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ABSTRACT 

Self-consolidating concrete (SCC) possesses several characteristics that can 

benefit the concrete construction industry including accelerated construction, a reduction 

in labor and equipment, and a reduction in construction noise through eliminating or 

reducing the need to vibrate the concrete. However, SCC has some potential downsides. 

These problems can usually be attributed to higher paste content, higher fines content, 

rounder aggregate, and higher water to cement (w/c) ratios used to increase the flow of 

the concrete. The goal of this research project was to develop a SCC that had improved 

material properties through the use of chemical admixtures instead of modifications to the 

mix proportions. After the SCC was developed, the material properties were compared to 

a more traditional or normal concrete (NC) mixture. 

Both the SCC and NC underwent testing of fresh and hardened properties. The 

SCC underwent the following tests: slump flow, J-ring, L-box, and segregation column. 

These tests aided with mixture proportioning and optimization. After the SCC mix 

design was selected, material properties were tested and compared for both NC and SCC. 

These tests included: compressive strength, modulus of rupture, shrinkage, and shear 

strength. These properties were compared between the two types of concrete and also 

with empirical models and design code provisions. 
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1. INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION FOR STUDY 

Self-consolidating concrete (SCC) is one of the concrete industry's latest 

developments; it is defined as a concrete that spreads easily under its own weight while 

still resisting segregation. sec has three main subsets: self-compacting concrete, self­

placing concrete, and self-leveling concrete, all of which tout many positive traits that 

can translate to economic and technological benefits for the end user. Some of these 

benefits include accelerated construction, a reduction in labor and equipment, and a 

reduction in construction noise through eliminating or reducing the need to vibrate the 

concrete. Furthermore, SCC provides the ability to achieve good compaction even in 

areas that have high steel congestion, and this ability is independent of the skill of a 

vibrating crew, providing better quality control of the end product. While these are 

impressive benefits, SCC is not completely without problems. The use of SCC has also 

brought about two significant concerns that must be addressed or taken into account 

when designing reinforced concrete with this material: shear strength and shrinkage. 

The first concern is that SCC has a lower shear resistance then normal concrete 

(NC). This is primarily due to the way that SCC has traditionally been produced. By 

reducing the amount of coarse aggregate and selecting an aggregate that is more rounded 

in nature, designers are able to produce a concrete that is much more flowable. While 

this provides benefits during concrete placement, it can negatively impact the hardened 

properties of the concrete, such as the concrete shear strength. When comparing a 

rounded aggregate to an angular aggregate, there is the potential for a reduced amount of 

aggregate interlock under loading. Rheology, which is related to aggregate diameter and 

spacing, also affects shear strength, and there is a significant difference between sec and 

NC in this area. 

Shrinkage of SCC is also a concern. Factors that typically contribute to shrinkage 

are higher paste contents, higher water/cement (w/c) ratios, and the types and amounts of 

admixtures used within the concrete. sec generally includes all of these traits compared 

to traditional concrete mixes. 



Since SCC is still relatively new to the industry, there is still a significant amount 

of research that needs to be conducted. The outlook for SCC seems bright in areas such 

as precast or prestressed operations but some users are still hesitant to embrace the 

material for the concerns mentioned above. 

1.2. OBJECTIVE AND SCOPE OF WORK 

The objective of this project was to develop an SCC mixture using materials local 

to central Missouri and then test and compare the fresh and hardened properties to a 

control NC mixture. Different types and amounts of chemical admixtures were used that 

allowed for more optimized coarse aggregate properties. Keeping in mind the typical 

sec factors that can negatively affect shear strength, the highest aggregate content with 

angular shapes were used while still maintaining a highly flowable mix. This result 

required a chemically-based approach to SCC mix development. The mixes were then 

tested in the plastic and hardened states including shear strength and shrinkage behavior. 

The following scope of work was implemented in order to achieve the project's 

objective: (1) review applicable literature; (2) develop a research plan; (3) develop and 

optimize SCC and NC mix designs for testing; (4) perform material tests on both fresh 

and hardened concrete specimens; (5) design, construct, and test full-scale shear testing 

specimens; (6) analyze results and prepare this theses in order to document the discovery 

of information obtained during this research study. 

1.3. APPLICATION 

When SCC was first developed, the flowability was increased by increasing w/c 

ratios, increasing paste contents, and using rounder aggregates. These can all contribute 

to a reduction in shear strength. Since the early days of SCC, admixtures have made 

great strides and it is possible to create sec without taking all of these shear strength 

reducing measures. If an SCC design can be created using a lower w/c ratio, lower paste 

content, a more angular aggregate, or some combination of the three, when compared to 

early sec mix designs, then it could be possible that the effect on shear strength will be 

negligible or at least smaller than once feared. This would be good news for areas such 

as the precast or prestressed industries. 

2 
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The prestressing industry in particular will be concerned with the amount of 

shrinkage that SCC experiences compared to NC. In many prestressed applications, steel 

congestion can be a problem; and many plants are already required to use highly flowable 

mixes to ensure that concrete passes around all of the prestressing strands. If SCC 

experiences significantly more shrinkage it will lead to significantly higher prestress 

losses. With the addition of new chemical admixtures it becomes possible to increase the 

amount of coarse aggregate, reduce the w/c ratio, and maintain the flowability of the SCC 

all while keeping the shear strength and shrinkage on par with NC. 

1.4. RESEARCH PLAN 

The proposed research plan included a description of eight (8) tasks necessary to 

successfully complete the study. They are as follows: 

Task 1: Review applicable literature. In order to better understand the topic it was 

necessary to become familiar with previous research. This indicated the test methods that 

would be most beneficial and gave a basis for comparison of results from this study to 

others. Research programs that studied the effects of aggregate size and shape on 

concrete shear strength, effects of admixtures on workability and finishability, and factors 

that can effect concrete shrinkage were of particular interest in this area. 

Task 2: Perform aggregate material testing. Before mix design could begin, 

aggregates were obtained locally for use in the concrete. Standard tests were performed 

on the aggregates, both fine and coarse, to determine their properties. These tests 

included: specific gravity, absorption, unit weight, sieve analysis, absorption, total and 

surface moisture content, and organic impurities. These material properties were used 

along with ACI 211.1-92 to create the initial normal concrete mix design. 

Task 3: Evaluate the effects of fly ash on the fresh and hardened concrete. It is 

generally accepted that the addition of fly ash to concrete will lead to an increase in 

slump and workability. Since the objective of this research was to create a self­

consolidating concrete with a very high slump and workability, the addition of fly ash 

was a logical choice. Fly ash is a waste product from burning coal during electricity 

generation, which makes it an environmentally friendly product and its cost is lower than 

cement or chemical admixtures. If a moderate increase in slump can be achieved without 
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a significant decrease in strength, it would be possible that admixture dosages could be 

decreased, reducing the cost. As a part of this task, both fresh and hardened properties of 

concrete were tested with four different amounts of fly ash replacement. This allowed for 

an optimization of the amount of cement that would be replaced with fly ash by balancing 

the slump and workability increases in the fresh state with the short term retardation in 

compressive strength gain. 

Task 4: Evaluate the use of different types and brands of admixtures. In order to 

maintain the shear strength of the self-consolidating concrete being developed, the coarse 

aggregate content was kept higher then normally seen in other self-consolidating concrete 

mixes. This approach will lead to a decrease in the slump of the concrete so the use of 

chemical admixtures became necessary. It was determined that three chemical 

admixtures would be used: air-entraining admixture, high-range water reducing 

admixture, and a viscosity-modifying admixture. By increasing the air content in the 

concrete, the durability of the concrete is increased as well as a slight increase in slump. 

The high-range water reducing admixture provided a significant increase in the slump of 

the concrete making it flowable without increasing the w/c ratio to a point that 

compressive strength drops too low. The viscosity-modifying admixture prevented 

excessive segregation in the fresh state, which can be an issue with a highly flowable 

concrete. With the manufactures recommendations, and after testing was completed in 

the lab, the types and dosages of the required admixtures were found and a mix design 

was developed for the self-consolidating concrete. 

Task 5: Produce and evaluate test batches of concrete . As a starting point, ACI 

211.1-92 was used to develop an initial mix design. Assumptions were made that the 

desired slump would be approximately 4 inches (I 0 I mm) and the air content would be 

approximately 4 percent. Information about the aggregate discovered during Task 2 was 

also used at this time. This initial concrete was produced and evaluated both in the fresh 

and hardened states. Changes were then made to the mix design based on these results 

and retested. Some of these changes included modifying the w/c ratio, increasing or 

decreasing the aggregate content, and testing different dosages of air-entraining 

admixtures to obtain the desired air content. After the NC had been optimized, work 

began to develop the SCC. This process began by testing different types and amounts of 
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high-range water reducers and viscosity modifying admixtures. The desired product had 

to have a high flowability without a high potential for segregation. This meant balancing 

the amounts of the two admixtures that would be used. Similar testing was performed on 

the SCC as the NC in the hardened state; however, because of the rheology of the 

material, traditional fresh concrete testing was not an option. To test the SCC in its fresh 

state, testing apparatuses developed especially for the material were used. Much like the 

NC, this information was used to optimize the mix design as well as the admixture 

dosages to obtain an optimized sec. 

Task 6: Perform shrinkage testing. One concern with SCC was the amount of 

shrinkage that the concrete would experience. Many times this increase in shrinkage can 

be attributed to the increase in paste content; since the paste shrinks as it cures, it seems 

reasonable that if the paste content is increased to improve flowability and create an sec, 

the overall concrete shrinkage would also increase. The purpose of the shrinkage testing 

in this case was to see if keeping the aggregate contents the same as a traditional concrete 

and improving the flowability through the use of admixtures would decrease the 

shrinkage experienced. 

To study the concrete shrinkage, cylindrical specimens measuring 4 inches (I 0 I 

mm) in diameter and 24 inches (609 mm) in length were produced using NC, SCC, and a 

NC with a thirty percent replacement of cement with fly ash referred to as the fly ash 

concrete (FA). Four specimens were created for each type of concrete and each concrete 

specimen had three rows of DEMEC points for a total of nine readings per specimen. 

These readings were averaged to obtain an overall shrinkage value for the concrete . 

Initially readings were taken every day to capture the largest changes in length but as 

time progressed and shrinkage happened more slowly, readings were taken less 

frequently. Shrinkage values were then plotted over the time period that readings were 

taken to compare the three concrete types. This allowed for a comparison of NC to SCC. 

Since the FA could also be compared to the NC and SCC it could be seen if any changes 

in shrinkage were due to the admixtures, the fly ash, or a combination of the two. 

Task 7: Perform shear testing. In addition to the potential for increased shrinkage, 

SCC can also have a decreased shear strength when compared to NC. As with shrinkage, 

this can typically be attributed to the increase in the paste content and the types of 



aggregate that are used. If the aggregate contents are decreased and a rounder aggregate 

is used to improve the flowability of the concrete, there is less aggregate interlock to 

provide shear strength. The reasoning for the chemical admixtures was to produce SCC 

with a higher content of a more angular-shaped aggregate. 
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In order to compare the shear strength of the NC and SCC, full scale beams were 

manufactured to be tested in a third point loading configuration. These beams were 

designed to fail in shear by increasing the flexural reinforcement. Three stirrup designs 

were also created: no stirrups, the minimum amount required by ACI, and slightly more 

than the minimum amount required by ACI. Strain gages were applied to the stirrups and 

to the flexural reinforcement to ensure that the steel was yielding, and the maximum load 

applied to the beam was also recorded and used to calculate the strength of the beams. 

Task 8: At the conclusion of testing, information was gathered and used to 

develop findings, conclusions, and recommendations to document the discovery of 

information obtained during this research project. The strength of the concrete in shear 

and the shrinkage of the SCC compared to the NC was used by researchers to evaluate 

the overall performance of the concrete. The data will also help to draw conclusions and 

recommend future studies on the product. This thesis will include a literature review, a 

description of testing that was completed, and a conclusions and recommendations 

section. 

1.5. OUTLINE 

This thesis includes seven chapters and two appendices. This section will discuss 

the information that will be presented in more detail throughout this document. 

Chapter 1 includes background information about SCC and the reasoning for 

performing this research. It also discusses the scope of work that was done and the work 

plan that was followed. 

Chapter 2 includes information from previous research performed on SCC to date. 

This section includes material properties and mix proportioning of SCC, a description of 

typical admixtures used, test methods employed, and optimization of the material. 

Chapter 3 describes the process followed to develop the SCC mix design used 

throughout the research project. 
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Chapter 4 includes information about the material testing program. The steps that 

were followed to determine the fresh and hardened concrete properties are discussed in 

this chapter. 

Chapter 5 presents information found from shrinkage testing. The process of 

casting the specimens, de-molding, and taking data is described as well as presenting 

results and conclusions found. 

Chapter 6 describes the fabrication process of the shear specimens as well as the 

results of the full-scale shear tests that were performed. It describes the process from 

bending the rebar to placement and finishing of the concrete as well as presenting results 

and conclusions found. 

Chapter 7 includes findings, conclusions, and recommendations based on the 

research performed. 

Appendix A includes material data sheets for the chemical admixtures used 

during testing. 

Appendix B includes shrinkage plots for concrete specimens. 
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2. LITERATURE REVIEW 

2.1. GENERAL 

2.1.1. Definition of SCC. SCC is defined as a highly flowable concrete that 

resists segregation; it has the ability to fill formwork and encapsulate reinforcement with 

little or no mechanical consolidation while still maintaining adequate viscosity to resist 

segregation. Its rheology is characterized by a low yield stress making it easy to deform 

and a moderate viscosity in its plastic state to maintain a proper, homogenous suspension 

of solids (ACI 237, 2007). 

2.1.2. Uses for SCC. Initially, SCC was developed to ensure that proper 

consolidation was achieved in areas where durability and service life were a concern. 

Some of these areas were cast sections with limited access but still highly congested 

reinforcement such as a tunnel lining section or concrete filled tubular columns. More 

recently SCC has been used for concrete repair applications such as bridge abutments and 

pier caps, parking garages, and retaining walls in Canada and Switzerland. North 

America has also seen an increase in the amount of the SCC especially in the precast 

industry. To provide design assistance and to study this emerging technology, the 

American Concrete Institute (ACI) has created ACI Committee 237 and the information 

covered in Sections 2.1 through 2.4.3 is from their Emerging Technology Series on SCC. 

2.2. MATERIAL PROPERTIES FOR SCC 

2.2.1. Concrete Shrinkage Shrinkage is defined as the decrease in the volume of 

the cement. It is composed of drying shrinkage, autogenous shrinkage, and carbonation. 

The main component is drying shrinkage and, as the name suggests, the volume decrease 

in the cement is due to moisture loss from the concrete. 

2.2.2. Shrinkage Factors Factors that contribute to shrinkage are the w/cm ratio, 

curing conditions, and the volume to surface ratio of the concrete. As the w/cm ratio 

increases there is more water to dissipate from the concrete matrix leading to more 

shrinkage. The type and duration of curing can also heavily affect shrinkage. If the 

relative humidity surrounding the specimen increases, the shrinkage will decrease. 

Depending on the type of curing, either active or passive, a different amount of relative 



humidity can be provided to prevent shrinkage. Finally, specimens that have a larger 

shape and overall higher volume to surface ratio, will entrap more water in the concrete 

matrix and decrease shrinkage. 
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Current research has shown that shrinkage of SCC can be more or less than that of 

normal concrete (NC) depending on the way that the concrete was developed. Since 

drying is the largest contributor to overall shrinkage, the w/cm ratio of the concrete is 

very important. If the amount of free water is increased to provide improved flowability, 

then it is likely that there will be an increase in the amount of shrinkage in the concrete. 

If, however, the w/cm is kept the same but the flowability of the concrete is increased 

through the use of chemical admixtures or aggregate size and shape modifications, then it 

is likely that the shrinkage will remain the same as that of normal concrete. 

2.3. ACI COMMITTEE REPORT 237R-07 

While the hardened properties of SCC compared to those found in NC have been 

shown to be significantly different, it is the properties during the fresh, plastic state that 

really differentiate the two materials. To objectively evaluate an SCC mixture, there are 

two different processes. The first is to evaluate the rheological properties of the SCC, 

and the second is to evaluate the properties using the more practical field-related testing 

equipment. The later is the easier and more widely know method for testing SCC. There 

are three properties that can be determined through field relating tests that will be 

discussed: stability, filling ability, and passing ability. These properties are all influenced 

by and tied to the rheological properties of the concrete. To develop a SCC mix design 

that will work in a particular application, the designer must have an adequate knowledge 

of these three concrete characteristics and know the type of application for which the 

concrete will be used so that the concrete is suitable for the job. 

The desired stability, filling ability, and passing ability needed by a concrete mix 

will always depend on the application. The three are equally important and have an 

effect, to some extent, on the others. When working with SCC, there should be a clear 

understanding of exactly what each characteristic means and its importance in different 

situations. 
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2.3.1. Filling ability. Filling ability is defined as the ability of SCC to flow and 

fill in completely all the spaces within a set of formwork. It is affected by the fluidity 

and the viscosity of the concrete. If the fluidity of the concrete increases or viscosity 

decreases, then the filling ability would likely increase; however, as the fluidity and the 

viscosity change, so will the rheology, which will likely alter the stability of the concrete 

as well. 

2.3.2. Stability. Stability is defined as the concrete's ability to maintain a 

homogeneous distribution of its constituents during placement and hardening. Since 

these are two very different types of applications, there are two types of stability 

characteristics equally important to SCC: dynamic and static stability. While SCC is in 

its plastic state, the typical stability issue is the settlement of the coarse aggregate to the 

bottom of the form. Workers may also find that they see excess bleeding or surface 

settlement after the casting is completed but before the concrete has set. These are all 

static stability issues and can be combated in some cases by using Viscosity Modifying 

Admixtures (VMA). A VMA is an admixture used to improve the rheological properties 

of the concrete in its plastic state so that it can reduce the risk of segregation or washout. 

The second stability issue, dynamic stability, refers to the concretes ability to remain 

homogenous and resist separation during placement in the formwork. This can be an 

issue if the concrete is flowing through closely spaced obstacles or narrow spaces. This 

should also be considered when selecting the type of transportation method and whether 

there is agitation or not. 

2.3.3. Passing ability. Finally, passing ability is the ability of the concrete to pass 

among obstacles such as congested steel or narrow spaces in the formwork. Should the 

concrete have segregation issues and the coarse aggregate build up in one of these areas, 

a blockage could be experienced, reducing the passing ability of the concrete. Passing 

ability is a measure of the flowability of the concrete in a confined situation. It should 

not be confused with filling ability, which is the flowability of the concrete in an 

unconfined situation. 

In order for a designer to find the properties discussed above it is necessary to 

produce trial batches of concrete and to quantify the material' s filling ability, passing 



ability, and stability. To objectively and effectively find these properties, test methods 

have been developed and at this time are under refinement by ASTM. 

2A.MIXDEVELOPMENT 

II 

2A.1. Target Values The first step to creating a SCC mix design is to determine 

the slump flow that will be required for the particular application. Generally, a mix 

designer should target the lowest slump flow that will provide adequate passability so as 

to reduce problems associated with segregation or instability. Tables found in ACI 237R­

I I can assist with the selection of an appropriate slump flow target. To begin, the mix 

designer should rank each of the member characteristics as low, medium, or high. The 

shaded boxes show areas that should be avoided. For example, if there will be a low 

placement energy, it is recommended that the concrete have a slump flow of at least 26 

inches. With the placement energy low, the concrete will need to have a high filling 

ability so that it will be able to fill the forms completely without the assistance of 

vibration. 

2.4.2. Trial Batches Once the target slump flow is found, designers can move on 

to conducting trial mixtures using the materials that will be used on the project. Once the 

concrete is hatched, the slump flow should be checked again and the other fresh sec 
properties, passing ability and stability, should be determined. Once they have all been 

determined, the slump flow can be compared to passing ability and stability and a 

relationship between them can then be established. This will usually prove useful 

because it will allow for less frequent testing of stability in the field. 

2A.3. Selecting Proportions ACI document 237R limits its discussion to SCC 

produced using conventional materials and production methods. sec is a high 

performance concrete in the plastic state with a much higher level of workability and self­

consolidation. These attributes are characterized by the concrete's filling ability, passing 

ability, and stability. All of these attributes should be present before it can be considered 

SCC. To achieve these properties and to optimize them for the concrete's intended 

purpose, the application and the placement technique should be taken into account. One 

example might be that concrete for a footing could have a higher coarse aggregate 

content then concrete to be placed in a column with congested steel reinforcement. The 



designer could take advantage of the benefits of a higher aggregate content if a large 

slump flow was not required. In a situation where passability was not of the highest 

concern, it might not be a problem. 
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When developing a SCC mix design, the ACI 237R guide will supplement the 

standard practice for selecting proportions for concrete mixture proportions found in ACI 

211.1. There are three different approaches that are typically followed when creating an 

SCC mixture. The first is to increase the powder content and apply a high range water 

reducing (HRWR) admixture. The higher powder content promotes stability while the 

HRWR promotes flowability. The second is to keep the coarse aggregate content higher 

and the powder content lower from the first and achieve flowability with a high dosage of 

chemical admixtures. This could be beneficial if strength, either shear or compressive, 

might be an issue. It can, however, lead to segregation problems, so in addition to the 

HRWR a viscosity modifying admixture (VMA) can be applied. The third method is a 

combination of the two with a moderate powder content and a moderate VMA dosage. 

The approach that the designer should take is once again based on the specific 

application. 

2.5. WATER-REDUCING ADMIXTURES 

In many cases where a high filling ability is required, mix designers will turn to a 

water-reducing admixture. As the name indicates, this admixture lowers the water that is 

required to attain a given slump, or it reduces the water demand of the concrete. This 

ability is advantages in several different ways. The first would be to maintain the same 

slump but decrease the water content. This would result in a general improvement in 

strength, impermeability, and durability of the concrete. Alternatively, if cost was an 

issue, the w/c ratio can be kept the same but the amount of cement can be decreased. 

With less cement, which is the highest priced ingredient in concrete, the overall cost of 

the concrete can be decreased and the water-reducing admixture can maintain the same 

workability. This change may be made for these economic reasons or it may be made for 

technical reasons. If heat of hydration is a concern , reducing the amount of cement will 

help to lower the concrete temperature. Finally, water reducing admixtures can be used 

to help facilitate difficult placements such as intricately detailed forms of highly 



congested steel. If a water-reducing admixture is added to a concrete and the water and 

cement contents are kept the same, the slump will increase as well as workability and 

finishability. 
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2.5.1. Classification of Water-Reducers. Water-reducers are marketed by their 

manufactures in three different categories: low, mid, and high-range. The advantage of 

using a mid or high-range water-reducer is that it will allow for improved performance 

and increased slump without negatively affecting the setting times or air entrainment. 

2.5.2. Low-Range (Regular) Water-Reducing Admixtures. An admixture may 

be classifies as a Type A water-reducing admixture according to ASTM C 494 if it 

reduces water requirements by at least 5%. ASTM C 494 is a performance specification 

that sets the minimum for the decrease in water content required to achieve the same 

slump as a control mix while maintaining other properties within the specified limits. 

