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ABSTRACT 

The theory for a planar semiconductor probe in a 

slightly ionized gas with small de current densities is 

developed for a germanium probe immersed in a hydrogen 

plasma. First, the equilibrium characteristics due to 

the probe in the plasma are developed from Poisson's 

equation and current density equations. Then, the static 

nonequilibrium characteristics due to the probe are found 

by perturbing the equilibrium characteristics and sub

stituting the perturbation terms into Poisson's equation 

and current density equations. The total current, I, is 

found to vary linearly with the applied voltages, V, and 

the ratios I/V are essentially the same for both intrinsic 

and n-type germanium probes if the width of the probes is 

much smaller than the dimensions of the plasma. 
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I. INTRODUCTION 

The problem in this thesis is to investigate a planar 

semiconductor probe in a plasma for de currents by utilizing 

the theory of the metal probe and the theory of the surface 

of semiconductors. 

The theory for a metal planar probe in a plasma has 

been given by Langumiur(l) in the 1920's. Then in 1955, 

Kingston and Neustadter( 2 ) extended Shockley's theory of 

a p-n junction in semiconductors( 3 ) to develope the theory 

for the surface of semiconductors. 

The problem will be considered in a one dimensional 

model where the x axis will be perpendicular to the plasma 

and semiconductor interface and the origin of x will be 

located at the semiconductor surface, as is shown in Figure 

1. Only the low current injection case will be investigated 

because high injections may produce degeneracy in the semi

conductor and other complications( 4 ). 

First, the expressions for the charge number densities 

and electric fields due to the plasma semiconductor inter-

face will be determined. Then, perturbation techniques 

similar to those used by Vol'kenstein and Karpenko(S) will 

be used to determine the static nonequilibrium character-

istics. 

The plasma investigated will be hydrogen, H2 , with 

a neutral density on the order of 1015;cm3 (6 ) It will 
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Plasma 

0 

Figure 1. Diagram of the Plasma Germanium Interface 
Geometry. 
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be assumed that the plasma is slightly ionized and is in 

thermal equilibrium. The ions are assumed to be H; and 

to have a density on the order of lo10;cm3 {?) far from 

the interface. Electrical neutrality is assumed in the 

bulk of the plasma{B), therefore, the electron number 

density in the bulk is 1010;cm3 since the ions are singly 

ionized. The kinetic temperatures of the electrons, ions, 

and neutrals are the same because the plasma is in thermal 

equilibrium{B) and is assumed to be on the order of 10 4 K. 

The semiconductor investigated will be germanium 

at room temperature, 300 K, with no oxidation layers on 

its surface. Germanium is chosen because its properties 

have been studied extensively. The germanium will be 

studied for two extreme cases, intrinsic and heavily doped 

n-type. The p-type germanium will not be discussed be-

cause the static nonequilibrium solutions are obtainable 

only by numerical techniques. 

In the subsequent development, it will be assumed 

that the density gradients and electric fields are small 

enough so that the current density equations may be 

expressed as the sum of the drift current density and the 

diffusion current density(g). It is also assumed there 

are no temperature gradients in either the plasma or 

semiconductors or there would also be current flow due 

d
. (10). 

to the temperature gra 1ents 



4 

II. EQUILIBRIUM CHARACTERISTICS 

The equilibrium characteristics of the planar semi-

conductor probe in a plasma gas will be solved by examin-

ing the plasma and semiconductors separately. Then, by 

using the boundary conditions that the electric displace-

ment and electrostatic potentials are continuous at the 

interface(ll), the equilibrium characteristics of the 

plasma and semiconductors will be altered to form the 

equilibrium characteristics of a planar semiconductor 

probe in a plasma. The equilibrium characteristics will 

be found by using the current density equations and Pois-

son's equations. 

The expressions for the equilibrium characteristics 

are found subject to the following assumptions: 

(1) Einstein's relation is valid; 

(2) the materials are isotropic and homogeneous 

far from the interface; 

(3) the drift current density of each charge 

species opposes and cancels its diffusion 

current density; 

(4) the electric fields generated by the plasma 

semiconductor interface, E(x), is related to 

the electrostatic potential, ¢(x), by 

E(x) = d¢(x) 
dx 2.1 



and vanishes for lxl large, therefore ¢(x) 

for lxl large becomes a constant; 

5 

(5) the electrostatic potential will be referenced 

to the plasma bulk potential; 

(6) charge neutrality exists in the bulk of the 

plasma. 

A. HYDROGEN PLASMA EQUILIBRIUM CHARACTERISTICS 

To analyze the equilibrium characteristics of the 

hydrogen plasma, consider equations A.l and A.2 with the 

above assumptions: 

J (x) 
e 

( drf..(x) dne(x), = -e[~ n x) ~ - D - ] = e e dx e dx 
0, X < 0 2.3 

where the subscripts i and e represent the ions and elec-

trans, respectively. The ion and electron mobilities were 

calculated in Appendix B to be 4.56xl0 4 and 1.56xl07 cm2; 

(volt sec), respectively. If charge neutrality exists far 

from the interface, then 

n. ( -oo) = n ( -oo) 
1 e 2.4 

for a singly ionized plasma. 
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Integrating equations 2.2 and 2.3 from x to x = -oo 

and using Einstein's relation results in 

n. (x) n { .... oo) exp[- e 
¢ (x) ] , < 0 = kT X 

J.. e e 

n (x) n ( -oo) e ¢ (x)] , < 0 = exp[kT X -e e e 

where k is Boltzmann's constant and T is the kinetic e 

temperature of the electrons and ions. 

