View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

MISSOURI

Sl
Learhiiﬂgaéveggﬁrces Scholars' Mine
Masters Theses Student Theses and Dissertations
1968

The computer-aided generation of flow-tables for asynchronous
sequential circuits

Ronald Lee Altman

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

b Part of the Electrical and Computer Engineering Commons
Department:

Recommended Citation

Altman, Ronald Lee, "The computer-aided generation of flow-tables for asynchronous sequential circuits”
(1968). Masters Theses. 5186.

https://scholarsmine.mst.edu/masters_theses/5186

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://core.ac.uk/display/229279065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5186?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

THE COMPUTER-AIDED GENERATION OF FLOW-TABLES
rOR ASYNCHRONOUS SEQUENTIAL CIRCUITS

BY

e

f f‘:? > ~
RONALD LEE ALTMAN K / 7

A
THESIS

subnaitted to the faculty of
THE UNIVERSTITY OF MISSOURI - ROLLA
in parvetial fultiillment of the requirements for the
Degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
Rolla, Missouri

2\ :

1968

5~ s
ity

Approved by

e, (advisor) L e

e -—_—.—f————

o~ S ’
_—.—-a-...-ié _M._z.k-,.w e ﬁ: & ‘h‘.._..:

PR
3 e
.4-; AV SN

ABSTRACT

One step in the synthesis of asynchronous sequential

cr

cul

0
pee

1 s 1s the construction of a flow table. This paper

b

(o
[SH

scusses the requirements of a computer program to allcow

on-line generation of flow tables for asynchronous

)

w

equential circuits. Such topics as the form of the

fadd
e

data entered into the program, the type of terminal required,

the routines necessary for the designer to enter and

correct data, and the internal data structure are discussed.

An zlgorithm for the generation of these flow tables is

alsc presented.

iii

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation
to Dr. James H. Tracey for his careful guidance throughout
the entire project.

The author also wishes to acknowledge the typing

efforts of his wife, Barbara.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

LIST OF FIGURES

1. INTRODUCTION

II. DATA REPRESENTATION

I7TI. EXTERNAL FORMAT

Iv. DATA CORRECTICN

V. INTERNAT. DATA FORMAT

VI. FLOW TABLE GENERATION ALGORITHM

VII. CONCLUSION

BIBLIOGRAPHY

APPENDIX A, A Description of the Support
Routines Necessary for a CRT

Terminal

VITA

ii

iii

16
19
21
29
37
38
39

43

Figure

LIST OF FIGURES

Flow table for an asynchronous
sequential circuit. .

Labled flow table.

The primitive-form flow table
for the DC $-R flip-flop.

A typical timing diagram for
flow table of Figure 1.

The correspondence of the timing
diagram with f£low table location.

Timing diagram information repre-
sented as a seguence of code words.

Vertical representation of code
word sequence.

Sample flow table generation program.

Tvpical flow table segment with
two inputs and one output that
could be generated by this program.

The flow table of Figure 9 repre-
sented as a subscripted array.

Output don't-care values.

Flow table generation algorithm.

Page

10

12

13

I. INTRODUCTION

Sequential switching circuits are normally divided
into two catagories, synchronous and asynchroncus. The
synchronous circuits make use of a clock which permits
the circuit to respond only during certain time intervals
as defined by the clock. 1In an asynchronous circuit
there is no clock and the circuits are permitted to
function at the full speed capzbility of the gates. This
seper will deal with asynchronous sequential circuits.

A restriction on the type of asynchronous sequential
circuits to be considered here is that they operate in
the Ffundamental mode and that only one input be allowed
to change at a time. Circuits which opcrate in the
fundamental mode are constrained to operate under the
condition that the inputs are never changed unless the cir-

cuit is internally stable. Internal stability means that

+

if the present input is maintained, there will be no

further changes in the state of any signal lines.
One of the most important tools in logical design

couential circuits is the flow table which was first
1

of s
formulated by Huffmanl in 1954. The standard representation

R . o o
of a flow table as shown in Figure 1 is an array with the

rows representing the internal states, the columns the
irput combinations, and the entries in the table repre-

senting the next internal state. The stable states are

shown in Figure 1 circled. Stable states are states where
the next state is the same as the present state. The

outputs in Figure 1 are shown only with the stable states.

XY
00 01 11 10

Sy @/o S, _ @/o
2 YL 16| - 51

Figure 1. Flow table for an asynchronous sequential

circult.

The dashes in the column under X = 1,Y = 1 (Figure 1)
are called don't-cares. Don't-~care states are states
that because of constraints on the inputs will never be
entcired, or if they are entered the designer does not
care whav the owvtcome will be. With this being the case it
i.s not necessary to specify what will happen under these
conditions.