These water-reducers will achieve reductions of 5 to I 0% in water requirements. The 

actual water reduction is based on several factors: type of admixture, cement fineness, 

mix proportions, temperature of concrete, and time of addition. 

2.5.3. Mid-Range Water Water-Reducers. In an effort to provide a wide range 

of products that can work we11 in any application, admixture companies now offer 

formulations that work between conventional concrete and flowing concrete. This is 

genera11y defined as concrete that has a slump between 5 and 8 in. (125 and 200 mm) 

These are called mid-range water-reducing admixtures, however, this classification is not 

recognized by ASTM C 494. 

2.5.4. Superplasticizers (High-Range Water-Reducers). In applications where 

flowing concrete or a much higher amount of water reduction is required, a high range 

water-reducing agent can be used. To be classified as a high-range water-reducing 

admixture according to ASTM C 494, a water reduction must be achieved of at least 12-

30%. In some cases it may be used to achieve slumps greater than 8.5 in. ( 190 mm), in 

which case it must conform to ASTM C 1017, which sets a performance limit in terms of 

an increase in slump. Generally, most commercial products wi11 adhere to both 

requirements but having both specifications allows for specifying specific performance 

criteria in terms of the plasticizing effects. 
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High-range water-reducers are frequently used in the production of high-strength 

concrete where w/c ratios of well below 0.40 and sufficient workability is required. In 

some cases, such as in the production of SCC, these admixtures can be used without a 

reduction in water to produce concrete with very high slumps. At these slumps, the 

concrete flows like liquid and fills forms efficiently, requiring little or no vibration. 

2.5.5. Water Reduction Mechanism. Water-reducing admixtures are composed 

of negatively charged organic molecules that when added into a concrete mixture absorb 

at the solid-water interface. In a concrete mixture, solid particles will have charges on 

their faces, these may be positive, negative, or both. As the particles move past each 

other during mixing, electrostatic attractions cause adjacent particles to flocculate. As the 

particles move together, they trap a considerable amount of water leaving less water to 

reduce the viscosity of the concrete. The water-reducing admixture works by 

neutralizing the surface charges and causing all the particles to have the same charge. 

This causes the particles to repel each other and disperse the water into the paste. This 

allows the water to work harder in the mixture. 

2.5.6. Effect on fresh concrete properties. 

2.5.6.1 Flowing concrete. Improved flowability can be advantageous in several 

different situations such as difficult placements, areas where adequate vibration cannot be 

achieved, or even to improve the ease in placement. With the use of a high-range water­

reducer, higher slumps can be achieved with mix proportions that are closer to a normal 

concrete. This would not be easily achieved with conventional water reducers without 

using oversanded mixes with high cement contents. This type of concrete is suited for 

use in tremie placements, rapid pumping of concrete, and for SCC. 

2.5.6.2 Slump loss. While the loss of slump can be a problem with any hi gh­

slump concrete, it can be aggravated with the use of a high-range water-reducer. To 

combat this problem, a second dose of the admixture can be added or the addition of the 

admixture can be done immediately before placement. It should be noted that if repeat 

additions are to be made, adequate time for mixing should be allowed for proper 

blending. In extreme cases flash setting may occur but this can usually be alleviated by 

delaying the addition of the admixture. 
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2.5.6.3 Set retardation. Regular and some mid-range water-reducing admixtures 

can act as retarding admixtures. It is recommended that if a faster strength gain is 

required, an accelerator be added to balance the effects of the water-reducer. In some 

cases it has been noted that some non-retarding formulations can cause retardation if the 

curing temperature is low enough. 

2.5.6.4 Bleeding. Water-reducers that are based on hydroxycarboxylic acids tend 

to increase bleeding. While these admixtures are formulated to improve concrete 

workability, they may not improve the cohesiveness. To properly design a flowing 

concrete, overdosing must be avoided as it can lead to bleeding and segregation. 

2.5.6.5 Air entrainment. Whenever a regular water-reducing admixture is used, 

less air-entraining admixture will be required. This is because the water-reducing 

admixture coats the cement particles to reduce flocculation; this prevents the air­

entraining admixture from being absorbed into the cement particles and makes the 

admixture wholly available to act at the air-water interface. This is not the case with a 

high-range water-reducer. These have air-detraining properties and to compensate for 

this, more air-entraining agent must be added to obtain the same air content as before the 

high-range water-reducer was added. 

2.5. 7. Effect on hardened concrete properties. 

2.5.7.1 Compressive strength. With the addition of water-reducing admixtures, 

an increase of approximately 25 % in compressive strength can be seen over decreasing 

the w/c ratio alone. These effects can be seen within 24 hours if the effects of 

retardation do not occur. This increase in strength is due to the evenly dispersed particles 

creating a more uniform microstructure. Some call this increasing the efficiency of the 

cement. 

2.5.7.2 High-strength concrete. High strengths can be achieved when the w/c 

ratio is decreased below 0.40, but this cannot be done economically if the cement content 

is raised too high and excessive heat is produced. The amount of cement must be kept at 

normal levels with water-reducers maintaining the same slump. 

2.5.7.3 Shrinkage. It has been stated that water-reducing admixtures increase the 

drying shrinkage of concrete. Data to this effect has generally been conflicting and 

variables such as cement type and the particular admixture make it difficult to make 



general conclusions on the subject. It is often noted that the rate of shrinkage is 

increased, however, after 90 days there is little difference in the shrinkage of concrete 

made with a water-reducer to that of a control concrete. 
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2.5.7.4 Creep. As with shrinkage, there have been reports that increases in creep 

have been measured but the data is still unclear and there are significant differences 

between types and brands of admixtures. If creep values are critical, it is generally 

recommended that testing be performed to assess the effects of the mix design with the 

materials and admixtures that will be used. 

2.6. VISCOSITY MODIFYING ADMIXTURES 

Viscosity modifying admixtures are water-soluble polymers with a high 

molecular weight. They are used to increase the viscosity of water. Since the water is 

mixed within the concrete, this increases the cohesiveness of fresh concrete and reduces 

the tendency to bleed and segregate. Viscosity modifying admixtures are useful for gap­

graded mixes where large particles tend to segregate and sink within the mixture or when 

improved lubricating properties are desired. 

Materials that are commonly used to create viscosity-modifying admixtures are 

polyethylene oxides, cellulose ethers, alginates, natural gums, and polyacrylamides or 

polyvinyl alcohol. 

In general an SCC that has a given w/cm ratio and low dosage of HRWRA will 

exhibit a better static stability when a VMA is incorporated into the mix design . 

Typically a VMA is not necessary in an SCC with a low w/cm ratio and/or high binder 

content because it will tend to have proper stability already. If an SCC is designed to 

have a relatively high w/cm ratio and/or low binder content a VMA should be added to 

ensure adequate stability and robustness. 

2.7. TEST METHODS 

The characteristics that designers and finishers will be most interested in with 

sec will be the concrete's ability to fill a mold, resi st segregation , flow through 

congested areas or obstacles without segregation, and finishability. To that end, there 



have been six tests that have been developed, specifically for sec, to determine these 

characteristics. 

2.7.1. Slump flow test. The slump flow test is a common procedure that can be 

executed quickly and easily at a concrete plant or jobsite to find the free-flow properties 

of the concrete in the absence of any obstructions. The procedure follows ASTM C 

143/C 143M (2010). The concrete is placed in an inverted concrete slump cone in one 

lift without any means of consolidation. The mold is then raised and the concrete is 

allowed to flow out of the bottom of the cone. Two diameters are then measured, 

perpendicular to each other, across the concrete. The average is then recorded as the 

concrete's slump flow. The slump flow can be compared to the filling potential of the 

concrete. 
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2.7.2. Visual stability index (VSI). After completion of the slump flow test, a 

visual stability index reading can be performed on the concrete from the slump flow test. 

This index is intended to provide a quick measurement of the concrete's stability. After 

the slump flow is completed and diameters have been measured, a visual observation of 

the concrete spread is noted and a VSI number of 0, 1, 2, or 3 is assigned. A reading of 0 

or I should indicate that the concrete is stable, while a reading of 2 or 3 would indicate 

that segregation could be an issue and producers should modify the mix to provide more 

stability. 

2.7.3. T50• During placement, the flow rate of SCC is influenced by the viscosity. 

To find the relative measure of the unconfined flow rate, the Tso test can be performed. 

A sample of concrete is placed in an inverted slump cone in one lift without any 

consolidation. The cone is raised as would be done for a slump flow test and the time is 

recorded in seconds that it takes for the outer edge of the concrete to reach a diameter of 

20 in . A longer time would indicate that the mixture has a higher viscosity and a lower 

flow rate. 

2.7.4. J-ring. To test the ability of the concrete to remain cohesive while flowing 

between obstacles, the passing ability of the concrete should be determined. The J -ring 

can provide this information as well as being easy to run either in a plant or in the field. 

Once again concrete is placed in an inverted slump flow cone in one lift with no 

consolidation. The cone should be placed concentric with a J-ring so that as the cone is 



raised, the concrete must flow through the ring. Two diameters are measured 

perpendicular to each other and the average is recorded as the concrete's J-ring slump 

flow. The larger the slump flow, the farther the concrete can travel through 

reinforcement under its own weight. 
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2.7.5. L-box. In addition to the J-ring, the L-box test can also be used to 

determining the confined flow characteristics of the concrete. The apparatus is made of a 

horizontal and a vertical box in the shape of an L separated by a moveable gate. Concrete 

is placed in the vertical box and after the gate is raised, the concrete flows past vertical 

reinforcement and into the horizontal section. After flow has stopped, the height at the 

end of the horizontal section is expressed as a proportion of whatever remains in the 

vertical section. Should the concrete flow as easily as water, the ratio would be I, since 

the two heights would be equal. The minimum ratio is considered to be 0., but as the 

ratio approaches 1 the flow potential increases. 

2.7.6. Column segregation. In addition to flowing abilities, both confined and 

unconfined, segregation potential is also an important characteristic. To evaluate this 

property, a column segregation test can be performed. The procedure is relatively 

straightforward. A sample of fresh concrete is placed in a cylindrical mold in one lift 

without any consolidation. The column is allowed to rest in the cylinder for a prescribed 

period of time, and then the column is sectioned into three segments with the top and 

bottom sections each accounting for a quarter of the total column volume. The concrete 

that comes from the top and the bottom sections are washed over a No.4 sieve and the 

masses from the top and bottom sections are determined. From this, the percent 

segregation is calculated. No percent segregation has been set as acceptable, but it is 

generally assumed that any value under 10% is tolerable. 

2.8. SHEAR STRENGTH OF SCC 

2.8.1. Hassan, Hossain, and Lachemi, 2010. An investigation was conducted 

within the Civil Engineering Department of Ryerson University in Toronto, Canada to 

study the shear strength, cracking behavior, and deflection characteristics of sec and 

compare these results to NC. The test consisted of casting and testing 20 beams 

containing no shear reinforcement under a three point loading condition. The variables 
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that were modified were the concrete type (SCC or NC), coarse aggregate content, beam 

depth, and longitudinal steel reinforcement ratio. The performance was then evaluated 

based upon several different factors such as the crack pattern and width, load at either the 

first flexural or shear crack, ultimate shear resistance, post-cracking shear resistance and 

ductility, load-deflection response, and failure mode. The conclusion was drawn from 

the testing that in general, the shear strength of SCC is lower than that of NC. It was also 

concluded that the current code-based equations are still valid for predicting the crack 

width and first flexural cracking load and moment. 

In general, the production of SCC involves increasing the fine aggregate content, 

incorporating mineral admixtures, and/or using viscosity modifying admixtures. This 

will result in a highly flowable mixture that will readily spread under its own weight with 

minimal segregation. This reduces or even eliminates the need for vibrators to achieve 

good compaction which will then in turn reduce the amount of labor during construction 

and the possibility of errors. 

At the beginning stages of SCC production, there were two main concerns on the 

minds of engineers and designers regarding the concrete's shear strength. These were 

that the concrete's best defense against shear, the coarse aggregate, had had been reduced 

to promote flowability and passability, and the aggregate interlock mechanism was 

weakened due to the smoother fractured surfaces formed during loading. 

The experimental program consisted of testing twenty beams having a 400mm 

width and shear span to total depth ratio (a/h) of 2.5. Ten of these beams were made 

using SCC,ten were made using NC, and none of the beams contained any shear 

reinforcement. Mix designs called for cement similar to an ASTM Type I and included 

ground granulated blast furnace slag to be used as supplementary cementitious materials 

for both types of concrete. Natural sand was used as a fine aggregate and a I 0 mm 

maximum size crushed stone was used for the coarse aggregate. While the materials 

were the same between the two mix designs, the amounts were varied. The SCC mixture 

had 25% less aggregate by volume then the NC mixtures. The purpose of this change 

was to investigate how much of an effect aggregate interlock had on shear strength. To 

modify the flowability and the cohesiveness of the concretes, water reducers were used. 

A high-range water reducer (HRWR) similar to a Type Fin ASTM C 494 was used for 



the SCC mixture, and a water reducer (WR) similar to a Type A in ASTM C 494 was 

used for the NC mixture. 
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The beam testing setup consisted of a three point loading configuration with a 

hydraulic jack to gradually apply a concentrated load to the center of the beam. Four 

linear variable differential transducers (LVDTs) were used to measure the shear strain by 

attaching them diagonally to the front of the beam. Another LVDT was attached at the 

beam's midpoint to record the deflection at that point. Electrical strain gages were 

attached to the lower layer of steel reinforcement to measure the strain experienced by the 

bars at that point. The use of a computer-aided data acquisition system was used to 

record the load, displacements, and strains throughout the test. The beam was loaded in 

three stages: at 50%, 75%, and 100% of the expected failure load. 

To compare the shear strength between the SCC and NC beams, the ultimate 

shear load first had to be normalized. This was accomplished by dividing the ultimate 

shear load by the square root off' c for each type of concrete. It was then discovered that 

the 25% lower coarse aggregate contend found in the SCC beams was the main cause of 

lower ultimate shear loads in the beams. With less coarse aggregate, there was less 

aggregate interlock. It was pointed out that these tests were conducted using 

conventional strength concrete and results can only be applied to such at this point. 

Should a higher strength concrete be used, the aggregate itself would fail rather than the 

interface between the paste and the aggregate. This would mean that diagonal cracks 

would have a shorter path to travel and a lower resistance due to aggregate interlock. 

To observe how the mechanism on aggregate interlock and dowel action play into 

the shear resistance of concrete from V d (development of first diagonal crack shear) to V u 

(ultimate shear), the ratio of V JV d was calculated and studied for both types of beams. 

This ratio helps to analyze the post-cracking shear resistance of concrete beams due to 

aggregate interlock and dowel action. It was found that the ratios were lower for sec 
then for NC. This supports the theory that with less coarse aggregate, the SCC is unable 

to develop the same amount of post-cracking shear resistance as NC. 

The conclusions drawn from this set of experiments showed that there were 

similarities between the two types of concretes as far as crack widths, heights, and angles, 

as well as overall failure mode. This was as predicted by the reinforcement design and 
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the overall beam dimensions. It was found that the ultimate shear load increased as 

longitudinal reinforcement increased while the ultimate shear stress decreased as the 

overall beam depth was increased. One could conclude that the longitudinal steel keeps 

the cracks together thereby increasing the aggregate interlock and increasing the ultimate 

shear load. The shear stress reduction also can be explained. As the depth of the beam 

increased, there was a larger area for the shear to act on . If the same load is applied over 

a larger area one should expect the shear stress to decrease. The study also found that 

when comparing the shear strength of SCC beams to NC beams, the SCC beams were 

lower and this reduction was greater in deeper beams that contained lower longitudinal 

steel rations. Once again the mix design for this test contained 25% less coarse aggregate 

by volume within the SCC. With less aggregate interlock, there was a reduction in shear 

strength. This reduction was increased even further by the reduction of longitudinal steel, 

which allowed the cracks to open wider,further reducing the shear strength of the 

concrete. 

2.8.2. Kim, Hueste, Trejo, and Cline, 2010. In the paper entitled "Shear 

Characteristics and Design for High-Strength Self-Consolidating Concrete," the effect of 

a lower aggregate content, which is typically found in sec, was studied as it related to 

the shear strength of the material. Push-off tests were performed to determine the 

influence of aggregate and paste volumes on shear capacity. Thi s information was then 

compared to NC samples. 

It is known that shear strength of a reinforced concrete is dependent on the 

contribution of both the shear strength of the concrete itself as well as the shear 

reinforcement. If the strength of the concrete is reduced, the shear reinforcement will 

have to be increased to support the load. The goal of this research program was to 

determine if the current design equations were appropriate for estimating the shear 

strength of the concrete and finding the amount of reinforcement that would be required . 

Aggregate interlock is a significant contributor to concrete shear capacity. Therefore, 

when the amount of coarse aggregate is reduced, as it typically is for SCC mixtures, the 

shear strength is also reduced. When working with a high strength concrete, the strength 

of the paste matrix is increased making it closer to the strength of the aggregate itself, and 

as this happens more broken aggregate can be seen along the failure points. This means 
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that shear cracks in a high strength concrete will tend to travel through the aggregate 

rather than around it as it would if a lower strength concrete were used. This would mean 

that the distance that a crack would travel would be approximately the same regardless of 

the amount of aggregate. Tests were performed to see if the effect on shear is the same 

for high strength concrete as it is for lower strengths. 

The variables that were tested were two 16-hour target strengths, two aggregate 

types (river gravel and limestone), and three coarse aggregate volumes. This 

combinations of these variables amounted to 12 SCC mixtures. The variables that were 

tested for NC were two 16-hour target release strengths and two coarse aggregate 

contents. This amounted to 4 NC mixtures to be used as control mixtures. A total of 48 

push-off samples were fabricated and tested to determine shear characteristics as well as 

(4X8) cylinders for determining the compressive and splitting tensile strength of the 

concrete on the day of testing. 

According to research performed by Mehta and Monterio (20 I 0), the absorptive 

capacity of an aggregate can provide a rough estimate of the its strength. The more 

absorptive an aggregate is, the less strength it should have. The absorption of the 

aggregates that were used were both measured and it was found that the river gravel had 

an absorption of 0.78% and the limestone had a absorption of 1.43%. The Los Angeles 

abrasion test was also performed to see the relation between the resistance of the 

aggregate to impact and its correlation to strength. The test involves loading a specific 

gradation of the material being tested into a rotating drum with eleven steel spheres. 

After the specified number of revolutions, typically 500, the drum is stopped and the 

degraded sample is sieved and the percent lost is calculated. A material that has a higher 

resistance to abrasion, and in turn a higher strength, will have a lower percent loss. When 

the Los Angeles abrasion test was conducted on the river gravel and the limestone, the 

percentages lost were 16 and 29 respectively. This data would tend to indicate that 

because the limestone has a higher absorption and a higher percent loss it would be an 

inferior material for shear resistance. 

After the properties of the concrete aggregate had been determined, the concrete 

could be batched and the fresh concrete properties could be determined. The tests that 

were performed on the concrete included the filling ability, slump flow , flow rate (T50), 
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and YSI. These were all conducted in accordance with ASTM C 1611 . The slump flow 

values that were measured stayed between 27.5 and 29.5 in. (699 and 749 mm). The air 

content was between 0.8 and 1.6% and the T50 ranged between 1.0 and 7.0 seconds. The 

YSI stayed between 0.5 and 1.0 indicating that this was a very stable mixture. This is 

important in almost every sec application but it is especially important for shear testing 

because the aggregate needs to be as homogenous as possible. If the aggregates settled to 

the bottom, the shear values would be affected. 

Push off tests were performed to find the shear strength of the concrete. This was 

then divided by the normal strength to provide a quantifiable comparative assessment of 

the amount of normalized energy due to the aggregate interlock. It was found that the 

volume effect of the coarse aggregate can be considered as a significant effect. The 

difference between the volume effect of river gravel and the volume effect of the 

limestone aggregate could not be clearly found. 

The 28-day compressive strengths all exceeded 10 ksi, indicating that they were 

high strength concrete. The calculated values of the energy absorbed due to aggregate 

interlock and the shear stress/ normal stress ratio decreased as the crack width or slip 

increased. This shows that high strength concrete can exhibit aggregate interlock. 

Visually it was seen that lower concrete strength specimens tended to have less coarse 

aggregate fractures, this would lead to an increase in aggregate interlock. This could be 

seen visually and also in the larger amount of energy that was absorbed. While high 

strength concrete can still have some aggregate interlock, it is less than a lower strength 

concrete. As the strength of the paste increases closer to the strength of the aggregate, 

more aggregate is broken at failure, and if the aggregate fails, the result is less aggregate 

interlock. 

Aggregate type also showed that it was a critical factor when it came to aggregate 

interlock. For all specimens, both SCC and NC, the river gravel showed more energy 

absorbed indicating more aggregate interlock then the limestone. The type of aggregate 

used is not the only factor that was important. The amount of the aggregate was also 

influential to the aggregate interlock. As expected, the energy absorbed was higher for 

concrete specimens that had a higher amount of coarse aggregate in them. This was true 

regardless of the type of aggregate that was used. 



While the research has shown there is a lower contribution to shear strength due 

to aggregate interlock with sec made with lower coarse aggregate contents, it is yet to 

be determined if this will require additional shear reinforcement. A study of typical 

girders is planned to see if additional shear reinforcement is required for precast and 

prestressed beams containing SCC. Also, the testing procedure did not test specimens 

made from sec developed using chemical admixtures and higher coarse aggregate 

contents. 

2.9. OPTIMIZATION OF SCC 

24 

The paper entitled "Optimization and Performance of Air-Entrained Self­

Consolidating Concrete" (Khayat, 2000) studied the mechanical and physical properties 

of an optimized sec mixture as well as characteristics of sec that incorporated different 

types and contents of cementitous materials. It was recognized that to achieve proper 

bond to reinforcement, structural performance, and durability, it would be important that 

SCC have a high stability. This stability would provide some resistance to blocking 

when traveling through tight areas but also resistance to bleeding and segregation after 

casting. It is known that air entrainment of sec can significantly reduce viscosity, which 

can lead to a decrease in cohesiveness and resistance to segregation. The objective of 

tests performed was to develop an air entrained concrete that still provided adequate 

resistance to segregation. 

To prevent segregation within a SCC mixture, a designer has several basic 

options. The first is to increase the powder content, which will promote cohesiveness and 

stability while reducing the demand for HRWRA. These powders could be cement or 

supplementary cementitious materials and they work by increasing the packing density 

and reducing the interparticle friction. The second defense against segregation, should 

the designer choose not to modify materials or gradations, would be to ad a VMA in 

addition to the HRWRA. Tests performed for this study included a combination of the 

two mentioned above and attempted to find the proper dosages for HR WRA, air 

entraining admixtures (AEA) and VMA, as well as testing different cementitious material 

contents and their effects on fresh properties. 
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The first phase of the optimization process set out to find acceptable dosages for 

HRWRA, VMA, and AEA. Variables that were studied in these nine batches were the 

flowability and the stability of the concrete. After dosages for the chemical admixtures 

were obtained, fourteen mixtures were prepared while varying the concentrations of 

cementitious materials and VMA. There were three different cementitious material 

contents tested and the water/cementitious material (w/cm) ratio ranged from 0.45 to 0.5. 