2.5 

2.6 

By relating the electric field to its potential and 

assuming that E = 1 for this plasma, Poisson's equation 
r 

for the plasma, equation A.l3, becomes 

[n. (x) - n (x)]. 
J.. e 

2.7 

Now, define a new variable yl(x) as follows: 

e 
Y1 (x) ~ kT ¢(x) · 

e 
2.8 

Substituting equations 2.5, 2.6, and 2.8 into equation 

2.7 yields 

2 2 n (-oo) yl (x) -yl (x) d y
1

(x) e e [e < 0 = kT - e ] , X 

dx 2 E 
0 e 

or 

2 2e 2 n ( -oo) d y 1 (x) e sinh y 1(x), X < 0. 2.9 2 = kT dx E 
0 e 



dy1 (x) 
Multiply equation 2.9 by 2 dx and integrate. 

dyl(x) 2 
( dx ) = 

2 4e n ( -=) 
e 

ckT e 
[cosh y 

1 
(x) + C] , x < 0 

where C is the constant of integration. At x = -=, 
dyl (x) I 

and E (-=) are zero therefore y 1 (-=) and dx x = 

7 

2.10 

<P (-=) 

are 
- co 

zero. Substitution of these boundary conditions into 

equation 2.10 yields 

4e 2 n (-=) 
c e 

= kT E: 
2.11 

0 e 

Therefore, equation 2.10 simplifies to 

dy1 (x) /4e2ne (-oo) 
1 

[cosh 2 < 0 = ± y 1 (x}-l] X dx c kT 2.12 
0 e 

or 

dy1 (x) ,Lse2ne ( -"') 
sinh 

yl (x) 
< 0. = ± ( 2 ) ' X dx c kT 

0 e 
2.13 

Integrating equation 2.13 from X = 0 to x yields 

y1 (x) y1 ( 0) + ,Lse 2ne ( -oo) 
X < 0 2.14 tanh tanh ' X -( 4 ) = { 4 ) e- c kT 

0 e 

or 

(e¢ {x)) {e¢ (0) 
+ .[se2ne ( -"') 

X < 0 . 2.15 tanh = tanh )e- c kT ' 
X -

4kT 4kT 0 e e e 
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To satisfy the boundary condition that ¢(-oo) = 0, the sign 

in the exponent of equation 2.15 must be positive, there-

fore 

tanh 
yl(x) 

( 4 ) = tanh 
yl (0) 

( 4 ) 
< 0. 2.16 

Since equation 2.13 is the derivative of equation 2.16, 

equation 2.13 becomes 

or 

dy
1 

(x) 

dx sinh 

sinh 

yl (x) 
( 

2 
),x<o 

(e¢ (x)) < 0 2kT ' X • 
e 

Therefore, the electric field in the plasma, E
1 

(x), is 

sinh ( e~(x)) x < 0. 
2kT ' e 

2.17 

2.18 

2. 19 

In summary, the equilibrium characteristics of the plasma 

are given by the following equations: 

t a nh 

;_8kT n (-oo ) 
= - - e e ) sinh 

t:o 

(e¢(x)) = tanh 
4kT e 

(e ¢ (0)) 
4kT 

e 

(e¢ (x)) < 0 2kT ' X -
e 

2.20 

< 0 2.21 
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e ¢(x) - kT n. (x) = n (-co) e e X < 0 2.22 
l e 

+ e ¢(x) kT < 0. 2.23 n (x) n (-co) ' 
X -= e e e e 

B. INTRINSIC GERMANIUM EQUILIBRIUM CHARACTERISTICS 

By the same analysis as was used in the plasma, the 

equilibrium current density equations for the semiconductor 

are 

J (x) = - e [~ p (x) d¢ (x) 
p p dx 

+ D dp(x)] = 0, X> 0 
p dx 2.24 

J (x) =- e[~ n(x) d¢Jx) - D d~(x)] = 0, x > 0 2.25 
n n x n x 

where the subscripts p and n represent the holes and 

electrons, respectively, and the terms p(x) and n(x) are 

the number densities of the holes and electrons, respec-

tively. The values of the mobilities for the holes and 

electrons are 1900 and 3900 cm2/(volt sec), respectively( 4 ). 

Since the germanium is intrinsic in this case(l 2 ), 

n(+co) = p(+co) 13 3 
= n I ~ 2 • 5 x 1 0 I em 2.26 

where ni is the intrinsic number density. Integrating 

equations 2.24 and 2.25 from x to x = +co and using Einstein's 
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relation yields 

k; (¢(x)-¢(+oo)), 
S X > 0 2.27 

n(x) X > 0 2.28 

where T is the temperature of the semiconductor, T = s s 

300 K. 

By relating the electric field to its potential, 

Poisson's equation for intrinsic germanium, equation A.l2 

becomes 

e 
E E r o 

[p(x)- n(x)], x ~ 0 

where € is 16 for germanium. 
r 

Now define a new variable y 2 (x) as follows: 

y
2

(x) D, k; [¢(x)-¢(+oo)], x > 0. 
s 

By following the same techniques as were used in the 

plasma, the expressions for the equilibrium electric 

field, E 2 (x), and potential in the intrinsic germanium 

are, respectively, 

2.29 

2.30 

2.31 
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and 

tanh 
y2(x) 

( 4 ) = tanh 
y2(0) 

( 4 ) e 
X > 0 

where y 2 (x) is defined by equation 2.30. 

In summary, the equilibrium characteristics for 

intrinsic germanium are as follows: 

where 

n(x) = 
Y 2(x) 

nie 

p(x) 
-y2(x) 

= nie 

E 2 (x) = 
/-8kTsni 

sinh 
€ € r 0 

y2(x) 
tanh( 4 ) = 

y2(0) 
tanh ( 

4 
) 

[¢(x)-¢(oo)], x > 0. 