To illustrate the operation and meaning of the flow
table in Figure 1 it has been redrawn and labels added in
Figure 2.

The operation of the flow table can be demonstrated by
considering the case where the circuit is in internal
state 1 with inputs of 00 (location C Figure 2). The next
state is the same as the present state. The circuit is

stable and the next state is circled. The output is O,

XY
009 0l (E 11 10 D
P / 7

" AN/ -
So |Gt @fi - 5T g—H
—c N

Figure 2. Labled flow table.

and since the circuit is stable it will rewain at O until
there is a change in the input. Now if input X becomes a

d

1, the inputs are now 10 in internal state S1 (location D
Figure 2), the next state is §; and the output is 0. If
input X becomes a 0 (location C Figure 2), the next state

is Sl' It is a stable state and the output is 0. If the

inputs change to Ol (location D Figure 2) the next state is

S.. The next state now becomes the present state (location
=4
F Figure 2) and the output becomes 1. The inputs are still

01 with the present state S, (location F Figure 2). The
next state is 52, the output is 1 and the circuit is again

stable. Thus, the entire operation of the circuit can be

specified in flow table form and the output sequences for

[od - 4
any given input sequence can be found in the manner just

described.
The flow table can be a means of conveying large

amounts of information about the circult in a very compact

manper. For example, the flow table of Figure 1 represents

a conventional DC S-R flip-flop. The word description of
this flip-flop would be as follows: This circuit has two
inputs X and Y and one output Z. Z is to be off (at logic
0) whenever X but not Y is on (at logic 1). Z is to be on
whenever Y but not X is on. Z is to remain in its previous
condition whenever X and Y are both off. X and Y are never
both on at the same time.

When a designer begins tc formulate a description of
a circuit, the type of flow table normally used is the
primitive-form flow table. A primitive-form flow table
is one which contains only one stable state per row. 1In
a primitive flow table the output is a function only of
the internil states. Figure 3 is the primitive-form flow
table for the example associated with Figure 1. The
primary reason for generating a primitive-form flow table
is its simplicity. Other types of flow tables are generally
mcre compact, that is they have a fewer number of internal
states, but they are seldom as easy to formulate as the
primitive-form. A second reason for formulating this type
of flow table is that it is easy to recognize physically
unrealizable machines when generating their primitive-form
flow tables. This is not always the case with the other
forms of flcw tables.

In a primitive-form flow table the mapping of internal
statces into output states is a simple one-to-one relation.

: : i intern: - i sim
The mapping of inputs into internal states is not a simple

00 01 11 10

51 {690 S5 |~ | sy
S, | S3 @1 |

Sy 5YL] S5 |~ | Sy
Sy | S1 | = |- IGWo

Figure 3. The primitive-form flow table for the

DC S-R flip-flop.

relation. The primary concern in the generation of
primitive-form flow tables is therefore to formulate the
mapping of the inputs into the internal states.

Once the flow table has been constructed there exist
computer programs which will accept it as input and yield
as output the complete minimal and/or near minimal,hazard-
free design equations for fundamental mode asynchronous
scquential circuitsg. Programs also exist which will
accept these design equations and convert them all the way
to the layout of the printed circuit boards for the
hardware3 To make use of these programs the logic designer
must first convert the formal description of the circuit
to be designed into a series of input-cutput sequences.
These sequences are then used to prepare the flow table
thar is entered into the design programs. The area which
has been greatly neglected in the computer-aided design

of switching circuits is that of computer generation of

flow tables.

The purpose of this paper is to study the requirements
of a program to link the logic designer with the design
equation programs. The function of this program is to
obtain design information from the logic designer and to
arrange this information into a flow table or other
suitable form to be input to the design program. In order
for this program to become a useful tool for the designer
it must satisfy the following basic conditions:

1). The program should be able to accept data in

a form that is familiar and meaningful to the
logic designer.

2). The program should be on-line and conversationsl.

3). The program should allow maximum flexibility

in the ability of the designer to change or
modify the data that he is entering into the
program.

Y. A minimum amount of time should be required

for the designer to learn to use the program.

Very little knowledge of the internel operation

\Ji
g

of the program should be required of the user.
This paper will present the requirements of the flow
table generation program and show how they may be met in

order to satisfy these five basic conditions.

IT. DATA REPRESENTATION

As pointed out in the first basic condition, the
method of commnunication of the necessary input data
from the logic designer to the program must be natural
and familiar to the logic designer. The first step
in determining the characteristics of a language to
be used to link the designer with the flow table generation
program is to consider the form in which the designer
first formulates a logic design.