Following this step, five mixtures were selected from the previous 14 that showed an 

optimized balance of restricted deformability, resistance to surface settlement, HRWRA 

and VMA demands, and cost. These concrete mixtures were then tested for compressive 

strength, modulus of elasticity, drying shrinkage, rapid chloride-ion permeability, water 

permeability, air-void system, and freezing and thawing durability. 

As a result of the first nine tests, it was found that mixtures made without any 

VMA and a moderate amount of cement experienced a relatively high settlement. 

Surface settlement can be related to the concrete's resistance to segregation. It was seen 

that with the addition of a VMA, there was an increased resistance to settlement for a 

given w/cm. 

At the conclusion of testing, it was seen that it is possible to proportion an air­

entrained sec that will have high stability and resistance to blockage in congested areas. 

It was also shown that even mixtures that had high slump flow values still maintained a 

high resistance to surface settlements and a high stability. Regarding compressive 

strength, it was shown that concrete made with a 0.45 w/cm outperformed those made 

with a 0.5 w/cm. It was also seen that there was significant drying shrinkage even as a 

result of the higher water content. This could have been due to the smaller coarse 

aggregate content, leaving a larger paste volume which experiences shrinkage. 

2.10. USE OF SUPPLEMENTARY CEMENTITIOUS MATERIALS IN SCC 

Research performed by the Department of Civil Engineering at Gaziantep 

University set out to investigate how the use of binary, ternary, and quaternary 

cementitious blends of mineral admixtures could affect the properties of SCC. To find 

these relationships, 22 sec mixtures were designed and cast to find an optimal mixture 

proportion. The control mixture contained only Portland cement while other mixtures 



incorporated blends of Portland cement (PC), fly ash (FA), ground granulated blast 

furnace slag (GGBFS), and silica fume (SF). 
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Research performed prior to testing showed that incorporation of pulverized FA 

and limestone powder had lessoned the amount of HRWRA required to achieve the 

desired slump. By incorporating these materials into the concrete mixture, the powder 

content was increased, improving the rheological properties of the concrete and 

improving the concrete's stability. One other benefit that was discovered was that 

because of the slower reaction of the supplementary cementitious materials, there was a 

reduced risk of concrete cracking due to heat of hydration, making the concrete more 

durable. Research has shown that blends of different cementitious cementitious materials 

such as these have shown beneficial results for concrete, so testing with a sec was 

necessary while looking at characteristics such as self compactibility, targeted strength, 

and durability. 

Testing showed that compressive strengths for concrete produced with a 60% 

replacement of PC with FA, the compressive strength was reduced approximately 40%. 

This could be corrected with the appropriate use of mineral admixtures. It was also seen 

that a SCC made with I 0% FA and I 0% GGBFS had the highest strength. This showed 

that the use of FA will generally lead to a reduction in strength, however, SCC made with 

GGBFS and/or SF will generally have strength comparable to concrete made with PC 

alone. 

Shrinkage testing showed that within approximately the first I 0 days of curing, all 

concretes preformed approximately the same. At that point it can be clearly seen that 

concrete produced with FA or GGBFS had lower shrinkage values. It was also seen that 

as the amount of mineral admixtures continued to increase, the amount of shrinkage 

continued to decrease. 

Conclusions drawn from testing showed that incorporating mineral admixtures 

into concrete will improve the filling and passing abilities of SCes. This could be seen 

by the increased H2/H 1 ratios for concrete made with these materials. Also as expected, 

the T so slump flow times were decreased showing that the concretes had a hi gher filling 

ability and flowability. Overall there are real benefits to adding these cementitious 
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materials to sec and generally as long as mixture proportioning is performed mindful of 

any negative effects that can be overcome. 

2.11. TEMPERATURE INFLUENCES ON SCC 

In the paper entitled "Influence of Temperature on Fresh Performance of Self­

consolidating Concrete" researchers studied the effects of hot and cold weather on the 

properties of fresh and hardened concrete properties. The scope of the study attempted to 

test the unconfined workability, flow rate, passing ability, and dynamic stability of sec 
throughout a range of temperatures that concrete is typically placed. On this project, 

three mix designs were tested, all having the same amounts of cement, fly ash, coarse and 

fine aggregates, and w/cm. The amounts of HRWRA and VMAs were modified to see 

their relative effects on workability at different temperatures. The three mix designs were 

then tested at 7 different temperatures ranging from -0.50 to 43.00°C (3 1.1 to I 09.4°F), 

and the fresh and hardened concrete properties were determined for comparison. 

It is known that cold temperatures wi11 affect fresh and hardened performance of 

concrete by decreasing the workability, and retarding the setting and strength gain of 

concrete. If the effect of cold concrete is known more precisely it can be determined if it 

is necessary to heat the water or the aggregates to eliminate the adverse effects of cold 

materials. Cold temperatures are not the only problem; temperatures that are too warm 

can lead to accelerated setting and lower long term strength and hardened properties. 

Workability can be an issue if the temperature is high enough and the relati ve humidity is 

low, causing rapid evaporation of the free water. If concrete is placed in hot weather, the 

temperature can be cooled by simple methods such as adding ice to the mi x water, 

shading the coarse aggregate, or adding more water to the mix design. If these methods 

are not enough, the use of plasticizers and super plasticizers can be better remediation 

materials in hot weather conditions on the job site instead of water. 

It was seen that the performance of self-consolidating concrete was affected by 

both hot and cold temperatures. At hot temperatures, the concrete experienced a 

decrease in unconfined workability, increase in plastic viscosity, and improvement in 

stability. It was also seen that these performance issues could be overcome by over 

dosage of the admixtures to reverse the changes in the fresh properties. 
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Concrete that was poured in colder temperatures was not affected as much as 

concrete poured at higher temperatures. Concrete poured at -0.5°C (31.1 °F) did not 

require and remediation by way of admixture addition. The gains in slump flow at lower 

temperatures were less than l in. (25 mm) and the flow rate and dynamic segregation 

resistance were unaffected. 

Following testing the data was plotted and equations were developed to correlate 

the slump flow loss or gain due to hot and cold temperatures. These showed significant 

statistical relationships between the dependent and independent variables. These 

equations could be applied to determine the required optimum admixture dosages given 

the ambient temperature at placement. 

2.12. SEGREGATION OF SCC 

In the paper entitled "Effect of Mixture Design Parameters on Segregation of 

Self-Consolidating Concrete" (Hassan, 2006) researchers wanted to present a simple test 

method to assess the ability of SCC mixtures to resist segregation. The proposed test 

required the use of an apparatus consisting of a PVC tube 12 in. (305 mm) in height with 

a 6 in. ( 152 mm) diameter. The apparatus is broken down into four 4in. tall sections 

using leak-free joints that are hinged to a vertical steel rod for easy sliding. The 

penetration apparatus was modified slightly from four penetration heads instead of one 

and was mounted on a steel frame. Each head is approximately 25g (0.05 lb.) and 0.78 

in. (20 mm) in diameter with a semi-spherical end. For the first segregation test, the four 

penetration heads are allowed to penetrate the concrete under their own weight just after 

the cylinder is filled and the depth is measured. After sitting for 30 minutes, the concrete 

in each part is washed over a 3/8 in. sieve. Anything trapped on the 3/8 in. sieve is 

retrieved and the mass is determined. 

The experimental program consisted of 123 flowable concrete mixtures with an 

initial slump flow of 20±0.4 to 30±0.4 in. (500±10 to 750±10 mm). The screen stability 

test was performed as well as the proposed segregation method on the concrete. In 

addition to these, the slump-flow, T so, L-Box test, V -funnel test, and compression 

strength test were performed to determine the properties of the concrete. Concrete 



mixtures were prepared in accordance with ASTM C 192-00 "Standard Practice for 

Making and Curing Concrete test Specimens in the Laboratory. 
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This research showed that the ability of SCC to resist segregation decreases 

whenever the w/cm or the dosage of HRWRA is increased. This is especially evident 

whenever the w/cm was greater than 0.45. To combat the concrete's inability to resist 

segregation, a VMA can be used and testing showed that as expected for a given w/cm 

and HR WRA dosage, as VMA dosage increases segregations decreases. It was seen that 

there was a point beyond which segregation was effectively controlled. 

The coarse/total aggregate ratio showed a slight to negligible effect on the ability 

of sec to resist segregation whereas the total content of cementitious materials had a 

mixed effect on segregation. It was seen that at a high w/cm increasing the cementitious 

materials caused an increase in segregation while at a lower w/cm increasing the content 

of cementitious materials slightly enhanced the concrete ' s resistance to segregation. 
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3. SCC MIX DEVELOPMENT 

3.1. INTRODUCTION 

There are two different approaches to developing an SCC mix design. The first is 

a materials based approach which focuses on modifying the aggregate types and amounts. 

Typically the coarse aggregate content is reduced while the paste content is increased. 

To improve the flowability of the aggregate a rounder aggregate is typically desired. The 

rounder shape allows the aggregate pieces to roll past each other easier increasing slump. 

The disadvantages to this approach are that the rounder aggregate decreases the shear 

strength of the concrete. With a lower coarse aggregate content the aggregate pieces are 

farther apart reducing aggregate interlock, and as a result shear strength is reduced. The 

reduction in aggregate interlock can also be caused by the rounder aggregate; sharp edges 

on aggregates tend to hold together better then rounded edges. 

The try and avoid the reduction in shear strength a second chemically-based 

approach was utilized for this project. The coarse aggregate and paste contents were kept 

the same as a NC. The ACI 211.1 document entitled "Standard Practice for Selecting 

Proportions for Normal , Heavyweight, and Mass Concrete" was used to develop a mix 

design. This mix design was then modified through the use of a HRWR and a VMA. 

This allowed for improved flowability without sacrificing on aggregate interlock. 

3.2. BASE MIX DESIGN 

Before testing could begin to test for concrete shrinkage or shear strength a self 

consolidating concrete mix design had to be developed. Concrete materials that were 

local and readily available were preferred and used for testing. During the mix 

development stage there were 15 batches created to determine the effects of different 

variables tested. 

For a point of comparison a NC mixture was desired. To achieve this, the ACI 

21 1.1 committee report was used, referred to as ACI committee report here. First a 

slump was assumed to be 6 in. (!52 mm). This is larger than the recommended slump in 

Table 6.3.1, however, keeping in mind that the overall goal is to create a SCC mixture a 

higher slump was selected to further improve tlowability. After a slump is known the 



approximate water and air content requirements can be determined. A gradation of the 

coarse aggregate to be used showed that the nominal max size was 1 in. (25.4 mm). 
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Using this information combined with the desired slump, a water content of 340 pounds 

per cubic yard was determined. A w/c ratio was the next step in the process; 0.45 was 

selected since high strength concrete was not required and a high coarse aggregate 

content was being used. In addition, a more angular aggregate combined with a low w/c 

ratio could be enough to prevent the admixtures from producing SCC. Using the w/c 

ratio and the water content the amount of cement was determined. To maintain a high 

shear strength it was important that the coarse aggregate content be kept the same for all 

types of concrete being tested. The amount of coarse aggregate was determined by 

referring to Table 6.3.6 of the ACI committee report. Using the fineness modulus of the 

fine aggregate and the nominal maximum size of the coarse aggregate the coarse 

aggregate content was determined. The last step in the creation of the base mix design 

was to find the fine aggregate content. This was done by summing the volumes per cubic 

yard for the water, cement, and coarse aggregate and subtracting them from 1 cubic yard . 

It was known that the efforts to preserve the shear strength of the concrete would 

compromise the flowabilty of the concrete mixture. This made it important that in any 

area possible changes be made to increase slump. One area that was selected was air 

content. By increasing the amount of air entrained within the concrete it was possible to 

obtain a slight increase in slump with minimal sacrifice to shear strength. Typically with 

a I in. (25.4 mm) maximum aggregate size an air content of approximately 1.5 percent 

can be expected; this is usually from air trapped during the mixing process. An air 

content of approximately 6 percent was desired so an air entraining admixture became 

necessary. Micro Air, produced by the BASF chemical company was selected to achieve 

the desired air content. Trial batches were produced and tested to determine the dosage 

of the admixture that would produce a 6 percent air content. Another benefit achieved 

through the addition of a air-entraining admixture is that the air bubbles are more evenly 

spaced throughout the concrete and uniform in size. This adds to the concretes durability 

as well as the flowabilty in the fresh state. 



32 

3.3. ADDITION OF FLY ASH TO BASE MIX. 

3.3.1. Fly ash effects. To begin mix design development it was important to 

observe what type and how much of an effect that a class C fly ash would have on the 

plastic and hardened properties of concrete. Fly ash was obtained from the Labadie 

Power Plant in Labadie, Missouri for testing. It is known that fly ash particles are shaped 

similar to microscopic spheres allowing them to act like small ball bearings when added 

to the concrete mixture. This will tend to increase the slump of the mixture with 

everything else the same. Since the overall objective is to create a self consolidating 

concrete, the use of fly ash can be helpful because it is less expensive then cement or high 

range water reducers but can still provide a moderate increase in the slump and 

workability of the concrete. There is a tradeoff that must be taken into account when 

working with fly ash; because fly ash is a pozzolan and it requires the Calcium 

Hydroxide from other cementitious materials for a reaction, the strength gain will take 

longer. 

3.3.2. Test batches. The effect fly ash would have at different amounts of cement 

replacement was the first piece of information that was to be determined. A control 

mixture, referred to as the base in Table 3.1, was created and compared to concrete with 

different fly ash replacements. This control mixture had a w/c ratio of 0.45, a design 

slump of 6-in., and a nominal maximum coarse aggregate size of 1- in. An air entraining 

admixture was added to achieve an air content of 6 percent. Three other concrete batches 

were performed with the same mix designs except that cement was replaced with flyash 

by 20, 30, and 40 percent respectively. The batch weights for these concrete mixtures can 

be seen in Table 3.1. 

3.3.3. Test results. Following hatching the slumps and air contents were taken on 

the concrete in the plastic state. The compressive strength was found at 7 and 28 days. It 

can be seen in Figure 3.1 that the fly ash increased the slump of the concrete dramatically 

from the control to 20%. It was also noted that increasing the fly ash replacement beyond 

30% did not have a significant effect on the slump or the workability of the concrete; in 

fact the graph shows there was a decrease in slump. The compression test data was also 

plotted and is shown in Figure 3.2. It showed that at 7 days, as the amount of fly ash 

increased, compression strength decreased. When compression testing was performed at 
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28 days it was seen that as the amount of fly ash increased the compression strength also 

increased slightly. It was also noted that concrete with fly ash typically had a 

compression strength less than that of the control, which contained no fly ash. It was 

expected that the fly ash would react slower than a straight Portland cement concrete, 

however the tradeoff was that a higher initial slump could be obtained leading to a higher 

flowabilty of the SCC later. These results are explained in greater detail in the Materials 

and Test Results section. 

Table 3.1. Fly Ash Replacement Trial Batches 

.1. 224.8 lbs. 1m3 

1.31yd3 Base (lb/yd3) 20%(1b/yd3) 30%(1b/yd3 ) 40% (lb/yd 3 ) 

Course Aggregate 1781.3 1781.3 1781.3 1781.3 

Fine Aggregate 1004.2 982.3 971.3 960.4 

Cement (Type 1) 755.6 604.4 528.9 453.3 

Water 340.0 340.0 340.0 340.0 

Fly Ash (Class C) 0.0 151.1 226.7 302.2 

Micro Air (ml) 223.4 223.4 223.4 223.4 
,_j Jlb/yd = 0.593 kg/m j 

3.4. SCC MIX DESIGN 

3.4.1. HRWR effects. After testing the effect of a local class C fly ash on the 

plastic properties of concrete, testing began on concrete made using fly ash and the 

HRWR, Glenium 7500. This HRWR was selected for its ability to improve workability 

for application in SCC. Glenium 7700 was also considered, however, this product has a 

much faster setting time then the 7500. In a manufacturing situation such as a plant 

constructing prefabricated sections this would be ideal but was too fast for these tests. 

BASF the manufacturer for Glenium 7500, recommends a dosage of 2- 15 fl oz/cwt of 
' 

cementitious materials. Typically a dosage between 5 and 8 fl oz/cwt is sufficient but can 
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be increased for use in sec applications and depending on concrete materials, and jobsite 

conditions and applications. 
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3.4.2. Test batches. To see the effect of the Glenium 7500 three dosages were 

selected: 2, 6, and 9 fl oz/cwt. The concrete mix design was kept the same as previous 

testing with a cement replacement of 30%. The cement replacement was selected to 

balance the benefits of increased slump with the disadvantages of slower strength gain . 

After mixing, the following tests were performed on the fresh concrete: slump flow, J­

ring, segregation column, unit weight, and air content. The information that was gleaned 

from these tests can be seen in the Table 3.2. 

3.4.3. Test results. It was seen right away that concrete produced with a dosage 

of 2 fl oz/cwt, the lowest recommended by the manufacturer, would not be sufficient to 

produce a SCC, in fact a slump was taken instead of a slump flow. Even so, a slump of 

6.75 in. ( 171 mm) was still high for a small dosage. The following tests showed much 

more promise; each one produced a slump flow of 25 in (635 mm). One could argue that 

a dosage of 6 fl oz/cwt would be the optimized dosage; it provided the maximum slump 

flow with the minimum amount of chemical admixture used. This was taken into 

account, but since a VMA was to be added later the higher dosage, 9 fl oz/cwt, was 

selected to proceed. The higher dosage of HRWR would hopefully offset any reduction 

in slump flow from the VMA. 

Table 3.2. HRWR Trial Batches 

J-Ring Static Unit 

Dosage Slump Slump Flow Flow Segregation Air Weight 

Admixture (fl oz/cwt) (in) (in) (in) (%) (%) (lb;te) 

Glenium 7500 2.0 6.75 24.0 12.3 6.0 143.1 

Glenium 7500 6.0 25.0 24.0 12.3 6.1 142.0 

Glenium 7500 9.0 25.0 23.50 51.7 4.0 141.0 

I in. = 25.4 mm I lb/ft3 = 16.0 I kg/m3 
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3.4.4. VMA effects. After testing with different amounts of Glenium 7500 it was 

seen that although filling ability was not an issue there was significant opportunity for 

segregation. In order to prevent segregation and still maintain the current gradation a 

liquid YMA was added. The VMA that was selected was Rheomac 362. According to 

the manufacturer's data sheet the admixture will not affect the compressive strength or 

setting time within the recommended dosage range, but by modifying the rheology of the 

concrete it can maintain a more homogenous concrete mixture. 

3.4.5. Test batches. Two dosages of the Rheomac 362 were tested: 4 and 8 fl 

oz/cwt. These dosages represent a high and mid-range dosage of the VMA to study the 

effect on the fresh and hardened properties of the concrete. The same concrete mix 

design used to determine the HRWR dosage was used again this time with a HRWR 

dosage of 9 fl oz/cwt. The data that was collected can be seen in the Table 3.2. 

3.4.6. Test results. It was seen that as the dosage of the VMA increased there was 

a decrease in the amount of segregation experienced by the concrete in the segregation 

column. This will keep the concrete more homogenous throughout placement and lead to 

better hardened properties. It was also seen in Table 3.3 that slump slow was not 

significantly changed, and J-ring flow even increased. This indicates that the passing and 

filling ability of the concrete was not significantly altered as a result of the addition of 

VMA. Knowing this, the high dosage of 8 fl oz/cwt was selected to provide the 

maximum amount of segregations resistance with minimum reduction is passing or filling 

ability. It should also be noted that the concrete made with this dosage of VMA had the 

highest visual stability index and was a favorite for those who worked with it in the lab. 

3.4.7. Final Mix Design. After studying the data and observing the concrete in its 

plastic state the mix design that was selected for further testing contained 9 fl oz/cwt of 

HRWR and 8 fl oz/cwt of VMA. The coarse aggregate gradation was similar to that of a 

normal concrete mixture to maintain the shear strength of the concrete. Having a larger 

and more angular aggregate can improve the shear characteristics of a concrete but it will 

not improve the filling ability. This was the justification for using the hi ghest dosage 

tested in the Jab. Having a very high filling ability caused the concrete to have a very low 

viscosity and made it susceptible to segregation so the highest dosage of the YMA was 

also selected for further testing. The final mix design for SCC can be seen in Table 3.4 
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Table 3.3. VMA Trial Batches 

Dosage Slump J-Ring Static Unit 
(fl Flow Flow Segregation Air Weight 

Admixture oz/cwt) (in) (in) (%) {%) (lb;te) 

Glenium 7500 9.0 
Rheomac VMA 
362 4.0 24.5 19.5 22.4 5.8 141.0 

Glenium 7500 9.0 

Rheomac VMA 
362 8.0 24.3 23.0 3.5 6.2 142.1 

, J ,J ,J - j 
I m. = 25.4 mm I yd =27ft I lb./ft - 16.01 kg/m 

Table 3.4. Final Mix Design 

Constituent Batch Weight 

CA (lb/yd3) 1781.3 

FA (lb/yd3) 971.3 

Cement (Type 1) (lb/yd3) 528.9 

Water (lb/yd3) 340.0 

Fly Ash (Class C) (lb/yd3) 226.7 

Chemical Admixtures Dosages 

Micro Air (ml) 223.4 

Glenium 7500 (gal) 0.53 

RheomacVMA 362 (gal) 0.47 
, J -

j 

I lb./yd - 0.59 kg/m 
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4. MATERIAL TESTING PROGRAM 

4.1. INTRODUCTION 

In order to compare the properties of NC and SCC, material test results were 

required. This section details the testing program that was conducted for both types of 

concrete. The tests that were performed on the fresh concrete include: density, air 

content, slump flow, J-ring, L-box, and segregation column. The tests that were 

performed on the hardened concrete include: compressive strength, modulus of rupture, 

shrinkage, and shear strength. In addition to these tests, the tensile strength and 

modulus of elasticity for the reinforcement steel was also determined. This chapter 

details the testing methods and results for the density, air content, slump flow, J-ring, L­

box, segregation column, compressive strength, and modulus of rupture. Chapter 5 

details shrinkage testing of the NC and sec and includes comparisons with several 

prediction models. Chapter 6 details the shear testing and evaluation of both the NC and 

sec. 
4.1.1. Casting. All concrete was placed on the Missouri S&T property. The 

concrete required for the shear specimens is more then what could be reasonably 

produced on site so this was delivered by Rolla Ready Mix, located in Rolla, MO. 

Concrete was batched at the plant and liquid admixtures were added and mixed on site. 

Nine concrete cylinders were cast for each placement and stored near the shear specimens 

to have them experience the same temperature and atmospheric conditions. Concrete 

produced for compression testing, flexural strength, or any sec fresh property testings, 

was typically produced in much smaller quantities in the Missouri S&T Concrete Lab, 

located in the Butler-Carlton Civil Engineering Hall. 

4.1.2. Curing Conditions. After initial hardening, the shear specimens were 

moist cured for 7 days. A layer of wet burlap followed by a layer of plastic sheeting was 

placed over the beams to prevent drying and shrinkage cracking. For some concrete, it 

was observed that minor plastic shrinkage cracking occurred before water was applied to 

the surface. Specimens were moist cured in this condition for approximately 7 days after 

which they were removed from their forms to continue curing for a minimum of 28 days 



before testing. Specimens were located in the High-Bay Laboratory of Butler-Carlton 

Civil Engineering Hall, a temperature controlled environment. 
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Concrete that was produced for the purpose of finding the compressive strength or 

modulus of rupture was placed in the Concrete Laboratory of Butler-Carlton Hall. 

