
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

1968

The computer-aided generation of flow-tables for asynchronous The computer-aided generation of flow-tables for asynchronous

sequential circuits sequential circuits

Ronald Lee Altman

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Altman, Ronald Lee, "The computer-aided generation of flow-tables for asynchronous sequential circuits"
(1968). Masters Theses. 5186.
https://scholarsmine.mst.edu/masters_theses/5186

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229279065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5186?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

r.CHE CtJ}·lPUTER-AIDED GENERATION OF FLm.:-TABLES

?OR ASYNCHRONOUS SEQlJENTIAL CIRCUITS

BY

RONALD LEE ALTM.A.N / I CJi..f;,

A

THESIS

submitted to the faculty of

,.,,

THE Ul\IVERSITY OF HISSOURI - ROLlA

in 1Ja·.:t j_al fi...:il fillrilent of the requirements for tbe

Degree of

H,.,;.STER OF SCIENCE IN ELECTRICAL ENGINEERING

Rolla_, Missouri

1968

Approved by
!.

ABSTRACT

One step in the synthesis of asynchronous sequential

circuits is the construction of a flow table. This paper

discusses the requirements of a computer program to allow

on-line generation of flow tables for asynchronous

sequential circuits. Such topics as the form of the

ii

data entered into the program, the type of terminal required,

the routines necessary for the designer to enter and

correct data, and the internal data structure are discussed.

An e.lgorithm for the generation of these flmv tables is

alsc. presented~

iii

ACKNOVJLEDGEMENTS

The author wishes to express his sincere appreciation

to Dr. James H. Tracey for his careful guidance throughout

the entire project.

The author also wishes to acknowledge the typing

efforts of his wife, Barbara.

TABLE OF CONTENTS

ABSTRACT

ACKNO~~EDGEMENTS

LIST OF FIGURES

I. INTRODUCTION

II. DATA REPRESENTATION

III. EXTERNAL FORMAT

IV. DATA CORRECTION

v. INTERNAL DATA FOID-1AT

VI. FLOW TABLE GENERATION ALGORITHM

VII. CONCLUSION

ii

iii

v

1

7

16

19

21

29

37

BIBLIOGRAPHY 38

APPENDIX A, A Description of the Support 39
Routines Necessary for a CRT
Terminal

VITA 43

iv

Figure

1

2

3

5

6

7

LIST OF FIGURES

Flow table for an asynchronous
sequential circuit.

Labled flow table.

The primitive-form flow table
for the DC S-R flip-flop.

A typical timing diagram for
flow table of Figure 1.

The correspondence of the timing
diagram with flow table location.

Timing diagram information repre­
sented as a sequence of code words.

Vertical representation of code
~·JOrd sequence.

Page

2

3

5

9

10

12

13

3 Sample flow table generation program. 17

9

10

11

12

Typical flow table segment with
two inputs and one output that
could be generated by this program.

The flow table of Figure 9 repre­
sented as a subscripted array.

Output don't-care values.

Flmv table generation algorithm.

24

26

29

32

v

I. INTRODUCTION

Sequential switchin~ circuits are normally divided

into two catagories, synchronous and asynchronous. The

synchronous circuits make use of a clock which permits

the circuit to respond only during certain time intervals

as defined by the clock. In an asynchronous circuit

there is no clock and the circuits are permitted to

fur1ction at the full speed cap~il) i_lity of the gates. This

?aper will deal with asynchronous secp.1cntial circuits.

A restriction on the type of asynchronous sequential

circuits to be cons:'_dered here is th.:1t they operate in

the fundamental mode and that only one input be allmved

to change at a time. Circuits whtch operate in the

ft_mdamental mode are constrained to operate under the

cor:.di_tion that the ir:puts are never ch<~nged unless the cir-

c~it is internally stable. Internal stability means that

if the present input is maintained, there will be no

further changes in the state of any signal lines.

One of the Nost important tools in logical design

of c-en1-cnt;al c; rcuits 'J 'i .1'- .L. .L.
is the floH table which was first

f '"f 1 . ormula ted by Hur man in 1954. The standard representation

of a flow table as shmvn in FisPre 1 is an array \.Jith the

rm.:s representing the internal states, the colu.r.ms the

input combinations, and the entries in the table repre­

senting the next internal state. The stable states are

shown in Figure 1 circled. Stable states are states where

the next state is the same as the present state. The

outputs in Figure 1 aJ..·e shown only with the stable states.

XY

00

@YO
1---·

(911

01

s2

(9/1

11 10

-- 6f0

- sl

Figure 1. Flow table for an asynchronous sequential

circuit.

The dashes in the column under X ~ 1, Y = 1 (Figure 1)

aLe called]on't-cares. Don't-care states are states

t~at because of constraints on the inputs will never be

entc;·,-,d, or if they are entered the designer does not

care 'liJhac the m1tcome will be. With this being the case it

is not necessary to specify what will happen under these

conditions.