When a logic designer first forms in his mind the
description of a logic circuit it is normally either a
set of input-output sequences or a word statement describing
the circuit operation. When the logic description takes
the form in input-output sequences they are usually visual-
ized in terms of a timing diagram. When the design is
originally in terms of word statements, it may be
converted into some other more precise form. This may be
a timing diagram or some other formal representation. A
timing diagram is a sketch of the logical values of the
input and output variables as a function of time.

Ideally the logic designer would like to enter into
the program a description of the circuit in the exact
form that it was originally conceived. At the present
state of the art, if the design is in the form of a

word statement this is not possible because of the complex

nature of natural languages.

A data representation which will satisfy both tvpes
of data is required. There exists a semiformal language
used to formulate the logical description of sequential
circuits called the language of regular expressions%
For small machines regular expressions have the advantage
of being compact and easy to generate. For machines
having more than two or three inputs and/or outputs
the regular expressions become very long and complex.
The length and complexity would present only minor problems
if it were not for the fact that there are no good algorithms
available for the reduction of these expressions. The
inability to réduce regular expressicns paired with the
difficulty involved in formulating long complex expressions
makes it desirabie to find another type of represcentation.
The next most favorable representation would be the
timing diagram discussed previously. The timing diagram
has three important factors in its favor. The first is
that the logic design is sometimes first formulated in
terms of these diagrams thus requiring no data conversion
cond is that the designer is familiar with

at all. The se

preparing and using these diagrams. A third point favoring

timing diagrams is that there are at this time no other

formal representations developed even to the level of

the regular expressions. Because of these facts it appears
! ~egula

1 . . .
imi i ‘s the best means of expressin
that the timing diagram 18 the bes g

the logic design description.

A timing diagram is a visual representation of input
and output states (logic 1 or 0) as a function of time.
To illustrate this consider the example associated with
Figure 1. The timing diagram for a small set of the

possible input sequences is shown in Figure 4.

- (- mmmee e logic

X: —-...._J— L_.._._..._.._.....J _______ logic
------- logic

Y: —————— —= == logic

e pee et mm logic
Z:“_*““wn___J e e e - logic

112131415 | 67 8] 910 |[11]12! TIME INTERVALS

Figure 4. A typical timing diagram for flow table of

Figure 1.

There are several important points to be mentioned
concerning timing diagrams. First, the intervals cf time

aunbered 1 through 12 are not all of the same length.

This moints out the fact that the circuit is asynchronous
and is not restricted to function only at specified times.
It can also be seen that the timing diagram shows the

circuit reacting instantaneously to changes in the input.

To show how the timing diagram is related to the flow

table Figure 5 lists the time intervals and the corre-
-2

i i i able of Figure 2.
sponding location in the flow t g

- O - O

TIME INTERVAL TABLE LOCATION
1 C
2 D
3 C
i F
5 G
6 D
7 C
8 F
9 G

10 F
11 G
12 D

Figure 5. The correspondence of the timing diagram

with flow table location.

By cobserving the table of Figure 5 it can be seen
that the timing diagram provides information about the
stable gcates of the flow table. The edges of the wave

forms represent tranei tions through unstable states.

Wwith a timing diagram as input information the flow

Falble cencration program has only to fill in the necessary
ble ge At

unstable states to complete the flow table.

In order to simplify aotatior, the set of logical

. . . 1riables at an iven time
vaiues for all of the input variables at any g

ipterval will be defined to be the input code word

10

11

associated with that time interval. To illustrate this,
consider the time interval number 1 of Figure 4. The
input code word for this time interval is 00. For time
interval 2 the input code word is 10. The convention
used to order the bits of the code word is arbitrary and
in this case the first bit refers to the first input,
the second bit to the second input, etc. For example,
the code word fer time interval 2 is 10 where the 1
refers to the logic value of input X, and the O refers to
the logic value of input Y. It is also sometimes convenient
to refer to the code words by their decimal value. This
is found by considering the code words as binary numbers
and converting these to decimal. For example the code
word 11 would be called by its decimal name as 3, 10 by
the name 2, etc.

All of the conventions discussed for input code words
apply equally well for the output code words.

Applying the concept of code words to the timing
diagram it can be seen that timing diagrams can also
be represented as a string of input-output code words.