Specimens were covered by a layer for plastic sheeting and stored in this temperature 

controlled environment for a minimum on 24 hours . They were then removed from their 

molds and placed in a moist-cure room until testing. 

4.2. FRESH CONCRETE TESTING PROGRAM. 

Table 4.1 summarizes the tests that were performed on the NC and SCC in their 

plastic state, the test methods followed, and the equipment used. 

Table 4.1. Summary of Fresh Concrete Testing Program 

I Test I 
Test 

I 
Equipment 

I Method Used 

Scale, Pressure Meter 

Density ASTM C 138-10 Bowl 

Air Content ASTM C 231-10 Type B Pressure Meter 

ASTM 

Slump Flow C1611/Cl611M-09 ASTM C143 Slump Cone 
ASTM C 143 Slump 

ASTM Cone, 

J-ring Cl621/Cl621M-09 J-ring 

L-box Gilson L-box 

Column ASTM 3-Part PVC Segregation 

Segregation C1610/1610M-10 Column 

4.2.1. Density. The density of concrete was determined for SCC and NC 

throughout testing and performed in accordance with ASTM C 138-1 Ob. Standard Test 
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Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete 

(ASTM C 138.201 0). Concrete was placed in the base of the pressure meter pot used for 

determining the air content of the concrete. Concrete was placed in three lifts and was 

rodded 25 times each. The weight of the pot and concrete was taken and the concrete 

was removed. The empty pot was weighed and subtracted from the previous 

measurement to find the weight of the concrete alone. The weight of the concrete was 

divided by the known volume of the pot to determine the density of the concrete. 

The density of the concrete typically measured approximately 146 Ib/ft3 (2340 

kg/m3). There were slight variations from batch to batch, but there was not a significant 

difference between the NC and SCC. 

4.2.2. Air content. The air content of the concrete was determined for SCC and 

NC in accordance with ASTM C 231-10. Standard Test Method for Air Content of 

Fresh I y Mixed Concrete by the Pressure Method (ASTM C 23 I, 20 I 0). A Type B 

pressure meter was used to find the air content of the concrete. Concrete was placed in 

three layers, similar to performing the density test, and rodded 25 times each. The 

concrete was struck off and the rim of the bowl was cleaned to ensure a good seal 

between the bowl and the lid of the meter. After the lid was clamped to the bowl, water 

was inserted into one petcock valve until it flowed out the petcock valve on the opposite 

side. The valves were both closed and air was pumped into the chamber until the 

appropriate initial pressure was obtained. The pressure was then released by opening the 

valve into the bowl and a reading was taken using the gage on the meter. To find the air 

content of the concrete, the aggregate correction factor was subtracted from the 

measurement taken off of the gage. 

During mix design, it was determined that an air content of 6 percent was desired 

for both types of concrete. Test batches of concrete were produced and the dosage of the 

air-entraining admixture was adjusted to achieve the correct amount of air. By adding 

more air to the concrete, the slump was increased, thus increasing the concrete 's 

workability and finishability. 

4.2.3. Slump flow. Slump flow testing was performed on fresh self-consolidating 

concrete in accordance with ASTM Cl611-161 1M. Standard Test Method for Slump 

Flow of Self-Consolidating Concrete (ASTM C I 611, 2009). The equipment that was 
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used for this test was a standard slump cone conforming to ASTM C 143-1 Oa. Standard 

Test Method for Slump of Hydraulic-Cement Concrete (ASTM Cl43, 2010) and a 

nonabsorbent, smooth, rigid base plate having a minimum diameter of 36 in. (915 mm). 

The slump flow was performed on a flat, level surface and filled using Filling Procedure 

B (Inverted Mold). The mold was filled in a continuous manner and the top surface was 

struck off. The mold was then raised in a steady upward lift with no lateral or torsional 

motion. After movement of the concrete stopped, two diameters were measured 

approximately perpendicular to each other and averaged for the slump flow. Figure 4.1 

shows the mold being raised in a steady upward lift, and Figure 4.2 shows the diameter of 

the concrete being measured. 

Figure 4.1. Raising the Mold During Slump Flow Test 

The slump flow test is a measure of a concrete mixture's filling ability or the 

ability of the concrete to flow into and fill completely all spaces within the form work 

under its own weight. The test was performed similarly to the conventional slump test 

but instead of measuring the slump distance vertically the spread of the concrete 



horizontally was measured. The spread was measured twice and averaged to determine 

the slump flow. 

Figure 4.2. Measure Concrete Diameter During Slump Flow Test 
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The degree of filling ability that is required of a concrete is dictated by the 

_application; certain applications will require a high filling ability and slump flow while 

others will not. The first step to developing an SCC mixture is to establish the target 

value of slump flow. Generally the lowest slump flow required should be used to avoid 

the potential for instability and to optimize the performance of the concrete. Some 

factors that will influence the required filling ability of the concrete are the reinforcement 

level, the intricacy of the element shape, the wall thickness, the placement technique, and 

the element length. 

To determine the slump flow required for testing, it was assumed there would be a 

high reinforcement level, low element shape intricacy, medium surface finish importance, 

high element length, and low placement energy. According to Table 2.5- Slump Flow 
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Targets in ACI 237R-07, the target slump flow should be between 22 and 26 in. (559 and 

660 mm). 

To begin, testing was conducted using the same base concrete mix design and 

modifying the dosage of HRWR. This can be seen in Table 4.2. The HRWR that was 

used was Glenium 7500 and the dosages tested were 2, 6, and 9 fl oz/cwt. The 

manufacturer, BASF chemicals, recommends a dosage of 2 to 15 fl oz/cwt. To save on 

cost, the lowest dosage required to meet the required slump flow was desired, so an upper 

limit of 9 fl oz/cwt was checked as well as 6 fl oz/cwt. 

As shown in Table 4.2, the lowest dosage of 2 fl oz/cwt did not produce a 

concrete that could be tested with a slump flow test. Instead, a traditional slump test was 

performed and the slump of the concrete recorded. At a dosage of 6 and 9 fl oz/cwt, a 

highly flowable concrete was produced with a slump flow of 25 in. (635 mm). To ensure 

that adequate slump flow was achieved and not lost with the addition of a VMA, the 

higher dosage, 9 fl oz/cwt, was selected for further testing. While it was the highest 

dosage tested for this research, it is still well within the manufacturer's suggested dosage 

and provides the required flowability . 

Table 4.2. HR WR Dosages 

Dosage Slump 
Slump 
Flow 

(fl oz/cwt) (in) 
(in) 

Admixture 

Glenium 7500 2 6.75 

Glenium 7500 6 25 

Glenium 7500 9 25 

I m. = 25.4 mm 
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4.2.4. Passing ability. The passing ability of the self-consolidating concrete was 

found by performing the J-ring test in accordance with ASTM C 1621-09b. Standard Test 

Method for Passing Ability of Self-Consolidating Concrete by J-Ring (ASTM C 1621 , 

2009). The equipment that was used for this test was a standard slump cone conforming 

to ASTM C 143-1 Oa, a J -ring, and a rigid base plate. To perform this test, a sample of 

freshly mixed concrete was placed in a mold in the inverted position with a J-ring placed 

concentrically around it. The concrete was placed in one lift with no tamping or vibration 

and the mold was raised allowing it to spread through the J-Ring. After movement of the 

concrete stopped, two diameters were measured approximately perpendicular to each 

other and averaged. Figure 4.3 shows the J-ring after the movement of concrete has 

stopped. 

The J-Ring test is a measure of a concrete's passing ability or the ease with which 

concrete can pass among various obstacles and narrow spacing of the form work without 

blockage. Blockage occurs when there is segregation of the aggregate preventing flow 

around an area where there is an obstacle. Ideally, an SCC should have a high level of 

filling and passing ability to readily fill a section under the sole action of gravity. Thi s is 

referred to as a high filling capacity. 

Figure 4.3. J-Ring Test 
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The passing ability required of a concrete is also dictated by the application; 

certain applications will require a higher passing abilities then others. The variables that 

were considered when determining the required passing ability was the reinforcement 

level and the viscosity level. It was assumed that the reinforcement level was high and 

that the tight reinforcement could cause aggregate to segregate and potentially block 

flow. Narrowing of formwork was not an issue for this particular application, but 

because of the reinforcement level being high, a high passing ability was required. 

To optimize the passing ability of the concrete, the HRWR dosage previously 

determined was used; this was 9 fl oz/cwt. The VMA that was selected for use in the 

SCC was Rheomac 362, manufactured by BASF chemical company. Two dosages were 

selected for the VMA, 4 and 8 fl oz/cwt. These represented the lower and higher dosages 

recommended by the manufacturer. 

It was seen that as the dosage of VMA was increased, the J -Ring flow also 

increased, meaning the passing ability also increased. Table 4.3 shows that as the dosage 

was increased from 4 to 8 fl oz/cwt, the slump flow only decreased from 24.5 to 24.3 in 

(622 to 617 mm). This is a very small decrease in slump flow for a significant increase in 

passing ability of the concrete. The data indicated that the J-ring flow was the same for 

the high dosage of VMA as with the high dosage of the HRWR alone. The visual 

stability of the concrete was, however, much improved. The paste had a much thicker 

consistency while still maintaining a high filling ability. As this table shows, the slump 

flow was 25 in. (635 mm) before the addition of the VMA and 24.5 in. (622 mm) after 

the addition of the VMA. This seemed to show that the higher dosage of VMA would 

provide the best passing ability without making significant changes to the slump flow or 

filling ability of the concrete. 

4.2.5. Static Segregation. The static segregation of a SCC can be determined by 

this test method by measuring the coarse aggregate content in the top and bottom portions 

of the cylindrical specimen. This can then be used to determine the potential a SCC has 

for segregation. It is important that a concrete be cohesive enough to prevent the 

aggregate from sinking to the bottom, this is especially important in deep sections such as 

walls or columns. As with other properties, the degree of segregation that is acceptable is 

dependent on the application. 
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Table 4.3. VMA Dosages 

Dosage Slump 
J-Ring Admixture (fl Flow 

oz/cwt) (in) 
(in) 

Glenium 7500 9 
Rheomac VMA 
362 4 24.5 19.5 

Glenium 7500 9 

Rheomac VMA 
362 8 24.3 23 

Glenium 7500 9 25 23.5 

I in. = 25.4 mm 

To perform this test, a sample of freshly mixed sample of SCC is placed in a 

cylindrical mold without tamping or vibration. The top surface of the concrete is struck 

off and the concrete is allowed to stand for 15 ± I minute. Immediately following the 

standing period, the concrete out of the top and bottom quarters of the column are 

removed and washed over a No.4 sieve. The aggregate is then brought to a surface-dry 

condition by rolling in an absorbent cloth until all visible films are removed. The mass of 

the coarse aggregate from the top and bottom sections are then determined to the nearest 

0.1 Ib (0.045 kg). The percent static segregation can then be found using Equation I. In 

this equation, CAs is the mass of coarse aggregate in the bottom section of the column, 

CAT is the mass of coarse aggregate in the top section of the column, and S is the static 

segregation in percent. If CAs~ CAT the percent segregation is zero. 

S = [CAs-CAT] * 100, if CA8 > CAr 
CA8 +CAT 

( I ) 

Table 4.4 shows data taken from the static segregation test. The first concrete 

mixture contained the HRWR Glenium 7500 only. This made the mixture highl y 

flowable; however, there was significant segregation. The next test performed was for a 

concrete made using a HRWR and a low dosage of a VMA, Rheomac 362. It was found 
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that segregation improved; however, there was still a significant amount of segregation. 

Finally, a high dosage of VMA was added and it was seen that static segregation 

decreased significantly. This was the basis for the selection of a high dosage of VMA in 

the sec mix design. 

Table 4.4. Static Segregation Data 

Dosage Static 

Test (fl Segregation 

Number Admixture oz/cwt) (%) 

1 Glenium 7500 9.0 25.4 

Glenium 7500 9.0 

Rheomac 

VMA 

2 362 4.0 22.4 

Glenium 7500 9.0 

Rheomac 

VMA 

3 362 8.0 3.5 

4.3. HARDENED CONCRETE TESTING PROGRAM. 

Table 4.5 summarizes the tests that were performed on the NC and SCC 

specimens, test methods followed, and specimen sizes. 

4.3.1. Compression testing. Compression testing was performed in accordance 

with ASTM C39-l 0 (201 0) Standard Test method for Compressive Strength of 

Cylindrical Concrete Specimens (ASTM C39, 2010). The specimens used for this were 4 

in-diameter (100 mm) by 8 in long (200 mm) cylinders cast in the Concrete Laboratory of 

Butler-Carlton Hall (CLBCH). Testing was conducted in the Load Frame Room of 

Butler-Carlton Hall (LFBCH). The testing apparatus used was a 1200 kip (5,340 kN) 

Forney Compression Machine. The load was applied continuously and without shock to 
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the specimen at a rate of 35± 7 psi/s (0 25 + 0 05 MPa/s) B d h · · · - . . ase on t e specimen size, 

this would correspond to a loading rate of 440± 188 Jb/s ( 1.9±0.8 kN/s). 

Table 4.5 . Summary of Hardened Concrete Testing Program 

Test 
Test Specimen Age At 

Method Geometry Testing 

Compressive 
ASTM C39 

4-in. (100 mm) dia. 

Strength x 8-in. (200 mm) long cylinder 
7 days, 28 days 

Modulus of 6-in. (150 mm) x 6-in. (150 mm) 
ASTM C78 28 days 

Rupture x 24-in. (600 mm) 

Shrinkage 
4-in. (100 mm) dia. 

After Casting 

ASTM C157 x 24-in. (600 mm) long cylinder 
for 

4 months 

Shear 12-in. (305 mm) x 18-in. (457 mm) 

Strength x 168-in (4267 mm) 
;::: 28 days 

A total of 9 cylinders were cast for each trial batch of concrete. All specimens 

were cast in plastic cylinder molds with caps and moist cured for 7 days. The specimens 

were removed from the molds, marked, and returned to the moist cure chamber of 

CLBCH until their intended testing date. 

Since the compressive strength exceeded initial expectations, a sulphur-based 

capping compound was used. The cylinders were capped in accordance with ASTM 

C617 - I 0. Standard Practice for Capping Cylindrical Concrete Specimens (ASTM C61 7, 

20 I 0). The capping compound provided a flat surface that helped to eliminate high stress 

areas. The manufacturer states that the capping compound compressive strength exceeds 

8,000 psi (55.2 MPa) at an age of 2 hours but may be used beyond 15,000 psi (I 03.4 

MPa) with additional aging. All specimens were allowed to cure, at a minimum, four 

hours before testing. Sulfur capping was used in place of neoprene pads in steel end caps 

due to the stiffness required to test the higher compressive strengths. The testing 

apparatus for concrete compression testing can be seen in Figure 4.4. 
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4.3.1. Results. The results of compression testing performed on concrete 

containing different amounts of fly ash is shown in Figure 4.5. Each data point in the 

figure represents an average of three replicate specimens. Compressive strengths were 

closest for concrete hatched with a 20 and 30 percent replacement of cement with fly ash. 

It was also recognized that concrete containing fly ash had a longer continued 

hydration period and setting time than that of a 100 percent portland cement concrete. As 

a result, over a range of 7 to 56 days, there is a greater increase in compressive strength in 

the fly ash concrete over the 100 percent portland cement concrete. Conversely, there is 

a greater increase in the compressive strength of the 100 percent portland cement 

concrete over a period of 1 to 7 days, or during early age of the concrete. This can be 

seen more clearly in Figure 4.6, where the NC had a higher compressive strength initially 

until approximately 22 days, where the compressive strengths of the sec and fly ash 

(FA) exceeded the NC. 

Figure 4.4. Concrete Compression Testing 
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All three concrete specimens had the same w/cm; the SCC and FA had the same 

amount of cement and fly ash. This shows that there is a difference in compressive 

strength with the addition of fly ash; however, the difference in compressive strength as a 

result of the addition of the specific chemical admixtures used was negligible. This result 

is because the SCC and FA strength gain plots are nearly identical as time progressed. 

4.3.2. Conclusions. As was expected, as the amount of fly ash increased, the 

compressive strength trend was to decrease up to an age of seven days. At 28 days, the 

control concrete, which contained no fly ash, still had the highest compressive strength, 

but it could be seen that as the amount of fly ash was increased, the compressive strength 

also experienced a small increase. This would seem to indicate that the fly ash reacted 

slower at first but over time would result in a comparable or higher compressive strength, 

which is consistent with previous research. 
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After testing the effects of fly ash on the compressive strength of the concrete, a 

30 percent replacement of cement with fly ash was selected as the optimum amount. As 

can be seen in the graph, the compressive strength was significantly lower at 30 percent 

then at 20 percent, but there was a significant increase in slump flow over the same range. 

There was a significant decrease in strength between a 30 to 40 percent increase in fly ash 

replacement as far as compressive strength, but there was not a large increase in slump 

flow . It was thus determined that the fly ash replacement selected provided the largest 

flowability without sacrificing the largest amount of compressive strength. Therefore, a 

30 percent replacement of cement with fly ash was chosen for subsequent testing with 

HRWR and VMA admixtures to develop the SCC mix, as discussed in Sections 4.2.3 

through 4.2.5. 

10000 -

-9000 

- 8000 "iii 
E: 
~ 7000 
1i'o 
c: 6000 QJ ... 
+J 
V) 5000 
QJ 

> 
"iii 4000 
"' QJ ... 3000 ~ 

E 
0 2000 u 

1000 

0 

....,.,.. 
-

/ -

~ / -

/ /_ 
I / 
/ /_ -

I / -

ll ----- -

~ ---, 

0 7 14 21 28 35 42 49 56 63 

Time (Days) I psi = 0.006 MPa 

I C te - Fly Ash Concrete - Self-Consolidating Concrete - Norma onere 

Figure 4.6. Compressive Strength vs. Time 



52 

4.3.3. Modulus of rupture. Modulus of rupture (MOR) testing was performed in 

accordance with ASTM C78-l 0, Standard Test Method for Flexural Strength of Concrete 

(Using Simple Beam with Third-Point Loading)" (ASTM C78, 201 0). The specimens 

used for testing were beams measuring 6 in. by 6 in. by 24in. (150 mm by 150 mm by 

600 mm) cast in the (CLBCH). The specimens were tested on the Tinius-Olsen testing 

machine in the (LFBCH). Specimens were loaded continuously and without shock to the 

breaking point. The load was applied at a rate that increases the maximum stress on the 

tension face between 125 and 175 psi/min (0.9 and 1.2 MPa/min). The testing apparatus 

is displayed in Figures 4.7 and 4.8. The specimen after failure is shown in Figures 4.9 

and 4.10. 

4.3.4. Results. MOR testing was completed as described in Section 4.3.3. Testing 

was performed on NC, FA, and SCC after final mix designs had been developed and 

tested for optimization of fresh concrete properties and compressive strength. Data 

collected from this test is shown in Table 4.6 and Figure 4.1 1. Each val ue reported is the 

average of three replicate specimens tested at an age of 28 days. The MOR values were 

normalized by dividing the square root of the compressive strength. 

4.3.5. Conclusions. The data indicated that the MOR was greater for the FA and 

SCC specimens then for the NC even after normalizing for concrete strength. This also 

showed that sec could be produced having material properties that meet or exceed those 

of traditional concrete mixtures if the aggregate types and amounts were maintained the 

same. Typically, MORis affected by the angularity,type, and amount of aggregate that is 

used. Since the SCC produced for this research program used the same type and amount 

of aggregate for all mixes, the difference between the three was insignificant, as shown in 

Figure 4 . 11 , particularly since MOR varies between 6 and 12...Jf' c for normal concrete. 



Table 4.6. Modulus of Rupture 

Modulus 
of 

Concrete Rupture Normalized 
Type (psi) MOR 

NC 634 8.8 

FA 670 9.2 

sec 667 9.2 

1 psi= 0.006 MPa 

iM'iiiiCi 
EVE PROTECTION 
MUST BE WORN 

IM THIS AREA 

Standard 
Deviation 

0.1 
0.1 

0.1 

Figure 4.7. Modulus of Rupture 
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Figure 4.8. Modulus of Rupture 

Figure 4.9. Modulus of Rupture After Testing 



Figure 4.10. Modulus of Rupture After Testing 
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4.4. CONCLUSIONS 

Materials testing was important for both the development of a SCC but also for 

the comparison of SCC to NC. It is important that the properties of SCC are known and 

that if there is a significant difference in properties of SCC compared to NC that these are 

taken into account in design. The tests performed in this section were selected to 

determine if the design parameters used for NC could also be applied to SCC. 

To begin, concrete density and air content were taken for both NC and SCC. 

These are two tests that are routinely performed on fresh concrete samples. It was seen 

that there was not a significant difference between the SCC and the NC. This was as 

expected since the major constitutions of the concrete were not altered. The density of 

the concrete was found to be approximately 146 lb/ft3 (2340 kg/m3) for all concrete 

produced. The air content was also important when producing SCC because with the 

addition of air, concrete traditionally experiences an increase in slump and durability . 

The air content of several mix designs was taken and the dosage of an air entraining 

admixture was adjusted to achieve an air content of 6%. Air content testing was 

performed throughout materials testing to ensure that the air content remained relatively 

consistent throughout the testing process. 

During the mix development phase for SCC, fresh concrete testing was performed 

to determine the optimum dosages of different admixtures. To determine the correct 

dosage of the HRWR the slump flow of the concrete was determined. It was seen that the 

slump flow, and the flowability of the concrete increased greatly as the dosage of the 

HRWR was increased from 2 to 6 fl oz/cwt. Beyond this point there was not a significant 

increase in the slump flow of the concrete even with additional HRWR. The highest 

dosage of the HRWR was still used to maintain a high slump flow after the addition of a 

YMA. After the dosage of HRWR was selected the dosage of YMA was determined . 

This was conducted much the same way as with the HRWR; different dosages were 

selected and slump flow tests were performed to determine the flowability of the 

concrete. It was seen that there was very little effect as a result of the addition of VMA 

on the slump flow of the concrete. 
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After the addition of VMA the passing ability of the concrete was tested. This 

was determined by performing the J-ring test. The diameter of the concrete taken from a 

J -ring test was compared to the diameter of the concrete taken from a slump flow test. A 

large difference will indicate that the concrete has very little passing ability and that is 

affected greatly by obstacles. It was seen that there was very little difference between 

SCC produced using a combination of a HRWR and VMA to that of an SCC using a 

HRWR alone. Visually the stability was improved greatly with the addition of a VMA 

and there was little impact on the passing ability of the concrete as shown by the J -ring 

test. 