To illustrate the operation and meaning of the flow

table in F'igure 1 it has been redrawn and labels added in

Figure 2.

The operation of the flow table can be demonstrated by

considering the case where the circnit is in internal

state 1 with inputs of 00 (location C Figure 2). The next

state is the same as the present state. The circuit is

stable and the next state is circled. The output is 0,

2

s 2

Figure 2. Labled flow table.

H

and .s inc e t h c= c i r cui t is s tab 1 e i t \vi 11 r c rna in a t 0 u n t i 1

there is a change in the input. Now if input X becomes a

1, the inputs are now 10 in internal state s 1 (location D

Ftgure 2), the next state is s 1 and the output is 0. If

input X becomes a 0 (location C Figure 2L the next state

It is a stable state and the output is 0. If the

inputs chanse to 01 (location D Figure 2) the next state i.s

S,...,. Ti1e next state now becomes the present state (location
c:

F Figure 2) and the output becomes l. The inputs are still

01 with the present state s2 (location F Figure 2). The

next state is s2 : the output is 1 and the circuit is again

stable. Thus, the entire operation of the circuit can be

specified in flow table form and the output sequences for

any given input sequence can be [cund in the manner just

described.

The flow table can be a ueans of conveying large

amounts of information about the circuit in a very compact

man~er. For example, the flow table of Figure 1 represents

3

a conventional DC S-R flip-flop. The word description of

this flip-flop would be as follows: This circuit has two

inputs X and Y and one output z. Z is to be off (at logic

0) vJhenever X but not Y is on (at logic 1). z is to be on

\A1cnever Y but not X is on. Z is to remain in its previous

condition whenever X and Y are both off. X and Y are never

both on at the same time.

~'.'1len a designer begins to fonnulate a description of

a circui~ the type of flow table normally used is the

primitive-form flow table. A primitive-form flow table

is one which contains only one stable state per row. In

a primitive flow table the output is a function only of

the internJ.l states. Figure 3 is the primitive-form flow

table for the example associated with Flgure 1. The

primary reason for generating a primitive-form flow table

4

is its simplicity. Other types of flow tables are generally

mere compact, that is they have a fewer ntm1ber of internal

states_. but they are seldom as easy to formulate as the

primitive-form. A second reason for formulating this type

of flow table is that it is easy to recognize physically

un::calizable machines \vhen generating their primitive-form

flow tables. This is not always the case with the other

forms of f lc·\v tables.

In a primitive-form flow table the mapping of internal

states into output states is a simple one-to-one relation.

The r.1apping of inputs into internal st3tes is not a simple

XY

00

@JYO
~---

s3

btl
sl

01

s2

~1
s 2

-

11 10

- s4

- -
- s 1+

--·----
- ~0

Figure 3. The primitive-form flow table for the

DC S-R flip-flop.

relation. The primary concern in the generation of

p·.cimitive-form flow tables is thr=refore to formulate the

mapping of the inputs into the internal states.

Once the flow table has been constructed there exist

con~put::er programs w}lich \vill accept it as input and yield

e1s outpu-:: the complete rainimal and/or near minimal, hazard-

free design equations for fundamental mode asynchronous

. 1 . . 2
sequent~a c1rcu1ts . Programs also exist \vhich will

accept these design equations and convert them all the way

to the layout of the printed circuit boards for the

~
hardware~ To make use of these programs the logic designer

mllSt first convert the formal description of the circuit

to be designed into a series of input-output sequences.

These sequences are then used to prepare the flow table

that: is entered into the design programs. The area ~vhich

has been greatly neglected in the computer-aided design

of switching circuits is that of computer generation of

:El~\v tables.

5

The purpose of this paper is to study the requirements

of a program to link the logic designer with the design

equation programs. The function of this program is to

obtain design information from the logic designer and to

arrange this information into a flow table or other

suitable form to be input to the design program. In order

for this program to become a useful tool for the designer

it must satisfy the following basic conditions:

1). The program should be able to accept data in

a form that is familiar and meaningful to the

logic des:i.gner.

2). The program should be on-line and conversational.

3). The program should allow maximum flexibility

in the ability of the designer to change or

modify the data that he is entering into the

program.

4). A minimum amount of time should be required

for the designer to learn to use the program.

5). very little knowledge of the internal operation

of the program should be required of the user.

This paper will present the requirements of the flow

table generation program and show how they may be met in

order to satisfy these five basic conditions.