. ~ . . 3 .
The timing diagram of Figure I translated into code words

is shown in Figure 6.
With the data represented in timing diagram format,

the terminal through which the data is entered into the

ape -ing either sketches or
program must be capable of entering either s

code words There are basically three types of terminals

X: 1 0 0 o 1 0 0 o0 o o0 1

Y: 0O o 1 o o o 1 0 1 o0 o
Input code word 1

Z: 0o o 1 1 o o 1 1 1 1 o

--Output code word 1
Figure 6. Timing diagram information represented

as a sequence of code words.

that would be suited for this problem: a CRT display,
a sketch-pad type terminal, and the teletype terminal.
Since other information than just the timing diagram
would be required, a CRT or a sketch pad would also re-
quire a keyboard.

If a CRT or sketch-pad terminal is used to enter
the data, the timing diagram sketches will be converted
to a sequence of code words arranged as in Figure 6.
With the teletype terminal the code words may be entered
as in Figure 6 but it would require an unnecessary amount
of programming to rearrange the code words into the proper
form. With the code words in the form of Figure 6 it would
require the designer to enter all of the bits of X before
he entered Y, and all of X and Y before Z, etc. This
forces the designer to perform some preliminary pencil
and paper work before entering the sequences. A better
he ccde words is to arrange them vertically

way to enter t

as in Figure 7. This permits the designer to eliminate

. \)
preliminary paper work since he enters all of the values

13

X Y Z
Input code word l~<:§f‘_~_‘§:> (::F~Output code word 1
1 0 0]
0] 0 0
0 1 1
0 0 1
1 0 0]
0 0 0
0 1 1
0 0 1
0 1 1
0 0 1
1 0 0]

Figure 7. Vertical representation of code word

sequence.

of the inputs and outputs on the same line. This method
adds a restriection to the total number of inputs and
outputs; they may not exceed the number of spaces per line
of the teletype. This restriction is not as limiting as

it might appear since there are normally about "0 characters
per line on a standard teletype unit. The programs avail-
able for synthesizing logic equations from these flow
tables will not in general accept any more than 25 inputs

and outputs.

There are several major advantages and disadvantages

for cach of the three types of terminal. The primary
advantage of the CRT and the sketch-pad is that they

would allow the designer to enter the data in a graphical

14

format. The sketch-pad has a major disadvantage in that
changes in the data sketches would result in a very
cluttered display. The CRT terminal does not have this
disadvantage; in this case diagrams can be quickly and
casily rcwmoved from the screen. With the teletype terminal
the data must be entered in code word form, and there is
a small problem with correcting errors. Errors on the
teletype cannot be easily removed, as in the case of the
CRT, but they can be neatly worked around. This can be
done by typing to the right of or directly below the
incorrect entry. Another disadvantage of the CRT and the
sketch-pad would be that a complex routine would be
necded to take care of proper vertical alignment of the
sketehes. This is not a problem with the teletype since
cach code word is itself a time interval. It is therefore
only necessary to enter the bits of the code words as
shown in Figure 7.

Another important consideration is the cost of these
different types of terminals. ‘An exact cost comparison
of the CRT and the teletype is not possible because of
the wide range of features and options available. To

illustrate the large cost difference the following are

the approximate prices for IBM units suitable for this

application. The IBM CRT display unit with light pen

cost approximately $400,000. The IBM Printer Keyboard

anit costs $3000. Considering this large price difference,

and the simpler data conversion routines required,
remainder of this paper will be oriented around the

teletype terminal.

the

15

16

III. EXTERNAL FORMAT

Since the program is to be on-line and conversational,
an important requirement to be considered is the format
of the dialogue between the designer and the program.
With this type of system it is important to keep the
forimat flexible. A discussion of some of the most important
requirements for f£lexibility is included here and a
typical program is shown in Figure 8.

The primary purpose of the program is to request
data from the designer and then assemble this data into
a flow table. Since the program requests the data from
the designer these requests should be clear and the form

of the answer should be apparent by the mauner of the

-

rcquest. It is not always possible to word a request
such that it is evident how to respond. In this case
the user of the program should be supplied with a print-

out of a typical design problem such as that shown in

. 1 3 !
Figure 8. This may be supplied in an operator's manual

. - 3 — ~ 2o 3 . » a
along with a detailed description ol the routines available

to the user.

One of the most jimportant features of the program

is to allow the designer the freedom to arrange his data

in a manner such that it conveys the maximum information

to both the program and the designer. In order to realize

this feature the program must allow the user to insert

HGW MANY INPUT VARIABLES WILL THERE BE?

WHAT ARE THEIR NAMES?

IN_1, 1n. 2/

HOW MANY CUTPUT VARIABLES ARE THERE?
1.

WHAT IS ITS NAME?