To show that the SCC had an improved stability as a result of the addition of the 

VMA the static segregation of the SCC was determined. This was determined by the 

static segregation test. This test was performed on concrete made using the HRWR 

alone, as well as a low and high dosage of VMA. It was seen that the static segregation 

was highest with concrete produced using the HRWR alone. This was as expected since 

there was little to prevent the aggregate from settling within the concrete mixture. The 

VMA works to effectively increase the specific gravity of the water in the concrete 

mixture and prevent segregation. The low dosage of 4 fl oz/cwt for the VMA showed 

little improvement over the HRWR alone, however, the high dosage of 8 fl oz/cwt 

showed significant improvement. It was shown that for the VMA to be effective the 

higher dosage of VMA would be required to prevent segregation. 

After the mix design had been developed for the fresh properties of SCC the 

hardened properties were tested to determine if the concrete would still be acceptable. To 

begin the compressive strength was tested for concrete produced with different amounts 

of fly ash. The different cement replacement percentages that were tested were 0, 20, 30, 

and 40. It was seen that as the amount of fly ash was increased there was a decrease in 

early age strength. Concrete containing higher percentages of fly ash had longer 

hydration periods, but had higher compressive strengths after approximately 21 days. 

Knowing that the long term compressive strength would be greater and the slump flow 

would be increased as a result of the addition of fly ash the fly ash cement replacement 

percentage of 30% was selected. This afforded the benefits of increased slump flow in 



the fresh state while still maintaining the higher early age strength of a portland cement 

concrete. 
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MORis another common hardened concrete property that was determined after 

concrete mix design development and used to compare SCC to NC. The MOR was 

determined by testing a beam and normalized by dividing this value by the square root of 

the compressive strength of that particular concrete. This compressive strength was 

determined by testing a cylinder cast from the same batch of concrete. It was seen that 

there was not a significant difference between the MOR of SCC and FA concrete. SCC 

was also shown to be slightly higher than NC. Overall it was shown that there was little 

difference between concrete produced with or without a HRWR and VMA regarding 

MOR. 
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5. SHRINKAGE 

5.1. METHODOLOGY 

In order to find the shrinkage of the SCC and compare it to that of NC, a modified 

version of ASTM C 157-08, Standard Test Method for Length Change of Hardened 

Hydraulic-Cement Mortar and Concrete (ASTM C 157, 2008) was used. The only 

modification made to the specification was to us a specimen similar to those used by 

Myers ( 1998) in his research on high-performance concrete rather than the prism of 4 in 

(1 00 mm) square cross-section approximately 11-1/4 in. (286 mm) long. The specimens 

were placed in a PVC pipe with a diameter of 4in (1 00 mm) and a length of 24 in . (600 

mm). These modified dimensions allowed for 9 readings to be taken on each specimen, 3 

along each of 3 longitudinal axes. There were four specimens cast for each mix design 

for a total of 36 readings at each time step. Figure 5.1 shows the specimens and the 

locations of the DEMEC points used to determine the strain in the concrete. 
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Within 24 hours of placement, the concrete was removed from the PVC mold 

using a dremel tool outfitted with a cutting blade. After the specimen was removed from 

the mold, marks were made to place the DEMEC points. The points were applied using a 

five-minute epoxy formulated for use on steel and concrete. A typical specimen is shown 

in Figure 5.2, and the group of specimens is shown in Figure 5.3. After the epoxy had 

time to harden, the initial DEMEC readings were taken. The average of all of the 

readings was then computed to serve as the total strain of the specimen. Data from 

subsequent days was used to extrapolate back to the initial casting to determine total 

shrinkage. 

Figure 5.2. Typical Shrinkage Specimen 

To create the plot of shrinkage vs. time, readings were taken every day for the 

f. k ther day for the next week once a week for the next three weeks, trst two wee s, every o ' 
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an once a mont erea e . 

1 b f B I C It n Hall The lab is temperature controlled and maintained an 
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1 · 1 stant· however there were days when the loading dock 
temperature was re at I ve y con , ' 
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doors were opened for extended periods of time allowing warmer, higher humidity air to 

enter and affect the results. 

Figure 5.3. Concrete Shrinkage Specimens 

5.2. RESULTS 

Shrinkage is defined by ACI 209R-08, Guide for Modeling and Calculating 

Shrinkage and Creep in Hardenend Concrete (ACI 209, 2008) as the decrease in volume 

of concrete over time. This shrinkage is due to drying shrinkage, autogenous shrinkage, 

and carbonation. Testing performed for the purposes of this research monitored drying 

shrinkage. Drying shrinkage is a decrease in the volume of concrete due to the Joss of 

moisture within a concrete by evaporation. Tables 5.1, 5.2, and 5.3 show the amount of 

shrinkage experienced by the NC, FA, and SCC, respectively. In addition to the tables, 

Figure 5.4 illustrates the average shrinkage curve for the three concrete types. 
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Table 5.1. NC Shrinkage Strain. 

Material 
Specimen Shrinkage Strian (llE) 

Number 7 days 20 days 40 days 254 days 

1 301 489 572 817 

2 295 480 566 822 
NC 

3 236 433 414 552 

4 198 395 462 701 

Table 5.2. FA Shrinkage Strain. 

Specimen Shrinkage Strian (llE) 
Material 

Number 7 days 20 days 40 days 254 days 

1 275 526 686 883 

2 253 672 741 960 
FA 

3 271 528 605 836 

4 158 413 493 712 

Table 5.3. SCC Shrinkage Strain 

Specimen Shrinkage Strian (llE) 
Material Number 7 days 20 days 40 days 254 days 

1 145 420 488 714 

2 259 506 596 843 
sec 

3 278 538 635 861 

4 480 591 657 1005 
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Figure 5.4. Shrinkage Plot 

5.3. DATA ANALYSIS AND INTERPRETATION 

The total amount of shrinkage was greatest for the FA concrete, followed closely 

by the SCC, and finally NC. As was expected, initial shrinkage was the greatest before it 

began to curve and eventually flatten out. Figure 5.5 shows the same plot as Figure 5.4 

but includes error bars based on one standard deviation above and below the average 

strain for each point. This plot indicates that the shrinkage between the NC and the SCC 

is statistically insignificant since the error bars overlap. The plots for the FA and the SCC 

are even closer to each other and the NC is slightly lower. This seems to indicate that the 

addition of fly ash added slightly to the shrinkage of the specimens. This could be due to 

the fact that the fly ash has a longer hydration period and more water was allowed to 
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evaporate from the specimens. The data also indicated that the addition of HRWR and a 

VMA admixtures did not have a significant effect on shrinkage. 

Typically shrinkage is affected greatly by the w!cm; as more water is added to a 

concrete mix, more drying occurs. Other studies have shown that there can be less 

shrinkage with a limestone compared to a stiffer aggregate due to a chemical reaction 

between the paste and the limestone. This chemical reaction creates a stronger bond at 

the interface zone that resists shrinkage. The aggregate that was used in this research was 

a limestone found locally in Missouri. For the purposes of this research, the effects of fly 

ash, HRWR, and VMAs on shrinkage were desired so the w/cm, as well as the types and 

amounts of the aggregates, were kept the same for all concretes so these effects could be 

clearly seen. 
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Tables 5.1 , 5.2, and 5.3 are repeated as Tables 5.4, 5.5, and 5.6 but include 

predicted values based on relationships contained in ACI 209R. Models that were used 

to predict the shrinkage were the ACI 209R-92 model developed by Branson and 

Christianson in 1971, with minor modifications introduced in ACI 209R-82; the Bazant­

Baweja 83 model developed by Bazant and Baweja in 1995; and the GL2000 model 

developed by Gardner and Lockman in 2001. 

Table 5.4. NC Shrinkage Strain. 

Specimen Shrinkage Strian (!lE) 
Material 

Number 7 days 20 days 40 days 254 days 

1 301 489 572 817 

2 295 
NC 

480 566 822 

3 236 433 414 552 

4 198 395 462 701 

Average NC 258 449 504 723 

ACI 209R 448 618 686 761 

Bazant-Baweja B3 171 303 413 649 

GL2000 155 256 334 504 

Table 5.5. FA Shrinkage Strain. 

Specimen Shrinkage Strian (!lE) 
Material 

Number 7 days 20 days 40 days 254 days 

1 275 526 686 883 

2 253 672 741 960 
FA 

3 271 528 605 836 

4 158 413 493 712 

Average FA 239 535 631 848 

ACI 209R 448 618 686 761 

Bazant-Baweja B3 171 303 413 649 

GL2000 155 256 334 504 
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Table 5.6. SCC Shrinkage Strain 

Material 
Specimen Shrinkage Strian (llE) 
Number 7 days 20 days 40 days 254 days 

1 145 420 488 714 

2 259 506 596 843 sec 
3 278 538 635 861 

4 480 591 657 1005 

Average SCC 291 514 594 856 

ACI209R 448 618 686 761 

Bazant-Baweja 83 171 303 413 649 

GL2000 155 256 334 504 

The ACI 209R (2008) empirical model developed by Branson and Christianson is 

presented in Equations I through 9. In the following equations, Esh is the ultimate 

shrinkage and Ysh is the shrinkage correction factor. To calculate the correction factor, 

the following terms are used: Ysh ,tc is the initial moist curing coefficient for curing times 

different from 7 days, Y sh,RH is the ambient relative humidity coefficient, Ysh,vs is a 

coeffic ient to account for the size of the member in terms of the volume-surface ratio 

other then 38 mm, Ysh,s is the slump factor, Ysh,'l' is the fine aggregate factor, Y sh,c is the 

cement content factor, and Y sh,a is the air content factor. 

(2) 

Ysh = Y sh,tcYsh,RHYsh,vsY sh,sY sh,'I'Y sh,cY sh,a 
(3) 

Ysh,tc = 1.202 - 0.2337log(tc) 
(4) 

Ysh,RH = 1.40 - 1.02h for 0.40 < h < 0.80 (5) 



Y - 1 2e-0.00472v/s sh,vs - · 

Ysh,s = 0.89 + 0.041s 

Ysh r.p = 0.30 + 0.041 rp 

Y s h c = 0.75 + 0.00036c 

Ysh,a = 0.95 + 0.008a ~ 1 

The Bazant-Baweja B3 model solution developed by Bazant and Baweja is 

presented in Equations 10 through 16. Once again Esh in equation 10 is the ultimate 

shrinkage. To calculate the ultimate shrinkage, the following terms were calculated: 
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(6) 

(7) 

(8) 

(9) 

(I 0) 

S(t- tc) is the shrinkage time function, Esh= is the ultimate shrinkage strain, Ecm607 / 

Ecm(t r is the time dependence factor, Tsh is the shrinkage halftime, E5 = is the 
c + s h ) 

nominal ultimate shrinkage, and khis the ambient relative humidity factor. 

[
(t t )] 0.5 

S(t- tc) = tanh ---=....£.._ 
Tsh 

Ecm607 = 1.0805/ [ Ctc+Tsh) ]0.5 
E (t + ) ( 4+0.85( T c+tc)) 

em c Tsh 

2 
-0.08 -0.25 [2k (~)] 

Tsh = 190.8tc fcm28 s 5 

( I I) 

( 12) 

(13) 

(14) 

( 15) 
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(16) 

kh = 1 - h 3 if h < 0.98 (17) 

The third model that the shrinkage data was compared to was the GL2000 

developed by Gardner and Lockman in 2001. The solution to the model is presented in 

Equations 17 through 20. To calculate the shrinkage strains at time, t, in Equation 17, the 

following terms were calculated: f3(t- tc) is the shrinkage time function , {3(h) is the 

ambient relative humidity factor, and Eshuis the ultimate shrinkage strain. 

( 18) 

(1 9) 

{3(h) = (1 - 1.18h4 ) (20) 

(21) 

Figures 5.6, 5.7, and 5.8 show the plots of shrinkage for the three concrete types 

tested compared to the ACI 209R Model, the Bazant-Baweja B3 Model, and the GL2000 

model, respectively. The plots show that the ACI 209R Model, Figure 5.6, is the closest 

at predicting the shrinkage of the three concrete types. It also tends to predict initial 

shrinkage slightly higher than the actual shrinkage measured but under predicts the 

shrinkage slightly at later ages. Both of the other empirical models, the Bazant-Baweja 

B3 Mode l in Figure 6 .7 and the GL2000 Model in Figure 6.8, tend to predict shrinkage 

lower than the measured shrinkage, with the GL2000 Model significantl y under 

predicting the shrinkage. 
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5.4. CONCLUSIONS 

By looking at the values for shrinkage for NC and SCC it is possible to see how 

the two compare. The purpose of this testing was to determine what affect, if any, the 

chemical admixtures would have on shrinkage. In addition to these two types of 

concrete, an intermediate concrete made with a 30 percent replacement of fly ash and no 

chemical admixtures was tested. This helped to determine if any changes in shrinkage 

were a result of the addition of fly ash or if they were a result of the addition of a HRWR 

and VMA. Specimens were constructed and testing was performed using a modified 

version of ASTM C 157-08 used by Myers in his research in 1998. 
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After shrinkage data was recorded and plots were made to show shrinkage strain 

over time the data was compared to predictions made by 3 shrinkage prediction models. 

These models were ACI 209R, Bazant-Baweja B3, and GL2000. These models were 

compared to the data collected to determine which most accurately matched the concrete 

developed in the lab. 

By looking at plots showing shrinkage over time it was seen that the FA concrete 

had the most shrinkage and was followed closely by SCC. These two types of concrete 

matched the closest to each other and compared to them, NC had the smallest shrinkage. 

This would seem to indicate that the fly ash contributed to the slight increase in shrinkage 

observed. To determine if this increase in shrinkage was significant, standard deviation 

bars were added to select points. It was seen that many of the standard deviation bars 

overlapped indicating there was not a significant difference in the shrinkage between the 

three concrete types. 

After comparing the different types of concrete to each other the shrinkage values 

determined in the lab were compared to values predicted by the shrinkage models. The 

trend predicted by all three models matched what was seen in testing; the initial shrinkage 

was the highest and as time progressed shrinkage slowed and began to plateau. It was 

seen that the ACI 209R model most accurately represented the shrinkage observed during 

testing. The initial predicted shrinkage was higher than what was seen in the field and 

the predicted shrinkage was lower than data taken in the lab. Both the Bazant-Baweja B3 

and the GL2000 models under predicted the shrinkage for all three concrete types. Of the 

two, the Bazant-Baweja B3 was the closest to the plotted data, however, it was 

consistently lower throughout the time testing was conducted. 
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6. FULL-SCALE BEAM SHEAR TESTS 

6.1. INTRODUCTION 

Shear strength is a concern for designers when working with SCC. Typically, 

decreased shear strength with sec can be attributed to higher paste content, rounder 

aggregate, and higher water to cement ratios (w/c) used to increase the flowability of the 

concrete. All of these cause a loss in aggregate interlock, which contributes significantly 

to the shear strength of the concrete. 

Since the first SCC mixtures were developed, there have been many advances in 

chemical admixtures that allow sec to be made without having to make all of these 

material changes. The goal of this research project was to take a slightly different 

approach to SCC mix design. Instead of making the material changes mentioned above 

and potentially decreasing the shear strength of the concrete, chemical admixtures would 

be used to achieve the fresh concrete properties required to have a SCC. This 

chemically-based approach would hopefully minimize any associated reduction in shear 

strength. 

After the SCC mixture was developed, the material properties were compared to a 

more traditional or NC mixture. For each concrete type, SCC and NC, there were three 

shear reinforcement levels tested. The first set of beams had no shear reinforcement, the 

second set had the minimum amount required by ACI 318, and the last had an amount 

greater than the minimum required by ACI 318. This last series was referred to during 

testing as the maximum amount of shear reinforcing and was designed to ensure that the 

beam still failed in shear. Data from each set of SCC beams was compared to data from 

the corresponding NC tests as well as provisions from design codes commonly used in 

North America. 

6.2. SPECIMEN DESIGN 

When designing the beams for testing, three stirrup designs were selected: no 

stirrups, the minimum amount required by ACI 318 (2008), and some amount greater 

than the minimum amount. Design began by selecting the overall dimensions of the 

beam and then designing for shear and flexure . To ensure that the beam failed in shear, 
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the capacity of the beam in flexure had to surpass the calculated failure load in shear. For 

consistency, all beams used the same amount of flexural reinforcement, which was based 

on the capacity of the greatest amount of shear reinforcement. 

Before calculations could begin, overall dimensions were selected. As this 

research project would use the same test setup as several other projects occurring in the 

lab at the same time, a slightly non-traditional four-point loading for shear testing served 

as the design setup. As noted previously, one aim of the research was to examine the 

affect of a chemically-based SCC on the shear capacity of "typical" beams. As a result, a 

shear span-to-depth ratio (aid) between 2.5 and 6 was chosen for the testing (MacGregor, 

2005). With the four-point loading setup, this resulted in a beam span length of 12 ft. 

(3660 mm), with an overall beam length of 14ft. (4270 mm) to provide adequate end 

support and anchorage of the flexural reinforcement, as shown in Figure 6.1. It was also 

important that the beams could be easily produced using standard concrete forms and 

tested using the equipment in the Structural Engineering Research Laboratory of Butler­

Carlton Hall (SERLBCH). After the span length was selected, it was important to ensure 

that the aid was greater than 2.5. With this in mind combined with the desire to test 

realistic full-scale beam sizes, an overall beam depth of 18 in. (457 mm) was selected, 

which resulted in an aid value of approximately 3.1. It has been shown that an increase 

in depth of a beam with little or no web reinforcement results in a decrease in shear at 

failure for a given compressive strength of concrete (f' c), reinforcement ratio (pw), and 

aid (MacGregor, 2005). Beam depths also have an effect on the width and spacing of 

inclined cracks in the beams. As the depth increases, the crack spacings and widths tend 

to increase. Knowing that the width of the inclined cracks is based on the strain in the 

reinforcement crossing the crack, and the spacing of the cracks, the shear stress that can 

be transferred across the crack by aggregate interlock Dei, will be less with a deeper beam. 

When Dei is exceeded, the faces of the cracks slip, one relative to the other. 
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Figure 6.1 . Loading Condition for Full-Scale Beam Shear Tests 

After the overall dimensions of the beam had been chosen, design of the steel 

reinforcement could begin. To start, Equation 22 was used to determine the rectangular 

stress block depth, a. The equation assumes that the force in the tensi le steel will be 

equal to the sum of the compressive concrete and steel forces. In this equation A,11 is the 

area of steel in tension, _h. is the yield strength of the steel,f'c is the compressive strength 

of the concrete, b is the width of the compression face, a is the depth of equivalent 

rectangular stress block, and A.~c is the area of the steel in compression. 

(22) 

The ACI 318-08 code allows for the use of an equivalent rectangular compressive 

stress distribution, or stress block, to replace the more exact concrete stress distribution 

which is non-linear. For concrete wi.th f'c~ 4,000 psi, ~,=0.85. If the compressive 



strength of the concrete is greater than this j3 1 is reduced by 0.05 for each 1000 psi in 

excess of 4000. 
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(23) 

By assuming an area of steel, and evaluating Equation 22, the depth of the 

equivalent rectangular stress block could be determined. The values for f, andf'c were 

both known from testing of tensile steel strength and previous concrete mix designs, and 

b was the width of the compression face, 12 in. (304 mm). This was already determined 

as an overall beam dimension. 

Solving for the equivalent stress block depth allowed for the calculation of the 

moment capacity of the section. This calculation is shown in Equation 24. In this 

equation, M 11 is the nominal moment capacity of the beam,f~cl is the compressive strength 

required from the steel in compression solved for by iteration of Equation 22, dis the 

distance from the extreme compression fiber to the centroid of the longitudinal tension 

reinforcement, and d, is the distance from the extreme compression fiber to the centroid 

of the longitudinal compression reinforcement. 

(24) 

Once the nominal moment capacity of the beam is known, the load that the beam 

should fail at can be predicted by setting it equal to the load applied by the actuator (P) 

multiplied by the distance from the support to the load. To ensure that the beam fails in 

shear, the load that the beam can support in a flexural capacity must be greater than the 

load that the beam can support in shear. 

To find the load that the beam can support in shear, two terms must be calculated, 

the nominal shear strength provided by the concrete (V,) and the nominal shear strength 



76 

provided by the shear reinforcement (V5 ). The calculation for Vc is shown in Equation 25 

and is taken from the ACI 318-08 code, equation (11-3). By rearranging equation (11-

15) from the ACI code, the spacing can be determined; this result is shown in Equation 

26. In this equation Avis the area of steel required,j;.1 is the tensile strength of the steel, 

and s is the spacing. Vs reqd is the shear strength that must be supported by the steel. This 

is found in Equation 27. 

S = Avfytd 

Vs reqd 

Vsreqd = V- Vc 

(25) 

(26) 

(27) 

Equation 26 gives the suggested stirrup spacing according to ACI, or put another 

way, this is the minimum number of stirrups that will adequately support this beam. The 

minimum spacing of stirrups was calculated to be 7 in. and a spacing of 5 in. was selected 

to be the smallest spacing tested or maximum amount of shear reinforcing. 

The location of steel reinforcement within the beam is shown in Figure 6.2. Five 

No.4 bars served as compression reinforcement and 10 No. 8 bars served as tensile 

reinforcement. For calculations d was equal to 14.63 in. and d' was equal to 1.625 in. 

There was I in. of clear cover on the sides and 1.5 in . of clear cover on the top and 

bottom of the shear reinforcement. Table 6.1 shows the test matrix for beams tested in 

shear. Figures 6.3, 6.4, and 6.5 show the locations of the shear reinforcement for the 

beams constructed with no stirrups, 7 in. (178 mm) stirrup spacing, and 5 in. ( 127 mm) 

stirrup spacing, respectively. The construction of the reinforcement cages are described 

in more detail in Section 6.3. Tables 6.2 and 6.3 show the concrete mix designs used for 

the SCC and NC beams, respectively. See Chapter 3 for concrete mix development. 
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Table 6.1. Full Scale Shear Test Matrix 

Stirrup Concrete Reinforcement 

Spacing Type Figure 

Specimen (in.) Numbers 

Controi-NS-1 No Stirrups NC 6.2, 6.3 

Controi-NS-2 No Stirrups NC 6.2, 6.3, 

Controi -NS-3 No Stirrups NC 6.2, 6.3 

Control-7-1 7 NC 6.2, 6.4 

Control -7-2 7 NC 6.2, 6.4 

Control -7-3 7 NC 6.2, 6.4 

Control -5-1 5 NC 6.2, 6.5 

Control-5-2 5 NC 6.2, 6.5 

Control-5-3 5 NC 6.2, 6.5 

SCC-NS-1 No Stirrups sec 6.2, 6.3 

SCC-NS-2 No Stirrups sec 6.2, 6.3 

SCC-NS-3 No Stirrups sec 6.2, 6.3 

SCC-7-1 7 sec 6.2, 6.4 

SCC-7-2 7 sec 6.2, 6.4 

SCC-7-3 7 sec 6.2,6.4 

SCC-5-1 5 sec 6.2, 6.5 

SCC-5-2 5 sec 6.2, 6.5 

SCC-5-3 5 sec 6.2, 6.5 

1m. = 25.4 mm 
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Figure 6.2. Steel Reinforcement Location 
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Figure 6.4. Shear Reinforcement With 7 in. Stirrup Spacing 
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Figure 6.5. Shear Reinforcement With 5 in. Stirrup Spacing 

Table 6.2. Final SCC Mix Design per Cubic Yard 

[ I 
Batch 

I Constituent Weight 

CA (lb) 1781.3 

FA (lb) 971.3 

Cement (Type 1) (lb) 528.9 

Water (lb) 340 

Fly Ash (Class C) (lb) 226.7 

[Chemical Admixtures I Dosages ! 
Micro Air (ml) 223.4 

Glenium 7500 (gal) 0.53 

RheomacVMA 362 (gal) 0.47 

lib. = 0.45kg 
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Shear strength testing was performed on the 14ft (4270 ) 1 b · mm ong earns m the 

SERLBCH. All specimens were allowed to cure for a minimum of 28 days before testing 

began. Three cylinders were kept next to the beams and were tested to determine the 

compressive strength of the beam on the day of testing. 