C. N-TYPE GERMANIUM EQUILIBRIUM CHARACTERISTICS 

2.32 

2.33 

2.34 

2.35 

2.36 

2.37 

By using the same techniques as were used for the 

intrinsic germanium, the electron and hole number densities 

are 

n (x) = n ( oo) 2.38 



and 

p(x) p ( 00) 
-y3(x) 

e 

respectively, where 

y 
3 

(x) !:, k; (¢ (x) -¢ (oo)),x > 0. 
s 
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2.39 

2.40 

Since the germanium is heavily doped n-type, n(oo) and p(oo) 

are( 4 ) 

n (oo) 2.41 

p (oo) 2.42 

where Nd is the number density of the donors, Nd~ 1o18;cm3 

in this problem. All the donors are assumed to be fully 

ionized. 

Using equation A.ll, Poisson's equation for the n-

type germanium becomes 

e 
E: E: r o 

[p (x) -n (x) +Nd] , x > 0. 

Now, using similar techniques as were employed in the 

2.43 

plasma to determine the equilibrium electric field, yields 
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2.44 

or 

2.45 

where E3 (x) is the equilibrium electric field in then

type germanium and C is the constant of integration. 

Applying the boundary conditions that E3 (oo) and y
3

(oo) are 

zero, yields 

2.46 

. ni ni 
S1nce ~ << 1, the terms multiplied by --may be neglected 

d Nd 
if y

3
(x) is a small variable. If y 3 << 1, the exponentials 

in equation 2.46 may be expanded in a Taylor series expan-

sion about y
3

(x) = 0. Neglecting third and higher order 

terms, equation 2.46 becomes 

2.47 

or 



dy
3

(x) 

dx 

14 

2.48 

Integration of equation 2.48 from x = 0 to x yields 

X 

' X 
> 0 2.49 

or 

X 

¢(x) X > 0. 2.50 

Since¢(~) has to be finite, the sign in the exponent of 

equation 2.50 is negative. Therefore 

E3 (x) = + 
1-kTsNd 

y 3 (x) ' X > 0 
E E 

2.51 
r 0 

and 

_je2Nd X 

kT E E 

y3(x) y3(0) 
s r 0 > 0 . = e 

' 
X 2.52 

To check the assumption that y 3 (x) << 1, it is 

necessary only to show that the maximum value of y 3 (x)<<l. 

Equation 2.53 indicates that y 3 (x) has a maximum value at 

x = 0. To evaluate y 3 (0), the continuity of the electr ic 

displacement at x = 0 is used. 
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2.53 

Using the value of the equilibrium surface potential 

found in Appendix C and evaluating equation 2.53, it is 

found that 

-4 4.96xl0 . 

Therefore, the assumption that y 3 <<1 is valid. 

To summarize, the equilibrium characteristics for 

the heavily doped n-type germanium, one has 

and 

where 

n(x) Nde 
y3(x) 

X > 0 = ' 
2 

-y3(x) 
p(x) 

ni > 0 = e X 
Nd 

E3 (x) 
1-kTsNd 

y 3 (x) ' X > 0 E E r o 

_.(e2Nd X 

kT E E s r 0 

y3(x) = y3(0) e X 
' 

y3(x) = k; [¢ (x)-¢(oo)] ' X > 0 
s 

> 0 

2.54 

2.55 

2.56 

2.57 

2.58 

2.59 
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D. EQUILIBRIUM PLANAR GERMANIUM PROBE CHARACTERISTICS 

To evaluate the equilibrium probe characteristics, 

the boundary conditions that the electric displacement 

and potential are continuous at x = 0 are used. 

Referring to Appendix C, the surface potential of the 

germanium is dependent only on the plasma and is equal to 

-1.768 volts approximately. Therefore, equation 2.19 

states that the electric field in the plasma is independent 

of the type of germanium probe. Evaluation of equation 

2.19 at x = 0 yields 

429.4 volts/em. 

The application of the continuity of the electric dis

placement at x = 0 

and 

yields 

26.8 volts/em. 

2.60 

2.61 

2.62 

2.63 
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With the use of the above boundary conditions, the 

theory for the planar germanium probes in equilibrium 

with a hydrogen plasma is completed. The resulting probe 

equilibrium characteristics are discussed in Chapter 4. 

In order to show the change in ¢(x) and the change in 

charge number density due to plasma and germanium inter-

face, the potentials and charge number densities are dis-

cussed in Chapter 4 relative to the surface values and 

bulk values, respectively, and are designated by 

and 

ll¢(x) = ¢(0) - ¢(x) 

lln. (x) = n. (x) 
l l 

n (-co) 
e 

lln (x) = n (x) - n (-co) e e e 

in the plasma and 

ll¢(x) = ¢(0) - ¢(x) 

lln (x) = n (x) - n (oo) 

llp (x) = p (x) - p (oo) 

in the germanium probes. 