N

eV E
Cu s)

ENLTER THE INPUT SEQUENCES FOR THE FOLLOWING:
W 1 1

0 N N 0

R _ _ U

D 1 2 T
P

1 C O O f

2 x r);
3] 1

4 0 0 o}

5 0 1 K

6 1 L o

T 1 9] 0/f

8 0 9 0

9 o i 0
10 0 i %
11 0 0O o}
12 1 0 0/
13 1 1 1
1% N . Loty
o1 o a9
15 .0 L Q7
15 £ i 97

Figure 8 sample Llow table generation program.
11__ | - Gl Vo

- | 1 ~
Note: The data entered by the designer has been

shaded.

18

blanks and commas wherever he chooses. Examples of this
can be seen in the list of input names in Figure 8.

The general method of data request is as follows.
The computer types out a request which ends generally
with a qguestion mark and a carriage return and line feed.
The user is then free to enter the requested data. As
mentioned previously, the use of spaces and commas is

left up to the designer. 1In the example dialogue of

o

"igure 8, the use of the question mark is illustrated
with the request "What are their names?". The end of
communication between the designer and the program is
denoted by a period or the word END.

Tt is often necessary for the designer to detemnine
the nunerical position-in the input stream of a particular

code word. The number of the code word of the current

line appears at the beginning of the line in Figure 8.

These numbers are printed automatically by the program.

19

IV. DATA CORRECTION

After the designer has entered the data into the
program he will often wish to change that data. For
example the name given by the designer to the output
variable in the program shown in Figure 8 was ended with
a right paren when it should have been ended with a period.
To correct this error the user typed the vertical arrow
(the character used to call the routine to delete the
last character) and then typed the correct symbol, in

this case the period.

Another useful routine to correct errors is the
"delete the current line™" routine. This routine is
represented by the horizontal arrow. The routine functions

as its nome implies. It causes the values that have bLeen

i ine to be deleted
entered into the program on the current lin i

£yom memory. The program then allows the designer to start

again at the beginning of a2 new line.

The iwo correction routines mentioned above will

handle most of the corrections to a typical design problei.

It may sometimes be the case that the designer would like

to modify only a single code word in the sequence. The

o handle this is the MODIFY X (11,12,...1

s
routine « n
This command may be given at any time

01,902, v . -Oln)-

. - . ~ . a
in the ioput stream by giving a line feed and carriage
i i i e form

return and then entering the instruction 1n th

shown above. The I's are the input values in the order
that they were first entered in the program. The 0O's

are the output values. The X is the position in the

input stream that is to be changed. For example, if the
designer wanted to change the input stream in position 3,
which now contains the value 111, to the value such that
IN 2 and OUT are both O and IN_1 is 1, the MODIFY 3(1,0,0)
command would be given.

After several corrections have been made to the code
word data the printed page may become cluttered with
corrections and requests for corrections. A routine to
redisplay the data up to the last entry could be executed.
This command could be executed any time up until the
program is told to continue. The command could be
initiated by giving a carriage return and line feed

£ollowed by the command REPRINT. This routine will skip

three or four lines and reprint all of the corrected code

word data that has been entered up to the point that the

command was given. If the command was given before the

entire sequence of code words was entered, the program

will terminate the REPRINT routine in a position such

that new code words may be entered.

20

21

V. INTERNAL DATA FORMAT

The structure of the data in the computer is a
problem which arises in every programming problem. In
this case the primary data coming into the machine will
be in the form of a string of O's and 1's. It should
be noted that the data referred to here are the strings
of code words. Other data are also entered, for example
the names of the input and output variables, but their
form is not as important to the primary purpose of the

Bl

i

]

f
N

ign program.

Since the data coming into the computer will be
binary in nature, it is logical and most beneficial in
ferms of computer storage, to allow each entered binary
digit to require only one bit of computer core. At
this point it becomes necessary to consider the relation-
ship between the length of a code word and the length of
the hardware computer word. There are two approaches to
consider. The first is to recognize the hardware word
as a boundary and work only with the fixed hardware word
length. The second is to disregard the hardware word
length using software techniques to define the relationship
between the hardware word and the code word. The choice
between the two alternatives depends on the computer
system available, the software, and the experience and