Table 6.3. Final NC Mix Design per Cubic Yard 

Batch 
,.. 

"tuent Weight 

CA (lb) 1781.3 

FA (lb) 971.3 

Cement (Type 1) (lb) 755.6 

Water (lb) 340 

Chemical 
Admixtures Dosages 

I Micro Air (ml) I 223.4 I 
lib.= 0.45 kg 

6.3. SPECIMEN CONSTRUCTION 

This section will discuss the fabrication of the beams for shear testing as well as 

any construction related issues. The beam naming convention used throughout this 

section is a follows: "controls" are beams made with normal concrete and "SCC" are 

beams made with self-consolidating concrete. The following number is the spacing in 

inches between shear stirrups; where the symbol NS indicates there are no stirrups in the 

beam. The final number is the specimen number. 

Form work was acquired and assembled first in late May 2010. The sides were 18 

in. (457 mm) tall and had a length of 14ft. (4270 mm). The sides were attached to the 

form base by angle iron and form nails. The ends of the forms were constructed in the 

lab using plywood and wood framing and held onto the side pieces using bolts, washers 

and wing nuts. These were used for ease of assembly and disassembly. There was a total 



of three beam molds such that a single series of beams would be constructed from the 

same batch of concrete. 
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Fabrication of the control specimen cages began early in June 2010. Reinforcing 

steel, consisting of No. 3, No.4, and No. 8 bars, was delivered to the SERLBCH and cut 

to length using a rebar cutter. Ninety degree bends were then added to the ends of the 

No. 8 bars. The No. 8 bars were set on top of a set of work stands and 5 No. 8 bars, cut 

to lengths of I 0 in . (254 mm), were used to maintain the correct spacing between the two 

layers of tensile reinforcement. After longitudinal reinforcement was in place, stirrups 

were added and tied to the longitudinal reinforcement using rebar ties. Three different 

stirrup designs were then used, no stirrups, a 7 in. (177 mm) spacing, and a 5 in. (127 

mm) spacing. The latter two represented the minimum amount of stirrups required by 

ACI and the maximum amount used during testing, respectively, which could be 

compared to the concrete alone. 

Up to this point, construction of the cages was done upside-down. When the 

reinforcement cage construction was complete, the cages were lifted off of the work 

stands using the overhead crane and rolled over. They were then placed back onto the 

work stands to facilitate application of strain gages, this can be seen in Figure 6.6. To 

begin, the area that was to receive a strain gages was ground smooth and sanded with 120 

grit sandpaper. An acid cleaner was applied to a cotton cloth and used to clean the area 

followed by a base to prevent corrosion. Care was taken to not use the same cotton cloth 

twice, lest there be recontamination. The strain gages were then glued to the surface of 

the steel using the supplied adhesive and allowed to cure for approximately 5 minutes. 

After the glue had set, electrical tape was placed beneath the gage to prevent it from 

shorting out and giving an invalid reading. Wires were then attached to the leads of the 

strain gages. The wires were combined and routed out of the top of the cage. To prevent 

damage to the strain gage during concrete placement, tape was placed over the gage. The 

strain gages can be seen prior to concrete placement in Figure 6.7. 
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Figure 6.6. Reinforcement Cages 

Figure 6.7. Strain Gages 
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The final step in the cage assembly was to add chairs to the bottom and sides. 

These held the cage in place, preventing it from leaning into the side or bottom of the 

form. This is important because adequate clear cover is necessary to ensure that the 

reinforcing steel has the proper development length and is being fully utilized. The forms 

prior to concrete placement can be seen in Figure 6.8. 

After the cages were securely placed in the forms, concrete was ordered from 

Rolla Ready Mix. The mix designs used in Tables 6.2 and 6.3 were supplied to their 

office without any chemical admixtures. To compensate for variable moisture conditions 

of the aggregates and allow adjustments at the lab, the water content reported to Rolla 

Ready Mix was reduced by I 0%. After the truck arrived, an initial slump was taken and 

water was added as necessary to achieve the design slump of 6 in. prior to the addition of 

admixtures. The slump test is shown in Figure 6.9. At this point, for the control 

specimens, NC was placed into the forms using a concrete bucket lifted using the 

overhead crane as shown in Figures 6.1 0 and 6.11. A vibrator assisted in ensuring that 

the concrete complete) y filled the form work as shown in Figure 6.12. Finishing was done 

on all NC beams and can be seen in Figure 6.13. For the SCC beams, HRWR and VMA 

were added to the concrete and mixed at a high speed for 5 minutes after the 

slump of 6 in. (152 mm) was achieved. This can be seen in Figure 6.14. The SCC was 

placed using the concrete bucket but was not vibrated as shown in Figure 6.15. At this 

point, the concrete had a high flowability and a slump flow was taken, as shown in Figure 

6.16. It was seen that minimal finishing was required for the SCC beams. For all 

concrete placements, 9 cylinders were produced for compression testing. Figure 6.17 

shows the concrete placement process. 

After the concrete was placed, it remained exposed to the air for approximately 3 

to 4 hours. At this point, wet burlap was placed over the beams and plastic was placed 

over the top as a form of passive curing. It was observed that the SCC beams were more 

prone to small plastic shrinkage cracking; if this was the case, water was poured over the 

surface to increase the humidity beneath the plastic. Concrete placements happened 

concurrently with cage construction and began on June 28, 2010 and continued through 

August 1 O, 201 0. After approximately one week, the beams were removed from the 

forms, labeled, stacked, and stored in the SERLBCH. 
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Figure 6.8. Forms Prior to Concrete Placement 
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Figure 6.9. Initial Slump Taken 

Figure 6.1 0. Filling Concrete Bucket 
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Figure 6.11. Placing Concrete 

Figure 6.12. Vibrating Concrete 
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Figure 6.13. Finishing NC 

Figure 6.14. Addition of Chemical Admixtures 
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Figure 6.15. Placing SCC 

Figure 6.16. Slump Flow 
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Figure 6.17. Concrete Placement Operations 

The beams were transported within the Jab using the overhead crane attached to 

hooks set into the concrete during placement. The beams were then a11owed to cure for at 

least 28 days before they were tested. A11 cylinders that were cast during the pour were 

kept near their beam counterparts and tested at 28 days and on the day of testing. 

6.4. SPECIMEN INSTRUMENTATION AND TEST SETUP 

6.4.1. Specimen instrumentation. During construction of the reinforcement 

cages, strain gages were applied in the locations shown in Figures 6.18, 6.19, and 6.20 to 

monitor the strains in the reinforcing steel during testing. The strain gages were used to 

ensure that the beams failed in shear. If the beam fails in shear, the stirrups would yield 

before the longitudinal reinforcement yielded. If the longitudinal reinforcement yielded, 

the beam failed in flexure or in a combination of shear and flexure. 
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Figure 6. 19. Strain Gage Locations- Beam With 7 in. Stirrup Spacing 
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Figure 6.20. Strain Gage Locations - Beam With 5 in . Stirrup Spacing 
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To monitor the deflection of the beam, a bracket was attached to the side of the 

beam at the midpoint of the span. A stand was constructed to hold an LVDT vertically 

and measure the deflection of the beam at the midpoint. The setup is shown in Figure 

6.21. The L VDT was attached to a data acquisition system (DAS) which recorded the 

deflection as the test progressed. The DAS is shown in Figure 6.22. The test was 

performed in a displacement-controlled method at increments of 0.05 in. ( 1.3 mm) based 

on preliminary calculations. After the deflection was achieved for each load step, the 

actuators were stopped and the deflection was held constant until an operator signaled the 

program to proceed to the next deflection interval. Also connected to the DAS were load 

cells located within the actuators. As testing progressed, the load cells relayed the load 

applied by the actuator to the DAS where the information was recorded. The test was 

assumed to be complete when the beam continued to deflect but no additional load was 

applied by the actuators. Typically, when this occurred, the actuators were run through 

two more deflection intervals to ensure that additional load would not be supported by the 

beam. 

Figure 6.21. L VDT 
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Data Acquisition System 

Figure 6.22. Data Acquisition System 

6.4.2. Test setup. The span and loading arrangement is shown in Figure 6.23 . 

The beam was supported by two rollers, shown in Figure 6.24, located 1 ft. (305 mm) 

from the ends of the beam to ensure adequate end bearing and anchorage of the flexural 

reinforcement. The load was applied to the beam as indicated by the arrows in Figure 

6.23 at a distance of 5 ft. ( 1524 mm) from each end, or 4 ft. ( 1219 mm) from the support. 

Figure 6.24 shows the test setup from the front, and Figure 6.25 shows a side view of the 

setup. 

During testing, load was applied by both actuators. It was carried through the 

cross-beam to the spreader beam until it was applied to the rollers and eventually the 

beam. This is shown in Figure 6.24. It was seen early during testing that the capacity of 

the beams approached the capacity of a single actuator, so a second actuator was required 



to ensure that testing could be completed. This required the use of the steel cross-beam 

to transfer the load to the spreader beam. 
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Several different testing protocols were available for testing. The protocol that 

was selected directed the actuators to apply load to the beam until a deflection of 0.05 in. 

( 1.27 mm) was achieved. At this point, the actuators stopped and held their position 

while researchers observed and marked any cracks that had formed in the concrete. 

Photos were taken for the purpose of data analysis at a later time. When all personnel 

were safely away from the beam and photos had been taken, the actuators applied load 

again until the beam deflected an additional 0.05 in. (1.27 mm). This process continued 

until the beam continued to deflect but the actuators could not apply additional load. At 

this point, the data was saved, the actuators raised, and the failed beam was removed. 
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Actuators 

Spreader-Beam 
Cross-Beam 

Rollers 

Figure 6.24. Shear Test Setup- Front View 

Figure 6.25. Shear Test Setup- Side View 
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6.5. MATERIAL STRENGTH TESTING AND RESULTS 

This section contains the results of material testing for the full-scale beam shear 

specimens. This included tensile strength testing of the reinforcing steel and compressive 

strength testing of the concrete. 

6.5.1. Tensile strength of reinforcing steel. Tensile strength testing of the 

reinforcing steel was performed in accordance with ASTM ES-09, "Standard Test 

Methods for Tension Testing of Metallic Materials" (ASTM E8, 2009). The specimens 

used for testing were No. 3, No.4, and No. 8 bars, Sin. (1220 mm) in length. The 

specimens were obtained from the same shipment that was used to construct the 

reinforcement cages for the full-scale specimens. The reinforcing specimens were tested 

on the Tinius-Olsen testing machine in the Construction Materials Load Frame 

Laboratory located in the Butler-Carlton Civil Engineering Hall. Specimens were loaded 

continuously and without shock to the breaking point. 

The tensile strength test for the reinforcement steel was conducted in accordance 

with ASTM E8. The specific method that was used was the 0.5 percent offset method. 

Steel was ordered to have a strength of 60,000 psi (430 MPa), and this test was performed 

to ensure that steel used met this requirement and so that the actual yield strength would 

be used in evaluating the response of the beams. All reinforcement met the minimum 

60,000 psi (430 MPa) yield strength, and the results are shown in Table 6.4. 

6.5.2. Compressive Strength of Concrete. Compression testing was performed 

in accordance with ASTM C39-10, "Standard Test method for Compressive Strength of 

Cylindrical Concrete Specimens" (ASTM C39, 201 0). The specimens used for this were 

4-in.-diameter ( 100 mm) by 8-in.-long (200 mm) cylinders cast in the Concrete 

Laboratory of Butler-Carlton Hall (CLBCH). Testing was conducted in the Load Frame 

Room of Butler-Carlton Hall (LFBCH). The testing apparatus used was a 1200 kip 

(5,340 kN) Forney Compression Machine. The load was applied continuously and 

without shock to the specimen at a rate of 35±7 psi/s (0.25±0.05 MPa/s). Based on the 

specimen size, this would correspond to a loading rate of 440± 188 1bs per second 

( 1.9±0.8 kN/s). 
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A total of 9 cylinders were cast for each set of beams poured. All specimens were 

cast in plastic cylinder molds with caps and stored beneath plastic so they would 

experience the same atmospheric conditions as the beams. The specimens were removed 

from their molds at the same time as the beams, marked and placed beside the beams to 

cure until the day of testing. The results of the compression testing can be seen in Table 

6.5. 

Table 6.4. Tensile Strength of Steel 

Yield 
Specimen Strength 

Bar Size Number (psi) 

1 68450 

2 66900 

No.3 3 67900 

Average 67750 

Standard Deviation 785 

cov 1.1% 

1 65000 

2 65650 

No. 4 3 64000 

Average 64880 

Standard Deviation 830 

COV 1.2% 

1 71750 

2 71100 

No.8 3 71800 

Average 71550 

Standard Deviation 390 

cov 0.5% 

I psi = 0.006 MPa 



Table 6.5. Concrete Compressive Strength 

Test-
day Average 

Specimen f'c (psi) (psi) cov (%) 

7270 

Control- 7370 

NS 7350 7330 0.7 

6890 

7540 

Control-7 7200 7210 4.5 

5990 

5460 

Control-S 5380 5610 5.9 

8580 

8950 

SCC-NS 8700 8743 2.2 

7680 

8260 

SCC-7 8450 8130 4.9 

7370 

7560 

SCC-5 7330 7420 1.7 

I psi = 0.006 MPa 

6.6. TEST RESULTS 
Shear testing of the NC and SCC beams was performed in SERLBCH, and data 

was collected and stored using a data acquisition system. This section contains the 

results of those tests. To begin, the loads for both actuators was plotted against the 

deflection of the beam. Plots for load vs. deflection are in Figures 6.26 through 6.31. 
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The variables that were tested for shear strength were the type of concrete (SCC 

or NC) and the amount of shear reinforcement. Three beams were tested at each 

reinforcement level. 
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Table 6.5 contains the shear force carried by each beam tested as well as the shear 

force contributed by the steel reinforcement and the concrete. The shear force from the 

steel reinforcement was determined by observing the number of stirrups crossing the 

critical (failure) shear crack and summing the forces in those stirrups as determined from 

the measured strains (e.g., Hawkins et al., 2005; Kuchma, 2009; Laskar et al., 20 J 0). 

The shear force due to the concrete was then determined by subtracting the stirrup force 

from the total shear force. Figure 6.32 shows graphically the shear strength of the 

concrete for each of the shear reinforcement scenarios as well as for both concrete types. 

However, it should be noted for comparison purposes that the SCC concrete strength 

exceeded the NC concrete strength, as shown in Table 6.6. 

To examine how aggregate interlock may have affected the shear resistance of the 

concrete, the shear force at development of the first diagonal shear crack, Vd, and the 

shear force at failure, Vu, were recorded for further analysis. The shear force at the 

development of the first diagonal shear crack was determined by visual inspection of the 

concrete. When the first crack became visible the load was recorded. The analysis is 

contained in Section 6.7, but the values determined during testing are shown in Table 6.7. 

To find the contribution that the steel had on the shear strength of the beam it was 

first necessary to find and plot the strain of the stirrups. A typical plot of the strain in the 

stirrups is shown in Figure 6.33. The steel was assumed to have yielded if the strain was 

greater than 0.0023. This value was determined by dividing the tensile strength of the 

steel, determined through testing (see Section 6.5), by the modulus of elasticity of steel. 

The plot below shows that the steel did in fact yield since the strain was greater than 

0.0023. 

In addition to studying the strain within the steel, the crack patterns experienced 

by the beams were also observed. It was seen that generally the degree of cracking 

increased as the amount of stirrups increased. During testing, cracks were marked using 

a permanent marker after each deflection of 0.05 in. (1 .27 mm). A typical crack pattern 

progression can be seen in Figures 6.34 through 6. 37 for beams constructed with NC, 

and in Figures 6.38 through 6.42 for beams constructed with SCC. For both cases, cracks 

typically began on the tension face of the beam near the loading points. As the cracks 
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began to increase in size, they also began to slant at an angle approximately 30 to 45 

degrees measured from the bottom of the beam to the crack. Typically at failure, the 

cracks were spaced approximately the same distance as the stirrups and failure occurred 

on one side of the beam. The failure crack typically extended from the beam support to 

the loading point on the top side of the beam. Figures 6.43 through 6.60 are photographs 

of each of the test specimens after failure. 

Table 6.6. Tested Shear Strength 

.. Shear Force (kip) 

Specimen 
Stirrup 

Spacing (in.) v Vs Vc 

Controi-NS-1 68.6 0.0 68.6 
No 

45.8 0.0 45.8 Controi-NS-2 
Stirrups 

Controi-NS-3 49.1 0.0 49.1 

Control-7-1 61.3 29.8 31.4 

Control-7-2 7 97.6 44.7 52.9 

Control-7-3 97.9 44.7 53.1 

Control-5-1 108.5 59.6 48.8 

Control-5-2 5 101.8 44.7 57.1 

Control-5-3 94.1 59.6 34.4 

SCC-NS-1 40.9 0.0 40.9 
No 

56.2 0.0 56.2 SCC-NS-2 Stirrups 
SCC-NS-3 46.9 0.0 46.9 

SCC-7-1 105.3 44.7 60.6 

SCC-7-2 7 115.6 29.8 85.8 

SCC-7-3 101.0 44.7 56.3 

SCC-5-1 126.6 59.6 67.0 

SCC-5-2 5 130.7 59.6 71.1 

SCC-5-3 120.8 44.7 76.1 

I k1p- 4.45 kN 
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Table 6.7. Vu andVd Values 

Stirrup 
Vu vd 

Specimen Spacing 
(in.) 

(kip) (kip) 

Controi-NS-1 68.6 32.5 

Controi-NS-2 
No 

Stirrups 
45.8 22.0 

Controi-NS-3 49.1 25 .0 

Control-7-1 61.3 21.0 

Control-7-2 7 97.6 21.5 

Control-7-3 97.9 15.5 

Control-5-1 108.5 15.0 

Control-5-2 5 101.8 14.5 

Control-5-3 94.1 19.5 

SCC-NS-1 40.9 22 .0 
No 56.2 21.5 SCC-NS-2 Stirrups 

SCC-NS-3 46.9 21.5 

SCC-7-1 105.3 18.5 

SCC-7-2 7 115.6 20.5 

SCC-7-3 101.0 24.5 

SCC-5-1 126.6 22.0 

SCC-5-2 5 130.7 24.0 

SCC-5-3 120.8 21.5 

1 kip = 4.45 kN 1 in.= 25.4 mm 
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Figure 6.43. Control-NS-1 Beam at Failure 

Figure 6.44. Control-NS-2 Beam at Failure 

Figure 6.45. Control-NS-3 Beam at Failure 
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Figure 6.46. Control-7-1 Beam at Failure 

Figure 6.47. Control-7-2 Beam at Failure 

Figure 6.48. Control-7-3 Beam at Failure 
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Figure 6.49. Control-5-1 Beam at Failure 

Figure 6.50. Control-5-2 Beam at Failure 

Figure 6.51. Control-5-3 Beam at Failure 
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Figure 6.52. SCC-NS-1 Beam at Failure 

Figure 6.53. SCC-NS-2 Beam at Failure 

Figure 6.54. SCC-NS-3 Beam at Failure 
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Figure 6.55. SCC-7-1 Beam at Failure 

Figure 6.56. SCC-7-2 Beam at Failure 

Figure 6.57. SCC-7-3 Beam at Failure 
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Figure 6.58. SCC-5-1 Beam at Failure 

Figure 6.59. SCC-5-2 Beam at Failure 

Figure 6.60. SCC-5-3 Beam at Failure 
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6.7. DATA ANALYSIS AND INTERPRETATION 

Data analysis began by first examining the load-deflection plots as shown in 

Figures 6.26 through 6.31. In general, the load-deflection plots indicated a linear 

relationship between the load and deflection for the shear specimens. This behavior 

would indicate a shear failure as opposed to a flexural failure. It was also noted during 

testing that there was often little warning before the beam failed. This sudden failure 

translated to the graphs as a continually increasing load compared with the deflection 

until failure at which point the load dropped suddenly. It was observed that as the 

amount of shear reinforcement increased, the load at which the beams failed also 

increased. 

To determine the contribution of the stirrups to the overall shear strength of the 

beams, it was necessary to plot the load-strain values for the stirrups within each 

specimen. Figure 6.33 is an example of one of these plots. It can be seen that initially 

there is not a significant amount of strain within the stirrup. As the load applied to the 

beam continues to increase, the stirrup begins to go into tension at approximately vd. 
This would seem to indicate that at this point, the concrete can no longer carry the entire 

load and must rely, at least partially, on the stirrups for strength. As load continues to be 

applied, the stirrups eventually yield. This happens when the strain in the steel is greater 

than 0.0023. For a vast majority of the beams, the stirrups yielded prior to failure of the 

beam. For the stirrups that did not yield, the yield strength of the steel could not be used 

to estimate V5 • Instead, the measured strain at failure was multiplied by the modulus of 

elasticity of the steel to determine the load that the stirrup supported at failure. Values 

used to determine the contribution of the stirrups to shear strength are shown in Table 

6.8. 

In order to compare the shear strength that was determined through testing with 

the shear strength that was predicted by ACI (2008) and AASHTO (2008), the ratio of the 

test value to the predicted value was calculated. This ratio is given in Table 6.9 and is 

based on the actual material properties for concrete strength and stirrup yield strength. 

Ideally, the ratio would be greater than 1.0, which would indicate that the shear strength 

was conservatively predicted by the codes. The ratios were calculated for three different 
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design equations. The first two were based on ACI Equations 11-3 and 11-5 (ACI 318, 

2008). 

Table 6.8. Calculation of Ys 

# 
Specimen Stirrups Av (in 2 ) 

Vs 

Crossed 
(kip) 

Controi-NS-
1 

0 0 0.0 

Controi-NS-
2 

0 0 0.0 

Controi-NS-
3 

0 0 0.0 

Control-7-1 2 0.44 29.8 

Control-7-2 3 0.66 44.7 

Control-7-3 3 0.66 44.7 

Control-5-1 4 0.88 59.6 

Control-5-2 3 0.66 44.7 

Control-5-3 4 0.88 59.6 

SCC-NS-1 0 0 0.0 

SCC-NS-2 0 0 0.0 

SCC-NS-3 0 0 0.0 

SCC-7-1 3 0.66 44.7 

SCC-7-2 2 0.44 29.8 

SCC-7-3 3 0.66 44.7 

SCC-5-1 4 0.88 59.6 

SCC-5-2 4 0.88 59.6 

SCC-5-3 3 0.66 44.7 

I kip = 4.45 kN 1 in.= 25.4 mm 

The third set of ratios was based on the sectional analysis in the AASHTO 

LRFD Code (2008). As shown in Table 6.7, ACI Equation 11-3 and AASHTO were 

conservative throughout testing with ratios consistently greater than 1.0. However, ACI 

Equation 11-5 was not always conservative since there were ratios less than 1.0 in some 
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cases. However, the very large amount of longitudinal steel ( 4.5%) is likely the reason 

that the ratio is less than 1.0 for ACI Equation 11-5. More importantly, both the NC and 

SCC beams had similar ratios when using ACI Equation 11-5. This would seem to 

indicate that when comparing the two concrete types, the sec performed as well as the 

NC. 