6

II. DATA REPRESENfATION

As pointed out in the first basic condition, the

method of communication of the necessary input data

from the logic designer to the program must be natural

and familiar to the logic designer. The first step

in determining the characteristics of a language to

be used to link the designer with the flow table generation

program is to consider the form in ~vhich the designer

first formulates a logic design.

lr.Jlten a logic designer first forms in his mind the

description of a 1ogic circuit it is normally either a

7

set of input-output sequences or a word statement describing

the circuj_t operation. When the logic description takes

the form in input-output sequences they are usually visual­

ized in terms of a timing diagram. '~1en the design is

originally in terms of word statements, it may be

converted into some other more precise form. This may be

a timing diagram or some other formal representation. A

timing diagram is a sketch of the logical values of the

input and output variables as a function of time.

Ideally the logic designer would like to enter into

the program a description of the circuit in the exact

form that it was originally conce}_ved. At the present

state of the art, if the design is in the form of a

word statement this is not possible b~cause of the complex

nature of natural languages.

A data representation which will satisfy both types

of data is required. There exists a semiformal language

used to formulate the logical description of sequential

circuits called the language of regular expressions~

For small machines regular expressions have the advantage

of being compact and easy to generate. For machines

having more than two or three inputs and/or outputs

the regular expressions become very long and complex.

8

The length and complexity would present only minor problems

if it ~.Jere not for the fact that there are no good algorithms

available for the reduction of these expressions. The

inability to reduce regular expressions paired with the

difficulty involved ::_n formulating long complex expressions

makes it desirable to find another type of repres?ntation.

The next most favorable representation would be the

timing dio.gram discussed previously. The timing diagram

has three important factors in its favor. The first is

that the logic design is sometimes first formulated in

terms of these diagrams thus requiring no data conversion

at all. The second is that the designer is familiar with

preparing and using these diagrams. A third point favoring

ti_ming diagrams is that there are at this time no other

formal representations developed even to the level of

the regular expressions. Because of these facts it appears

that the timing diagram is the best means of expressing

the logic design description.

A timing diagram is a visual re t · f presen atlon o input

and output states (logic 1 or 0) as a function of time.

To illustrate this consider the example associated with

Figure 1. The timing diagram for a small set of the

possible input sequences is shown in Figure 4.

II J j ------- logic

X: ------- logic

y; _____ __n__ _j[__J[_ ------- logic

------- logic

z :-----·--·--_j-l__j L ------- logic

------- logic

9

1

0

1

0

1

0

I 1 ! 2 13 I 4 I 5 I 6 171 B I 9110 1111121 TIME INTERVALS

Figure 1L A typical timing diagram for flow table of

Figure 1.

There are several important points to be mentioned

concerning timing diagrams. First, the intervals of time

rnunbered 1 through 12 are not all of the same length.

T~is points out the fact that the circuit is asynchronous

and is not restricted to function only at specified times.

It can also be seEn that the timing diagram shows the

circuit reacting instantaneously to changes in the input.

To show how the timing diagram is related to the flow

table, Figure 5 lists the time intervals and the corre­

sponding location in the flow table of Figure 2.

10

TU1E INTERVAL TABLE LOCATION

1 c

2 D

3 c

4 F

5 G

6 D

7 c

8 F

9 G

10 F

11 G

12 D

Fif!tn·e 5. The correspondence of- tl1e t · · d · ~ unlng lagram

with flow table location.

By observing the table of Figure 5 it can be seen

that the timing d i_agram provides information about the

stable states of the flow table. The edges of the wave

forms rcpl:-esent trans:itions through unstable states.

\,Ji th a timing diar;re.m as input information the flew

t:~b le gencr:ltion prog'::'am has only to fill in the necessary

unstable sl~tes to complete the flow table.

In order to simp!_~_fy notation, the set of lo3ical

values for all of the input variables at any given time

interval will be defined to be the input code word

associ~ted with that time interval. To illustrate this,

consider the time interval number 1 of Figure 4. The

input code word for this time interval is 00. For time

interval 2 the input code word is 10. The convention

used to order the bits of the code word is arbitrary and

in this case the first bit refers to the first input,

the second bit to the second input, etc. For example,

the code word fer time interval 2 is 10 where the 1

refers to the logic value of input X, and the 0 refers to

11

the logic value of input Y. It is also sometimes convenient

to refer to the code words by their decimal value. This

is fou:td by considering the code words as binary numbers

and converting these to decimal. For example the code

word 11 would be called by its decimal name as 3, 10 by

the name 2, etc.

All of the conventions discussed for input code words

apply equally well for the output code words.

"' 1 T; ng the concept of code words to the timing L-\.pp -) ·-

diagrrun it can be seen that timing diagrams can also

be represented as a string of input-output code words.

The timing diagram of Figure 4 translated into code words

is shown in Figure 6.