skill cf the programmer. If the first system is used

i1t would require that certain sections of the program be
written in assembler language. If the second method is
chosen either assembler language or a very high level
language such as PL/l would be required to allow indi-
vidual bit manipulation. The choice made here is to
assume use of the higher level language of PL/1 and assume
that a word will be defined by the program to be of the
corrvect length. For example an input code word for a
program which has five inputs will be five bits long
in the computer. InPL/1 this is a simple matter of
defining the code word to be a bit string of length five.
There are two mjor reasons for assuming the use of
PL/1. The first isthat it is available on the TBM 360
system and is much simpler to use than the assembler
language. The ease of use is by no means a trivial matter
since it may require as much as six to twelve months to
become sufficiently familiar with the assembler language
to program relatively gimple algorithrﬁs. In PL/1l it is
ot necessary to be fapiliar with the entire language
to program rather cogplex algovithms and PL/1 is structure
in a manner which is easy to learn even for the person
who has never programped before. The second reason for
assuming the use of pj/1 is that the program which makes

use of the flow table that is generated in this progradm

22

is written in PL/1. yith the programs in the same language

the transferring of gita from one to the other can be

23

accomplished without a major restructuring of data.

With the Lrecdom to define the length of input and
output code words it is logical to define them as follows.
The input code words will be defined as a bit string
vector one word wide and M.words long. M, the length of
the array, is not exactly known until all of the code words
are entered. Since this length must be defined, 2 nominal
value should be given to this length which is dependent
on the storage space available. When the array is filled
the entire array would then be stored on tape or disk
and the core area could again be used for new data. This
process would be repeated until all of the code words
are entered into the program and stored on disk or tape.
At this point the first set of code words would then be
entered into the array and used to generate the flow
teble. The output code words would be handled in the
same manner.

The flow table to be generated is in primitive Iorm
and a scable state is never used more than once. A
typical flow tuble of this type appears in Figure 9.

Tt can be seen that this flow table is very simple in
nature since ecach row has only two specified entries

and has only one output, that being associated with the
single stable state. The internal representation of the
flow table could then be considered as an array. Each

internal state would be a row of the array, for example

AB

00 0l 10 11
~
1 1 2 .
2 — @1 3 —
3 iy -
@b —
4
@7 — — 5
5 6 — — G2

Figure 9. Typical flow table segment with two

inputs and one output that could be

generated by this program.

internal state 1 would be the first row of the array.
Each column would represent an input combination;thus
the entry in the column for the input combination 101
could be found by taking its integer value and adding
two. Two is added since the input combination 000...0
will be considered to be the second colunmn, and the
output of the stable state for that row will be given
in the first column. Figure 10 illustrates the flow
table layout as an array. The exact number of internal
statecs is not known at the beginning of the program
so the maximum number of rows should be fixed to some
arbitravy value, A, and the disk storage should be used
in the same manner as was done with the input code words.
initially the entries in all rows of the flow table
should be don't-care, the assumption being that the
designer is only concerned with the circuit operation
as specified by the input-output sequences. All sequences
not specified by the designer will be considered don't-
care. The name of each internal state will be the number
of the wow in the array containing its entries. For
example inteirmal state 2 is row 2 of the array. 1In order
to represent don't-care internal states there will be
no internal state O. A O as a next state will thercfore
be considered a dontt-care entry. The problem of dontt-

care outputs is not as easily solved as that of internal

26

Figure 10. The flow table of Figure 9 represented as

a subscripted array.

FLOW(i,3)
j= 12 3 4 5
i=1 | 3] 1]2 o o
2 31 o |2 3 | o
3 0 I 0 0 5

NOTES: The length of a word stored in memory has
been assumed to be 12 bits. This is an arbitrary
assumption for the purpose of this example only.
All entries are shown as decimal integers. The
entry i=1,j=1 is the value of the output and has

the value 3. This is the decimal integer value of

the binary number 000000000011, This binary number
is specifying that the first output has the value 1

since the first pair of bits have the same value 1.

27

Since it is possible to have outputs of 0 or 1
neither of these may be used to represent a don't-care
cutput. A solution to this problem could be to use a
character such as a dash to represent a don't-care
output. This is not desirable since the internal
representation of characters may be six or more bits long.
Since the 0 and the 1 can both be stored in a single bit
of memory it could be unreasonable to require a don't-care
to take up six bits. The solution to this problem,
which is compatible with the programs that will eventually
use the flow table? 1s to use two bits of memory to store
the output value. If both bits are the same then the
output is that value. If the two differ then the output
is to be a don't-care.

With the representation of the don't-care determined
it remains to initialize the memory data area, with the
memory laid out as an array as shown in Figure 10. Each
entry will have a specific meaning. For example, the
first entry in the first row of the array will be the
output of the stable state in the first row of the flow
table. The next 2" (n= number of inputs) entries contain
the next state entries of the first row. The first
entry in the second row is the output associated with
the second row and the entries of the second row are in

the next 2" words. This pattern repceats itself throughout

the data area.