Table 6.9. Vtest I Vcode 

Vtest / Vcode 

Specimen 
Stirrup Vtest 

Spacing (in.) (kip) ACI ACI 
AASHTO 

Eq. 11-3 Eq. 11-5 

Controi-NS-1 68.6 2.3 1.3 2.3 
No 

Controi-NS-2 Stirrups 45.8 1.5 0.9 1.5 

Controi-NS-3 49.1 1.6 0.9 1.6 

Control-7-1 61.3 1.0 0.7 1.1 

Control-7-2 7 97.6 1.6 1.2 1.7 

Control-7 -3 97.9 1.6 1.2 1.7 

Control-5-1 108.5 1.6 1.2 1.7 

Control-5-2 5 101.8 1.5 1.1 1.6 

Control-5-3 94.1 1.3 1.0 1.4 

SCC-NS-1 40.9 1.2 0.7 1.2 
No 

56.2 1.7 1.0 1.7 SCC-NS-2 Stirrups 

SCC-NS-3 46.9 1.4 0.8 1.4 

SCC-7-1 105.3 1.7 1.2 1.8 

SCC-7-2 7 115.6 1.8 1.3 1.9 

SCC-7-3 101.0 1.6 1.2 1.7 

SCC-5-1 126.6 1.7 1.3 1.8 

SCC-5-2 5 130.7 1.8 1.4 1.9 

SCC-5-3 120.8 1.6 1.3 1.7 

I k1p - 4.45 kN I m. 25.4 mm 
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After comparing the total shear strength for each of the beams, the shear strength 

of the concrete was evaluated for both the specimens without transverse reinforcement 

and those with transverse reinforcement. The result is shown in Table 6.10 and 

graphically in Figure 6.61. The test value for Vc was calculated by subtracting Vs from V, 

where the value of Vs was determined through testing. The values predicted by ACI 

Equation 11-3 were 1.1 to 2.7 times smaller than the values determined through testing, 

indicating that for these specimens, ACI Equation 11-3 was conservative. The values for 

the shear strength of concrete determined using ACI Equation 11-5 were not always 

conservative since some ratios were less than 1.0. This result would indicate that the 

shear strength predicted using this equation exceeded the shear strength determined 

through testing. However, this result may have been a function of the very large amount 

of longitudinal steel (4.5%). It was noted, however, that ratios of the tested shear 

strength to code predicted shear strength were less than 1.0 for both the NC and the SCC, 

and the ratios were relatively consistent between the two types of concrete. This result 

could indicate that the SCC performed as well as the NC. Finally, concrete shear 

strengths determined through testing were consistently higher than the concrete shear 

strengths predicted using the AASHTO equation. This would seem to indicate that 

designing with this set of equations would be conservative when determining the shear 

strength for both NC and SCC. 

Table 6.11 offers a direct comparison between the two concrete types by 

normalizing the concrete contribution as a function of the square root of compressive 

strength. The tested values listed in the table are repeated from Table 6.5. The last 

column indicates the normalized value of the tested concrete shear strength . Figure 6.62 

is a graphical representation of the same values. The table and figure indicate that with a 

reinforcement ratio of 4.5%, the normalized value of the tested concrete strength ranged 

between 2.9 and 4.7. Figure 6.63 is a plot of the extensive amount of test data collected 

by Tureyen and Frosch (2004) on concrete shear strength as a function of the longitudinal 

reinforcement ratio, and includes the normalized concrete shear strength values 

determined in this study. Tureyen and Frosch observed that the coefficient of 2 used in 

ACI Equation 11-3 to determine the concrete shear strength was not always accurate. In 
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concrete specimens with small reinforcement ratios, the coefficient could be lower than 2, 

while very high reinforcement ratios could have coefficients as high as 4 or 5. Figure 

6.54 indicates that the normalized coefficients calculated using beams tested during this 

research were consistent with the extensive amount of previous test data. Once again this 

would indicate that the shear strength of concrete predicted by ACI is very conservative 

for beams with high amounts of longitudinal reinforcement. 

Table 6.1 0. Shear Strength From Concrete 

V C Test / V C Code 

Test Avg. Test Coefficient 
Stirrup 

Vc Vc of 
Spacing (in.) ACI ACI 

AASHTO 
Eq. 11-3 Eq. 11-5 (kip) (kip) Variation 

Specimen 

Controi-NS-1 2.3 1.3 2.3 68.6 
No 

1.5 0.9 1.5 45.8 54.5 22 .6 
Controi-NS-2 Stirrups 

Controi-NS 3 1.6 0.9 1.6 49.1 

Control-7-1 1.1 0.6 1.1 31.4 

Control-7 -2 7 1.8 1.0 1.8 52.9 45 .8 27.2 

Control-7 -3 1.8 1.0 1.8 53.1 

Control-5-1 1.9 1.1 1.9 48.8 

Control-5-2 5 2.2 1.2 2.2 57.1 46.8 24.5 

Control-5-3 1.3 0.7 1.3 34.4 

SCC-NS-1 1.2 0.7 1.2 40.9 

No 1.7 1.0 1.7 56.2 48 .0 16.1 
SCC-NS-2 Stirrups 

1.4 0.8 1.4 46.9 
SCC-NS-3 

1.9 1.1 1.9 60.6 
SCC-7-1 

SCC-7-2 7 2.7 1.5 2.7 85.8 67.6 23 .6 

1.8 1.0 1.8 56.3 
SCC-7-3 

2.2 1.3 2.2 67.0 
SCC-5-1 

SCC-5-2 5 2.4 1.3 2.4 71.1 71.4 6.4 

2.5 1.4 2.5 76.1 
SCC-5-3 

I kip 4.45 kN 
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Table 6.11. Tested Shear Strength Compari son 

Stirrup Shear Force (kip) Vc t es t 

Specimen Spacing bwdJlZ 
(in.) v v, Vc Vc Avg. 

Controi-NS-
1 

68.6 0.0 68.6 

Controi-NS- No 
2 Stirrups 

45 .8 0.0 45 .8 54.5 3.6 

Controi-NS-
49.1 0.0 49.1 

3 

Control-7-1 61.3 29.8 31.4 

Control-7 -2 7 97.6 44.7 52.9 45.8 3.1 

Control-7 -3 97 .9 44.7 53 .1 

Control-5-1 108.5 59.6 48.8 

Control-5-2 5 101.8 44.7 57.1 46.8 3.6 

Control-5-3 94.1 59.6 34.4 

SCC-NS-1 40.9 0.0 40.9 

SCC-NS-2 
No 56.2 0.0 56.2 48.0 2.9 

Stirrups 

SCC-NS-3 46.9 0.0 46.9 

SCC-7-1 105.3 44.7 60.6 

SCC-7-2 7 115.6 29.8 85 .8 67.6 4.3 

SCC-7-3 101.0 44.7 56.3 

SCC-5-1 126.6 59.6 67 .0 

SCC-5-2 5 130.7 59.6 71.1 71.4 4.7 

SCC-5-3 120.8 44.7 76.1 

I kip = 4.45 kN I tn . 25.4 mm 
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To examine the effect of aggregate interlock on the shear resistance of the 

concrete, Vd (development of first diagonal shear crack) and Vu (ultimate shear) were 

recorded for each test specimen. The ratio of V /Vd was then calculated and compared for 

both types of beams, and this data is shown in Table 6.12. Figure 6.53 is a graphical 

representation of this ratio. A higher V /Vd ratio would indicate that the beam was more 

ductile and gave an earlier indication of failure before complete collapse. Obviously, this 

characteristic is extremely beneficial in the event that overloading would occur. More 

importantly, this ratio offers another comparison of the shear behavior between the two 

concrete types. 

As shown in Figure 6.64, both concrete types followed the same general trend. 

The value of V /Vd increased from 2.1 with no stirrups to 6.4 with the smallest stirrup 

spacing of Sin. (127 mm). For the SCC specimens, as the spacing between the stirrups 

decreased, the ductility also increased. The value of V /Vd increased from 2.2 to 5.6. In 

comparing the response of the two concrete types, the error bars in Figure 6.53 indicate 

that there was not a significant statistical difference between the NC and SCC specimens. 

In all three shear reinforcement scenarios, the error bars overlap. It is also worth noting 

that as the amount of shear reinforcement increased, the value of V /Vd also increased, as 

expected. 
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Table 6.12. VuNd 

Stirrup 
Vu 

Specimen Spacing vd 
Vu/Vd 

Average Coefficient 

(in.) 
(kip) (kip) Vu/Vd of 

Variation 

Controi-NS-1 68.6 32.5 2.1 
No 

Controi-NS-2 
Stirrups 

45.8 22.0 2.1 2.1 3.8 

Controi-NS-3 49.1 25.0 2.0 

Control-7-1 61.3 21.0 2.9 

Control-7-2 7.0 97.6 21.5 4.5 4.6 37.0 

Control-7-3 97.9 15.5 6.3 

Control-5-1 108.5 15.0 7.2 

Control-5-2 5.0 101.8 14.5 7.0 6.4 21.0 

Control-5-3 94.1 19.5 4.8 

SCC-NS-1 40.9 22.0 1.9 

SCC-NS-2 
No 

Stirrups 
56.2 21.5 2.6 2.2 17.1 

SCC-NS-3 46.9 21.5 2.2 

SCC-7-1 105.3 18.5 5.7 

SCC-7-2 7.0 115.6 20.5 5.6 5.2 17.3 

SCC-7-3 101.0 24.5 4.1 

SCC-5-1 126.6 22.0 5.8 

SCC-5-2 5.0 130.7 24.0 5.4 5.6 2.8 

SCC-5-3 120.8 21.5 5.6 

1 k1p = 4.45 kN 

6.8. CONCLUSIONS 
The test results were compared to ACI (2008) and AASHTO (2008) design 

provisions for shear. It was observed that both AASHTO and ACI Equation 11-3 were 

consistently conservative; however, ACI Equation 11-5 over predicted strength. It was 

also observed that there was not a significant difference in strength when comparing NC 

and SCC. Shear strengths determined through testing were not significantly different 

between NC or SCC beams made with the same shear reinforcement. This result would 

seem to indicate that as far as shear behavior, there is not a significant difference between 
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NC and SCC developed through the use of chemical admixtures, and that these elements 

can be appropriately designed using existing ACI and AASHTO code provisions. 

After comparing test values of concrete shear strength to values predicted by 

design codes, the shear strengths were normalized to determine the shear strength 

coefficients. These values were compared to the extensive amount of previous research 

on shear strength of NC. The normalized coefficients ranged in value from 2.9 to 4.7. 

These values were consistent with the previous research on shear strength of NC. It was 

also observed that there was not a significant difference between coefficients for NC and 

sec. 
To further compare NC and SCC V,/Vd plots were created. This plot compared 

the load that the beam developed at the first shear crack (Vd) to the ultimate load at failure 

(Vu). The result indicated that the ratio increased as the number of stirrups increased, as 

predicted. The V u!Vd ratio increased from 2.1 in a beam with no stirrups to 6.4 in a beam 

with a 5 in. (127 mm) stirrup spacing. It was observed that a comparable increase was 

also seen in beams made with SCC. This result would seem to indicate that both NC and 

sec benefit from an increase in the amount of shear reinforcement and, more 

importantly, that the SCC behaves similarly to NC in terms of shear behavior. 
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7. FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 

7.1. INTRODUCTION 

sec has shown that it can be a very beneficial product to the construction 

industry; however, because it is still relatively new to the industry, there are many 

questions about its use. The purpose of this research was to begin to answer two of these 

questions. The first was how shrinkage of SCC compared to shrinkage of NC. It is 

known that the w!cm ratio has a significant effect on the shrinkage; so the hope was that 

if the w!cm ratio was held constant and a highly flowable concrete was produced by using 

chemical admixtures, there would not be an increase in shrinkage. The second question 

that was addressed was how shear strength compared between SCC and NC. Many times 

sec is produced by reducing the coarse aggregate content and increasing the paste 

content. This approach can lead to a reduction in shear strength since coarse aggregate 

interlock is essential for high shear strength. This project aimed to maintain a higher 

coarse aggregate content and overcome the resulting loss in flowability through the 

addition of a higher dosage of HRWR and VMA. The shear strength of the SCC could 

then be compared to NC to determine if the shear strength was still acceptable. 

In addition to answering these questions, testing performed was useful for the 

development of a SCC and for the comparison to codes used in design. It is important 

that the properties of sec are known so if there is a significant difference between the 

properties of SCC and NC that these are taken into account in design. The tests 

performed were selected to determine if the design parameters used for NC could also be 

applied to sec. 

7.2. FINDINGS 

7.2.1. Fresh Concrete Property Tests. Throughout mix design development, it 

was observed that concrete density and air content were not significantly different 

between the SCC and the NC. This was as expected result since the major constitutions 

of the concrete were not altered. The density of the concrete was found to be 

approximately 146 Jb/ft3 (2340 kg/m3) for all concrete produced. The air content that was 

desired was kept higher to aid in the workability and flowability of the concrete. An air 
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content of 6% was selected and air entraining admixture dosages were tested and adjusted 

to achieve this air content. 

During the mix development phase for SCC, the slump flow of the concrete was 

determined by performing the slump flow test. It was observed that with the concrete 

constitutions used, the slump flow reached its maximum amount at approximately 6 fl 

oz/cwt (390 mL/1 00 kg) of HRWR. Beyond this point, there was not a significant 

increase in the slump flow of the concrete even with additional HRWR. The highest 

dosage of the HRWR tested was still used to maintain a high slump flow after the 

addition of a VMA. VMA was introduced to the concrete mixture to prevent segregation. 

It was observed that VMA improved the concrete's stability significantly without 

reducing the slump flow of the concrete. By performing the slump flow test, the 

flowabilty of the concrete could be determined, but to find the passing ability of the 

concrete, the J-ring test was performed. It was observed that there was very little 

difference between SCC produced using a combination of a HRWR and VMA to that of 

an sec using a HRWR alone. There was also only a small difference between the 

diameter of the concrete after the slump flow test and the J-ring test. This showed that 

the concrete had a high passing ability since there was little difference between restrained 

and unrestrained flow, but also that the VMA did not significantly alter the passing 

ability of the concrete. 

To show that the SCC had an improved stability as a result of the addition of the 

VMA, the static segregation of the SCC was determined. This was determined by the 

static segregation test. It was observed that the static segregation was highest with 

concrete produced using the HRWR alone. This was as expected since there was little to 

prevent the aggregate from settling within the concrete mixture. After the addition of the 

VMA, the segregation of the concrete began to decrease. At first, the low dosage of 4 fl 

oz/cwt (260 mL/1 00 kg) of VMA showed little improvement over the HRWR alone; 

however, a dosage of 8 fl oz/cwt (520 mL/kg) showed significant improvement. The 

higher dosage of VMA was selected to ensure that there was as little segregation as 

possible. 
7.2.2. Hardened Concrete Property Tests. After the mix design had been 

developed based on achieving acceptable fresh properties for the sec, the hardened 
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properties were tested to determine if the concrete would still be acceptable. 

Compression strength testing showed that as the amount of fly ash was increased, there 

was a decrease in early age strength but an increase in later age strength. A 30% 

replacement of portland cement with fly ash was selected to afford the benefits of 

increased slump flow in the fresh state while still maintaining the higher early age 

strength of a I 00% portland cement concrete. The MOR was determined by testing a 

beam and normalized by dividing this value by the square root of the compressive 

strength of that particular concrete. This compressive strength was determined by testing 

a cylinder cast from the same batch of concrete. It was determined that there was not a 

significant difference between the MOR of SCC and FA concrete. SCC was also shown 

to be slightly higher than NC. Overall, this provided evidence that the addition of 

HRWR and VMA had little effect on the concrete's MOR. 

7.2.3. Shrinkage Testing. Shrinkage testing was another opportunity to compare 

SCC and NC. The purpose of this testing was to determine what affect, if any, the 

chemical admixtures would have on shrinkage. In addition to these two types of 

concrete, an intermediate concrete made with a 30% replacement of fly ash and no 

chemical admixtures was tested. After shrinkage data was recorded and plots were made 

to show shrinkage strain over time, the data was compared to predictions based on three 

shrinkage prediction models. These models were ACI 209R, Bazant-Baweja B3, and 

GL2000. By examining plots of shrinkage as a function of time, it was observed that the 

FA concrete had the most shrinkage and was followed closely by SCC, while the NC had 

the smallest shrinkage. This would seem to indicate that the fly ash contributed to the 

slight increase in shrinkage observed as opposed to the chemical admixtures. To 

determine if this increase in shrinkage was significant, standard deviation bars were 

added to select points. It was observed that many of the standard deviation bars 

overlapped, indicating there was not a significant statistical difference in the shrinkage 

between the three concrete types. 

After comparing the different types of concrete to each other, the shrinkage values 

determined in the Jab were compared to values predicted by the shrinkage models . It was 

observed that the ACI 209R Model most accurately represented the shrinkage observed 

during testing for all three concrete mixes. The initial predicted shrinkage was higher 
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than what was observed in the lab and the ultimate predicted shrinkage was lower than 

data taken in the lab. Both the Bazant-Baweja B3 and the GL2000 models under­

predicted the shrinkage for all three concrete types. Of the two, the Bazant-Baweja B3 

was the closest to the plotted data; however, it was consistently lower throughout the time 

testing was conducted. 

7.2.4. Full-Scale Beam Shear Tests. To address the concern of shear strength of 

SCC, full-scale shear tests were performed on NC and SCC beams. The shear strength 

was determined through testing and compared to the predicted values for V and Vc using 

the ACI and AASHTO codes. It was determined that there was not a significant 

difference between predicted values and values determined through testing. It was noted 

that ACI Equation 11-3 and AASHTO were conservative in their predictions of shear 

strength; however ACI Equation 11-5 was not always conservative. This was likely a 

result of the high amount of longitudinal steel reinforcement within the beams. It was 

noted that ACI Equation 11-5 was not conservative in its prediction of shear strength for 

either the NC or SCC. 

The last thing to be considered was the shear strength contributed by the concrete. 

Based on the test results, there was not a significant difference in strength when 

comparing NC and SCC. Shear strengths determined through testing were not 

significantly different between NC or SCC beams made with the same shear 

reinforcement. This result would seem to indicate that as far as shear behavior, there is 

not a significant difference between NC and SCC developed through the use of chemical 

admixtures, and that these elements can be appropriately designed using existing ACI and 

AASHTO code provisions. 

When comparing beams made with SCC to beams made with NC, the SCC beams 

had a higher shear strength; however, there was also a much greater compressive 

strength. After predicted and tested shear strength values had been compared, the shear 

strengths were normalized in order to determine the shear strength coefficients. This was 

done by dividing the shear strength of the concrete by the product of beam width , 

effective beam depth, and the square root of the concrete compressive strength. The 

normalized coefficients ranged in value from 2.9 to 4.7. These values were compared to 

normalized concrete shear strength values collected by Tureyen and Frosch (2003) on 



concrete shear strength as a function of the longitudinal reinforcement ratio. For the 

reinforcement ratio used in this research, the values for the normalized concrete shear 

strength were consistent with the previous research on shear strength of NC. 
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Plots of V /Vc~ showed that as the number of stirrups increased so did the ratio, as 

predicted. The VtiVd ratio increased from 2.1 in a beam with no stirrups to 6.4 in a beam 

with a 5 in. ( 127 mm) stirrup spacing. It was also noticed that the increase was only 

slightly smaller in beams made with SCC. This result seems to indicate that both NC and 

sec benefit greatly from an increase in the amount shear reinforcement but, more 

importantly, that SCC behaves similarly to NC in terms of shear behavior. 

7.3. CONCLUSIONS 

Based on the previously stated findings, the following conclusions can be drawn 

in reference to the evaluation and prediction of the performance of the chemically-based 

sec developed for the purpose of this research: 

I . There was not a significant difference between NC and SCC with regard 

to density or air content. 

2. sec showed a significant increase in slump flow with the addition of a 

HRWR. 

3. SCC showed an improved stability with the addition of a YMA, and that 

static segregation was highest in concrete made with a HRWR alone. 

4. Long term compressive strengths were similar for both NC and SCC; 

however, it was observed that the concrete made with fly ash had a longer 

hydration period. 

5. There was not a significant difference between NC and SCC with regard 

to MOR. 

6. By comparing shrinkage plots, fly ash contributed to a slight increase in 

shrinkage; however, this increase was not statistically significant. 

7. There was not a significant difference in shrinkage between NC and SCC. 

8. The ACI 209R Model provided the most accurate shrinkage prediction 

model when compared to test values. 
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9. ACI Equation 11-3 and AASHTO were conservative in their prediction of 

shear strength for NC and SCC; however, ACI Equation 11-5 was not 

always conservative. 

10. Normalized shear strength coefficients ranged from 2.9 to 4.7 and were 

consistent with the extensive amount of previous research conducted on 

NC. 

1 1. V,/Vd values indicated there was an increase in ductility with the addition 

of shear reinforcement and that both NC and SCC benefited equally from 

this additional shear reinforcement. 

7.4. RECOMMENDATIONS 

Based on the findings and conclusions stated in the previous sections, the 

following recommendations were derived in regard to the use of SCC concrete: 

1. Shrinkage models for conventional concretes are applicable to the SCC 

studied. 

2. When using the SCC concrete mixes studied, ACI and AASHTO design 

provisions may be used to conservatively determine the shear strength. 

3. sec can be produced to provide the benefits of increased flow and 

passing abilities while still maintaining shear strength and resulting in 

comparable shrinkage with NC. 

4. Additional testing is required to study the effects of prestressing on SCC. 
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The Chemical Company 

Description 
GLENIUM<I> 7500 full-range 
water-reducing admixture is 
based on the next generation 
of polycarboxylate technology 
found in all of the GLENI UM 
7000 series products. This 
technology combines state-of­
the-art molecular engineering 
with a precise understanding 
of regional cements to provide 
specific and exceptional value 
to all phases of the concrete 
construction process. 

GLENIUM 7500 admixture is 
very effective in producing 
concrete mixtures with different 
levels of workability including 
applications that require 
self-consolidating concrete 
(SCC). The use of GLENIUM 
7500 admixture results in 
faster setting characteristics 
as well as improved early 
age compressive strength. 
GLENIUM 7500 admixture 
meets ASTM C 494/C 494M 
compliance requirements for 
Type A, water-reducing, and 
Type F, high-range water­
reducing, admixtures. 