With the data represented in timing diagram format,

the terminal through which the data is entered into the

program must be capable of entering either ~ketches or

code words. There are basically three types of termi.nals

X:~ 1 0 0 0 1 0 0 0 0 0 1
Y: 0 0 0 1 0 0 0 1 0 1 0 0

Input code word 1
Z: ~ 0 0 1 1 0 0 1 1 1 1 0

.• Output code word 1

Figure 6. Timing diagram . c •
~nJ..ormat~on represented

as a sequence of code words.

that would be suited for this problem: a CRT display,

a sketch-pad type terminal, and the teletype terminal.

Since other information than just the timing diagram

would be required, a CRT or a sketch pad would also re­

quire a keyboard.

If a CRT or sketch-pad terminal is used to enter

the data, the timing diagram sketches will be converted

to a sequence of code words arranged as in Fig~re 6.

With the teletype terminal the code words may be entered

as in Figure 6 but it would require an unnecessary amount

of proBramming to rearrange the code words into the proper

form. With the code words in the form vf Figure 6 it would

require the designer to enter all of the bits of X before

he entered Y, and all of X and Y before Z, etc. This

forces the designer to perform some preliminary pencil

and paper work before entering the sequences. A better

way to enter the cede words is to arrange them vertically

as in Figure 7. This permits the designer to eliminate

preliminary paper rvork since he enters all of the values

12

13

X y z
Input code word 1--<Q D @-output code \·'ord 1

1 0 0
0 0 0
0 1 1
0 0 1
1 0 0

0 0 0

0 1 1

0 0 1

0 1 1

0 0 1

1 0 0

Figure 7- Vertical representation of code word

sequence.

of the inputs and outputs on the same line. This method

.:Jdds a restriction to the total number of inputs and

outputs; they may not exceed the number of spaces per line

of the teletype. This restriction is not as limiting as

ic mig~t appear since there are nonnally .:Jbout ~0 characters

per line on a standard teletype unit. The programs avail-

able for synthesizing logic equations from these flow

tables will not in general accept any more than 25 inputs

and outputs.

There are several major advantages and dis~dv.:Jnt.:Jges

for each of the three types of terminal. The primary

advantage of the CRT and the sketch~pad is that they

would allow the designer to enter the data in a graphical

14

format. The s~'etch-pad hns a major disadvantage in that

changes in the data sketches would result in a very

cluttered display. The CRT terminal does not have this

disadvantage; in this case diagrams can be quickly and

easily removed from the screen. hTith the teletype terminal

the data must be entered in code word form, and there is

a small problem with correcting errors. Errors on the

teletype cD.~1not be easily removed, as in the case of the

CRT~ but they can be neatly ~vorked around. This can be

done by typing to the right of or directly below the

i~correct entry. Another disadvantage of the CRT and the

skctcl1-pad would be that a complex routine would be

needed to take care of proper vertical alignment of the

sketches. This is not a problem with the teletype since

oach code word is itself a time interval. It is therefore

only necessary to enter the bits of the code words as

s'i1cwn in Figure '(.

Another important consideration is the cost of these

difft~t-ent types oE terminals. An exact cost comparison

of the CRT and the teletype is not possible because of

the wide range of feateres and options available. To

illustrate the large cost difference the following are

the approxi~ate prices for IBM units suitable for this

~pplication. The IBM CRT display unit with light pen

cost approximately $90~000. The IBM Printer Keyboard

unit costs $3000. Considering this large price difference,

and the simpler data conversion routines required, the

remainder of this paper will be oriented around the

teletype terminal.

15

16

III. EXTERNAL FORl•fAT

Since the program is to be on-line and conversational,

an important requirement to be considered is the fonnat

of the dialogue between the designer and the program.

'Vvith this type of system it is important to keep the

fonnat flexible. A discussion of some of the most important

requirements for flexibility is included here and a

typical program is shown in Figure 8.

The primary purpose of the pro8ram is to request

data from the designer and then assemble this data into

a flow table. Since the program requests the data from

the designer th€se requests should be clear and the form

of the answer should be apparent by the manner of the

rc:quest. It is not always possible to word a request

such that it is evident how to respond. In this case

the user of the program should be supplied with a print­

out of a typical design problem such as that shov..7Il. in

Figure 8. This may be supplied in an operator's manual

along with a detailed description of the routines available

to the user.

One of the most important features of the program

is to allow the designer the freedom to arrange his data

in a manner such that it conveys the maximur.1 information

to both the program and the designer. In order to realize

this feature the program must allow the user to insert

HGI.J l'lA.N:l INPUT VARIABLES \tiTLL THERE BE?

W-L'\T ARE THEIR NAivffiS?

J1'1 1 l"T :J (-"''··-- ' . J."~---:

HOVJ l-1;\NY OUTPUT VARIABLES ARE THERE?

,1 . .'

h'11AT IS ITS NAME?

EN' fER THE

H I

0 N

R

D 1

1 C•

2

3
4 (\

~'

5 0

6 1

7 l

8 !)