It should be noted that the length of a word in the
array will limit the number of possible internal states
and outputs. For example, if L is the length of a word
in the array in bits, then the number of internal states
possible would be 2L—1. The number of outputs would
be limited to L/2, since each output variable requires
two bits of memory. These two equations will allow the
programmer to specify the exact word length for the flow
table array. The program can calculate the two lengths
discussed above and definz the array to have words whose
length is equal to the largerbof the two values. Since

the output code word requires two bits for each data bit

the length chosen should be an even number.

28

29

VI. FLOW TABLE GENERATION ALCGORITHM

An algorithm is presented here which may be used to
generate the primitive-form flow tables previously discussed.
The algorithm is presented in a form which makes use of
the subscripting routines of any higher level language.
As has been previously mentioned, PL/1 will serve as the
language model. This has been done primarily to show
how specific operations can be carried out, for example
the initialization of data arrays. The discussion of
these specific points in terms of a specific language
will allow the programmer to understand their purpose
and provide a pattern from which the program can be
constructed.

The first step in the construction of the flow table

is the initialization of the data area. To initialize

0]

the data area to the don't-care condition it is necessary

Lo initialize both the output variables and the next state
entries. Since the output variables are always in the

fivrst column of the array, it will be necessary to initialize
this column to the output don't-care value shown in

Figure 11. The remainder of the array should be set to

1. bits
0101...01

Figure 11. OCutput don't-care values.

all O's. The initialization of the array in PL/1l is a
very simple single statement instruction and to initialize
any column also requires only one statement.

After the data area designated by the array FLOW
has been initialized to don't-care the flow table may be
constructed. The flow table generation algorithm and

a list of symbols used are given on the following pages.

31

A LIST OF SYMBOLS USED IN FLOV TABLE ALGCORI'THM

FLOW(X,X) - A two dimensional subscripted array containing
the generated flow table.

L - Length of a word in the array FLOW in bits.

n - Number of inputs.

M - Total number of input-output code word pairs.

m - Number of outputs.

A - Maximum number of rows of flow table that can
be stored in a single overlay.

B - Total number of overlays of FLOW initially O.

ICwW(i) - A subscriptced vector containing i:1,2,...M
input code words cach of length n.

OCW(1i,j) - A double subscripted vector containing M
output code words each of length m, with the
subscript i=1,2,...M denoting the code word
and j=1,2,...m denoting a specific bit of the
code word.

oc(j) - A single vector of length 2m containing the
output code with each bit duplicated.

PS - Has as its value the present internal state
value.

NS - Has as its value the next internal state value.

PL/1 notation designating all rows and all

FLOW{*,*)

colums of array FLOW.

FLOW(*,1) Designates the first columm of the array FLOW.

Initially
i=0

PS=1

NS=1

Convert OCW to 0OC

OCW(i,j)=0Cc(2j-1)=0C(2])
j=1,2,...m

Y

Figure 12. Flow table generation algorithm.

Figure 12.

(continued)

Check

FLOW(PS-B*A,ICW(1)+2
=don't-care

(: Error :)

o . FLOW(NS-B¥A,1)=
don't-care

33

Figure 12.

(continued)

Store OC(j) j=1...2m

at location FLOW(NS,1)

Store NS
at locations

FLOW(PS-B*A,TCW(i)+2) ¢
FLOW(NS-B*A, TCW (1)+2)

l

Set
PS = NS

G?crement Ni)

N

34

Figure 12. (continued)

TRUE NS-B*AD A

FALSE

|

Cco To 1)

Store

FLOW(*,*) on disk

|

Initialize FLOW
FLOW(*,*)=0
FLOW(*,1)=0101...01

g

Figure 12.

(continued)

36

37

VII. CONCLUSION

This paper has presented the requirements for a
progrém which will generate a fundamental mode primitive-
form flow table from a sequence of input-output code words.
The algorithm presented for constructing these flow tables
has been oriented toward the use of a high level language
such as PL/1. This has been done to make use of such
features as the subscripting routines and the ability to

define bit string word lengths and manipulate the individual

o'
e
o

s. This algorithm has been formulated in such a manner
as to allow it to serve as a framecwork around which more
complex algoriithms which make use of the internal states
more than once may be ceonstructed.

This investigation has provided a beginning to the
computer-aided construction of flow tables. It has also
pointed out an important area that requires further study.
this is the area of the formulation of all possible input-
output secuences. It appears that some type of formal
langrage which would allow the expression of long sequences

in short descriptive phrases is required.

BIBLIOGRAPHY

Huffman, D. A., "The Synthesis of Sequential Switching
Circuits," J. of the Franklin Institute, Vol. 257,
pp. 161-190 and 257-303; March and April, 1954.

