to the 

system.  
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Figure 5.30. Load bus voltages 

 

 

 

When there is a sudden increase in the power demand, the voltage at the bus drops 

and also the ac bus voltage of the STATCOM drops as seen in Figure 5.31. The required 

reactive power is supplied by the STATCOM as shown in Figure 5.32. The STATCOM 

improves the voltage characteristics of the system during and after the load change. The 

wind turbine and the synchronous generator share the increased load but the wind turbine 

shares a small fraction of it as it is operating close to its maximum rated capacity.  
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Figure 5.31. AC and dc terminal voltages of the STATCOM 
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Figure 5.32. Reactive and active powers of the STATCOM 

 

 

 

5.2.3. Short term tripping of a Wind Turbine.  The third case studied is a 

temporary trip of a wind turbine. A wind turbine is tripped at t=0.4 sec and is brought 

back to service at t=0.6 sec. Figure 5.33 shows the load voltage for the system without 

STATCOM. The load voltage response to this disturbance is oscillatory with about five 

times longer settling time than in the case with a STATCOM.  
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Figure 5.33. Load bus voltage without STATCOM 

 

 

 

Figure 5.34 show the voltage of the load bus in a system with the STATCOM. 

The total reactive and active power supplied by the STATCOM is shown in Figure 5.35.  
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Figure 5.34. Load bus voltage with STATCOM 

 

 

 

The STATCOM supplies variable reactive power and supports voltage at the load 

bus thus reducing the oscillations in the load voltage. Also, the load has some wide power 

oscillations in the system without the STATCOM that can be reduced with the help of a 

STATCOM.  
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Figure 5.35. Reactive power and active power of the STATCOM 
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6. CONCLUSION AND FUTURE WORK   

6.1. CONCLUSION   

A pressing demand for more electric power coupled with the depleting natural 

resources have led to an increased need for energy production from renewable sources 

such as wind and solar energy. The electrical output power generated from these sources 

of energy is variable in nature and hence, efficient power control is required for these 

energy sources. Wind power has seen increased penetration in the recent past and certain 

stringent grid interconnection requirements have been developed. Wind turbines have to 

be able to ride through a fault without disconnecting from the grid. When a wind farm is 

connected to a weak power grid, it is necessary to provide efficient power control during 

normal operating conditions and enhanced support during and after faults.  Voltage 

instability problems occur in a power system that is not able to meet the reactive power 

demand during faults and heavy loading conditions. Dynamic compensation of reactive 

power is an effective measure of preserving power quality and voltage stability. 

When many wind turbines are added to the system, the grid becomes weaker as 

these types of generators require additional control equipment since they do not have any 

self recovery capability like the conventional synchronous generators. This requires a 

thorough study of the normal and dynamic performance of the wind turbines during and 

after a disturbance. This thesis explores the possibility of connecting a STATCOM to the 

wind power system in order to provide efficient control.  In this thesis, the wind turbine 

modeled is a DFIG that is an induction machine which requires reactive power 

compensation during grid side disturbances. An appropriately sized STATCOM can 

provide the necessary reactive power compensation when connected to a weak grid. Also, 

a higher rating STATCOM can be used for efficient voltage control and improved 

reliability in grid connected wind farm but economics limit its rating.  

Simulation studies have shown that the additional voltage/var support provided by 

an external device such as a STATCOM can significantly improve the wind turbine’s 

fault recovery by more quickly restoring voltage characteristics.  The extent to which a 

STATCOM can provide support depends on its rating. The higher the rating, the more 

support provided. The interconnection of wind farms to weak grids also influences the 
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safety of wind turbine generators. Some of the challenges faced by wind turbines 

connected to weak grids are an increased number and frequency of faults, grid 

abnormalities, and voltage and frequency fluctuations that can trip relays and cause 

generator heating.  

The dynamic performance of wind farms in a power grid is improved by the 

application of a STATCOM. The STATCOM helps to provide better voltage 

characteristics during severe faults like three phase impedance short circuit faults as well. 

The response of a wind farm to sudden load changes is improved by the use of a 

STATCOM in the system.  Table 6.1 show the comparison of the dynamic performance 

features for the three phase impedance faults studied.  

 

 

 

Table 6.1 Comparison of the dynamic performance features for three phase fault studies 

Impact of system      
           performance 

 

         Cases  

 
 

Overshoot 

 
 

Settling 
time 

 
 

Voltage 
during the 

fault 

 
 

System 
performance 

Without STATCOM No 
(0) 

High 
(~2sec) 

Very Low 
(0.3 pu) 

Unacceptable 

With MSC No 
(0) 

 

High 
(~2sec) 

Low 
(0.45 pu) 

Poor 

With 25 MVA 
STATCOM 

Low 
(20 %) 

Low 
(~0.7sec) 

Medium 
(0.55 pu) 

Average 

With 25 MVA 
STATCOM + MSC 

Low 
(40 %) 

Low 
(~0.7sec) 

Medium 
high 

(0.6 pu) 

Good 

With 125 MVA 
STATCOM 

High 
(50 %) 

Very low 
(<0.1 sec) 

Excellent 
(0.9 pu) 

Excellent 
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6.2. FUTURE WORK   

In this thesis, simulation studies show that the dynamic performance of wind 

farms is improved with the use of a STATCOM. Future work can involve analyzing the 

harmonics in the system and evaluate methods to reduce the system harmonics. A multi-

level STATCOM can be modeled to reduce lower order harmonics. Three phase high 

impedance short circuit faults have been studied in this thesis that can be extended to 

observe the response of the system to other types of faults. The wind turbines here are 

modeled as individual turbines, which could be extended to represent a wind farm by 

modeling them as a single equivalent wind turbine. The study has been based on the 

performance for DFIG that could be further extended to various types of wind turbines. 

This study can be extended to a larger system to evaluate the support provided by the use 

of a STATCOM.  
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APPENDIX 

TEST SYSTEM DATA 

 

 

System voltage: 30 kV 
System frequency: 60 Hz 
 
Doubly-fed Induction Generator 
Rating: 5 MVA 
Real power: 4.5 MW 
Reactive power: 0.2 Mvar 
Rotor side dc voltage: 132.25 V (1.15p.u) 
Slip: 8% 
Slip ring voltage: 1939 V 
Machine commanded rated speed: 13.8 m/s 
 
STATCOM 
Rating: 25 MVA / 125 MVA 
Reactive power set-point: 0 Mvar 
Transformer 30 kV/0.4 kV (very low impedance) 
 
Kp: Active power control gain [pu]   
Tp: Active power control time constant [s] 
Kv: Voltage control gain [pu] 
Tv: Voltage power control [s] 
 
Synchronous Generator 
Rating: 30 MVA 
 
Load 
Active power: 18 MW 
Reactive power: 2 Mvar  
 
External Grid 
Short circuit capacity: 50 MVA 
 
Transmission Lines 
Resistance: 0.06 ohm/km 
Reactance: 0.6 ohm/km 
Three phase, Overhead line 
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