2.64 

2.65 

2.66 

2.67 

2.68 

2.69 
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III. STATIC NONEQUILIBRIUM PROBE CHARACTERISTICS 

A perturbation technique applied to the equilibrium 

characteristics will be used to determine the static non-

equilibrium characteristic equations of the probe. It 

will be assumed that the result of applying small static 

electric fields across the surface of the probe can be 

expressed in terms of the sum of the equilibrium charac-

teristics and static nonequilibrium characteristics. The 

perturbation terms of the charge number densities and 

electric fields are the excess charge carrier number 

densities and applied electric fields, respectively. Only 

the low injection problem will be examined, therefore the 

perturbation terms will be considered to be much smaller 

than the equilibrium terms. The perturbation terms will 

be designated by a superscript 

Since the total current density, Jt' given by (4) 

3.1 

is continuous and a constant for static nonequilibrium(l 3 ), 

therefore 

3.2 
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A. GENERAL PERTURBATION TECHNIQUES 

The static nonequilibrium terms are assumed to be as 

follows: 

' Et (x) = E (x) + E (x) 3.3 

I 

<Pt (x) = ¢ (x) + ¢ (x) 3.4 

nt- (x)= n (x) + n (x) 3.5 -

' nt+(x)= n+ (x) + n+ (x) 3.6 

where the subscript t represents the total terms and the 

primed terms represent the first order perturbation terms. 

Substitution of equations 3.3, 3.4, 3.5, and 3.6 into 

equations A.l and A.2 yields the following current density 

equations: 

I 

I dn (x) 
J (x) = e [lJ (n (x) E (x) + n (x) E (x)) + D dx ] 3.8 

where second and higher order terms have been neglected. 

Referring to Vander Ziel( 4 ), if the length of the 

sample is much greater than the diffusion length of the 

semiconductor, then the excess charge carrier number density 

will be approximately zero for large x. Since the plasma 
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behaves as if it were an intrinsic semiconductor, the excess 

charge carrier number density will also be approximately 

zero for x large compared to its diffusion length. There-

fore, at x = ±oo, the boundary conditions are 

I 

n (±oo) = 0 
+ 

n (±oo) = o. 

3.9 

3.10 

If it is assumed that the applied electric fields are 

constants in the bulk of the materials and that the devia-

tion from these constant values are small, then 

dE (x) 
dx ~ 0 · 3.11 

Therefore, 

E (x) E = constant. 3.12 

Now using Poisson's equation for the applied electric 

fields and equation 3.11 yields 

n (x) • 3.13 

Since the total current density is a constant, it 

may be evaluated at any value of x. To obtain a simple 

expression for Jt' evaluate the sum of equations 3.7 and 

3.8 at X = ±oo. 
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3.14 

Substitute equation 3.14 into the sum of equations 3.7 

and 3.8 for finite x. 

' [~+n+(±oo) + ~ n (±oo)]E = [~ n (x) + ~+n+(x)]E + 

I 

I dn_(x) 
+[~++~_]E(x)n_(x) + [D_-D+] dx 3.15 

Defining a new variable, y(x), as 

y(x)~ ~T (¢(x) - ¢(±oo)) 3.16 

and changing the derivative in equation 3.16 from the 

derivative with respect to x to the derivative with 

respect to y(x) by using the chain rule, yields 

or 

d 
dx 

d 
dx 

d¢ (~ dy (x) d 
dx d¢(x) dy(x) 

e = - E(x) kT 
d 

dy(x) 

Substitution of equation 3.18 into equation 3.14 and 

3.17 

3.18 

normalizing the coefficient of the derivative to one yields 

I 

dn (x) 

dy 
~ +~ ' 

+ [ + -]n (x) = 
~+-~ -

I 

E [~+{n+(±oo)-n+(x)}+~_{n_(±oo)-n_(x)}] 

-E (x) (ll_-~+) 

3.19 



where Einstein's relation was used. 

Equation 3.19 has the form of 

~ + P(x)y = Q(x). dx 

The solution of equation 3.20(l4 ) is 

22 

3.20 

y = e-/P(x)dx [/ejP(x)dx Q(x)dx+C] 3.21 

where C is the constant of integration. Therefore, the 

solution of equation 3.19 is 

n (x) = e 

~++~_ 
(~ -~ )y(x) 

f + -[ e 

+ ~_(n_(±oo)-n_(x))} + C]. 

' E {~+(n+(±oo)-n+(x)) 

3.22 

B. EXPRESSIONS FOR THE CHARGE CARRIERS 

To evaluate the charge carrier density for intrinsic 

germanium, substitute equations 2.27, 2.28, and 2.31 into 

3.22. Integrating the resulting equation with the boundary 

' condition that n (oo) = 0 yields 



' n(x) 

' 

y2(x) 
+ 

(e 2 

23 

(e 

3.23 

where E2 is the applied electric field in the intrinsic 

germanium. 

To determine the charge carrier number density in the 

plasma, substitute the equations 2.20, 2.22, and 2.23 into 

equation 3.22. Integrating this equation with the boundary 

' condition n (-oo) = 0 yields 
e 

I 

n (x) 
e 

]J. 
l (e 

yl (x) 
(e 2 

11·+11 
( 1 e ( 

- 11·-11 )yl x) 
-e 1 e ) 

3.24 

where E
1 

is the applied electric field in the plasma. 

To obtain the charge carrier number density for the 

heavily doped n-type germanium, substitute equations 2.56 

and 2.57 into equation 3.22. The resulting equation is 



l.l +l.l 
-( P n)y (x) 

l.l -l.l 3 
n (x)=e P n 

+ C], X> 0, 

where E
3 

is the applied electric field in the n-type 

germanium. It is observed that 

y 3 (x) 
Nd (e -1) 

E
3 

(x) 
~NdE:rE:o 

kT s 

Therefore, equation 3.25 becomes 

n (x) 

+ C] , X > 0. 

24 

3.25 

3.26 

3.27 

Integrating equation 3.27 with the boundary condition that 
I 

n (oo) = 0 yields 

n (x) 

l.l +1-1 
-( p n)y (x) 

l.l -lJ 3 
( p n ) > e -1 ,x_O. 3.28 
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C. STATIC CURRENT DENSITIES 

The static current densities in the plasma obtained 

from this investigation are 

J. (x) 
l. 

and 

I I 

e[~i(ni(x)E1 + ne(x)E1 (x)) - Di 

I I 

= e[~e(ne(x)E1 + ne(x)E1 (x)) +De 

= J. (x) + J (x) 
l. e 

where x ~ 0. 