9 0

10 0

11 0

12 l

13 . 1

V+
14 i_

15 ()

lG r,
t. ·'

i·: ' : ;_: .

INPUT SEQUENCES FOR THE FOLLOWING:

I

N 0

u
2 T

0

1

l

~)

!_

I.

()

()

l

\1

Or

0'

0_·

0'

0/

0

Qf

0/

0/

0

1 flow table generation program. Figure 8. Sarnp e

T1.1e data entered by the dcsignpr has been
Note:

shaded.

17

blanks and co:-nmas wherever he chooses. Ex.Jmp1cs of this

can be seen in the list of input names in Figure 8.

The general method of data request is as follows.

The computer types out a request ,.,hich ends generally

with a question mark and a carriage return and line feed.

The user is then free to enter the requested data. As

mentioned previously, the use of spaces and commas is

left up to the designer. In the example dialogue of

Figure 8, the use oi the question mark is illustrated

with the reauest "\Jhat are their names?". The end of

c:on1munication between the designer and the program is

denoted by a period or the word END.

It is often necessary for the designer to detennine

the rn.n.terical position in the input stream of a particular

code \-Jord. The number of the code vmrd of the current

. f h 1" . "L"'. ~ line app~ars at the begim1lng o.-: t e lne 111 r 1gurc ·~.

These ntunbers are printed automatically by the program.

18

IV. DATA CORRECTION

After the designer has entered the data into the

program he will often wish to change that data. For

example the name given by the designer to the output

variable in the program shown in Figure 8 was ended with

19

a right paren when it should have been ended with a period.

To correct this error the user typed the vertical arrow

(the character used to call the routine to delete the

last character) and then typed the correct s~obol, in

this case the period.

Another useful routine to correct errors is the

"delete the current line" routine. This routine is

represenl~d by the horizontal arrow. The routine functions

as its name implies. It causes the values that have been

entered into the program on the current line to be deleted

~=-.. r
-·- L um memory. The program then allows the designer to start

again at the beginning of a new line.

The two correction routines mentioned above will

handle most of the corrections to a typical design problem.

It may sometimes be the case that the de;igner would like

to 17lodify only a single code -.:vord in the sequence. The

routine to handle this is the NODIFY X (Il,I2, ... In'

0 0 0) This command may be given at any time
1-' 2' · .. m ·

l·n the · t ~ a by g, ivino a line feed and carriage :Lnpu s•.re m ~ o

return and then entering the instruction in the form

''';

shown above· The I' s are the input values in the ot·der

that they were first entered in the program. The O's

are the output values. The X is the position in the

input stream that is to be changed. For example, if the

designer ~anted to change the input stream in position 3,

which now contains the value 111, to the value such that

IN_2 and Olff are both 0 and IN 1 is 1, the MODIFY 3(1,0,0)

command would be given.

After several corrections have been made to the code

word data the printed page may become cluttered with

corrections and requests for corrections. A routine to

redisplay the data up to the last entry could be executed.

This command could be executed any time up until the

program is told to continue. The command could be

initiated by giving a carriage return and line feed

followed by the command REPRINT. This routine will skip

three or four lines and reprint all of the corrected code

word data that has been entered up to the point that the

command was given. If the command was given before the

en~ire sequence of code words was entered, the program

'~'•lill terminate the REPRINT routine in a position such

that new code words may be entered.

20

..

V. INTERNAL DATA FORHAT

The structure of the data in the computer is a

prob lern which arises :i __ n every progrannning problem. In

this case the primary data coming 3_nto the machine wi 11

be in the form of a string of 0 1 s and l 1 s. It should

be noted that the data referred to here are the strings

of code vwrds. Other data are also entered, for example

the names of the input and output variables, but their

form is not as important to the primary purpose of the

design program.

Since the data corning into the computer will be

binary in nature, it is logical and most beneficial in

terms of computer storage, to allow each entered b~nary

digit to require only one bit of computer core. At

this point it becomes necessary to consider the relation­

ship between the length of a code word and the length of

the hardware computer word. There are two approaches to

consider. The first is to recognize the hardware word

21

as a boundary and work only with the fixed hardware word

length. The second is to disregard the hardware word

length using software techniques to define the relationship

between the hard~are word and the coJe word. The choice

between the two alternatives depends on the computer

system available, the software, and the experience and

skill of the progrrurnaer. If the first system is used

it vwuld require that certain sections of the progra.m be

written in assembler language. If the second rr.ethod is

chosen either assembler language or a very high level

language such as PL/1 would be required to allow indi­

vidual bit manipulation. The choice made here is to

assume use of the higher level language of PL/1 and assume

that a vJOrd will be defined by the program to be of the

correct length. For example an input code word for a

program \·Jhich has five inputs "tvill be five bits long

in the computer. In PL/1 this is a simple matter of

defining the code word to be a bit string of length five.