Smith, R. J., "A Programmed Synthesis Procedure for
Asynchronous Sequential Circuits," M.S. Thesis,
University of Missouri at Rolla, Rolla, Missouri
November 1C67.

Breuer, M. A., '"General Survey of Design Autcmation
of Digital Computers,'" Proceedings of the IEEE,
Vol. 54, Neo. 12, pp. 1708-1721; December, 1966.

Brzozawski, J. A., "A Survey of Regular Expressions
and Their Applications," IRE Trans. on Electronic
Computers, Vol. EC-11, pp. 324-335; June, 1962.

APPENDIX A
A Description of the Support Routines

Necessary for a CRT Terminal

Presented here are the routines necessary for use
with a CRT terminal. These are primarily service routines
to provide the designer with a flexible format for sketching
the timing diagrams on the face of the CRT screen. These
routines are, in most cases, only the basic minimum required
for efficiently using the CRT display. More routines
may be added as experience with the system is aquired.
With these routines the CRT terminal may be used in place
of the teletype. No further program modifications would
be required.
NAME DISPLAY: The name of each input and output variable
will be printed on the screen followed by a delimiter
such as a colon. This will indicate to the usecr that
he is to begin on that line to sketch the timing diagram
for that variable.
TIME INTERVALS: The switching boundaries will be indicated
by vertical dotted lines. These lines will be generated
and displayed on the CRT by the program. The spacing
of the timing intervals will be a constant which will
depend on the size and resolution of the CRT used.
DATA CONVERSION: The data entered on the CRT terminal

will be sketched in a continuous line form. This form

L%0)

must be converted into digital information. This requires
that for each time interval a code word must be constructed.
The bits of the code word may be found by comparing the
vertical position of the sketch for each time interval
with a center line for each variable. Segments above

this center line will be considered to be logical 1,

and those below will be logic O.

CLEAN UP COMMAND: The designer will be able to issue this
command at any time during the input sequence. The function
of the command will be to straighten up the input sketches
forming them into straight line segments to improve the
clarity of the input sequences. This will be necessary
since the lines formed by a light pen are not always

neat and straight.

CONTINUE HORIZONTAL: This command will be given if it is
necessary to extend the I/0 sequences beyond the length

of the display screen. This command given at the end of
the line will cause the name of the next input or output
variable to be printed out at the beginning of the next
line and allow the designer to give the sequences for
that variable until he reaches the end of the line. This
printing of names will continue until the last output
name and the sequence for that naﬁe has been given. At
that: time the computer will clear the screen and print
out the first input name again, thereby allowing the

designer to continue the sequence for all the variables.

41

This command may be given as many times as is nccessary
to obtain all the input sequences.
CONTINUE VERTICAL: This command will be given and executed
by the program and is used to allow more input or output
variables to be entered than is possible to put on the CRT
face at any one time. This command clears the screen
except for the timing interval lines and prints out the
name of the next input or output at the top of the screen.
The user continues sketching the waveforms as usual.

NOTE: Each vertical extension will be given a number,
Ver 1, Ver 2, Ver 3, etc. The first set of scquences will
be vertical 0. Each horizontal extension will be given
a number in the same manner as the vertical. This numbering
setr will allow the designer to request by name any section
of the input sequences. This will be useful if modifi-
cations of the input are necessary.
BLANK TIMING INTERVAL: This will allow the designer to have
the specified timing interval lines removed from the CRT
display but not from memory. This will reduce the visual
clutter on the screen.
SHOW TIMING INTERVAL: This command will allow the user to
ask for timing intervals to be redisplayed at certain
points to clear up confusion.
END ¢ This command will be used to terminate any
commands which do not have an automatic termination by

entering the name of that command in the underscored

section. This command will be entered into the computer
through the keyboard.

ERASE: This will delete lines or sections from the CRT
face and from memory. The area that is to be deleted
will be defined by encircling the area to be deleted with
the light pen.

DISPLAY HORIZONTAL M VERTICAL N: This instruction calls
for the section designated horizontal M and vertical N

to be displayed.

43

VITA

Ronald Lee Altman was bern on July 4, 1945 in St.
Louis, Missouri. He received a Bachelor of Science
degree in Electrical Engineering from the University of
Missouri at Rolla in June, 1967. He has been enrolled
in the graduate school at the University of Missouri at
Rolla since June, 1967. He has been-on the staff of the

Electrical Engincering Department since September, 1867.

	The computer-aided generation of flow-tables for asynchronous sequential circuits
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048