I 

dn (x) 
e 

dx ] ' 

I 

dn (x) 
e 
dx ] ' 

3.29 

3.30 

3.31 

Similarly, the current densities in the intrinsic and 

n-type germanium probes are 

I 
I I dn (x)] J (x) = e[~p(p(x)E 2 , 3 +n (x)E 2 , 3 (x)) - D p p dx 3.32 

I 
I I dn (x) ] J (x) = e[~n(n(x)E 2 , 3+n (x)E 2 , 3 (x)) + D 3.33 

n n dx 

and 

= J (x) + J (x) 
p n 

3.34 

where x > 0. 
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IV. RESULTS 

All the resulting graphs of the previous derivations 

are obtained by using single precision WATFIVE language 

on the IBM 360/50 computer at the University of Missouri -

Rolla. All the variables are plotted versus the distance 

from the plasma semiconductor interface. 

A. EQUILIBRIUM PROPERTIES IN THE GERMANIUM PROBES 

To emphasize the variation of the electrostatic 

potentials in the germanium probes, ~¢, the change in the 

electrostatic potentials relative to the surface potential 

are plotted in Figures 2 and 3 for the n-type and intrinsic 

germanium probes, respectively. Figures 2 and 3 show that 

-5 
~¢ decays from zero at x = 0 to approximately -1.3xl0 

and -3 -6 in the probe -1.5xl0 volts at X 2.8xl0 em n-type 

and X~ -4 1.3xl0 em in the intrinsic probe, respectively. 

The ~¢ in the bulk of the n-type case is less than ~¢ in 

the bulk of the intrinsic case and obtains its bulk value 

nearer to the surface of the n-type probe due to the higher 

electron concentration in the bulk of the n-type germanium. 

The deviation of the equilibrium electron density 

from its bulk value in the n-type germanium is plotted in 

Figure 4 and is designated by ~n. Similarly, the deviation 

from the bulk values of the number densities of the holes 

and electrons in the intrinsic germanium are plotted in 
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Figure 5. The 6n in the n-type germanium varies from 

approximately zero at x ~ 2xl0- 6cm to approximately 

4.9xlo14;cm3 at x = 0. In the intrinsic case 6n and 6p 

. 11 3 11 3 are approx1mately 2.5xl0 /em and -2.5xl0 /em at 

x ~ 1.3xl0-4cm, respectively, and are approximately 

12 3 12 3 . 1.8xl0 /em and -1.8xl0 /em at x = 0, respect1vely. 

The equilibrium electric fields for the intrinsic 

and n-type probes are plotted in Figures 6 and 7, respec-

tively. It is observed that the electric fields in both 

types of germanium are identical at x = 0, but the 

electric field in the intrinsic germanium decays to 

zero slower than in the n-type case because the electro-

static potential in the intrinsic probe reaches its bulk 

value at farther distance from the surface of the semi-

conductor than in the n-type probe. 

B. EQUILIBRIUM PROPERTIES IN THE HYDROGEN PLASMA 

Since the potentials in the germanium were plotted 

relative to the surface potential of the probe, the same 

is done for the hydrogen plasma in Figure 8. Figure 8 

shows that the variation of 6¢ from the probe surface to 

its bulk value is approximately 1.768 volts. This is many 

orders of magnitude greater than the total variations of 

6¢ in the germanium probes. 

The deviation of n. and n from their bulk values 
1 e 

are plotted in Figure 9. At x = 0, ~n. and ~n are 
1 e 



28 

approximately 6.75xlo 10 and -9xl0 9/cm3 , respectively, and 

decay to zero as becomes more negative. 

The equilibrium electric field in the H2 plasma is 

plotted in Figure 10. E1 (x) decays from approximately 

429 volts/em at x = 0 to zero as x becomes more negative. 

It is observed in all the equilibrium characteristics 

of the hydrogen plasma that the influence of the probe 

extends approximately -2.2xl0- 2 em into the plasma, which 

is greater than the debye length (6.9xl0- 3 cm) but less 

than the mean free path between collisions of electrons 

with molecules (5.5xl0- 1 cm) and ions with molecules 

-2 ( 9 • 8 x 1 0 em) . The effect of the plasma and semiconductor 

interface penetrates deeper into the plasma than into the 

germanium probes because the charge number densities in the 

bulk of the plasma are much smaller than in either semi-

conductor probe. 

C. STATIC NONEQUILIBRIUM PROPERTIES OF THE HYDROGEN PLASMA 

AND GERMANIUM PROBES 

The charge carrier number densities of the plasma 

intrinsic germanium, and n-type germanium are normalized 

to their respective applied electric fields and are 

plotted, respectively, in Figures 11, 12, and 13. It 

is indicated in Figure 11 that the normalized charge 

carrier number density in the plasma has a maximum at 

-3 approximately x = -1.75xl0 em. This indicates that the 
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diffusion term in the current density is zero at that 

distance from the interface. 

The total current density, ion current density, and 

electron current density are normalized by the applied 

electric field in the plasma and are plotted in Figure 

14. Similarity for the semiconductor, the total current 

density, hole current density, and electron current density 

are normalized by the applied electric fields in the semi-

conductor and are plotted in Figures 15 and 16 for the 

intrinsic and n-type cases, respectively. From Figures 

14, 15, and 16, it is observed that the current densities 

are related to the applied electric fields by 

J(x) = cr(x)E 4.1 

where cr(x) is an effective conductivity. 