There are two major reasons for assuming the use of

PL/1. The first is that it is available on the IBM 360

system and is much simpler to use than the assembler

language. The ease of use is by no means a trivia 1 rna t t:er

since it may require as much as six to twelve months to

become sufficiently familiar with the assembler language

to prog.cao relatively simple algorithms. In PL/1 it is

not necedsary to be familiar with the entire language

22

to program rather co1nplex algm .. ·ithmq, and PL/1 is structured

:Ln a manner ';-Jhich is easy to learn even for the person

who has never programmed before. The second reason for

assuming the use of PL/1 is that the program which makes

use of the flm-1 table that is generated i_n this program

is wricten in PL/1. With the programs in the same language

the transferring of de1ta from one to the other can be

accomplished without a major restructuring of data.

Hith the freedom to define the length of input and

output code words it is logical to define them as follows.

The input code words will be defined as a bit string

23

vector one word wide and M words long. M, the length of

the array, is not exactly known until all of the code words

a~e entered. Since this length must be defined, a now.inal

value should be given .to this length which is dependent

on the storage space available. vfuen the array is filled

the entire array would then be stored on tape or disk

and the core area could again be used for new data. This

process would be repeated until all of the code words

are entered into the program and stored on disk or tape.

At this point the first set of code words would then be

entered into the array and used to generate the flow

table. The output code words would be handled in the

s.:1.me manner.

The flow table to be generated is in primitive fonn

and a scable state is never used more than once. A

typical flow table of this type appears in Figure 9.

It can be seen that this flow table is very simple in

nature since each row has only two specified entries

and has only one output, that being associated with the

single stable state. The internal representation of the

flow table could then be considered as an array. Each

internal state would be a row of the array, for example

/

~·

1

2

3

AB
00

<D'l

-

4

Ol

2

@/1

-

10 ll

- -

-

3 -

-

Olo -

4 @Yo - - 5

6 - - 0J'l 5
........_.

- --
. . . .

Figure 9. Typical flow table segment with two

inputs and one output that could be

generated by this program.

internal state 1 would be the first row of the array.

Each colurr.n would represent an input combination;thus

tbe •2nt.r-y in the column for the input combination 101

could be found by taking its integer value and adding

two. Two is added since the input combination 000 ... 0

~vill be considered to be the second column, and the

output of the stable state for that row will be given

in the first column. Figure 10 illustrates the flow

table layout as an array. The exact number of internal

states is not known at the beginning of the program

so the maximum number of rmvs should be fixed to some

arbitra~y value, A, and the disk storage should be used

in the s3me manner as was done with the input code words.

Initially the entries in all rows of the flow table

should be don't-care, the asstunpt:i_on being that the

designer is only concerned with the circuit operation

as specified by the input-output sequences. All sequences

not specified by the designer will be considered don't­

care. The name of each internal state will be the number

of the row in the array containing its entries. For

cxnmple internal state 2 is row 2 of the array. In order

to represent don't-care internal states there will be

no internal state 0. A 0 as a next state will therefore

be considered a don't-care entry. The problem of don't­

care outputs is not as easily solved as that of internal

states.

25

Figure 10. The flow table of Figure 9 represented as

a subscripted array.

FLOW(i,j)

j= 1 2 3 5

i= 1 3 1 2 0 0 --
2 3 0 2 3 0

3 0 2~ 0 0 5 --- ---- ---

NOTES: The length of a word stored in memory has

been assUJned to be 12 bits. This is an arbitrary

asswnption for the purpose of this example only.

All entries are shown as decimal integers. The

entry i=l,j=l is the value of the output and has

the value 3. This is the decimal integer value of

the binary nwnber 000000000011. This binary number

is specifying that the first output has the value 1

since the first pair of bits have the same value 1.

Stnce it is possible to have outputs of o or 1

neither of these may be used to represent a don't-care

output. A solution to this problem could be to use a

character such as a dash to represent a don't-care

output. This is not desirable since the internal

representation of characters may be six or more bits long.

Since the 0 and the 1 can both be stored in a single bit

of memory it could be unreasonable to require a don't-care

to take up six bits. The solution to this problem,

v·Jhich is compatible with the programs that will eventually

use the flow table~ is to use two bits of memory to store

the output value. If both bits are the same then the

output is that value. If the two differ then the output

is to be a don't-care.

With the representation of the don't-care determined

it remains to initialize the memory data area, with the

memory laid out as an array as shov..n in Figure 10. Each

entry will have a specific meaning. For example, the

first entry in the first row of the array will be the

output of the stable state in the first row of the flow

table. The next 2n (n= number of inputs) entries contain

the next state entries of the first row. The first

entyy in the second row is the output associated with

the second row and the entries of the second row are in

the next 2n words. This pattern repeats itself throughout

the data area.