Applications 
Recommended for use in: 

• Concrete with varying water 
reduction requirements 
(5-40%) 

• Concrete where control of 
workability and setting time 
is critical 

• Concrete where high 
flowability, increased stability, 
high early and ultimate 
strengths, and improved 
durability are needed 

• Production of 
Rheodynamic® Self­
Consolidating Concrete 
(SCC) mixtures 

• 4x4 TM Concrete for fast­
track construction 

• Pervious Concrete mixtures 

GLENIUM® 7500 

Product Data 
Cast-In-Place Concrate 
Precast Concrete 
Mass Concrete 
Masonry Grouting 

Full-Range Water-Reducing Admixture 

Features 

• Dosage flexibility for normal, mid-range and high-range applications 

• Excellent early strength development 

• Controls setting characteristics 

• Optimizes slump retention/setting relationship 

• Consistent air entrainment 

Benefits 
• Faster tum over of forms due to accelerated early strength development 

• Reduces finishing labor costs due to optimized set times 

• Use in fast track construction 

• Minimizes the need for slump adjustments at the jobsite 

• Less jobsite QC support required 

• Fewer rejected loads 

• Optimizes concrete mixture costs 

Performance Characteristics 
Concrete produced with GLENIUM 7500 admixture achieves significantly higher 
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early age strength than first generation polycarboxylate high-range water-reducing 
admixtures. GLENIUM 7500 admixture also strikes the perfect balance between 
workability retention and setting characteristics in order to provide efficiency in placing 
and finishing concrete. The dosage flexibility of GLENIUM 7500 allows it to be used as a 
normal, mid-range, and high-range water reducer. 

Guidelines for Use 
Dosage: GLENIUM 7500 admixture has a recommended dosage range of 
2-15 fl ozlcwt (130-975 mU100 kg) of cementitious materials. For most mid to 
high-range applications, dosages in the range of 5-8 fl oz/cwt (325-520 mU1 00 kg) 
will provide excellent performance. For high performance and Rheodynamic Self­
Consolidating Concrete mixtures, dosages of up to 12 fl oz/cwt (780 mU100 kg) of 
cementitious materials can be utilized. Because of variations in concrete materials, 
jobsite conditions and/or applications, dosages outside of the recommended range 
may be required. In such cases, contact your local BASF Construction Chemicals 

representative. 
Mixing: GLENIUM 7500 admixture can be added with the initial batch water or as 
a delayed addition. However, optimum water reduction is generally obtained with a 

delayed addition. 

Master 
Builders 



Product Data: GLENIUM® 7500 

Product Notes 
Conosivfty- Non-Chloride, Non-Corrosive: GLENIUM 
7500 admixture w ill neither initiate nor promote corrosion of 
reinforcing steel embedded in concrete, prestressing steel or 
of galvanized steel floor and roof systems. Neither calcium 
chloride nor other chloride-based ingredients are used in the 
manufacture of GLENIUM 7500 admixture. 

Compatibility: GLENIUM 7500 admixture is compatible with 
most admixtures used in the production of quality concrete, 
including normal, mid-range and high-range water-reducing 
admixtures, air-entrainers, accelerators, retarders, extended 
set control admixtures, corrosion inhibitors, and shrinkage 
reducers . 

Do not use GLENIUM 7500 admixture with admixtures 
containing beta-naphthalene sulfonate. Erratic behaviors 
in slump, wori<ability retention and pumpability may be 
experienced. 

Storage and Handling 
Storage Temperature: GLENIUM 7500 admixture must be 
stored at temperatures above 40 °F (5 °C). If GLENIUM 7500 
admixture freezes, thaw and reconstitute by mechanical 
agitation. 

Sheff Life: GLENIUM 7500 admixture has a minimum shelf 
life of 9 months. Depending on storage conditions, the 
shelf life may be greater than stated. Please contact your 
local sales representative regarding suitability for use and 
dosage recommendations if the shelf life of GLENIUM 7500 
admixture has been exceeded. 

Packaging 
GLENIUM 7500 admixture is supplied in 55 gal (208 L) drums, 
275 gal (1040 L) totes and by bulk delivery. 

Related Documents 
Material Safety Data Sheets: GLENIUM 7500 admixture. 

BASF Construction Chemicals 
Admixture Systems 
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Additional Information 
For additional information on GLENIUM 7500 admixture 
or on its use in developing concrete mixtures with special 
performance characteristics, contact your BASF Construction 
Chemicals representative. 

The Admixture Systems business of BASF Construction 
Chemicals is a leading provider of innovative admixtures 
for specialty concrete used in the ready mix, precast, 
manufactured concrete products, underground construction 
and paving markets throughout the North American region. 
The Company's respected Master Builders brand products 
are used to improve the placing, pumping, finishing, 
appearance and performance characteristics of concrete. 

UMITED WfoiF.!oNfY NOTICE. We v.errant our products to be o f good quality and wil l 
replaca or, at wr dscretion, refund the purchase price of any proclocta prowd deta::tl w . 
Sati sfactory resul ts depend not only upon ql.Blity prod.Jcts, but 880 upon rreny Dctors 
beyond our control. lllerefore, B>teePt for Sl.Ch replacerrent or refund. 8ASF MA.KES 
NO WNF./>NTY OR GJARANTEE. EXPFIO.SS OR IMI'UED, fNO.UOING WNFJ>NTIES 
OF RlNESS FOR A PARTlCULAR PUFPOSE OR MERCHANTABILITY, RE.SPECTING 
ITS PRODUCTS, and BASF sl'el l haw no other liability With raopect themto. kry claims 
regarding prodt.et <Etect must be recetved in wrlt111g W'l thin one (1 ) year from ttle dare of 
shtprrent. Uoer shalt determlre the aultabl llty o f the productll for the ln!Bnded uoe and 
assurre a ll riak& and liabili ty In connection therewi th. Any authorizsd charlge in the prinl9d 
recorrrrendatlons concerning the use of our prod.Jets must bear the !Jignature of tne B4Sf 
Technical .....,.__ 

This lnforrrstion and all further technical advice are based 01 BASFa present kno~~and 
exps'ience. HOYJe'Yel". B6.Sf assurres no II EDil! ty for provldng sl.Ch inforn"Btl on and actvloe 
Including theextoot to \Milch such tnforrm~on and advice rray relaiB to eodstl r111 thi rd party 
lntallecll.EII property rights, especially patoot rights. BASF SHAll NOT BE ~NSIEI£ 
FOR CONSEQIJENTIAL INDIRECT OR INODENTAL DMN\GES ~NO..UDING LOSS OF 
PROATSJ OF ANY KIND. BASF ,..,_....,. the nght to 11'1B<e anychangesa::cord•ng to 
technologk:al progress or furthw c::ievel c~::m-srlts. 

For Profn&ional u .. onty. Not for aale to or use by the gener•l plbHc. 

www.masterbuildere.com . 44122_5544 • Tel: aoo 629-9990 • Fax: 216 939-9821 
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The Chemical Company 

Description 
Micro Air air-entraining 
admixture provides concrete 
with extra protection by 
creating air bubbles that are 
ultrastable, small and closely 
spaced- a characteristic 
especially useful in the types 
of concrete known for their 
difficulty to entrain and maintain 
the air content desired. 

Even when used at a lower 
dosage than standard air­
entraining admixtures, Micro 
Air admixture meets the 
requirements of ASTM C 260, 
AASHTO M 154, and CRD-C 
13. 

Applications 
Recommended for use in: 

• Concrete exposed to 
cyclic freezing and 
thawing 

• Production of high-quality 
normal or lightweight 
concrete (heavyweight 
concrete normally does not 
contain entrained air) 

MICRO AIR® 
Air-Entraining Admixture 

Features 

Product Data 
Cast-in-Place Concrete 
Precast Concrete 
Mass Concrete 
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• Ready-to-use in the proper concentration for rapid, accurate dispensing 

• Greatly improved stability of air-entrainment 

• Ultra stable air bubbles 

Benefits 
• Increased resistance to damage from cyclic freezing and thawing 

• Increased resistance to scaling from deicing salts 

• Improved plasticity and workability 

• Improved air-void system in hardened concrete 

• Improved ability to entrain and retain air in low-slump concrete, concrete 
containing high-carbon content fly ash, concrete using large amounts of fine 
materials, concrete using high-alkali cements, high-temperature concrete, and 
concrete with extended mixing times 

• Reduced permeability- increased watertightness 

• Reduced segregation and bleeding 

Performance Characteristics 
Concrete durability research has established that the best protection for concrete from 
the adverse effects of freezing and thawing cycles and deicing salts results from: proper 
air content in the hardened concrete, a suitable air-void system in terms of bubble size 
and spacing and adequate concrete strength, assuming the use of sound aggregates 
and proper mixing, transporting, placing, consolidation, finishing and curing techniques. 
Micro Air admixture can be used to obtain adequate freezing and thawing durability in a 
properly proportioned concrete mixture, if standard industry practices are followed. 

Air Content Determination: The total air content of normal weight concrete should be 
measured in strict accordance with ASTM C 231, "Standard Test Method for Air Content 
of Freshly Mixed Concrete by the Pressure Method" or ASTM C 173/C 173M, "Standard 
Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method.· 

The air content of lightweight concrete should only be determined using the 
Volumetric Method. The air content should be verified by calculating the gravimetric air 
content in accordance with ASTM C 138/C 138M, "Standard Test Method for Density 
(Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." If the total ai r content, 
as measured by the Pressure Method or Volumetric Method and as verified by the 
Gravimetric Method, deviates by more than 1-1/2%, the cause should be determined 
and corrected through equipment calibration or by whatever process is deemed 

necessary. 

l\1aster 
Builders 



Product Data: MICRO AJR® 

Guidelines for Use 
Dosage: There is no standard dosage for Micro Air 
admixture. The exact quantity of air-entraining admixture 
needed for a given air content of concrete varies because 
of d ifferences in concrete making materials and ambient 
conditions. Typical factors that might influence the amount 
of air entrained include: temperature, cementitious materials, 
sand gradation, sand-aggregate ratio, mixture proportions, 
slump, means of conveying and placement, consolidation 
and finishing technique. 

The amount of Micro Air admixture used will depend upon 
the amount of entrained air required under actual job 
conditions. In a t rial mixture, use 1/8 to 1-1/2 fl oz/cwt (8-98 
mU1 00 kg) of cement. In mixtures containing water-reducing 
or set-control admixtures, the amount of Micro Air admixture 
needed is somewhat less than the amount required in 
plain concrete. Due to possible changes in the factors that 
can affect the dosage of Micro Air admixture, frequent air 
content checks should be made during the course of the 
work. Adjustments to the dosage should be based on the 
amount of entrained air required in the mixture at the point 
of placement. If an unusually high or low dosage of Micro 
Air admixture is required to obtain the desired air content, 
consult your BASF Construction Chemicals representative. 
In such cases, it may be necessary to determine that, in 
addition to a proper air content in the fresh concrete, a 
suitable air-void system is achieved in the hardened concrete. 

Dispensing and Mixing: Add Micro Air admixture to the 
concrete mixture using a dispenser designed for 
air-entraining admixtures; or add manually using a 
suitable measuring device that ensures accuracy within 
plus or minus 3% of the required amount. For optimum, 
consistent performance, the air-entraining admixture should 
be dispensed on damp, fine aggregate or with the initial 
batch water. If the concrete mixture contains 
lightweight aggregate, field evaluations should be 
conducted to determine the best method to dispense 
the air-entraining admixture. 

Precaution 
In a 2005 publication from the Portland Cement Association 
(PCA R&D Serial No. 2789), it was reported that problemat ic 
air-void clustering that can potentially lead to above normal 
decreases in strength was found to coincide with late . . 
additions of water to air-entrained concretes. Late additrons 
of water include the conventional practice of holding back 
water during batching for addition at the jobsite. Therefore, 
caution should be exercised with delayed additions to 
air-entrained concrete. Furthermore, an air content check 
should be performed after any post-batching addition to an 

air-entrained concrete mixture. 
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Product Notes 
Corrosivity- Non-Chloride, Non-Corrosive: Micro Air 
admixture will neither initiate nor promote corrosion of 
reinforcing and prestress ing steel embedded in concrete, 
or of galvan ized steel floor and roof systems. No calcium 
chloride or other chloride-based ingredients are used in the 
manufacture of this admixture. 

Compatibility: Micro Air admixture may be used in 
combination with any BASF Construct ion Chemicals 
admixture, unless stated otherwise on the data sheet for the 
other product. When used in conjunction with other 
admixtures, each admixture must be dispensed 
separately into the mixture. 

Storage and Handling 
Storage Temperature: Micro A ir admixture should be stored 
and dispensed at 35 oF (2 °C) or higher. Although freezing 
does not harm this product, precautions should be taken to 
protect it from freezing. If it freezes, t haw and reconstitute by 
mild mechanical agitation. Do not use presaurized air for 
agitation. 

Shelf Life: Micro Air admixture has a minimum shelf life 
of 18 months. Depend ing on storage conditions, the shelf 
life may be greater than stated. Please contact your BASF 
Construction Chemicals representative regarding suitability 
for use and dosage recommendations if the shelf life of Micro 
Air admixture has been exceeded. 

Safety: Micro Air admixture is a caustic solution. 
Chemical goggles and gloves are recommended when 
transferring or handl ing this material. (See MSDS and/or 
product label for complete information.) 

Packaging 
Micro Air admixture is suppl ied in 55 gal (208 L) drums, 275 
gal (1 040 L) totes and by bulk delivery. 

Related Documents 
Material Safety Data Sheets: Micro Air admixture. 

Additional Information 
For suggested specification information or for add itional 
product data on Micro Air admixture, contact your 
BASF Construct ion Chemicals representative. 

The Admixture Systems business of BASF Construction 
Chemicals is a leading provider of innovaUve admixtures 
for specialty concrete used in the ready mix, precast, 
manufactured concrete products, underground construction 
and paving markets throughout the North American region. 
The Company's respected Master Builders brand products 
are used to improve the placing, pumping, finishing, 
appearance and performance characteristics of concrete. 

(/ - \ BASF Construction Chemicals, LLC NSE Admixture Systems 
' ___ ;' www.masterbuildera.com . _ • Tel: 800 628.9990 • Fax: 216 g)g -8821 
I c.-., J Uni1e d S lalee 23700 Chagrin Boulevard. Cle~d, Ohio 44 122Tel~ 387_5862 • Fax: 905 792-0051 

Master 
Builders ! --·· Canada 1600 Clar1< BouleVSid, Bm~ton, On1ano L6T 4M7 • -

® Cona1ruo1ion ReaMroh & Teohnology GMBH IT f 101 7034 
~ BASF Construction Chemicals, U.C 2007 • Printed in USA • 1 0108 • L 
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RHEOMAC® VMA 362 
Viscosity modifying admixture 

DESCRIPTION 
Aheomac VMA 362 vrscosty modifyrng admiXtu·e (V~) is 
a ready-to-use. lrqurd admxture that rs specrally 
dE·veloped for producrng concrete 'IVrth enhanced vrscosity 
and controlled rhoolc•grcal propertres 

Concrete wtth Ftleomao VMA 862 admxture exhrbits 
superror stabilrty, rncreasmg resstmce to segregatron and 
facrlrtating placement and conrolidallon Rheomao VMA 
:362 m eets AS 14 78 for Type SN admxtures 

RECOMMENDED R)R 
Concrete c.ontarnrng .. gap-graded" aggregates 
Le-an cc.ncrete mJo..tures 

• Concrete contarnrng manufactu·ed sand 
• Concrete as a pun1)1ng ard 

Concrete as a 1inrshng ad 
C oncrete rllrxtures rEquirrng "more body" 
P,heodynamrc@ Self-Consohdatrng Concret e (SCC) or 
Super Workable Concnete (SWC) 

. I SfficJTM 

Mo~ wsoomy of COf1t7r1lfl 
EBByto~ 
Controls bl9eding 
Modd6s rhtJolo(}icti fYOP6I'(ies 
PrrJYidtls lwribilrly in rrixfr.r9 ~ tni 
batlahng 

• PrrJifdas ooncrt1f6 st8biity thir¥1 fninl!port tni 
~ 
R~ StJ{TBglllion, mwr rMrh ~ OOI'IC1'IJilJ 
mixflns 
Erha OQiiS' PLITJ)ifv lil?d ~ 

• Erhncss tU1scs spptllinllCI!il 
PrrJYidtls St,p6lior a7d prsdct8bl9 irp/so9 concrsiPJ 
~ 
FBDiltritss ptr1(holion of~ rrixtl.rtiB sud1 BtJ 

~ Ss/1-Consoldtllirf} ConcnJitl (SCQ or 

rrf.f: Wakab19 Caxnt~P~ '48Jnrr:eJs:rJ;'JUii[3--
SettingTme 
Rheomac VMA 362 admrxtLre has httle to no rmpact on 
concrete rettrng trme wrt h111 the recommended dosage 
rar1ge of 150-900 mUt 00 kg of cementrtrous mat en a 

Comp-eeeive Strei"QQh 
Rheomac VMA 362 admrxture does not affect the 
compreSSive strerlQth of concrete. 

Visooaity 
~ VMA 362 admrxture wrll exhrbit an rncreare rn 
c.oncrete vrsc.osrty wrth rncreaSing dosage of the 
admxture 

Ths desrab/e charactenstrc faal1tates ccncrete 
placement. conoolrdatron and finrshna and prc.v1des 
stooilrty to very flu1d concrete m )..es ' 
WorlaiDiity 
Ptleom;ac 'liMA 362 a:Jm1>-.ture enhcnces workabilrtv 

A'r Content 
Rheomao VMA 362 admxtuE- does not affect th.;. a r 
content rn 81ther arr-entrarned C( non a r-entra ned 
concrete 

Typrcal dosages of ar-81ltranrn;J admlx!ues ma1· be US8d 
to achreve the desrred ar content 

DOSAGE 
The recommended dosage rmge for Rheomao VMA 362 
admrxtL.re rs 150-900 rnl/1 00 kg of C.8fll ff1trtr•.'\.Js 
matenas 
A dosage of 150-400 mU1 00 kg rs recomme-n:Jer:J fur 
typrca concrete mrxtu·es requnng "mr.re b-•dy" tc. 
faalitate pUllprng and finshlng procer:Ju es 
A dosage of up to 900 mU 1 00 kg rs 1 ecc•m11ended tn 
proVIde stabilrty rn super wc•rkcble (~1-u:•n::drdat~r-..;l) 

concrete mxtures 
Bec.au~ of varat1ons 111 conueto= mate11cis tob~te 
condltims and/•:f q:>plrcatrons dc·sages outsrde of the 

1ed 

rnrtra mrx water 
Alternately,~ VMA 362 admr>-.tue ma:1 be add,..d 
after al other concreting rngredrents havE- 1:::>8E-n batci"BJ 
and thaoughly mxed. e1ther at the batch pla-n •:J: at thE­
JObsite 
COMPATABIUTY 
ftlaomiiO ~ J62 admiX!L.re rs corrpatrbl e- ·Mth n1·~-'>l 

othff admrxtL.res used 111 th8 prc .. :JL.t;tlc·n of quallly 
conuete rncludlf\l ncormal . lllld-range a1d hrJh -l<n;Je 
water-redUCJng admr>-.1ures. ald a r-entra n1n9 adrnr>-.tur<?s 
ftleomsc ~ 362 a :Jm1xtL.re 15 a.:.:. rompanble •. ,. th 
typrca accelerators. 1etade1 s. e)..ienjed set C•J~ro .. 
admr>-.tures corroSK•Il rnhrbtors and sh rnka;J8 r educn~ 

admixtures However a field tra1l rs reccm rnen i c-d tr 
enrure approp!'latE- performance 

362 admr>-.tUIE­
ten-peratures ctx>ve ooc and below 54°C 
Protect ~"'-"A 382 adm>Juro;, frcm lre<'-..Zing as 1t 
cannot be reconstrtuted after tha.v1nq 

SHElFUFE 
A produc:t stcblrty evauat1on has m o,vn that R'leomao 
VMA 362 adllli>-.1Lre llaS a m&lf life of 8 m :.nths 
Pleare O)ntact you loca BASF ConSiruct ron a-.,..,lca'& 
T echn cal P.epre9entat1ve regadlrl(J 9.JrtCDllty ro:.r use an-:! 
dosage recommendat1c•ns rf tho:- Siater:J r1rnrPlUll Soe-lf 1;8 

of Rheomao ~ 362 admxtur<? has t::>een .ox r.E•'-j erJ 
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RHEOMAC® VMA 362 
DISPENSING 
Fll1lilomao VMA 362 aclmxtLJe should be dtspens:?d usna 
d1rect-feed d1spensng systems ~ 
It ts recommended that tal-safe featLJes must be inciL.ded 
In thts dtspenser cpphcatton for potential meter 
mafunctlons. 

PACKAGING 
Ff"wrlaD ~ 362 IS avalable tn 20L CLbes. 205L 
Drums and 1000L Palecons. 

STATEMENT OF 
RESPONSIBIUlY 

The techrical nformation a-1d ~ication advce given 1n th1s BA8F ConltiiiJtllon Chllrr'llollla pubica!IOn w e 
based on the pressnt state o f our beSt sdenbftc and pracbcal kno-Medge As the 1niO'fTlebon hereon 1s of a 
general natu:e. no assunpt1on ca-1 be made BS to a product's SJIIBbtltty for a pa1JCUIBr use or ~rceiJJn 
a1d no wara1ty as to 1ts accu:acy, relt:'t:liity or completeness eo !her exp"emed cr 1mphed 1s grv!ll1 other tf"B1 
those re Lired IEM' The user 1s r rsble tor checki1 the sut~l1 o f oductS tor their nternoo use 

NOTE 

Field serv1ce where proVIded does not constitute SJpervtOOry respo-~sbtl1ty Suggesbons made t¥ 
BASF Oonr*UOtiO" ~either orally or 1n wnbng may be folow ed, mod1fied or ret~ted t¥ the owr-es . 

eng1neer cr contractor sinoe they , and not BA8F QonltUCICion Chllrnic*l. w e responsble for cen\llng out 

BASF Oon8lrucllon ~· Auenla Ply Ud Newcas~e 
Incorporated in NSW A B N 46 000 450 288 Cal berra 
Head Office 11 S tanton Road Seven Hils. NSW 2147 Bnsba"le 
Ph. (02) 8811 4200 TQWI1SV1ne Melbounne 

ooedures o ate to a eofic 1cabon 
(02) 4961 3819 
(02) 6280 6010 
(07) 3633 9900 

(07) 4774 7344 
(03) 9548 0300 

Adeiade (08) 81~ 7500 
Peo1n (CS) 9 300 2600 
Da-wrn (08) 8964 3269 
Kalgoort1e 0 4 17 77 2 355 

BASFConlln..lollonOliiTlloiHNaNZellrd Ud Head Office 45 W1lliEm Pid<enng DrTVe, AlbalY. Aucl<land Ph (09) 414 7233 

BASF'M:B SITES '!tf'{'N b8sf-cc.cgTJ au yyww.bes{-cc co 04 Y:l!fW beS-yac cern 
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APPENDIX B. 

SHRINKAGE PLOTS 
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Figure B. I. Concrete Shrinkage 
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Figure B.2. Concrete Shrinkage 
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Figure B.3. Concrete Shrinkage Compared to ACI 209R-92 Model 
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Figure B.4. Concrete Shrinkage Compared to Bazant-Baweja B3 Model 
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