Since the total static current density is a constant 

and continuous, Jt in the plasma is equal to Jt in the 

intrinsic and n-type germanium. Setting the Jt in the 

plasma equal to Jt of the intrinsic and n-type germanium 

yields 

4.2 

4.3 
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Using the data from Figures 14, 15, and 16, equations 4.2 

and 4.3 reduce to 

I 

1.08xE1 

-5 I 
4.0lxl0 xE 1 . 

4.4 

4.5 

Now using the condition that the difference of the elec-

tric displacements of two dissimilar materials is equal to 

the surface charge on the interface between the materials(l 3 ) 

yields 

I I 

s
0

(16E2-E1 ) = p 2 

where p
2 

and p
3 

are the charges on the surface of the 

intrinsic and n-type germanium probes, respectively. 

4.6 

4.7 

Substitution of equations 4.4 and 4.5 into equations 4.6 

and 4.7 produces 

-12 I 
p

2 
~ (1.44xl0 coul/volt-cm)E 1 4.8 

-14 I 
p

3 
~ -(8.85xl0 coul/volt-cm)E1 . 4.9 

Therefore, the surface charge on the interface is directly 

proportional to the applied electric fields. 
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Examining Figures 11, 12, and 13 with the use of 

equations 4.4 and 4.5, it is observed that the charge 

carrier number densities are discontinuous at the inter-

face. The discontinuity of carrier density is due to 

the buildup of the surface charge. 

If the length of the plasma is a and the length of 

the semiconductor probes is b and equations 3.9 and 3.10 

are valid, then the applied voltage, V, is related to the 

electric fields by(l 3 ) 

V = E'a + E'b 1 2 

for the intrinsic probe and 

for the n-type probe. Using equations 4.4 and 4.5, 

equation 4.1 now becomes 

a+l.08b 

for the intrinsic case and 

-5 a+(4.0lxl0 )b 

4.10 

4.11 

4.12 

4.13 

for the extrinsic case. To obtain the total current, I, 



32 

multiply equations 4.12 and 4.13 by the cross-sectional 

area of the probe, A. 

for the intrinsic probe and 

I 
v = -5 a+4.0lxl0 b 

4.14 

4.15 

for the n-type probe. Equations 4.14 and 4.15 state that 

the V-I curves for both germanium probes are linear, but 

the slope of the n-type probe's V-I curve is greater. It 

should be noted that equations 4.14 and 4.15 are valid only 

near V = 0. 

To check the assumption that E
1 

can be approximated 

as a constant, consider the total static current density 

' ' at x = 0 with E 1 (0) different from E1 (-oo). If the total 

current density of the plasma at x = 0 is approximately 

electron current density, then 

' ' ne(x)E 1 (0) + ne(O) E1 (0) + 

Now assume that 

' n (0) 
e 

n (0) 
e 

' E
1 

( 0) 
>> E 1 (0) 

kT e 
e 

' dn (x) 
e 
dx I x=O. 4.16 

4.17 
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and 

' dn (x) I 
~x x=O 

' << ne(O)E1 (0). 4.18 

Equation 4.16 becomes 

4.19 

It is known that the current density is a constant with 

respect to x, therefore Jt at x = -oo is given by 

4.20 

Equating equation 4.19 and 4.20 yields 

' n ( 0) 
e 7 2 

2.32xl0 /Vern . 4.21 

' ' The value of ne(O)/E1 obtained by assuming that E1 is a 

constant is 

' n (0) 7 2 
_e.,---,._, 2. 55xl0 /Vern 4.22 

where its value is obtained from Figure 11. Comparing 

equations 4.21 and 4.22, it is observed that the assumption 

' E1 is a constant is a reasonable assumption. 
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Equations 4.19, 4.20, and 4.22 imply that the total 

current density in the plasma is dependent upon the ratio 

I 

n ( 0) 
e 

n (-oo) 
e 4.23 

Therefore, the total current density is dependent upon the 

bulk ion and electron density, type of ion, kinetic tempera-

ture of the ions and electrons, and the surface potential 

because equations 

and 

n (-oo) 
e = 

<P ( 0) 

n (-oo) 
e 

/8kT n (-oo) _ e e 
€ 

0 

kT m. e 1 
= - ~ ln m 

e 

sinh (e¢ (0) 
kT 

e 
4.24 

4.25 

contain the characteristics of the plasma. Therefore, Jt 

contains the characteristics of the plasma and may be 

expressed as 
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11·+11 (e¢(0)) e¢ (0) ( 1 e) 
11 

(e2kTe lle-lli kT 
J ~ -ell 4n (-~) - [ e e -e t e e 311.+11 

1 e 

e¢ (0) 11·+11 e¢ (0) ( 1 e) 
11· 2kT lle-lli kT e¢(0) l (e e e ) ] sinh 

3 11 +11. 
-e 2kT e 1 e 

4.26 

where equations 4.19 and 3.24 were used. 
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Figure 2. D.<P vs x in the N-type Germanium Probe 
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Figure 3. D.cp vs x in the Intrinsic Germanium Probe 
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' ' Figure 13. n /E vs x in the N-type Germanium Probe 
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V. CONCLUSIONS 

The important result of this investigation is the 

V-I probe characteristics because they are the measurable 

characteristics. The V-I curves for both intrinsic and 

n-type germanium planar probes vary linearly near V = 0. 