27

It should be noted that the length of a word in the

array will limit the number of possj_ble internal states

and outputs. For example~ if L is the length of a word

in the array in bits, then the nurr.ber of internal states

possible would be 2L-1. The number of outputs would

be limited to L/2, since each output variable requires

two bits of memory. These two equations will allow the

progra:nrner to specify the exact \·JOrd length for the flow

table array. The program can calculate the two lengths

discussed above and define the array to have words whose

length is equal to the larger of the two values. Since

the output code word requires two bits for each data bit

the len~2:th chosen should be an even number.
'-'

28

29

VI. FLO\·J TABLE GENERATION ALGORI'D-IM

An algorithm is presented here which may be used to

generate the primitive-form flow tables previously discussed.

The algorithm is presented in a form which makes use of

the stiliscripting routines of any higher level language.

As has been previously mentioned, PL/1 will serve as the

language model. This has been done primarily to show

how specific operations can be carried out, for example

the initialization of data arrays. The discussion of

these specific points in terms of a specific language

~vill allow the programmer to understand their purpose

and pro·vide a pattern from which the program can be

constructed.

The first step in the construction of the flow table

is the initialization of the data area. To initialize

the data area to the don't-care condition it is necessary

to initiali~e both the output variables and the next state

entries. Since the output variables are always in the

first colt~n of the array, it will be necessary to initialize

this column to the output don't-care value shown in

Figure 11. The remainder of the array should be set to

L bits
I r--- "'

0101 ... Ol

~·at·-e 11 nvlltput don't-care values . .l" ~6 4.L •

all 0 1 s. The initialization of the array in PL/1 is a

very simple single statement instruction and to initialize

any column also requires only one statement.

After the data area designated by the array FLOW

has been initialized to don't-care the flow table may be

ccr~structed. The flow table generation algorithm and

a list of symbols used are given on the following pages.

30

A LIST OF SY:t--1BOLS USED IN FL01 ~ TA1~LE ALCOJUTHM

FLOW(X~X) - A two dim~nsional subscripted array cont~ining

the generated flow table.

L

n

M

rn

A

B

ICH(i)

oc (j)

PS

NS

- Length of a \vord in the arr.J.y FLOH in bits.

- Number of inputs.

- Tota 1 number of input -output code \vurd r~ irs.

- Number of outputs.

- Maximum number of rows of flow table t~1.:1t can

be stored in a single overlay.

- Total nur11ber of overlays of FLOhT inititdly 0.

--A subscripted ve?ctor containing id,2, ... M

input code words each of length n.

- A double subscripted vector containing M

output code words each of length m, with the

subacript i=l,2~- .. M denoting the code word

and j~l,2~- .. m denoting a specific bit of the

code word.

- A single vector of length 2m containing the

output code with each bit duplicated.

- Has as its value the present internal state

value.

- Has as its value the next internal state v~lue.

FLO\!(*,·*) - PL/1 notation designating all ro•,..Js and all

columns of array FLOH.

FLOH(*, 1) - Designat:es the first column of the array FLO\.J.

31

Initially
i=O

PS=l
NS==l

Convert OCW to OC

OCW(i,j)=OC(2j-l)=OC(2j)
j=l_,2_, ... m

Figure 12. Flow table generation algorithm.

32

33

Figure 12. (continued)

__ -_E_r_r~

Error

Figure 12. (continued)

Store OC(j) j=l ... 2m

at location FLOW(NS,l)

Store NS

at locations

FLOW(Ps-B·*A, ICH(i)+2) ~
FLOW(NS-B*A,ICW(i)+2)

Set

PS = NS

34

Figure 12. (continued)

TRUE

Store

FLOW(*,*) on disk

Initialize FLOW
FLOW(*,*)=O

FLOW(*,1)=0101 ... 01

35

FALSE

Go To 1

36

Figure 12. (continued)

Go To 1

3'7

VII. CONCLUSION

This paper has presented the requirements for a

program which will generate a fundamental mode primitive­

form flow table from a sequence of input-output code words.

The algorithm presented for constructing these flow tables

has been oriented toward the use of a high level language

such as PL/1. This has been done to make use of such

features as the subscripting routines and the ability to

define bit string \.Jord lengths and manipulate the individual

bits. This algorithm has been formulated in such a manner

as to allmv it to serve as a framcvmrk around which more

complex algorithms which make use of the internal states

more than once may be constructed.

Yhis investigation has provided a beginning to the

computer-aided construction of flow tables. It has also

pointed out an important area that requires further study.

This is the area of the formulation of all possible input-

output sequences. It appears that some type of formal

language which would allow the expression of long sequences

in short descriptive phrases is required.

1.

2.

3-

4.