The slope the V-I curve is greater for the n-type probe 

than for the intrinsic probe, but the magnitude of the 

difference between the slopes is dependent upon the dimen-

sions of the probes relative to the plasma. If the probe 

length, b, is much smaller than the length of the plasma, 

a, then the V-I curves are essentially independent of the 

doping level in the germanium probes and appears to be a 

metal probe( 7 ) near V = 0. This result is caused by the 

condition that the plasma is slightly ionized, therefore 

the number of charged particles available for conduction 

is limited by the ionization of the plasma and not by the 

doping level of the germanium probes. 

Since a theoretical investigation for germanium 

probes immersed in a hydrogen plasma has been solved for 

V near zero, it would be of interest to check the results 

of this theory in the laboratory. This investigation 

studied only small probe bias characteristics, therefore 

the usefulness of this theory is confined to that of 

determining the effective resistance of the probe plasma 

interface. 
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The three basic equations used in solving the planar 

semiconductor probe characteristics in a plasma are the 

current density equations, the current continuity equations, 

and Poisson's equations. 

1. CURRENT DENSITY EQUATIONS 

The current density equations in the x direction for 

a semiconductor( 4 ) and a plasma(lS) are given by 

A.l 

and 

dn (x) 
J_(x) = e(~_n_(x)E(x)+D ~x ) A.2 

where the subscripts + and - represent the holes and 

electrons, respectively, in the semiconductor and represent 

the ions and electrons, respectively, in the plasma. The 

terms J, e, ~' n, E, and D are, respectively, the current 

density, electronic charge, mobility constant, number 

density of the charge, electric field, and diffusion 

constant. 
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2. CURRENT CONTINUITY EQUATIONS 

Referring to Vander Ziel( 4 ), the divergence of the 

static current density in the x direction for the negative 

charge current density and positive charge current density 

are given, respectively, by 

and 

1 
e 

dJ_(x) 
dx = g - rn+n- A.3 

A.4 

where g is the generation rate of the charge pairs and r 

is the recombination coefficient. Equations A.3 and A.4 

show that the spacial derivative of J+ is equal to the 

negative of the spacial derivative of J , therefore, it is 

necessary to examine only equation A.3. If excess charge 
I 

pairs, n_, are injected into either the semiconductor or 

plasma, equation A.3 becomes 

1 
e 

dJ_(x) 

dx 

I I 

= g - r(n++n_) (n_+n_) A.S 

Using g = rn n ( 4 ) 
+ 

and the assumption of low injections, 

I 

n <<n ,n - + - A.6 



yields 

1 
e 

dJ_ (x) 
dx =- r[n+(x) + n (x)] n (x). 

Now define T, the recombination time, as follows: 

1 
T = r(n+(x) + n (x)). 

Equations A.3 and A. 4 become 

1 dJ (x) n (x) -
= e dx T 

1 dJ+ (x) n (x) 
= e dx T 
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A. 7 

A. 8 

A. 9 

A.lO 

Equations A.9 and A.lO are valid only for low injections 

of charge pairs and time invarient conditions. 

3. POISSON'S EQUATIONS 

The one dimensional Poisson's equation in a semi

conductor with both donors, Nd, and accepters, Na' (4 ) where 

the impurity ions are assumed to be fully ionized is given 

by 

dE(x) = 
dx 

e 
€ € r o 

- N (x) ] a 
A.ll 
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where E is the dielectric constant of a vacuum and E is o r 

the relative dielectric constant of the material. 

N = 0, then the semiconductor is intrinsic and equation a 

A.ll becomes 

dE (x) 
= dx 

e 
[n+(x) - n ( x) ] • A.l2 

Assuming charge neutrality in the bulk of the plasma, the 

following one dimensional Poisson's equation is obtained(lG) 

dE (x) = _e __ 
dx E E 

[n+ (x) - n (x)]. A.l3 
r o 

A comparison of equations A.l2 and A.l3 shows that Poisson's 

equations for the plasma and the intrinsic semiconductor 

are of the same form. 
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APPENDIX B 

THE EFFECTS OF COLLISIONS IN THE H2 PLASMA 
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Since the number densities of the electrons and ions 

are much smaller than the number density of the molecules, 

the dominate collisional processes in this hydrogen plasma 

are the electron-molecule and ion-molecule collisions. It 

is also assumed that no energy exchange occurs during the 

collisions because the plasma is in thermal equilibrium, 

therefore only momentum exchange occurs. 

Referring to Sutton and Sherman(S), the collision 

frequency of species r colliding with species s is given 

by 

<v > = rs 

l 

2Q n (2k) 2 
rs s 

T T 
(2:. + _§_) 
m m r s 

l 
2 

where Qrs is the total collisional cross-section for 

momentum transfer, n is the number density of the s 

scatters, T is the kinetic temperature of the species , 

B.l 

and m is the mass of the species. Q for momentum trans rs 

fer collisions is 

= IT (R + R ) 
2 

s r 

where R is the radii of the species. 

B.2 

If the incident particle is an electron (regarded as 

a point mass) and the scatters are the hydrogen molecules, 

then Q becomes rs 



where Rs is equal to 1.2 A(l?). 