BIBLIOGRAPHY

Huffman, D. A., "The Synthesis of Sequential Switching
Circuits," J. of the Franklin Institute, Vol. 257,
pp. 161-190 and 257-303; March and Apri~ 1954.

Smith, R. J., "A Programmed Synthesis Procedure for
Asynchronous Sequential Circuits," M.S. Thesis,
University of Missouri at Rolla, Rolla, Missouri
November 1967.

Breuer, M.A., "General Survey of Design Automation
of Digital Computers," Proceedings of the IEEE,
Vol. 54, No. 12, pp. 1708-1721; Decembe~ 1966.

Brzozawski, J. A., "A Survey of Regular Expressions
and Their Applications," IRE Trans. on Electronic
Computers, Vol. EC-11, pp. 324-335; June, 1962.

APPENDIX A

A Description of the Support Routines

Necessary for a CRT Terminal

Presented here are the routines necessary for use

39

with a CRT terminal. These are primarily service routines

to provide the designer with a flexible format for sketching

the timing diagrams on the face of the CRT screen. These

routines are, in most cases, only the basic minimum required

for efficiently using the CRT display. More routines

may be added as experience with the system is aquired.

Hith these routines the CRT terminal may be used in place

of the teletype. No further program modifications would

be required.

NAME DISPLAY: The name of each input and output variable

will be printed on the screen followed by a delimiter

such as a colon. This will indicate to the user that

he is to begin on that line to sketch the timing diagram

for that variable.

TIME INTERVALS: The switching boundaries will be indicated

by ve~tical dotted lines. These lines will be generated

and displayed on the CRT by the program. The spacing

of the timing intervals will be a constant ,..,hich will

depend on the size and resolution of the CRT used.

DATA CONVERSION: The data entered on the CRT terminal

will be sketched in a continuous line form. This form

40

must be converted into digital information. This requires

that for each time interval a code word must be constructed.

The bits of tl1e code word may b £ e · ound by comparing the

vertical position of the sketch for each time interval

with a center line for each variable. Segments above

this center line will be considered to be logical 1,

and those below will be logic 0.

CLEAN UP COMMAND: The designer will be able to issue this

comuand at any time during the input sequence. The function

of the command "~;rJill be to straighten up the input sketches

forming them into straight line segments to improve the

clarity of the input sequences. This will be necessary

since the lines formed by a light pen are not always

neat and straight.

CONTINlJE HORIZONTAL: This command will be given i_f it is

nece_ssary to extend the I/O sequences beyond the length

of the display screen. Th:Ls command given at the end of

the line will cause the name of the next input or output

variable to be printed out at the beginning of the next

line and allow the designer to give the sequences for

that variable until he reaches the end of the line. This

printing of names will continue until the last output

name and the sequence for that name has been given. At

that time the computer will clear the screen and print

out the first input name again, thereby allowing the

designer to continue the sequence for all the variables.

This command may be given as many times as is necessary

to obtain all the input sequences.

CONTINUE VERTICAL: This command will be given and executed

by the program and is used to allow more input or output

variables to be entered than is possible to put on the CRT

face at any one time. This command clears the screen

except for the timing interval lines and prints out the

name of the next input or output at the top of the screen.

The user continues sketching the waveforms as usual.

NOTE: Each vertical extension will be given a nwnber,

Ver 1, Ver 2, Ver 3, etc. The first set of sequences will

be vertical 0. Each horizontal extension will be given

a nwnber in the same manner as the vertical. This numbering

set will allow the designer to request by name any section

of the input sequences. This will be useful if modifi­

cations of the input are necessary.

Bl.-_~.NK TIMING INTERVAL: This will allow the designer to have

the specified timing interval lines removed from the CRT

display but not from memory. This will reduce the visual

clutter on the screen.

SHOl-l TIMING INTERVAL: This command will allow the user to

ask for timing intervals to be redisplayed at certain

points to clear up confusion.

END This connnand will be used to terminate any

commands which do not have an automatic termination by

entering the name of that command in the underscored

section. This command will be entered into the computer

through the keyboard.

ERASE: This will delete lines or sections from the CRT

face and from memory. The area that is to be deleted

will be defined by encircling the area to be deleted with

the light pen.

DISPLAY HORIZONTAL M \~RTICAL N: This instruction calls

for the section designated horizontal M and vertical N

to be displayed.

1+2

1t 3

VITA

Ronald Lee Altman was bern on July 4 ~ 191+5 in St.

Louis, Missouri. He received a Bachelor of Science

degree in Electrical Engineering from the University of

Missouri at Rolla in June, 1967. He has been enrolled

in the graduate school at the University of Missouri at

Rolla since June, 1967. He has been on the staff of the

Electrical Engineering Department since September~ 1967.

	The computer-aided generation of flow-tables for asynchronous sequential circuits
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048