T T 
r >> s 

m 
s 

If T = T , then s r 
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B.3 

B.4 

because the mass o£ the hydrogen molecule is much greater 

than the mass of the electron. The collision frequency of 

an electron and the hydrogen molecules is found to have 

the value 

<\) > rs ll2xl0 6/sec. B.S 

The collision frequency is equal to the reciprocal of the 

mean free time between collisions, T 2 , of an electron with 

the hydrogen molecules. Therefore, 

1 
T e 

6 112xl0 /sec. B.6 

If the incident particle is 
+ . an H2 1on and the scatters 

are hydrogen molecules, it is assumed that m = m r s 
= 

3.346xlo- 27kg, T = T , and the radius of the ion is equal r s 

to the radius of the molecule. Therefore, equation B.l has 

the value 

5 lOSxlO /sec B.7 



where T. is the mean time between collisions for ions. 
l 
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If the mean free time between collisions is assumed 

to be a constant in velocity space, the mobilities for 

the electrons and ions, respectively, are approximately( 4 ) 

~e = 

~i = 

e 
m e 

e 
m. 

l 

T e 

T. 
l 

7 2 1.56xl0 em /volt-sec B.8 

4 2 4.56xl0 em /volt-sec. B.9 
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APPENDIX C 

THE SURFACE POTENTIAL OF MATERIALS IN A HYDROGEN PLASMA 
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Referring to Uman(lS), the total current density of 

a singly ionized plasma to any material in equilibrium with 

the plasma is 

en. <v. > 
1 1 

4 

en <v > 
e e 

4 = 0 C.l 

where <v> and <v > are the thermal velocities of the ions 
1 e 

and electrons, respectively. If the plasma has a homogeneous 

Maxwell-Boltzmann distribution, then <v.> and <v > are given 
1 e 

by 

<v. > 
1 

<v > 
e 

=~ 1Tm. 
1 

=~ 1Tm 
e 

C.2 

C.3 

where Ti and Te are the kinetic temperatures of the ions 

and electrons, respectively. The terms m. and m are the 
1 e 

masses of an ion and an electron, respectively. For a 

plasma 

If 

thermal 

in thermodynamic equilibrium 

the plasma is 

equilibrium, 

hydrogen with 

then 

kT e 

equation 

m. 
l 

¢(0) =- ~ ln 
m e 

T. = T . 
1 e 

H+ 
2 

ions and is in 

C.l becomes 

C.4 

where equations 2.5 and 2.6 were employed. For the plasma 

under consideration 



and 

m.~ 
l 

-27 3.346xl0 kg. 

Therefore, equation C.4 reduces to 

¢ ( 0 ) ~ -1 • 7 6 8 vo 1 t s . 

.62 

c.s 

c. 6 

C.7 

According to equation C.7, the materials in equilibrium 

with the plasma will always have a surface potential 

negative relative to the plasma bulk potential. 
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APPENDIX D 

LIST OF SYMBOLS 



A cross-sectional area of probe 

a length of plasma 

b length of probe 

D. diffusion constant of ions 
l 

D e 

D 
n 

D 
p 

D 

E 

diffusion constant of 

diffusion constant of 

diffusion constant of 

diffusion constant of 

diffusion constant of 

equilibrium electric 

total electric field 

electrons 

electrons 

holes in 

positive 

negative 

field 

in plasma 

in probe 

probe 

charges 

charges 

E1 equilibrium electric field in plasma 

E 2 equilibrium electric field in intrinsic probe 

E 3 equilibrium electric field in n-type probe 

E applied electric field 

E1 applied electric field in plasma 

E 2 applied electric field in intrinsic probe 

' E 3 applied electric field in n-type probe 

e electronic charge 

g generation rate of charges 

I static current 

Je current density of electrons in plasma 
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J. current density of ions in plasma 
l 

J current density of electrons in probe 
n 

J current density of holes in probe 
p 

Jt total current density 

J+ current density of positive charge 

J current density of negative charge 

k Boltzmann's constant 

m mass of electron e 

m. mass of ion 
l 

mr mass of particle r 

ms mass of particle s 

Na acceptor number density 

Nd donor number density 

n equilibrium number density of electrons in probe 

n 1 intrinsic number density of germanium 

n plasma's electron equilibrium number density e 

ns number density of scatters 

n. plasma's ion equilibrium number density 
l 

nt+ total number density of positive charge 

nt- total number density of negative charge 

n+ equilibrium number density of positive 

n equilibrium number density of negative 

charge 

charge 

65 
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n charge carrier number density in probe 

n charge carrier number density in plasma 
e 

n+ charge carrier number density of positive charge 

n charge carrier number density of negative charge 

~n equilibrium electron number density in the germanium 

probes relative to the bulk value 

~ne equilibrium electron number density in the plasma 

relative to its bulk value 

~n. equilibrium number density of ions relative to its 
1 

bulk value 

p equilibrium number density of holes 

~p equilibrium number density of holes relative to their 

bulk value 

Q total collisional cross-section rs 

R radius of particle r 
r 

R radius of particle s s 

r recombination rate coefficient 

Te kinetic temperature of plasma particles 

T. kinetic temperature of ions 
1 

T kinetic temperature of particles r r 

Ts temperature of probe 

V applied de voltage 

<ve > thermal velocity of electrons in plasma 



<v.> thermal velocity o£ ions in plasma 
l. 

X distance £rom plasma and semiconductor interface 

E dielectric constant of a vacuum 
0 

E relative dielectric constant r 

lle mobility of electrons in plasma 

ll· mobility of ions in plasma 
l. 

lln mobility of electrons in probe 

llp mobility of holes in probe 

ll+ mobility of positive charge 

lJ mobility of negative charge 

al effective conductivity in plasma 

a2 effective conductivity in intrinsic germanium 

a3 effective conductivity in n-type germanium 

<v >collisional frequency between a particle r and rs 

particles s 

67 

p 1 surface charge on the surface of the intrinsic germanium 

probe 

p
2 

surface charge on the surface of the N-type germanium 

probe 

equilibrium potential relative to plasma bulk 

potential 

¢t total potential 
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I 

¢ perturbed potential 

~¢ equilibrium potential relative to the surface of the 

germanium probes 

T recombination time 

T mean free time between collisions for electrons in plasma e 

T· mean free time between collisions for ions in plasma 
l 
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